NTS-NOTEARS: Learning Nonparametric DBNs With Prior Knowledge

Xiangyu Sun'! Oliver Schulte!

Guiliang Liu? Pascal Poupart?

1Simon Fraser University 2The Chinese University of Hong Kong, Shenzhen >University of Waterloo

Abstract

We describe NTS-NOTEARS, a score-based
structure learning method for time-series data to
learn dynamic Bayesian networks (DBNs) that
captures nonlinear, lagged (inter-slice) and in-
stantaneous (intra-slice) relations among vari-
ables. NTS-NOTEARS utilizes 1D convolu-
tional neural networks (CNNSs) to model the de-
pendence of child variables on their parents;
1D CNN is a neural function approximation
model well-suited for sequential data. DBN-
CNN structure learning is formulated as a con-
tinuous optimization problem with an acyclicity
constraint, following the NOTEARS DAG learn-
ing approach (Zheng et al., 2018, 2020). We
show how prior knowledge of dependencies (e.g.,
forbidden and required edges) can be included
as additional optimization constraints. Empiri-
cal evaluation on simulated and benchmark data
shows that NTS-NOTEARS achieves state-of-
the-art DAG structure quality compared to both
parametric and nonparametric baseline methods,
with improvement in the range of 10-20% on the
Fl-score. We also evaluate NTS-NOTEARS on
complex real-world data acquired from profes-
sional ice hockey games that contain a mixture
of continuous and discrete variables. The code is
available online'.

1 INTRODUCTION

Dynamic Bayesian Networks (DBNs) are graphical mod-
els for time-series data. DBNs have many applications in
real-world domains such as biology (Sachs et al., 2005), fi-
nance (Sanford and Moosa, 2012) and economics (Appiah,
2018). The paper addresses the problem of learning DBN

"https://github.com/xiangyu-sun-789/NTS-NOTEARS

Proceedings of the 26" International Conference on Artificial
Intelligence and Statistics (AISTATS) 2023, Valencia, Spain.
PMLR: Volume 206. Copyright 2023 by the author(s).

structure from time-series data where data samples across
time slices are dependent (inter-slice dependencies), and
there may also exist instantaneous dependencies among
variables at the same time (intra-slice dependencies).

A key issue for directed acyclic graph (DAG) learning is
how to model the predictive relationship between a child
node and its parents. Most previous time-series models re-
quire the user to select a priori parametric models (e.g., lin-
ear). However, when domain knowledge is not available
to determine the parametric models, these approaches may
lead to model misspecification and incorrect DAG struc-
ture. In this paper we develop a new approach to learn non-
parametric DBNs where a child value is predicted from its
parents using a 1D convolutional neural network (CNN).
The 1D CNN architecture is designed to model a sequential
topology in the input data, and therefore especially suitable
for time-series. While a CNN defines a parameter space,
it is nonparametric in the sense of being a general function
approximator.

Structure Learning We formulate DBN-CNN model
learning as a continuous optimization search for an acyclic
weight matrix, by adapting the NOTEARS DAG learning
approach for non-temporal data (Zheng et al., 2018, 2020).
The weight matrix is extracted from the first layer of the
trained 1D CNN kernel weights. We show analytically that
using the first-layer weights involves no loss of expressive
power. We show how the efficient L-BFGS-B optimiza-
tion algorithm can be leveraged to incorporate useful prior
knowledge in the model search, such as forbidden or re-
quired edges.

Evaluation Our evaluation focuses on apple-to-apple
comparisons within the same model class as NTS-
NOTEARS: temporal graphs with both intra-slice and
inter-slice dependencies. Our comparison methods in-
clude representative methods based on i) nonlinear score
optimization using neural networks: TCDF (Nauta et al.,
2019), ii) linear models: DYNOTEARS (Pamfil et al.,
2020), and iii) conditional independence (CI) constraints:
PCMCI+ with nonlinear CI test (Runge, 2020).

We compare the learned structures against synthetic
and real-world benchmark ground-truth DBNs (Lorenz

NTS-NOTEARS: Learning Nonparametric DBNs With Prior Knowledge

Table 1: Difference between existing methods and NTS-NOTEARS. Starred methods are evaluation baselines.

Method | Score-Based | Nonlinear | Temporal | Instantaneous Edges | Acyclic
cMLP | v 2 A X v
Economy-SRU | v | v/ v X v
GVAR | v 2 A X v
VAR-LINGAM | v x| v v v
PCMCI+* | X 2 A v v
TCDF* | v 2 A v I
NOTEARS | v x| x| v v
GraN-DAG | v v X v v
NOTEARS-MLP | v v X v v
DYNOTEARS* | v x| v v v
NTS-NOTEARS | v v v v %

96 (Lorenz, 1996) and fMRI (Smith et al., 2011)), and
on a new real-world dataset featuring National Hockey
League (NHL) event logs. The hockey data comprise bi-
nary, categorical and continuous variables. Compared to
the linear DYNOTEARS model (Pamfil et al., 2020), NTS-
NOTEARS produces structures that are better, by as much
as 15% in terms of Fl-score on the benchmark datasets.
We obtain much better improvements over the previous
neural-based TCDF method (Nauta et al., 2019), due to
extracting DAG edge weights from CNNs rather than the
attention mechanism. Compared to the constraint-based
method PCMCI+ (Runge, 2020) with nonlinear CI con-
straints, NTS-NOTEARS learns substantially better struc-
tures and is much more scalable.

Contributions Our contributions are as follows:

e We propose 1D CNNs to define a new class of non-
parametric DBNs that capture linear, nonlinear, inter-
slice and intra-slice relations among both continuous
and discrete variables in time-series data.

* We describe NTS-NOTEARS, a continuous optimiza-
tion approach for learning DBN-CNN models.

* We show how prior knowledge of dependencies can
be translated into optimization constraints on convo-
lutional weights.

The paper is structured as follows. We discuss related
works in Section 2, describe NTS-NOTEARS and its train-
ing objective in Section 3 and 4, respectively. Then, we
explain how to incorporate prior knowledge in Section 5.
In Section 6, we evaluate NTS-NOTEARS with simulated
data, benchmarks and complex real-world data.

2 RELATED WORK

Non-temporal Nonparametric DAG Structure Learning. A
recent algebraic acyclicity constraint is presented in Zheng
et al. (2018), as the basis of the NOTEARS approach
to learn instantaneous DAGs in the linear case. Later
works such as GraN-DAG (Lachapelle et al., 2019) and
NOTEARS-MLP (Zheng et al., 2020) utilize the acylic-
ity constraint for learning nonparametric nonlinear instan-
taneous DAGs using multilayer perceptrons (MLPs).

To understand the relationship between continuous opti-
mization methods and previous DAG structure learning,
consider a 2-stage approach: 1) For each variable X;, learn
the Markov blanket of X; using classification/regression
methods. Make each member X; of the Markov blanket a
parent of X ;. 2) Resolve cycles to produce a DAG with the
same Markov blankets. Previous work using the 2-stage ap-
proach (Edera et al., 2014) proposed different discrete algo-
rithms for each stage. Instead of 2 separate stages, the con-
tinuous optimization approach introduces 2 different com-
ponents in the structure learning objective function: 1) A
regression component that encourages X; to be a parent of
X; if X; improves the prediction of X;. 2) An acyclicity
component that discourages cycles in the resulting graph.
Both predictive error and cyclicity are jointly minimized
using gradient descent. If an MB discovery approach is
based on a special differentiable MB predictive loss, it can
be incorporated in our method by changing the loss func-
tion.

Temporal DAG Structure Learning. Learning DBNs for
temporal data is a popular topic. Methods for learn-
ing DBN structure can be divided into score-based and
constraint-based.

Xiangyu Sun, Oliver Schulte, Guiliang Liu, Pascal Poupart

Score-based Methods. Linear autoregressive models in-
clude DYNOTEARS (Pamfil et al., 2020) and VAR-
LINGAM (Hyvérinen et al., 2010). DYNOTEARS ex-
tends instantaneous linear NOTEARS using autoregres-
sion. VAR-LINGAM extends LINGAM (Shimizu et al.,
2006, 2011), a linear model class with additive non-
Gaussian noise. While linear models generally support fast
learning, their capacity is limited compared to our nonlin-
ear model.

There are several nonlinear neural DBN structure
learning methods that estimate inter-slice dependencies
only, which is consistent with Granger’s approach to
causality (Granger, 1969). For example, cMLP and
cLSTM (Tank et al., 2021) use MLPs and LSTMs, respec-
tively, to estimate inter-slice DBNs. GVAR (Marcinke-
vics and Vogt, 2021) estimates summary graphs using self-
explaining neural networks. Economy-SRU (Khanna and
Tan, 2019) is an RNN-based method that learns inter-
slice DBNs. However, ignoring intra-slice dependen-
cies may lead to incorrect estimation of inter-slice rela-
tions (Hyvérinen et al., 2010).

To our knowledge, TCDF (Nauta et al., 2019) is the only
other method that also uses CNNs. It constructs a depen-
dency graph structure using attention weights, rather not
the NOTEARS method. The attention approach does not
guarantee acylicity and is therefore a different model class
from DBNs. Previous evaluations (Marcinkevics and Vogt,
2021; Khanna and Tan, 2019) and our experiments show
that the attention weights do not produce accurate graphs.

Constraint-based Methods utilize CI tests to estimate
graphs. PCMCI+ (Runge, 2020) outputs a completed par-
tially directed acyclic graph (CPDAG) with multiple time
steps. LPCMCI (Gerhardus and Runge, 2020) outputs a
partial ancestral graph (PAG) that indicates potential latent
confounders. Users can choose different CI tests based on
linearity assumptions or nonparametric. However, nonlin-
ear CI tests are computationally expensive (Zhang et al.,
2011; Runge, 2018; Zheng et al., 2020; Runge et al., 2019).

Table 1 summarizes the difference between previous meth-
ods and NTS-NOTEARS. Methods excluded from our
evaluation are from a different model class; we discuss
them further in Appendix A.

3 NTS-NOTEARS MODEL

We work with time-series data given by {z! : t =
1,...,T}, where &' = {x},2%,... 25} is a time-indexed
d-dimensional vector of variables. For categorical vari-
ables we use one-hot encoding unless otherwise stated. A
DAG G is a directed acyclic graph (V, E') where V repre-
sents vertices (i.e. nodes) and F represents edges. We as-
sume a one-to-one correspondence between nodes and ran-
dom variables and treat them interchangeably. Each edge

1D-convolutional layer
o1
NI

2| t—1 t
X i N fully-connected layers
X2 1

RS

DS

FRS

LSRN

\ N

v, ~.

71 . - Ny, T
W3 14€qL2-norm . : X
N o« ’,:,"O

o
X ’t72 Tt'71 Tﬁ
1 L m neurons
X2
X3 [

Figure 1: The architecture of NTS-NOTEARS for one
child variable X;. The convolutional weights w.r.t. the
child variable in the intra-slice ¢ are set to 0. In this ex-
ample, K = 2 and d = 3. For the j-th CNN, the kernel
weights are denoted by ¢;, the remaining parameters by

¥j,500; = {¢;,;}.

X; — X denotes that the variable X; depends on the
value of variable X;. Anedge X{ — X between variables
at the same time represents an intra-slice or instantaneous
dependency. An edge X f 'S Jt for k£ > 0 represents an
inter-slice or lagged dependency (Pamfil et al., 2020). The
structure learning problem is to learn a DBN that captures
the dependencies in the data {x : t = 1,...,T}.

Following Pamfil et al. (2020), we assume the underlying
data generating process is stationary over time, and can
be modelled as a K-th order Markov process, where K
is a hyperparameter. These are common assumptions that
can be found in related works (Runge, 2020; Khanna and
Tan, 2019; Malinsky and Spirtes, 2018; Pamfil et al., 2020;
Hyvirinen et al., 2010).

Temporal CNN Model Our main contribution is a new
nonparametric model of acyclic temporal dependencies be-
tween the parent and child variables. We utilize 1D CNNs.
A CNN exploits a sequential or grid topology in the in-
put data. For this reason 1D CNNs are used to process
sequential sensory and audio data (Yildirim et al., 2018;
Jana et al., 2020; Guan et al., 2019; Li et al., 2019; Abdoli
et al., 2019). 1D CNNs learn local invariant features and
aggregate them across the data sequence to learn higher-
order sequence features. Higher levels in the CNN aggre-
gate across different lags in a nonlinear trainable way.

A general MLP does not incorporate data order informa-
tion. Current MLP-based methods such as cMLP (Tank
et al., 2021) and IDYNO (Gao et al., 2022) concatenate
the data. Data concatenation with large datasets may cause
memory issues and slow down the training speed. Adding

NTS-NOTEARS: Learning Nonparametric DBNs With Prior Knowledge

positional encoding transformer-style may be an interest-
ing direction for future work, although the quadratic cost
of self-attention is a potential concern. Appendix A con-
tains further discussion of IDYNO.

We train d CNNs jointly where the j-th CNN predicts the
expectation of the target variable X; at each time step ¢ >
K + 1 given preceding and instantaneous input variables:

E[X!PA(X)) = ONN,({X™*: 1 <k < K}, X")

where PA(X?) denotes the parents of X7 that are defined
by the trained CNNs (see next paragraph). Here K is a
hyperparameter denoting the maximum lag (order), so the
input for predicting variable X ; comprises all preceding
variables up to the maximum lag, and all variables at the
same time step other than X ;. The parameters of the CNN
for child variable X; are denoted ;. Figure 1 illustrates
our CNN architecture. The first layer of each CNN is a 1D
convolution layer with m kernels, stride equal to 1 and no
padding. The shape of each convolutional kernel is d X
(K + 1) where the last column K + 1 represents intra-slice
connections.

From Local CNNs to Model Weights. Given d
parametrized CNNs, we adapt the NOTEARS-MLP ap-
proach (Zheng et al., 2020) to derive a weighted adjacency
matrix W that defines a graph structure. Let qﬁﬁ ; C 0j de-
note the m kernel weight parameters for input variable X*
in the first convolutional layer of the j-th CNN. Each entry
WZ; in the weighted adjacency matrix W represents the de-
pendency strength of a directed edge from variable X¥ to
variable X JK +1 The estimated dependency strength of an
edge between two variables is the L2-norm of their kernel
weights:

WE = |85l fork=1,...,K+1 (1)

Finally, weight thresholds W} are applied to each time
step k to prune edges with weak dependency strengths and

define the parent set of each variable.

Expressive Power We next show that extracting model
weights from the first CNN layer involves no loss of ex-
pressive power (cf. Zheng et al. (2020)).

Say that a function g(X) is independent of input X if and
only if || 8%())(() ||z = 0. We provide the following theorem
characterizing the set of 1D CNNs that are independent of

XF (see Appendix B for the proof).

Theorem 1. Let F' be the class of 1D CNNs that are in-
dependent of XF and Fy be the class of 1D CNNs such
that the i-th kernel parameters in the k-th column of the m
first-layer CNN kernels are all zeros. Then, F' = I,

4 TRAINING OBJECTIVE

The training objective comprises four components for lo-
cal functions: 1) Matching the observed child values given
the parents. 2) A sparsity penalty for the CNN weights.
3) A regularization term for all parameters. 4) A cyclicity
penalty to drive the induced weights to define an acyclic
graph.

Let £ denote the least-squares loss, gi);?' be the concatenation

of the (j)f’ ; vectors, and = {01,...,0q}. The constrained
training objective function is defined as:

mein F(6)

subject to h(WET1) =0

1
T T-K

F(6)

T d
> S L(XE ONNo,({X'F 1<k < K} X')))
t=K+1 j=1
K+1 1
+) A lgkl L, + 372 110l 2
k=1

RWEHL) = (V"W —d =0

tr(A) and e are the trace and matrix exponential of matrix
A, respectively, and o is element-wise product. The func-
tion h enforces the acyclicity constraint among intra-slice
dependencies (Zheng et al., 2020).

The augmented Lagrangian converts the constrained opti-
mization problem to an unconstrained optimization prob-
lem. Hence, the actual (unconstrained) training objective
function is:

%nﬂm+gxmw““»ﬁuwmwkﬂ))

If a variable XF is predictive for the target variable
th- fort > k, minimizing (2) will push (bf,j away from
0. Otherwise, the sparsity penalty and regularization will
push gbfi ; towards 0. If the acyclicity constraint is violated,
some parameters in ¢ 1 will also be pushed towards 0 to
satisfy the acyclicity constraint.

We use the L-BFGS-B algorithm (Byrd et al., 1995;
Zhu et al.,, 1997) to optimize the unconstrained objec-
tive (2). L-BFGS (and its variants) are commonly used in
works related to NOTEARS, with or without neural net-
works (Zheng et al., 2018, 2020; Pamfil et al., 2020; Ng
et al., 2020; Yuan, 2011).

Xiangyu Sun, Oliver Schulte, Guiliang Liu, Pascal Poupart

S FROM PRIOR KNOWLEDGE TO
OPTIMIZATION CONSTRAINTS

Allowing prior knowledge is often necessary for real-world
applications (Shimizu et al., 2011). Adding prior knowl-
edge about the ground-truth graph into the learning process
increases not only the accuracy but also the speed of learn-
ing, since the number of parameters that need to be learned
is reduced. A useful kind of prior knowledge is specify-
ing a possible range for the dependency weights WZ; be-
tween two variables at a fixed lag. For example, specifying
W;; = 0 forbids an edge; specifying WZ; > Wk requires
an edge (Ramsey et al., 2018). Various DBN structure
learning methods make the Granger assumption that there
are no intra-slice dependencies (see Section 2). By adding
prior knowledge forbidding such edges, NTS-NOTEARS
can leverage this assumption when valid. We show how
such prior knowledge can be represented in our temporal
CNN learning method, through the L-BFGS-B formula-
tion.

According to Equation (1), the estimated dependency
strength Wj; on an edge is equal to the L2-norm of the
corresponding CNN kernel parameters. Let b denote a de-
pendency strength as prior knowledge specified by user,
m be the number of kernels of the convolutional layer of
each CNN, and b be the translated optimization constraints.
Each b is scaled in the following way before being applied
to the L-BFGS-B algorithm:

2
b= \/IT 3)

m
The L-BFGS-B algorithm is a second-order memory-
efficient nonlinear optimization algorithm that allows
bound constraints on parameters. The algorithm allows
users to define which sets of parameters are free and which
are constrained. For each constrained parameter, the users
provide a lower bound and/or an upper bound. The bound

constraints allow us to integrate prior knowledge into NTS-
NOTEARS as follows.

Let @ = {0,0} where 6 denote free parameters and 0 de-
note constrained parameters with lower bounds [and up-
per bounds u, where the bounds are translated from prior
knowledge according to Equation (3). The objective func-
tion (2) becomes

min F(O)+2 (h(WE1))2 L ah(WE+)

0,011 <01<u1,l2<03<us,...

[\]

For example, to forbid an edge from x; in the most recent
lag to x3, the following parameter constraint can be applied

Cmin FO) + 2(hWETY)2 £ an(WEHY
0,0<01,<0 2

The minimum bound for NTS-NOTEARS is 0, because we
take the L2-norm of the parameters in Equation (1) and the

estimated dependency strengths on edges are non-negative.
Similarly, to require an edge from x; in the earliest lag to
x3, the following parameter constraint can be applied

‘min F(0) + 2(hWEH))2 4 ah(WE+H)
6,1<0} , 2

where [is a positive number with [> W} .

Figure 2 illustrates the benefits of having prior knowl-
edge. We apply NTS-NOTEARS to a simulated ground-
truth DBN containing 2 time steps and 7 nodes per time
step. Please see the caption for a detailed explanation.
It shows that providing prior knowledge via optimization
constraints may help to recover edges that are not explic-
itly encoded by the prior knowledge.

6 EVALUATION

All the experiments were performed on a computer
equipped with an Intel Core i7-6850K CPU at 3.60GHz,
32GB memory and an Nvidia GeForce GTX 1080Ti GPU.
All datasets are normalized to have mean 0 and standard de-
viation 1 to remove patterns in marginal variance (Reisach
et al., 2021).

Comparison Methods We compare NTS-NOTEARS
with several recent structure learning methods:
TCDF (Nauta et al, 2019), DYNOTEARS (Pamfil
et al.,, 2020) and PCMCI+ with GPDC nonlinear CI
test (Runge, 2020). Note that PCMCI+ outputs a CPDAG
with undirected edges. We evaluate it favourably by count-
ing the undirected edges as correctly oriented regardless
of the ground-truth edge direction. We follow the closely
related DYNOTEARS work and report FI-scores as our
main metric for comparing learned graphs to ground-truth
graphs. Results for other metrics (SHD, precision and
recall) are reported in the appendix.

6.1 Simulated Data

We generate 48 synthetic parametrized DBN models and
then evaluate the DBN structure learned against data sam-
pled from each ground-truth model. For generating syn-
thetic DAGs, we follow Pamfil et al. (2020). For sam-
pling from a model, we extend the simulator’ provided by
NOTEARS (Zheng et al., 2020, 2018) to temporal data.
Figure 5 in the appendix shows how the simulated data is
generated.

DBN Generation. The random ground-truth DAGs are gen-
erated based on either the Erdos-Renyi (ER) scheme (New-
man, 2018) or the Barabasi-Albert (BA) scheme (Barabasi
and Albert, 1999) by varying the number of nodes (K +

*https://github.com/xunzheng/notears

NTS-NOTEARS: Learning Nonparametric DBNs With Prior Knowledge

t-1)
t-1)

X1(1 X1(t-1)
X2

X3(t-1)

Xa(

X5(

x(t-1)
X3(t-1)
X4(t-1)
X5(t-1)
X6(t-1)
X7(t-1)
X1(t)
x2(t)
X3(t)
Xa(t)
X5(t)
Xelt)
X7(t)

X1(t-1)
X2(t-1)
X3(t1)
Xa(t-1)
X5(t-1)
X6(t-1)
X7(t-1)
X1(t)
x2(t)
x3(t)
X4(t)
X5(t)
X6(t)
X7(t)

X1(t-1)
X2(t-1)
X3(t-1)
X4(t-1)
X5(t-1)
X6(t-1)
X7(t-1)
X1(t)
xa(t)
x3(t)
X4(t)
X5(t)
X6(t)
X1(t)

t-1)
t-1)
X6(t-1)
X7(t-1)
X1(t)
x2(t)
x3(t)
X4(t)
x5(t)
X6(t)
XI(t)

(a) Ground-truth (b) No prior knowl- (c) Require X5 — (d) Forbid X! —
DBN edge Xt X3

Figure 2: Each row represents a parent variable and each column represents a child variable. For instance, the yellow
top-right cell represents the edge X ffl — X1. Figures 2b-2d show DBNs learned by NTS-NOTEARS with various types
of prior knowledge. (2a) The random ground-truth DBN. (2b) Without prior knowledge, the method recovers most of
the true edges except X5 — X% (reversed), X! — X (reversed), X} — X} (missed), and X} ~* — X% (missed). The
structural Hamming distance (SHD) between the ground-truth graph and the estimated graph is 4. (2c) By simply adding
a lower bound constraint W, < W3 5 that requires the edge X§ — X4, the method recovers the true edge X} — X3

The SHD is reduced to 3. (2d) With the edge X% — X} forbidden, the method recovers not only the true edge X3 — X
that is directly relevant to the provided prior knowledge but also another true edge X} — X} that is not directly relevant.

With this prior knowledge alone, the SHD is reduced to 2.

1) x d and mean out-degrees. Given a random ground-
truth DAG, the data is simulated based on one of the fol-
lowing three identifiable nonlinear structural causal mod-
els (SCMs): additive noise models (ANM) (Peters et al.,
2017), additive index models (AIM) (Yuan, 2011; Alquier
and Biau, 2013) and generalized linear models with Pois-
son distribution (GLM-Pois) (Park and Park, 2019). The
data simulated with GLM-Pois is discrete, the data sim-
ulated by the other models is continuous with Gaussian
noise. The SCM parameters are generated by uniform sam-
pling from a closed interval following Zheng et al. (2020);
Pamlfil et al. (2020). The number of lags is set to 3 in the
ground-truth models. Please see Appendix C for more sim-
ulation details.

Data Generation. For each ground-truth DBN, we generate
training data with two sequence lengths 7' € {200, 1000}.
We create validation data sets as follows. For graph sizes
{20, 40, 60, 80}, reference DBN are generated using BA,
AIM, intra-slice mean out-degree equal to 2, and inter-
slice mean out-degree equal to 1. Then sample from each
reference DBN two sequences, one for each length 7' €
{200, 1000}, with number of lags = 3.

Hyperparameters For each method and each sequence
length, we select hyperparameters with a grid search that
maximizes the F1-score, averaged over the validation sets
for each sequence length. These hyperparameters are used
as defaults for all synthetic datasets. Performance can be
further improved by tuning hyperparameters to each dataset
through cross-validation. However, using default hyperpa-
rameters supports assessing the general approach, as noted

by Ng et al. (2020); Zheng et al. (2020). Please see Ap-
pendix D for hyperparameter values.

Results Figure 4 shows the Fl-score depending on se-
quence length T, SCM, mean out-degrees and graph size.
All methods pass the sanity check of improving with more
data. NTS-NOTEARS achieves the highest Fl-scores in
20 out of 24 settings. The score of NTS-NOTEARS is
much better than that of TCDF, which shows the strength
of the NOTEARS approach of defining edge weights over
the attention-based approach used by TCDF. On other met-
rics (e.g., SHD), we also find that NTS-NOTEARS scores
the best; please see Appendix E for detailed results.

6.1.1 Running Time

Figure 3 compares the average running time of the evalu-
ation methods over 10 datasets. The neural networks and
the GPDC CI test are accelerated by the same GPU. The
linear method DYNOTEARS is the fastest. The constraint-
based method PCMCI+ with the nonlinear GPDC CT test
is substantially slower than the neural-based methods such
as TCDF and NTS-NOTEARS. NTS-NOTEARS therefore
offers a sweet spot trade-off between speed and learning
performance.

6.2 Benchmark Data: Lorenz 96 & fMRI

Lorenz 96 (Lorenz, 1996) and fMRI (Smith et al., 2011)
are two common benchmarks to evaluate causal discovery
algorithms with nonlinear time-series data and nonlinear
Granger causality algorithms (Nauta et al., 2019; Monti

Xiangyu Sun, Oliver Schulte, Guiliang Liu, Pascal Poupart

Running Time on Logarithmic Scale
100000

17919.32
10000

1000 829.70

131.16

Seconds

100 66.36

10
3.00

R\

Number of Nodes=20
N DYNOTEARS TCDF 11 PCMCl+

Number of Nodes=80
= NTS-NOTEARS

Figure 3: The average running time over 10 datasets mea-
sured in seconds with additive noise model, K = 3, T =
1000 and ER(2,1). The heights of bars are on a logarithmic
scale.

et al., 2020; Marcinkevics and Vogt, 2021; Tank et al.,
2021; Khanna and Tan, 2019). The Lorenz 96 model is
popular in climate science as a testbed for chaotic behav-
iors (Schneider et al., 2017). The data follows the nonlinear
dynamics given by:

dat™! ‘

?

¢ ¢ ¢
P (Tip1 — Tig) Tiq —x; + F

where F controls the chaoticity of the system. Similar
to previous work (Marcinkevics and Vogt, 2021; Khanna
and Tan, 2019), we consider two settings where F' €
{10, 40}. The fMRI benchmark contains rich, realistic sim-
ulated blood-oxygen-level-dependent time-series for mod-
elling brain networks. Each node in the network represents
a region of interest in the brain. The ground-truth DAG in
each benchmark has 2 time steps (see Figure 9 in the ap-
pendix).

In Table 2, we evaluate the methods and report their mean
Fl1-scores and standard errors (SE) with 5 datasets sam-
pled from the Lorenz 96 benchmark where each dataset
has d = 20 and T" = 500, and 10 datasets sampled from
the fMRI benchmark where each dataset has d = 5 and
T € {200,1200,5000}. Please see Appendix F for hy-
perparameter values. NTS-NOTEARS achieves the best F1-
scores with both benchmarks, by a margin of more than
10%. NTS-NOTEARS also achieves the best scores for
other metrics (please see Appendix G).

Similar to Marcinkevics and Vogt (2021); Khanna and Tan
(2019), in Table 3 we also report the area under the receiver
operating characteristic curve (AUROC) by varying the hy-
perparameters of each method. NTS-NOTEARS achieves
the best AUROC with both benchmarks.

Table 2: Mean F1-scores (+ SE) computed with Lorenz
96 and fMRI benchmarks.

Method ‘ Lorenz 96 ‘ fMRI

DYNOTEARS ‘ 0.855 (£ 0.016) ‘ 0.475 (£ 0.020)
TCDF ‘ 0.459 (£ 0.017) ‘ 0.347 (£ 0.059)
PCMCI+ ‘ 0.637 (£ 0.028) ‘ 0.502 (£ 0.045)

NTS-NOTEARS | 0.996 (& 0.002) | 0.628 (& 0.023)

Table 3: AUROC computed with Lorenz 96 and fMRI
benchmarks by varying the hyperparameters of each evalu-
ation method.

Method | Lorenz 96 | fMRI
DYNOTEARS | 0.788 | 0.708
TCDF | 0585 | 0.612
PCMCI+ | 0706 | 0.743
NTS-NOTEARS | 0.811 | 0.749

6.3 Real-World Ice Hockey Data

We apply NTS-NOTEARS to real-world data collected by
Sportlogiq from ice hockey games in the 2018-2019 NHL
season. The dataset contains a mixture of continuous, bi-
nary and categorical variables. The ground-truth distribu-
tion of each variable is unspecified. Please see Appendix H
for data description. Since the play restarts after a goal
is scored (i.e. face-off), we incorporate the prior knowl-
edge that forbids edges coming from goal(t) or goal(t-1).
Because DYNOTEARS does not provide a way to incor-
porate prior knowledge, we manually remove any outgo-
ing edges coming from goal(t) or goal(t-1). We set the
DYNOTEARS hyperparameters so that both methods pro-
duce the same number of edges for comparability (see Ap-
pendix H). The estimated DBNs capture many meaning-
ful relationships between variables. An interesting question
to ask in ice hockey is “what contributes to a goal?” (Sun
et al., 2020; Schulte et al., 2017). By identifying the parent
nodes of goal(t) in the DBN estimated by NTS-NOTEARS,
we can answer the question: the preceding shot, the dura-
tion of the shot, the distance between the shot and the net
(i.e. xAdjCoord(t-1)), the manpower situation and the ve-
locity of the puck are important for scoring a goal. How-
ever, due to nonlinearity, DYNOTEARS fails to identify
several goal contributors such as the duration of the shot,
the distance between the shot and the net (i.e. xAdjCoord(t-
1)), and the manpower situation. NTS-NOTEARS cap-
tures them all. Please see Figure 11 in the appendix for
the learned DBNSs.

NTS-NOTEARS: Learning Nonparametric DBNs With Prior Knowledge

7 CONCLUSION

This paper described NTS-NOTEARS for learning non-
parametric DBNS, a score-based structure learning method
using 1D CNNs for time-series data, either with or with-
out prior knowledge of dependencies. The learned DBN's
capture both inter-slice and intra-slice dependencies. The
system is user-friendly in that it supports both continuous
and discrete data, and does not require knowledge of inde-
pendence tests or parametric data generation models. We
showed how to adapt the NOTEARS continuous optimiza-
tion strategy (Zheng et al., 2018) for 1D CNNs, which al-
lows us to learn intra-slice edges with an acyclicity con-
straint. Based on simulated data and standard benchmarks,
we show the superior DBN structure learning quality and
running speed of NTS-NOTEARS compared to several
comparison methods, and demonstrate the advantage of
providing prior knowledge using optimization constraints.
We also apply the NTS-NOTEARS to a complex real-world
sports dataset that contains a mixture of continuous and dis-
crete variables without knowing the ground-truth underly-
ing data distribution. A next step for future work is to ex-
tend NTS-NOTEARS to causal modelling, in particular to
causal graph learning in the presence of latent confounders.

Acknowledgements

This work was supported by a Discovery Grant for Oliver
Schulte from the Natural Sciences and Engineering Re-
search Council of Canada.

Xiangyu Sun, Oliver Schulte, Guiliang Liu, Pascal Poupart

F1-Score
o o
~ ©

o
«

o
w

0.7
2 0.6
805
04

03

F1-Score
o
w

(e) Generalized Linear Model with Poisson Distribution, 7' = 200 (f) Generalized Linear Model with Poisson Distribution, 7" = 1000

Figure 4: Mean F1-scores over 10 datasets for each setting with simulated data. Higher F1-score is better. The number of
lags = 3. ER(2,1) denotes that the ground-truth DAGs are sampled using ER scheme with an intra-slice mean out-degree
equal to 2 and inter-slice mean out-degree equal to 1. NTS-NOTEARS achieves the highest F1-scores in the vast majority

20 40 60 80
Number of Nodes
BA(2,2)

20 40 60 80
Number of Nodes
(a) Additive Index
ER(1,1)
—
20 40 60 80
Number of Nodes
BA(2,2)

20 40 60 80
Number of Nodes

(c) Additive Noise
ER(1,1)

20 40 60 80
Number of Nodes

BA(2,2)

20 40 60 80
Number of Nodes

of the settings.

ER(2,1)
08
0.7 ~_
506 S~
o —
—_—
205 S ————

20 40 60 80
Number of Nodes
BA(4,2)
0.6 .
o 0.5 =
o
» 04
T
0.3
0.2

20 40 60 80
Number of Nodes

Model, T' = 200
ER(2,1)

0.7
N
o
m‘:’045
T04 —
03
20 40 60 80
Number of Nodes
BA(4,2)
06
205 ~_
o S
3 -
204
03
20 40 60 80

Number of Nodes

Model, T' = 200

ER(2,1)
0.5
Q
504
&
=03
s
0.2
20 40 60 80
Number of Nodes
BA(4,2)
0.5
204
S
$03
o
“02
0.1
20 40 60 80
Number of Nodes

o o o
“« ~ ©

F1-Score

o
w

o o o
[=)

F1-Score

o
w

F1-Score
o o
= o

o
=

o
o

ER(1,1)
R 1
R S —
o
5 0.8
4
Z 0.6
0.4
20 40 60 80
Number of Nodes
BA(2,2)
1
- 408
E N — 0
@06
“
/_/ “04
0.2
20 40 60 80
Number of Nodes

Number of Nodes

BA(4,2)

Number of Nodes

(b) Additive Index Model, T" = 1000

ER(1,1)
0.8
_— R i o
I 506
4
T~
0.2
20 40 60 80
Number of Nodes
BA(2,2)
0.8
S e — p— 206
r/’“’/‘ o
4
S o4
0.2
20 40 60 80

Number of Nodes

ER(2,1)

20 40 60 80
Number of Nodes
BA(4,2)

e
20 40 60 80
Number of Nodes

(d) Additive Noise Model, 7" = 1000
ER(2,1)

ER(1,1)
0.8
N 207
s § 0.6
¥ 0.5
0.4
20 40 60 80
Number of Nodes
BA(2,2)
0.8
_ o
~_ = s
- O
N ?
=04
—_— w
0.2

20 40 60 80
Number of Nodes

‘ +«NTS-NOTEARS <+DYNOTEARS =TCDF =PCMCI+ ‘

20 40 60 80
Number of Nodes

BA(4,2)

20 40 60 80
Number of Nodes

NTS-NOTEARS: Learning Nonparametric DBNs With Prior Knowledge

References

Abdoli, S., Cardinal, P., and Koerich, A. L. (2019). End-to-
end environmental sound classification using a 1D con-
volutional neural network. Expert Systems with Applica-
tions, 136:252-263.

Alquier, P. and Biau, G. (2013). Sparse single-index model.
Journal of Machine Learning Research, 14(1).

Appiah, M. O. (2018). Investigating the multivariate
Granger causality between energy consumption, eco-
nomic growth and CO2 emissions in Ghana. Energy Pol-
icy, 112:198-208.

Barabasi, A.-L. and Albert, R. (1999). Emergence of scal-
ing in random networks. science, 286(5439):509-512.

Byrd, R. H., Lu, P, Nocedal, J., and Zhu, C. (1995). A lim-
ited memory algorithm for bound constrained optimiza-
tion. SIAM Journal on scientific computing, 16(5):1190—
1208.

Edera, A., Strappa, Y., and Bromberg, F. (2014). The grow-
shrink strategy for learning Markov network structures
constrained by context-specific independences. In Ibero-

American Conference on Artificial Intelligence, pages
283-294. Springer.

Gao, T., Bhattacharjya, D., Nelson, E., Liu, M., and Yu, Y.
(2022). IDYNO: Learning nonparametric DAGs from in-
terventional dynamic data. In International Conference
on Machine Learning, pages 6988-7001. PMLR.

Gerhardus, A. and Runge, J. (2020). High-recall causal
discovery for autocorrelated time series with latent con-
founders. Advances in Neural Information Processing
Systems, 33:12615-12625.

Granger, C. W. (1969). Investigating causal relations by
econometric models and cross-spectral methods. Econo-
metrica: journal of the Econometric Society, pages 424—
438.

Guan, L., Hu, F., Al-Turjman, F., Khan, M. B., and Yang,

X. (2019). A non-contact paraparesis detection tech-
nique based on 1D-CNN. [EEE Access, 7:182280—
182288.

Hyvérinen, A., Zhang, K., Shimizu, S., and Hoyer, P. O.
(2010). Estimation of a structural vector autoregres-
sion model using non-Gaussianity. Journal of Machine
Learning Research, 11(5).

Jana, G. C., Sharma, R., and Agrawal, A. (2020). A 1D-
CNN-spectrogram based approach for seizure detection
from EEG signal. Procedia Computer Science, 167:403—
412.

Khanna, S. and Tan, V. Y. (2019). Economy statistical re-
current units for inferring nonlinear Granger causality. In
International Conference on Learning Representations.

Lachapelle, S., Brouillard, P., Deleu, T., and Lacoste-
Julien, S. (2019). Gradient-based neural DAG learn-

ing. In International Conference on Learning Represen-
tations.

Li, Y., Baidoo, C., Cai, T., and Kusi, G. A. (2019). Speech
emotion recognition using 1D CNN with no attention. In
2019 23rd international computer science and engineer-
ing conference (ICSEC), pages 351-356. IEEE.

Lorenz, E. N. (1996). Predictability: A problem partly
solved. In Proc. Seminar on predictability, volume 1.

Malinsky, D. and Spirtes, P. (2018). Causal structure learn-
ing from multivariate time series in settings with un-
measured confounding. In Proceedings of 2018 ACM
SIGKDD workshop on causal discovery, pages 23-47.
PMLR.

Marcinkevics, R. and Vogt, J. E. (2021). Interpretable mod-
els for Granger causality using self-explaining neural
networks. In 9th International Conference on Learning
Representations (ICLR 2021).

Monti, R. P., Zhang, K., and Hyvirinen, A. (2020). Causal
discovery with general non-linear relationships using
non-linear ICA. In Uncertainty in Artificial Intelligence,
pages 186—-195. PMLR.

Nauta, M., Bucur, D., and Seifert, C. (2019). Causal
discovery with attention-based convolutional neural net-
works. Machine Learning and Knowledge Extraction,
1(1):312-340.

Newman, M. E. (2018). Network structure from rich but
noisy data. Nature Physics, 14(6):542-545.

Ng, I, Ghassami, A., and Zhang, K. (2020). On the
role of sparsity and DAG constraints for learning linear
DAGs. Advances in Neural Information Processing Sys-
tems, 33:17943-17954.

Pamlfil, R., Sriwattanaworachai, N., Desai, S., Pilgerstor-
fer, P., Georgatzis, K., Beaumont, P., and Aragam, B.
(2020). DYNOTEARS: Structure learning from time-
series data. In International Conference on Artificial In-
telligence and Statistics, pages 1595-1605. PMLR.

Park, G. and Park, S. (2019). High-dimensional Poisson
structural equation model learning via \ell_1-regularized
regression. J. Mach. Learn. Res., 20:95-1.

Peters, J., Janzing, D., and Scholkopf, B. (2017). Ele-
ments of causal inference: foundations and learning al-
gorithms. The MIT Press.

Ramsey, J. D., Zhang, K., Glymour, M., Romero, R. S.,
Huang, B., Ebert-Uphoff, 1., Samarasinghe, S., Barnes,
E. A., and Glymour, C. (2018). TETRAD—A toolbox
for causal discovery. In 8th International Workshop on
Climate Informatics.

Reisach, A., Seiler, C., and Weichwald, S. (2021). Be-
ware of the simulated DAG! causal discovery bench-
marks may be easy to game. Advances in Neural In-
formation Processing Systems, 34.

Xiangyu Sun, Oliver Schulte, Guiliang Liu, Pascal Poupart

Runge, J. (2018). Conditional independence testing based
on a nearest-neighbor estimator of conditional mutual in-
formation. In International Conference on Artificial In-
telligence and Statistics, pages 938-947. PMLR.

Runge, J. (2020). Discovering contemporaneous and
lagged causal relations in autocorrelated nonlinear time
series datasets. In Conference on Uncertainty in Artifi-
cial Intelligence, pages 1388-1397. PMLR.

Runge, J., Nowack, P., Kretschmer, M., Flaxman, S., and
Sejdinovic, D. (2019). Detecting and quantifying causal
associations in large nonlinear time series datasets. Sci-
ence Advances, 5(11):eaaud996.

Sachs, K., Perez, O., Pe’er, D., Lauffenburger, D. A., and
Nolan, G. P. (2005). Causal protein-signaling networks
derived from multiparameter single-cell data. Science,
308(5721):523-529.

Sanford, A. D. and Moosa, I. A. (2012). A Bayesian net-
work structure for operational risk modelling in struc-
tured finance operations. Journal of the Operational Re-
search Society, 63(4):431-444.

Schneider, T., Lan, S., Stuart, A., and Teixeira, J. (2017).
Earth system modeling 2.0: A blueprint for models
that learn from observations and targeted high-resolution
simulations. Geophysical Research Letters, 44(24):12—
396.

Schulte, O., Zhao, Z., Javan, M., and Desaulniers, P.
(2017). Apples-to-apples: Clustering and ranking NHL
players using location information and scoring impact.
In Proceedings of the MIT Sloan Sports Analytics Con-
ference.

Shimizu, S., Hoyer, P. O., Hyvirinen, A., Kerminen, A.,
and Jordan, M. (2006). A linear non-Gaussian acyclic
model for causal discovery. Journal of Machine Learn-
ing Research, 7(10).

Shimizu, S., Inazumi, T., Sogawa, Y., Hyvirinen, A.,
Kawahara, Y., Washio, T., Hoyer, P. O., and Bollen, K.
(2011). DirectLiNGAM: A direct method for learning
a linear non-Gaussian structural equation model. The
Journal of Machine Learning Research, 12:1225-1248.

Smith, S. M., Miller, K. L., Salimi-Khorshidi, G., Webster,
M., Beckmann, C. F,, Nichols, T. E., Ramsey, J. D., and
Woolrich, M. W. (2011). Network modelling methods
for FMRI. Neuroimage, 54(2):875-891.

Sun, X., Davis, J., Schulte, O., and Liu, G. (2020). Crack-
ing the black box: Distilling deep sports analytics. In
Proceedings of the 26th acm sigkdd international con-

ference on knowledge discovery & data mining, pages
3154-3162.

Tank, A., Covert, 1., Foti, N., Shojaie, A., and Fox, E. B.
(2021). Neural Granger causality. IEEE Transactions on
Pattern Analysis and Machine Intelligence, page 1-1.

Yildirim, O., Ptawiak, P., Tan, R.-S., and Acharya, U. R.
(2018). Arrhythmia detection using deep convolutional
neural network with long duration ECG signals. Com-
puters in biology and medicine, 102:411-420.

Yuan, M. (2011). On the identifiability of additive index
models. Statistica Sinica, pages 1901-1911.

Zhang, K., Peters, J., Janzing, D., and Scholkopf, B.
(2011). Kernel-based conditional independence test and
application in causal discovery. In 27th Conference on
Uncertainty in Artificial Intelligence (UAI 2011), pages
804-813. AUAI Press.

Zheng, X., Aragam, B., Ravikumar, P. K., and Xing, E. P.
(2018). DAGs with NO TEARS: Continuous optimiza-
tion for structure learning. Advances in Neural Informa-
tion Processing Systems, 31.

Zheng, X., Dan, C., Aragam, B., Ravikumar, P., and Xing,
E. (2020). Learning sparse nonparametric DAGs. In
International Conference on Artificial Intelligence and
Statistics, pages 3414-3425. PMLR.

Zhu, C., Byrd, R. H., Lu, P., and Nocedal, J. (1997). Al-
gorithm 778: L-BFGS-B: Fortran subroutines for large-
scale bound-constrained optimization. ACM Transac-
tions on mathematical software (TOMS), 23(4):550-560.

NTS-NOTEARS: Learning Nonparametric DBNs With Prior Knowledge

A OTHER METHODS FOR TIME SERIES DATA

The comparison methods in our experiments come from the same model class as NTS-NOTEARS: temporal graphs with
both intra-slice and inter-slice dependencies. In this section we discuss other methods for time series data, with an emphasis
on neural methods (see Table 1).

Models without intra-slice edges. The neural method cMLP (Tank et al., 2021) does not have the capability to learn
intra-slice edges. On datasets where the ground-truth model comprises only inter-slice edges, its performance is competitive
with NTS-NOTEARS (e.g., worse Fl-score on Lorenz, better F1-score on fMRI). GVAR (Marcinkevics and Vogt, 2021)
also does not learn intra-slice edges, and does not explicitly model different lags. Economy-SRU (Khanna and Tan, 2019)
does not estimate edges over multiple lags.

Other Methods with Intra-Slice Edges. We conducted experiments using linear methods such as VAR-
LINGAM (Hyviérinen et al., 2010) and PCMCI+ with linear CI test - partial correlation test (ParCorr) (Runge et al.,
2019). We exclude their results because their performance is poor for the nonlinear datasets in our experiments.

Among constraint-based methods, LPCMCI (Gerhardus and Runge, 2020) focuses on latent confounders and outputs a
PAG. With nonlinear CI test, LPCMCI is computationally too expensive to be compared when the number of nodes is large.
CMIknn and CMIsymb (Runge et al., 2019) are nonlinear CI tests based on conditional mutual information. Although the
two CI tests are nonparametric, they are computationally expensive when the number of nodes is large, which makes them
infeasible to be included in the experiments.

IDYNO (Gao et al., 2022) matches NTS-NOTEARS in terms of the properties listed in Table 1. Their work was published
after we posted the arxiv version of this paper. The main difference is that IDYNO focuses on interventional data, with
only one experiment on observational data with linear relationships. Other differences include the following:

1. IDYNO uses a generalized linear model. We use a nonparametric CNN to exploit the sequence topology.

2. Like DYNOTEARS, IDYNO must concatenate the data. So the original data with dimension 7" x d becomes 7" x
d x (K + 1). Larger data size may cause memory problem as well as slowing down training. The CNN allows
NTS-NOTEARS to use the original data without data concatenation.

3. IDYNO uses 3 MLPs for each target variable. So there are 3 times more neural nets to train compared to NTS-
NOTEARS.

As no code is available for IDYNO, we used our own implementation®. We used the same methodology described in the
paper to evaluate IDYNO with the Lorenz 96 and fMRI benchmarks. IDYNO is less accurate than NTS-NOTEARS, by
about a factor of 2 in Fl-score and SHD. IDYNO is also slower than NTS-NOTEARS. For example, withd = 5, K = 1
and T € {200, 1200,5000} in the fMRI benchmark, IDYNO is about 7 times slower than NTS-NOTEARS. IDYNO is
even slower with larger K, because it means more data to concatenate and to put in the memory.

B PROOF OF THEOREM 1

Proof. To show F' = Fy, we will show that F C F and F' C Fy.
We have:

F={f|f(X)=CNN(X;CD, ... ch) AWM At} fisindependent of X*}

and

Fo = {fIf(X) = ONN(X;CW,...,cthe) A Alhedy ¢)F = 0,vb = {1,...,m}}

*https://github.com/xiangyu-sun-789/IDYNO_reproduce

Xiangyu Sun, Oliver Schulte, Guiliang Liu, Pascal Poupart

where C(*) is the kernel weights on the u-th CNN layer, Ci(ylb)"k is the first-layer kernel weights in the b-th kernel connecting

to input variable X, and A is the weights on the u-th MLP layer. The bias terms are omitted as they do not affect the
proof.

Also,
CNN(X;CW ... cthe) AW Aty = g(AP) s oL AD x 0(CP) 0 o(...a(CY 0 X)))))

where * is matrix product, o is the convolution operation of two matrices and o is the activation functions.
(1) To show Fj C F:
Forany fo € Fo, we have fo(X) = CNN(X;C0, ..., 0" AW . At) where C)* = 0 forall b= {1,...,m}.

Therefore, C!) o X is independent of X*. Therefore, fo(X) = o(A"a) x (... AD) « O'(C(h Jog(...0(CMo X)))))
is also independent of X*. Hence, f, € F.

(2) To show F' C Fj:

Forany f € F, we have f(X) = CNN(X;CW,...,C") AW A(ha)) and f is independent of X¥. Let X be
identical to X except X* = 0. f is independent of Xf , similarly, f is independent of X*. Therefore,

f(X)=f(X)=CNNX;CcD, . . . cthad AW Alhe)y

- 4
= (A" xg(... AV 5 o(Ch) o (... a(CV o X))))) @

Let C'") be identical to C'") except C’i(vlb)’k =0forallb = {1,...,m}. Let C((;)) be the first-layer kernel weights of the
b-th kernel. We have:

K+1 d
CH o =33 ct . XK
k'=1i=1
= (XYl - X oot X+ (Y ol X s o)t XY
k' £k i’ i i’ #i k' #k
= (et Xy (et xhy + (3 e xE) e X
k' #k i' i i ’ k' #k
:<,§EC;%L’“'~X’“' 20” X5) + <,€,§CC£},”'-X?’>+0
= (XYl xE + et xh+ (30 et xE) + o)t X!
k' £k i #i i k' #£k
= (Y emrxEy + Qoo xhy + (X e xEy + el xk
k' #£k i’ #i i k' #£k
K+1 d ~(1),k’ (1)
S S EE xt =l ox
k'=14=1

Therefore, C) o X = CM) o X. From Equation (4), we have:
F(X)=0(A%) s o(... AV x g(CT) o g(...a(CV o X)) = CNN(X;CD, ... ,cthe) 4D Aty ¢ Fy

Hence, f € Fy

C SIMULATION DETAILS

Given a graph generated by either an ER or a BA scheme, we simulate data according to one of the three identifiable SCMs:

NTS-NOTEARS: Learning Nonparametric DBNs With Prior Knowledge

Graph Generation
(Number of Lags = 3)

v ZER U

SEMs Data Generation

60 | ‘g0 | ‘ANM‘ Pam | |GM
| : ; : | Pois

Sequence Length

(intra-slice mean out-degree, inter-slice mean out-degree)

Figure 5: Visualization of the process for generating simulated training data. Besides generating the training data, the
dashed boxes also indicate how the validation data was generated. A total of 48 DBNs and 96 training datasets were
generated.

* Additive Noise Model (ANM) (Peters et al., 2017): X} = f;(PA(X})-61)-02+ Z}, where f; is the sigmoid function.

* Additive Index Model (AIM) (Yuan, 2011; Alquier and Biau, 2013): X} = Zf + DO hm (PA(XY) - 0,,), where
hi = tanh, ho = cos, hs = sin.

* Generalized Linear Model with Poisson Distribution (GLM-Pois) (Park and Park, 2019): X} = Pois(g;(PA(X}) -
61) + ¢), where g; = tanh and ¢ is sampled uniformly from range [1, 3].

PA(X?) denotes the parents of X Jt Each Z; is a standard Gaussian noise. Each 6 is sampled uniformly from range
[—2,-0.5] U [0.5, 2].

D METHOD HYPERPARAMETERS FOR SIMULATED DATA

Regarding hyperparameter searching, for compatibility purpose with constraint-based baseline PCMCI+ (Runge, 2020),
we use validation sets to find hyperparameter values. We perform an extensive grid search on the hyperparameters of each
method to find the sets of hyperparameters that give the best F1-scores for each method with the validation sets.

* NTS-NOTEARS

A1 € {0.01,0.001} for T' € {200, 1000}, respectively.
- A2 =0.05
K = number of lags

m=d

the number of hidden layers = 1
- Wihres = 0.3

* PCMCI+

CI test: Gaussian process regression plus distance correlation test (GPDC)

= Tiin = 0
— Tmax = number of lags
a € {0.01,0.05} for T' € {500, 2000}, respectively

* TCDF

— significance = 0.8
— learning rate = 0.001
— epochs = 1000

Xiangyu Sun, Oliver Schulte, Guiliang Liu, Pascal Poupart

— levels = 2
— kernel size = number of lags + 1

— dilation coefficient = number of lags + 1
* DYNOTEARS
- A=Ay =0.1

— p = number of lags
— weight threshold = 0.01

E MORE RESULTS WITH SIMULATED DATA

Besides reporting the F1-score in the main article, we also use recall, precision and SHD to evaluate the methods with
simulated datasets. Please see Figure 6, 7, 8. NTS-NOTEARS achieves the best recall and SHD in the vast majority of the
settings and is among the top methods in terms of precision.

F METHOD HYPERPARAMETERS FOR LORENZ 96 & FMRI BENCHMARKS

To find the hyperparameter values for the evaluation methods, we select one dataset from each benchmark as the valida-
tion sets, and perform grid search over hyperparameters to maximize the Fl-socre. These hyperparameters are used for
evaluation with the benchmarks. For NTS-NOTEARS, a unique set of hyperparameters is used for both benchmarks:

* NTS-NOTEARS

Al =0.001, A2 = 0.1

- XA =0.01

K = number of lags

- m=2d

the number of hidden layers = 1
— Wires = 0.5

For the Lorenz 96 benchmark:

« PCMCI+
— ClItest: GPDC
= Tmin = 0

— Twax = number of lags
a = 0.005

* TCDF

significance = 1.5

learning rate = 0.001
epochs = 1000
levels = 3

— kernel size = number of lags + 1
— dilation coefficient = number of lags + 1

* DYNOTEARS

- A =01

- A =0.01

— p = number of lags
weight threshold = 0.1

NTS-NOTEARS: Learning Nonparametric DBNs With Prior Knowledge

For the fMRI benchmark:

* PCMCI+

Cl test: GPDC

= Toin = 0

Tmax = number of lags
a = 0.001

* TCDF

significance = 0.5

learning rate = 0.01

epochs = 2000

levels = 2

kernel size = number of lags + 1

dilation coefficient = number of lags + 1

* DYNOTEARS

Aw =0.1

Ao =0.1

p = number of lags
weight threshold = 0.1

G MORE RESULTS WITH LORENZ 96 & FMRI BENCHMARKS

Besides reporting the F1-score in the main article, we also use SHD, precision and recall to evaluate the methods with
benchmark datasets. Please see Table 4, 5, 6. NTS-NOTEARS achieves the best SHD, recall and precision with both
benchmarks. Around 20 combinations of hyperparameter values were used for each method to compute the AUROC in

Table 3.

Table 4: Mean SHDs (£ SE) computed with the benchmark datasets.

Method ‘ Lorenz 96 ‘ fMRI

DYNOTEARS | 20.4 (+1.992) | 10.8 (£ 0.645)
TCDF | 58.0 (& 1.789) | 9.0 (+ 0.600)
PCMCI+ | 44.6 (+£2.492) | 8.1 (+0.624)

NTS-NOTEARS | 0.6 (+0.358) | 6.6 (+ 0.651)

Table 5: Mean recalls (= SE) computed with the benchmark datasets.

Method ‘ Lorenz 96 ‘ fMRI

DYNOTEARS ‘ 0.760 (£ 0.024) ‘ 0.460 (£ 0.016)
TCDF ‘ 0.308 (£ 0.013) ‘ 0.246 (£ 0.043)
PCMCI+ ‘ 0.495 (£ 0.032) ‘ 0.406 (£ 0.043)

NTS-NOTEARS | 0.993 (£ 0.004) | 0.516 (+ 0.014)

Xiangyu Sun, Oliver Schulte, Guiliang Liu, Pascal Poupart

Table 6: Mean precisions (+ SE) computed with the benchmark datasets.

Method | Lorenz96 | fMRI

DYNOTEARS | 0.981 (£ 0.007) | 0.508 (+ 0.043)
TCDF | 0.906 (£ 0.035) | 0.610 (& 0.098)
PCMCI+ | 0.903 (£ 0.006) | 0.754 (+ 0.070)

NTS-NOTEARS | 1.000 (+ 0.000) | 0.839 (+ 0.062)

H REAL-WORLD ICE HOCKEY DATASET
Please see Table 7 for data description and Figure 10 for data distribution plots. A nominal variable with K values can
be converted to K binary variables using one-hot encoding. The following hyperparameter values are used in Section 6.3.

With these hyperparameter values, NTS-NOTEARS and DYNOTEARS generate graphs with the same number of edges.

* NTS-NOTEARS

- A1 =0.001
- A2 = 0.005
-K=1
-m=d

the number of hidden layers = 1
- mhres =0.5

* DYNOTEARS

- A = 0.01
- A = 0.01

weight threshold = 0.03

NTS-NOTEARS: Learning Nonparametric DBNs With Prior Knowledge

Table 7: The variables in the ice hockey dataset.

Variables ‘ Type ‘ Range
time remaining in seconds | continuous | [0, 3600]
adjusted x coordinate of puck ‘ continuous ‘ [-100, 100]
adjusted y coordinate of puck ‘ continuous ‘ [-42.5, 42.5]
score differential | categorical | (—oo0, +00)
manpower situation categorical | {short
handed,
even strength,
power play}
x velocity of puck ‘ continuous ‘ (—00, +00)
y velocity of puck ‘ continuous ‘ (—o0, +00)
event duration | continuous | [0, 4-00)
angle between puck and net | continuous | [, 4]
home team taking possession ‘ binary ‘ {true, false}
shot | binary | {true, false}

goal | binary | {true, false}

Xiangyu Sun, Oliver Schulte, Guiliang Liu, Pascal Poupart

ER(1,1) ER(2,1) ER(1,1) ER(2,1)

0.8 0.6 — 1 - 1 J—

- B N— R —

07 — T——— ~—

308 T - 32— — 3 S
gos /\ é 04 ——— 5 é 0.6
- - 06
e 03 /—/ 04 /
03 02 0.4 0.2
20 40 60 80 20 40 60 80 20 40 60 80 20 40 60 80
Number of Nodes Number of Nodes Number of Nodes Number of Nodes
BA(2,2) BA(4,2) BA(2,2) BA(4,2)
07 05 1 1
—~ e —_—

06 — T 0.4 T~ 08 . 08 —
- —_ ~—— = £ - ‘\’\’\4
305 L = ~— 5 T . — 3
§ 04 o § 03 - L E 06 —_—

0 —_ — 02 _—, 04 - 04

. [

02 01 02 02

20 40 60 80 20 40 60 80 20 40 60 80 2 40 60 80
Number of Nodes Number of Nodes Number of Nodes Number of Nodes
(a) Additive Index Model, T' = 200 (b) Additive Index Model, T" = 1000
ER(1,) ER(2,1) ER(1,1) ER(2,1)
0.7 06 1 0.8
0.6 /\’\< ‘/-—-——A
0.5 — 0.8 —
= = ~ = £ > 2 =06 = .
505 'C\'\t S04 % %06 = 8 W’
e e = E : N £oa
03 03 /_/ 0.4 /\’/ /J
02 02 02 0.2
20 40 60 80 20 40 60 80 20 40 60 80 20 40 60 80
Number of Nodes Number of Nodes Number of Nodes Number of Nodes
BA(2,2) BA(4,2) BA(2,2) BA(4,2)
05 —~_ 0.5 0.8 — 038 .

0.45 ~— —_— T — 06 —
— 04 T = 04 ‘\\\‘*,,7 =06 S . %
Boss °© T————_ Doz ————Fr—— 3 e —— - P
o o (-4 o«

03 02 - 04 02 —_—

025 e — T _

02 0.1 0.2 0
20 40 60 80 20 40 60 80 20 40 60 80 20 40 60 80
Number of Nodes Number of Nodes Number of Nodes Number of Nodes
(c) Additive Noise Model, T = 200 (d) Additive Noise Model, 7" = 1000
ER(1,1) ER(2,1) ER(1,1) ER(2,1)

04 04 038 o7
=03 =03 =06 _0e \' _—
© @ © o _—

8 9 2 4 505
o« (.2 '—4\””" (04 <
02 0.4
01 0.1 0.2 03
20 40 60 80 20 40 60 80 20 40 60 80 20 40 60 80
Number of Nodes Number of Nodes Number of Nodes Number of Nodes
BA(2,2) BA(4,2) BA(2,2) BA(4,2)

04 03 0.6 0.7
s .) '\ . 05 <05 —_—
g >~ o g 02 — E 0.4 E 0 e = S—

02 &Q 03 : e

P
01 01 02 01
20 I 60 80 20 40 60 80 20 40 60 80 20 40 60 80
Number of Nodes Number of Nodes Number of Nodes Number of Nodes

(e) Generalized Linear Model with Poisson Distribution, 7" = 200 (f) Generalized Linear Model with Poisson Distribution, 7" = 1000
‘ +NTS-NOTEARS +DYNOTEARS =TCDF =PCMCI+ ‘

Figure 6: Mean recalls over 10 datasets for each setting with simulated data. Higher Recall is better. The number of lags
=3.

NTS-NOTEARS: Learning Nonparametric DBNs With Prior Knowledge

ER(1,1)

Precision
o
EN

0.2
20 40 60 80
Number of Nodes
BA(2,2)

o
oo =

/
!

ER(2,1)
1
508
a
0
06
0.4
20 40 60 80
Number of Nodes
BA(4,2)
1
Ag 0.8
@
1]
& 06
0.4

20 40 60 80
Number of Nodes

(a) Additive Index Model, T' = 200

0.2
20 40 60 80
Number of Nodes
ER(1,1)
1
c08 ><><>T
]
g 08 /\
g
so4 \
0.2
20 40 60 80
Number of Nodes
BA(2,2)

o
©
I

|

¥

Precision
o o 9o
(=] ~N o

20 40 60
Number of Nodes

©
o

ER(2,1)
1
: .
Gos %
@ -
o
§06 TT——0V
04
20 40 60 80
Number of Nodes
BA(4,2)
1
0.9
c
2038
‘S
90.7
a
0.6
0.5

20 40 60 80
Number of Nodes

(c) Additive Noise Model, T = 200

ER(1,1)
1
=08
0
506
2
04
0.2
20 40 60 80
Number of Nodes
BA(2,2)
1
08
]
é 06
“04
0.2
20 40 60 80
Number of Nodes

(e) Generalized Linear Model with Poisson Distribution, 7" = 200

Figure 7: Mean precisions over 10 datasets for each setting with simulated data. Higher Precision is better. The number

of lags = 3.

ER(2,1)

0.2
20 40 60 80
Number of Nodes
BA(4,2)
1
208
0
506
3
& 04
0.2
20 40 60 80
Number of Nodes

Precision
e o
o oo

o
=~

Precision
e o
~ oo

o
o

Precision
o
©

o
o

o
= -

Precision
o
=N

o
o

Precision

o
~

Precision
=3
o -

o
o

o
~

o o
o o =

Precision

o
~

ER(1,1)

-

o
©

il

20 40 60 80
Number of Nodes
BA(2,2)
1
5§09
;
\ 08
0.7
20 40 60 80
Number of Nodes

ER(2,1)

20 40 60 80
Number of Nodes

BA(4,2)
—
20 40 60 80
Number of Nodes

(b) Additive Index Model, T = 1000

ER(L,1)

—_—

0.4
20 40 60 80
Number of Nodes
BA(2,2)
1
09
c
S
508
o
&
07
0.6

20 40 60 80
Number of Nodes

ER(2,1)

20 40 60 80
Number of Nodes

BA(4,2)

Number of Nodes

(d) Additive Noise Model, 17" = 1000

ER(1,1)
1
& 5038
\ Los
0.4
20 40 60 80
Number of Nodes
BA(2,2)
0.9

X\,_\ﬁ 5
507
g
a 0.6
20 40 60 80
Number of Nodes

‘ «NTS-NOTEARS <+DYNOTEARS =TCDF =PCMCI+ ‘

ER(2,1)

20 40 60 80
Number of Nodes
BA(4,2)

20 40 60 80
Number of Nodes

(f) Generalized Linear Model with Poisson Distribution, 7" = 1000

Xiangyu Sun, Oliver Schulte, Guiliang Liu, Pascal Poupart

100
80

o 60

F

@ 40
20

200
150
2100

1]
50

100

80

o 60
I

n 40

20

150

100

SHD

50

150

100

SHD

50

200
150

£ 100
5

(e) Generalized Linear Model with Poisson Distribution, 7" = 200

ER(1,1) ER(2,1)
110
90
o 70
I
u 50
30
10
20 40 60 80 20 40 60 80
Number of Nodes Number of Nodes
BA(2,2) BA(4,2)
200
150
£ 100
&
50
0
20 40 60 80 20 40 60 80
Number of Nodes Number of Nodes
(a) Additive Index Model, T' = 200
ER(1,1) ER(2,1)
100
80 -
:o: 60
n 40 ~
20
0
20 40 60 80 20 40 60 80
Number of Nodes Number of Nodes
BA(2,2) BA(4,2)
200
150
2 100
5
50
0
20 40 60 80 20 40 60 80

Number of Nodes Number of Nodes

(c) Additive Noise Model, T' = 200

ER(1,1) ER(2,1)
150
o 100
I
¥ 50
0
20 2 60 80 20 40 60 80
Number of Nodes Number of Nodes
BA(2,2) BA(4,2)
250
~ 200
0 150
I
¥ 100
50
0
20 40 60 80 20 40 60 80
Number of Nodes Number of Nodes

50

40
o 30
I
“20

120
90
60
30

SHD

\

150

100

SHD

50

100
80
60

SHD

20

150

100

SHD

ER(1,1) ER(2,1)
80
/ 60
Sa0
%
% 2 %
77/,‘,// /
= 0
20 40 60 80 20 40 60 80
Number of Nodes Number of Nodes
BA(2,2) BA(4,2)
150

100
o

50

Number of Nodes

Number of Nodes

(b) Additive Index Model, T = 1000

ER(L,1) ER(2,1)
80
/ 60
£ 40 .
> n
% 20 /
0
2 40 60 80 20 40 60 80

Number of Nodes Number of Nodes

BA(2,2)

BA(4,2)

Number of Nodes Number of Nodes

(d) Additive Noise Model, 7" = 1000

ER(1,1) ER(2,1)
100
80
o 60
I
& 40
20
0
20 40 60 80 20 40 60 80
Number of Nodes Number of Nodes
BA(2,2) BA(4,2)
200
150
£ 100
w
50
0
20 40 60 80 20 40 60 80
Number of Nodes Number of Nodes

(f) Generalized Linear Model with Poisson Distribution, 7" = 1000

‘ «NTS-NOTEARS <+DYNOTEARS =TCDF =PCMCI+ ‘

Figure 8: Mean SHDs over 10 datasets for each setting with simulated data. Lower SHD is better. The number of lags

=3.

NTS-NOTEARS: Learning Nonparametric DBNs With Prior Knowledge

(b) The ground-truth DBN
from the fMRI benchmark

(a) The ground-truth DBN
from the Lorenz 96 bench-
mark

Figure 9: DBNs showing edges from the lag pointing to the instantaneous time step.

xAdjCoord yAdjCoord

100

Counts
Counts

50

ManpowerSituation

3500

3000

2500

2000

Counts

1500

1000

500

4]

false frue

o o o
e @
Noam ﬁ“e‘\@ e o
@ e v

Figure 10: The distributions of two non-Gaussian continuous variables and two discrete variables in the ice hockey dataset.

Xiangyu Sun, Oliver Schulte, Guiliang Liu, Pascal Poupart

xAdjCoord(t-1)
yAdjCoord(t-1)
scoreDifferential(t-1)
manpowerSituation{t-1)
velocity_x(t-1)
velocity_y(t-1)
time_remain(t-1)
duration(t-1)

home(t-1) home(t-1)
angleziﬁtegt-li angIeZt_}sta]tezt-li
ot(t-1 ot(t-1

goal(t-1) goal(t-1)
xAdjCoord(t) xAdjCoord(t)
yAd]Coord(t) yAd]Coord(t)

scoreDifferential(t)
rmanpowerSituation(t)
velocity_x(t)
velocity_y(t)
time_remain(t)
duration(t)

xAdjCoord(t-1)
yAdjCoord(t-1)
scoreDifferential{t-1)
manpowerSituation(t-1)
velocity_x(t-1)
velocity_y(t-1)
time_remain(t-1)
duration(t-1)

scoreDifferential(t)
manpowersSituation(t)
velocity_x(t)
velocity_y(t)
time_remain(t)
duration(t)

home(t) home(t)
angle2gate(t) angle2gate(t)
shot(t) shot(t)
goal(t) goal(t)
<R3<<C’.Q:’mg_lﬂ (ﬂg((ﬂ'ﬂ.:’mg@
£288235E324% £2888235224%
0O0®TO 0 00 (el h=Ralal = N R
co UogggomN—= soboFTgeaNTT
€8 %5°<25%¢ SSS=<32%
damaxk3z & dasoxk3Z g
SZs VEZEs T 2 EZa VEE5T 2
TT2E & ¢ TT2E & =
gz ° 2z
= =0
~3 ~3
Z 2
(a) NTS-NOTEARS (b) DYNOTEARS

Figure 11: The DBNSs estimated by NTS-NOTEARS and DYNOTEARS with real-world ice hockey data.

