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ABSTRACT

In order to meet service level agreements (SLAS) and to main-
tain peak performance for database management systems (DBMYS),
database administrators (DBAS) need to implement policies for ef-
fective workload scheduling, admission control, and resource pro-
visioning. Accurately predicting response times of DBMS queries
isnecessary for aDBA to effectively achieve these goals. Thistask
is particularly challenging due to the fact that a database work-
load typically consists of many concurrently running queries and
an accurate model needs to capture their interactions. Additional
challenges are introduced when DBM Ses are run in dynamic cloud
computing environments, where workload, data, and physical re-
sources can change frequently, on-the-fly. Building an efficient and
highly accurate online DBMS performance model that is robust in
the face of changing workloads, data evolution, and physical re-
source allocations is still an unsolved problem. In this work, our
goal isto build such an online performance model for database ap-
pliances using an experiment-driven modeling approach. We use a
Bayesian approach and build novel Gaussian models that take into
account the interaction among concurrently executing queries and
predict response times of individual DBMS queries. A key feature
of our modeling approach is that the models can be updated online
in response to new queries or data, or changing resource alloca-
tions. We experimentally demonstrate that our models are accurate
and effective — our best models have an average prediction error of
16.3% in the worst case.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Modeling techniques

General Terms
Experimentation, Measurement, Performance

1. INTRODUCTION

Database appliances are becoming a popular way of deploying
database management systems (DBMSes) in today’s cloud com-
puting environments. A database appliance is a virtual machine
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(VM) with a pre-installed and pre-configured copy of an operating
system and a DBMSS, ready to go out of the box. Using a database
appliance reduces the total cost of ownership by saving multiple
hours that are typically spent on installing, configuring, and tun-
ning a DBMS from scratch. Users can run a database appliance
in an Infrastructure as a Service (laaS) cloud, such as Amazon's
Elastic Computing Cloud (EC2) [1], renting computing power on-
demand. A related paradigm for deploying and using database sys-
tems is Database as a Service (DaaS), exemplified by Amazon's
Relational Database Service [2] and Microsoft’s AzureSQL [3]. In
addition to saving setup and deployment costs, these approaches of -
fer low-cost alternatives to in-house infrastructure procurement and
management, and enable flexible resource provisioning and adapt-
ing the available resources to the dynamically changing workload.
For al these reasons, database appliances are widely deployed on
the cloud and their use will continue to grow.

One of the problems with database appliances is that the highly
dynamic nature of the workloads and the environment makes it
difficult for a database administrator (DBA) to predict the perfor-
mance of a running query or workload. In thiswork, our goa isto
build an online performance model for database appliancesthat can
predict response times of individual DBMS queries, given aquery
type and a set of queries aready executing inthe DBMS, which we
call aquery mix (detailsin Section 3). A key feature of our mod-
elsisthat they can adapt to changes in the queries, data, or DBMS
configuration in an online manner.

Predicting the response time of a database query before execu-
tion is very useful for many administrative tasks. For example,
such a prediction can enable a database administrator (DBA) or
an automatic tool to schedule workloads effectively, perform better
admission control, do capacity planning, and formulate policies for
effective resource provisioning. For example, given two database
appliances and their respective workloads, aDBA can use a perfor-
mance model to predict the effect of giving more resources (e.g.,
memory or CPU) to one or the other DB appliance and then decide
how to efficiently partition the available resources among these ap-
pliances so that they both meet their SLAs.

Traditionally, the performance of DBM Ses has been studied by
constructing elaborate analytical models. However, such models
need to be carefully constructed by adomain expert and are usually
specific to a particular DBMS. Moreover, these models do not cap-
ture the full complexities of query execution and the interactions
among concurrently executing queries in the system. Furthermore,
analytical models become obsol ete as soon asthere are any changes
to the DBM Ss implementation. Experiment-driven modeling tech-
niques|5, 6, 8, 18, 19] overcome the above mentioned shortcoming
of analytical models and have therefore become very popular. We
use an experiment-driven modeling approach in this paper.



Experiment-driven modeling relies on: (1) sampling the space of
possible query executions to collect training data, and then (2) fit-
ting statistical or machine learning models to the collected sample
data Most existing techniques [4, 5, 6, 8, 12, 18, 19, 21, 22] for
database experiment-driven performance modeling rely on static
models that are trained offline for specific configurations and re-
source alocation levels. These models cannot be updated online
due to the inherent inflexibility of the learning techniques used.
Thus, any changes in the workload, the database configuration,
or resource alocation to the VM containing the DBMS (i.e., the
database appliance) require collecting new samples and re-training
of models. Collecting new samples is very costly, taking hours or
days, which severely limits the applicability of prior experiment-
driven modeling techniques. Thislimitation isespecialy restrictive
for database appliances, since in addition to the dynamic nature of
the database and queries, resource all ocations can also changein an
online manner.

In this work, our goal is to address this limitation and build ef-
ficient and highly accurate online query response time models for
database appliances that take into account the interactions among
concurrently running queries and can dynamically and robustly
adapt in the face of changes in the workload, database or physi-
cal resource allocation, without the need for additional sampling
experiments. Weidentify the use of Gaussian Process (GP) models
and show how to effectively apply them to build online response
time models. Gaussian Process models have been previously ap-
plied to various problems, including database performance mod-
eling [6, 18]. We choose them in this work because they lend
themselves well to online adaptation. However, we show that a
simplistic approach to adapting GP models is too costly. A major
contribution of this paper is to develop a novel Bayesian approach
for efficient online adaptation of GP models. Our experimental re-
sults demonstrate that GP models outperform other techniques in
terms of goodness of fit, accuracy, and model training/prediction
time. Furthermore, the expressiveness offered by the Bayesian
framework allows us to effectively leverage prior knowledge de-
rived from sampledatato learn response time modelsfor previously
unseen queries and configurations for which thereis no offline sam-
pled response time data. The high accuracy and fast convergence
of online GP models make them suitable for online performance
modeling of databases appliances.

2. RELATED WORK

Database systems have traditionally relied on analytical perfor-
mance models, with model parameters based on simple statistics.
Analytical models are most prominently used in query optimizers,
and there has been some recent work to adapt optimizer models
online [13]. Analytical models were also used to set the multi-
programming limit (MPL) of aDBMSfor improved throughput [4,
22]. There has a so been work on self-predicting databases that are
capable of answering “what-if” questions [13, 17]. In addition to
theseinternal database models, queuing modelsfor multi-tier archi-
tectures also attempt to include the performance of the DBMS[21,
23]. A dgnificant limitation of these analytical modeling tech-
niques is that they are notoriously hard to evolve with the system
and they necessarily make simplifying assumptions, so they do not
capture the complex execution of dynamically changing workloads.
Asaresult, thereisincreasing focus in the research community on
experiment-driven performance modeling for database and multi-
tier systems.

The recent literature includes several examples of experiment-
driven models for database systems. Predicting Query Run-Time
(PQR) trees [9] make use of binary classification trees to represent

digoint sets of time ranges. A new query traverses through the
tree reaching aleaf node which represents the predicted time range
for that query. Ganapathi et a. [8] use Kernel Canonical Corre-
lation Analysis (KCCA) to predict multiple metrics for database
queries, including response times. The KCCA technique takes two
covariance matrices (query feature and performance) and projects
them onto two subspaces such that the projections of the two ma-
trices are maximally correlated. The authors report a prediction
time of “under a second”, while our models take a total of 81 ms
on average for prediction. Tozer et al. [19] use alinear regression
response time model for throttling long running queries. Linear
regression models are typically less accurate than the GP models
that we use (which can be seen in the R? correlation coefficient).
Watson et a. [21] predict quantile ranges for multi-tier applica-
tions under virtual resource alocation. They model performance
asajoint distribution over performance metric and resource alloca-
tion. All of these approaches suffer from a fundamental limitation:
they require re-learning the model for any change in the workload
or configuration, rendering them ineffective for online performance
modeling of database appliances. Another limitation of these ap-
proaches is their inability to leverage prior knowledge in a mean-
ingful way. Furthermore, most of these approaches provide point
value predictions with no confidence intervals.

In this paper, we use Gaussian Process model that rely only on
query types and no additional features, and hence are DBMS ag-
nostic. The proposed GP models are very expressive and are not
constrained by a fixed function form. They can be updated effi-
ciently in an online manner, and new highly accurate models for
queries running on different configurations can be learned by using
prior knowledge. As an added advantage, these models can predict
not only a point (mean) response time but the complete response
time distribution, which can be used to provide confidence inter-
vals for the prediction. Gaussian Processes have been used in [6,
18] but these works, like other prior work on experiment-driven
modeling, do not consider dynamically updating these models.

3. SOLUTION OVERVIEW

Our goal is to build a query-interaction-aware response time
model for database appliances that is able to adapt itself to chang-
ing workloads and resource allocations in an online fashion. We
assume that each query submitted to the DBMS belongs to a spe-
cific query type Q;, where 1 < ¢ < T and T is the total number
of query types. A workload W comprises zero or more instances
of each query type. The mix of concurrently running queries, m;,
is represented as a vector <Ny, ..., Np;>, where N;; represents
the number of instances of query type @; in the mix m;. Query
interactions have been shown to significantly affect the response
time of an incoming query [5, 6, 19]. Therefore, our response
time models should take into account the particular mix of queries,
mj, or a least the total number of queries in this mix [ given by
SSE Ny = 1. Itisawaystruethat I < M, where M is the
multi-programming limit (MPL) of the DBMS and is specified by
the DBA. Given the query mix currently running on the system,
we want to be able to predict the response time of individual in-
coming queries. That is, we want to find afunction f(.) such that
fi; = f(mj,Q:), where 7;; is the estimated response time of a
query type Q; running in a mix m;. The function f(.) can be
based on the distribution of queries in the mix, or just on the to-
tal number of queriesin the mix (7). We use an experiment-driven
black box modeling approach to collect training data consisting of
samples S; = <my;, r;;>, wherer;; isthe actual response time of a
query type @; running in amix m;. We then use this data to learn
models for predicting query response times (i.e., to learn f(.)).



The response time of a particular query depends not only on the
current load and the query mix but also on different tunable con-
figuration parameters (e.g., buffer pool size, MPL, available CPU,
and memory). One very important goal of our modeling approach
is to adapt our models as these parameters change, without offline
sample generation and model re-learning. To achieve this, we build
two separate models: 1) response time model: amodel to predict
query response times for each query type of interest and 2) con-
figuration model: a model to predict the response time model’s
parameters for different configurations. We present response time
and configuration models in Section 5 and 7, respectively.

Figure 1 shows the overall workflow of our model learning pro-
cess. As afirst step, a DBA will generate different training query
mixes using our workload generator module which takes M (MPL)
and T (total query types) asinput (Section 4). Using the generated
query mix samples, the DBA will then run a series of experiments
for different configurations (e.g., buffer pool size, total physical
memory, CPU, etc.) using a client coordinator. Our client coordi-
nator is a client-side program implemented in C++. The client co-
ordinator creates client threads, each with a separate connection to
the DBMS. Each thread then selects and runs a query from a given
query mix. Oncethedesired query mix isrunning, aseparate thread
executes atarget query and measuresitsresponse time. Thisresults
intraining samples of theform S; = <m;, r;;>. These samplesare
then used to learn an offline configuration model (Section 7) which
accumulates all configuration parameters and the corresponding re-
sponse time model parameters for the selected configurations. The
configuration model is then used online by the client coordinator
to initialize query response time models (Section 5) for new un-
seen configurations and query types for which there are no offline
trained models. During the online phase, the configuration model
can generate new model parameters for the response time model of
a given query type when the query is run in a new configuration.
To detect the need for generating the new model parameters, the
configuration model monitors the DBMS+VM configuration and
the observed execution time of queries of this type. The response
time model, which is specific to each configuration and query type,
updates itself by incorporating the most recent response time data
(detailsin Section 6).

Note that in our current implementation the client coordinator is
external to the DBM S, which is suitable for applications such asca-
pacity planning, workload scheduling, or admission control, among
others. Alternatively, the client coordinator can be integrated with
the DBMS, to provide, for example, more accurate statistics for
query optimization or dynamically controlling the MPL for maxi-
mum performance.

4. GENERATING TRAINING WORKLOADS

Like other experiment-driven approaches, we require sampling
experiments to collect data for training our models. However, since
our models adapt dynamically they are not as sensitive to the sam-
pling policy used as models in prior work [6, 19]. A simple sam-
pling approach that guarantees relatively good coverage of the space
of possible query mixes will provide a good starting point for an
offline trained model. The model will then be able to correct itself
quickly even if the initial training samples are not the best repre-
sentative of the running workload.

Uniform Sampling: A direct consequence of constructing the
sample query mixes used for training by sampling each query type
uniformly intherange [0— M| isthat the distribution of load, where
the load is the total number of queries in the mix, [, approximates
a normal distribution around the mean value of ! (by the central
limit theorem). The variance decreases as the number of identical
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Figure 1: Model learning wor kflow

uniform distributions, one for each query type, increases. Thisre-
sultsin avery narrow distribution of load which isnot desirable for
learning response time models for widely varying loads.

Workload Characterization Based Sampling: To solve the
problem of uniform sampling, we look at the query mix from two
perspectives: the overall load and the query types contributing to
that load. To cover the spectrum we generate uniformly distributed
samples across two dimensions: 1) total number of queries, and 2)
the number of different types of queries running (termed the inter-
action level in [6]). Sampling is done by first randomly selecting
the level of load from O to M, and then randomly selecting the
number of queriesthat contribute to thislevel of load. The value of
this variable ranges from 1 to min {total query types, random load
level}. These two values are used to control the random generation
of the number of queries of each type. This sampling process gen-
erates a distribution over loads that covers the workload spectrum
from low load to high load.

Our workload generator uses characterization based sampling to
generate query mixes. The client coordinator runs the generated
workload and collects the training samples. In our experiments,
it takes under 20 hours to run these experiments for a workload
with about 600 different query mixes. Next, we present details of
the Gaussian models for predicting query response times and their
online adaptation. Section 7 describes the configuration model and
how it is used.

5. GAUSSIAN RESPONSE TIME MODELS

Bayesian Networks (BN) fall under the broader class of prob-
abilistic graphical models where dependencies between variables
are encoded using conditional probability distributions. More specif-
ically, aBN isadirected acyclical graph (DAG) inwhich each node
X; hasaconditional probabilistic distribution P(X;|Parents(X;))
quantifying the effect of parents on the node. The Bayesian frame-
work offers a number of advantages over alternative modeling ap-
proaches including flexibility and consistent semantic interpreta-
tion. We choose to develop BN based models for two reasons: 1)
The Bayesian framework provides a theoretical basis for model-
ing uncertainty using probabilities. This allows us to predict not
only the mean response time but also the complete distribution for
the response time of a particular query. This uncertainty in the re-
sponse time model can be directly propagated to a decision making
system (e.g., autonomic provisioning tool, throttling system, etc.)
2) The Bayesian framework offers the ability to encode expert or
prior knowledge using prior probability distributions. Thisinherent
flexibility allows us to specify effective priors for dynamic models
using offline learned models.

Our proposed modeling approach uses non-linear Gaussian Pro-
cess models. However, we start by presenting simpler, linear Gaus-



sian models that are easier to learn and adapt to online changes.
The BNsfor linear Gaussian models are shown in Figure 2.

5.1 Linear Gaussian Models

Our proposed linear models encode each conditiona probabil-
ity distribution using a linear Gaussian distribution as P(Y |x) =
N(Bo + >, Bizi, o%). Such networks are referred to as Gaussian
Bayesian networks [11]. Linear models are particularly attractive
because they are easier to build and given their low model genera-
tion and update cost, they can be easily used in an online setting.

For a Bayesian network model, the likelihood of model param-
eters 6 given data D is the probability of observing data D given
parameters 0 and can be written as LK (6 : D). We use Maximum
Likelihood Estimation (MLE) [7] for finding the model parameters
most likely to have produced the observations in the training data.
We adopt the common practice of taking thelog of the likelihood to
turn products into sums for easy derivation of gradients. Using this
approach we define two linear Gaussian models, which we describe
next. More details about these (and other) models can be found in
the full version of the paper [16].

5.1.1 Linear Load Model

The first linear model that we develop is what we call the lin-
ear load model (LLM). As shown in Figure 2(a), in this model the
response time of a query is modeled only as a function of load (1)
i.e,, total number of concurrently executing queries. We model the
probability of the random variable R; representing the response
time of query type @;, conditional upon the random variable L
representing load, as a Gaussian distribution given by: P(R;|L) =
N(Bo + Bi1l;0%). The parameters 0z, (B0, B1,07) can be esti-
mated by maximizing the log-likelihood kg, , as shown in Equa-
tion 1, where [}, and r;;,, are the load and response time for the kth
sample in the training data D (Sk = <lk, i1,>)

lkRi (QRI-\L : D) = —%log (271’0'2) -

% Z {% (Bo + Bl — i, )?| ()
%

By taking the derivatives of Iy g, (0r, . : D) with respect to 3o
and 3; and setting to 0 we get Equations 2 and 3.

Ep[Ri] = Bo + B1Ep[L] )]

Ep[RiL] = Bo[L] + BLEp|[L] ©)

where Ep’sarethe respective means and moments (R;, L, R; L, L?)
observed in the sample data D for query type ;. Solving theselin-
ear equations gives us 3, and £;. o2 isgiven by Equation 4.

0 = Coup[Ri; Ri) — B1Coup|L; L] 4

Once these parameters have been learned, we have a Gaussian dis-
tribution N (8o + B1l; o) over the predicted response times for
each value of load [ on the database for a query type Q:. The mean
of the Gaussian distribution (8o + S1l) is treated as the model’'s
response time prediction f;; for a particular load 1.

5.1.2 Linear Query Mix Model

Linear query mix model (LQMM) is similar to LLM but con-
siders the query mix instead of the aggregated load. A query mix
network is depicted in Figure 2(b) where each query of type Q; di-
rectly impacts the response time of all queries. Similar to the load
model, response time is a Gaussian distribution centered on thelin-
ear weighted sum of the number of queries of each type running on

a) Linear Load Model (LLM)  b) Linear Query Mix Model (LQMM)

Figure 2: Bayesian Networksfor linear Gaussian models

the database. The probability distribution and the likelihood func-
tion are shown in Equation 5 and 6.

P(R;|M;) = N(Bo + B1N1j + B2Naj... + ﬂTNTjMTQ) )

1 1
lkr,(Or, 0 : D) = 75109(%02) ~ 53 > (Bo+

%
BiNig + ... + BrNrx —rir)*  (6)

The likelihood function can be differentiated with respect to 5
to Br toyield T + 1 linear equations which can be solved for the
values of By to . The variance 0% can be computed as shown in
Equation 7 (detailsin [16]).

T T
o? = Covp [R:; Ri] — ZZﬁjﬁka}D [Njs Nl (D)
7k

5.2 Non-Linear Gaussian Process M odels

Query performance variesin acomplex non-linear way with vary-
ing the query mix, the hardware, and the DBM'S configuration. For
example, if aquery involves ajoin, the behavior of thisjoin varies
significantly and in anon-linear way depending on whether the data
fitsin memory or needs to be read from disk. Therefore, the linear
models developed in the previous section may not be sufficiently
accurate and we need non-linear models. It is difficult to use any
non-linear parametric model (e.g., a cubic model) since response
times may not follow a parametric distribution. An alternative isto
use non-parametric models that can learn arbitrary functions over
load and query mix for response times. In this paper we use such a
model, and in particular we use Gaussian Processes (GP) [14].

A Gaussian Process is a collection of infinite random variables,
any finite number of which have ajoint Gaussian distribution. GP
based models are flexible, probabilistic and operate in a Bayesian
framework which makes them suitable for modeling uncertainty
and exploiting prior knowledge. In this section we develop GP
based response time models that are trained offline. We describein
Section 6 how we adapt these modelsin an online setting. Wetrain
three different models and their variants (detailsin [16]):

1. Gaussian ProcessLoad Model (GPLM): Wetrain aGP load
model where the response time (r;;) of a query type Q; isa
function of load (I) similar to LLM.

2. Gaussian Process Mix Model (GPMM): GPMM is a non-
parametric variant of LQMM and models the response time
r;; of aquery of type @Q; asafunction of query mix m;.

3. Gaussian Process Mix + Load Model (GPMLM): GPMLM
models the response time ;;; as a function of both query



mix (m;) and load (7). We show in Section 8 that GPMLM
is not only more accurate then other GP based models but
also more robust.

5.2.1 Bayesian Inference with Gaussian Processes

In Bayesian inference the probability of a hypothesis (posterior
probability) depends on the likelihood of the hypothesis (based on
observed data) and the prior belief (prior probability). For Gaus-
sian Process based models we specify a GP prior as follows:

f(@) ~ GP(m(), k(z,2")) ®)

where m(x) isamean function and k(z, z’) is a covariance func-
tion. Thisfunction isalso known asakernel function. Theresulting
posterior Gaussian Process that is used for prediction is shown in
Equations 9, 10 and 11.

f|D NGP(mD,kD) (9)
mp(@) = m(@) + k(K + o) (y—m)  (10)

kp(z,2') = k(z,2') — k" (K + 1) 'k (11)

where ¢ = m(a;) for al samples in the training data. k7 is the
transpose of the vector of co-variances of = with each training sam-
ple. K isthe covariance matrix for training data, o is the noisein
samples, and y is a vector of response values in the training data.

Asshown in Equations 10 and 11, mp(x) isthe mean predicted
value, which isthe sum of prior mean m(x) and a smooth function.
Similarly, the variance for a point prediction kp (z,z’) is the dif-
ference between the variance of the data and how well GP is able
to explain the data at the target value.

5.2.2 Specifying Prior Distributions
Bayesian inference requires specifying aprior, m(x) and k(x, «')
in our Gaussian Process models (Equation 8). We create variants of
GP models by using the following mean and kernel functions, and
we evaluate their performance in Section 8.

Mean Functions

We make use of two mean functions: 1) 0 mean function and 2)
linear mean function (m(z) = Bo + f1x1 + f2x2 + ... + BrarT).
For the linear mean we followed the discussion on incorporating
explicit basis functionsin [15] to get the predictive distribution.

Kernel Functions

Kernel functions (covariance functions in Equation 8) are a mea-
sure of proximity of two input samples (load or query mix). We
experimented with two kernel functions (Equations 12 and 13): 1)
Squared exponential function (SE) with parameters 6 = {n, o7}
and 2) Rational quadratic function (RQ) with parameters =

{n,o%,a}.

k(zp,zq) = afcemp (*(xp - 3U«;{)T 27712] (zp — mq)) (12

1 —x
W(mp - mq)] (13)
where 7 is the characteristic length scale, a parameter indicating
how much each dimension of the = vector must change before the
covariance function significantly changes. aj% isthe signal strength
and « controls the shape of the kernel function.

Notation: A variant of Gaussian Process Mix Model with linear
mean and RQ covariance function is referred to as GPMM (LIN,

uwahﬁb+m7mT

RQ). The same conventions are used for referring to other variants
of GP based models in the subsequent sections.

Hyper-Parameter Learning

After selecting the mean and kernel functions, the next step is to
specify the parameters associated with the mean (<o, 51, ., Bn>)
and kernel (n, a?, «) functions. These parameters are referred to
as the hyper-parameters of the model. The parameters are learned
in light of training data by optimizing the log marginal likelihood
given in Equation 14 using a conjugate gradients based technique.
More details can be found in [16].

1 1 _
log P(y|z,0) = —ilog|K| — §yTK Yy — glog%' 14

6. ONLINE MODEL ADAPTATION

In this section, we describe how Gaussian models can be refined
using actual observations of query response times and how they can
adapt to changes in configuration and workloads. Section 7 shows
how prior knowledge can be leveraged effectively by using the con-
figuration model to initialize the hyper-parameters of the response
time models for unseen query types and resource allocations.

For the linear Gaussian models where parameters are learned us-
ing MLE, there are no hyper-parameters that need to be learned.
Also, these models can be easily updated online by maintaining
running or moving averages for computing the Ep values, which
can be updated with new data. However, as we show in Section 8,
linear model's have unsatisfactory prediction accuracy on some con-
figurations. Therefore, in the following sections we focus on the
non-trivial case of adapting the more accurate non-linear GP based
models to an online setting.

6.1 Adding/Removing A Sample

If we have an offline trained model for n samples and we want to
incorporate x,1 into the model we need to recompute the inverse
of thenew n + 1 by n + 1 covariance matrix K17t However,
the time complexity of the inverse computation is O(n?) which
makes the operation prohibitive in an online setting. We make use
of the partitioned inverse equations presented in [10] for a positive
definite matrix where we have theinverse K,, =%, K41~ ' canthen
be computed as in Equation 15.

K™=} D] (19

where D = (k — kny1 " Kn Ykni1) ™ b = —DK, 'kng,
F = Kn71 — Dkn+1kn+1T, k = K(xn+1,xn+1) and k'n.i,-l is
the covariance vector of x,,+1 with al n samples.

Similar to adding anew sample, removing asampleisequivalent
to removing the corresponding column from K, 11 . If we want
to remove the jth column, we will first need to permute the jth
column and jth row to the end of the matrix. Using the above defi-
nitionswe get K, = F + Dky11kn117. These updates where
we only add or remove a single column to the inverse covariance
matrix are referred to as rank-1 updates.

6.2 Data Replacement Policy

To update the models of different query types online we maintain
a set of recently observed response times for each query type. We
replace old samples in this set with newly observed samples and
cap the number of samples maintained for each query type to 400,
which we refer to as the sample limit C. There are two motivations
for setting a cap on the number of samples. First, for al the experi-
ments that we conducted we saw the greatest gains in accuracy for



the first 100 samples and diminishing returns subsequently. Sec-
ond, and more importantly, old response time data for particular
query mixes becomes irrelevant given new response time samples
for a close enough query mix. In fact, stale response time data, if
kept, resultsin inaccurate predictions over time similar to an offline
trained model which is not updated online. This happens because
of data evolution and changes in database access patterns over time.
We add new samples using rank-1 updates (Section 6.1) uncondi-
tionally as long as we have less than C' samples. This is the case
when we need to learn amodel for a query online and is discussed
in Section 7.1. Once we have C' samples, we replace the sample
that is closest to a new sample in the input space. A very suitable
measure of proximity in the input space is the kernel function (the
covariance function).

6.3 Data Reuse Policy

To better adjust to dynamic changes in the system, like addition
of queries and changes in resource all ocations we employ two poli-
ciesfor reuse of data accumulated by the model of each query type:

1. Keeping prior data with new kernel function: Whenever
resource allocation is changed, we keep the existing datain models
and recompute the K~ matrix with the new kernel function.

2. Extending prior data: To model the impact of new query
types on the existing query models (by adding samples containing
this new query type), we extend the dimension of the query mix
from T to T" + 1 for al existing samples. This extension does not
require re-computation of the covariances between the samples.

7. CONFIGURATION MODEL

Even when real-time data is incorporated into the model and the
data reuse policies are adopted as described in the previous sec-
tion, an online response time model takes too long to converge be-
low reasonable error rates if uninformative hyper-parameters are
used for the model. This is demonstrated experimentally in Sec-
tion 8.4.2. For the online response time model s to converge quickly
we need good hyper-parameters. In our approach, we use the con-
figuration model (described next) to predict these hyper-parameters
for response time models.

During the offline training phase, we learn the response time
models for different configurations. We explored how the kernel
hyper-parameters 6 are affected by factors such as the average re-
sponse time of a query, the variance of the query response time,
and the configuration parameters including buffer pool, memory,
and CPU allocation. We found that the query response time, buffer
pool, and CPU allocation (in that order) accounted for a significant
amount of variation in the values of the hyper-parameters for re-
sponse time models. Therefore, we build a Gaussian Process Con-
figuration Model (GPCM) to leverage prior knowledge from the of -
fline trained model s to predict hyper-parameters for new querieson
seen and unseen configurations. GPCM is maintained offline and
is updated with the hyper-parameters of a newly trained response
time model for a particular query on a configuration. GPCM is
query type agnostic and only encodes the mean and variance in re-
sponse time and the configuration parameters as follows:

[RvmEeAaN, Rsp, BP,CPUnum,CPU, MEM)] = [n, 0'?,04]

Note that there are two GPCMs for the SE based GP models for
predicting 7, o7, and three GPCMs for RQ based GP models for
predicting each of 7, aﬁ, a. BP and M EM are encoded in MBs
(e.g. 2GB as2048) and CPU in MHz (e.g. 3.0GHz as 3000) where
as Ryean and Rsp are encoded in seconds.
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Figure 3: Average percentage error of different models

8. EXPERIMENTAL EVALUATION
8.1 Experimental Setup

For our experiments we use an IBM blade server with 2 dual
core AMD Opteron processors 2216 HE at 2.2 GHz, 8 GB physical
memory, and a 45 GB SCSI hard drive. As our software config-
uration, we use 64-bit Ubuntu Server 10.04 running Linux Kernel
2.6.32-21 with the PostgreSQL 8.4.4 DBMS (referred to as Post-
gres) and Xen 3.2.3. In this work, we build and train response
time models for TPC-H benchmark queries [20]. TPC-H is a de-
cision support (DSS) benchmark that consists of 22 query types.
These query types model a real world data warehousing environ-
ment where complex ad-hoc queries are expected to be run against
the data warehouse. We use a scale factor 1 database with a total
size of 2.3 GB on disk.

8.2 Mode Accuracy

We start by comparing the accuracy of the proposed GP mod-
els and the linear Gaussian models. We measure the accuracy of
predictions using the average percentage error (APE) which is cal-
culated by taking the average of the percentage error =22l for
each prediction.

8.2.1 Effect of Buffer Pool Size

Figure 3 shows the relative error for all 22 TPC-H query types
at different buffer pool sizes, using GP and linear Gaussian mod-
els. All models are learned offline using the response time data
collected for query mix samples generated using our workload gen-
erator. The figure shows that linear models are not sufficiently ac-
curate. They perform well for very small and very large buffer pool
sizeswhere almost nothing fitsin the buffer pool (32MB) or where
almost the complete database fits in the buffer pool (2GB). How-
ever, the prediction error can be close to 50% in some cases, which
renders these models ineffective for most practical purposes. Thus,
the simplicity of linear Gaussian models comes at the expense of
insufficient accuracy, and we do not consider them further in this
paper, focusing instead on GP models. As expected, GP models
perform significantly better than linear models. Even the simplest
GPLM outperforms LQMM on all buffer pool sizes, demonstrating
the inherent non-linearity of query response time distributions.

8.2.2 Effectiveness under Overload

Our results on various configurations show that the variance in
response times increases significantly when the database is over-
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loaded, i.e., [ > 70. However, al GP based models were able
to capture this variance in the predicted confidence intervals. An
example of this is Figure 4, where the response times of TPC-H
Q12 are modeled using GPMM (0, RQ) on a 2GB buffer pool. The
shaded areain Figure 4 represents the 95% confidence interval for
the mean response time prediction. Note that the prediction curve
is smooth as a function of the 22-dimensional query mix, however
it is shown only as a function of 1-dimensional load. Our results
consistently showed that the predicted variance by GP models in-
creases for overloaded databases where there is considerable varia-
tion in response times and for test cases which were very far from
the training data. This ability to capture the uncertainty associated
with prediction is yet another advantage of our approach and can
be directly propagated to a decision making system.

8.2.3 Overall Accuracy

Figure 5 shows the predicted values and the actual response time
valuesfor GPMLM (0, RQ) model for around 4700 test casesfor all
query types on al five buffer pool sizes. Overall, GPMLM (0, RQ)
is the best performing model with an average error ranging from
7.7% for the 2 GB buffer pool to 16.3% for 512 MB buffer pool,
as shown in Figure 3. Note that we do not propose GPMLM with
linear mean because of the significant training cost associated with
linear mean based GP models as discussed in 8.3.1. For GPMLM
(0, RQ), the overall correlation coefficient for all configurations and
all query typesis0.94.

8.3 Online Adaptability

8.3.1 Online Costs

Model Adaptability: Despite the simplicity of linear models,
due to the high error rates on some configurations (shown in Sec-
tion 8.2) we do not adapt these models online. On the other hand,
GP models with linear mean, which are highly accurate as shownin
Section 8.2, pose serious scalability problems. Thisis because the
number of hyper-parameters for the linear mean functionis 7" + 1,
where T' is the number of different query types. With around 500
samples for a query type it takes approximately one hour to learn
the hyper-parameters for 22 models, one for each query type. Fur-
thermore, the hyper-parameters of GPMM(LIN,*) are highly sensi-
tive to the actual response times and therefore cannot be predicted
using GPCM. Therefore, aswith linear models, we do not adapt GP
based models with prior linear mean functions to an online setting.
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Wall clock times
Complexity (n data samples)
400 1000 3000
GP - Point O(n) dms | 17/ms | 82ms
Prediction
KT O(n?) 40ms | 413ms | 11s
Computation
Rank-1 O(n?) 12ms [ 64ms | 623ms
K~ Updates
Learning - 13s 19s 1100s
Hyper-Parameters

Table 1: Wall clock times for various operations

GP*(0,SE) are the most efficient GP based models, since there
are only two hyper-parameters ({n, 03}) to learn offline or pre-
dict in an online setting. However, the extra flexibility of the RQ
kernel function with three hyper-parameters ({n, o7 a}) pays off
with respect to model accuracy. Additionaly, since the number
of hyper-parameters for GP* (0,RQ) is independent of T', we adapt
GP*(0,RQ) based models online and evaluate their performancein
the following sections. The time to learn hyper-parameters for SE
and RQ based models with 0 mean, 22 query types, and 500 sam-
ples per query type, isapproximately 4 and 7 minutes, respectively.

Incremental Data Addition: The complexity of adding or re-
moving a new data sample using rank-1 updates is O(n?) as op-
posed to O(n?) for recomputing the inverse of the covariance ma-
trix. As shown in Table 1 each new query (assuming 1000 data
samples for that query’s model) takes around 17ms for prediction
and another 64ms for updating the model with the actual response
time of the query. The prediction includes the time to calculate
both the mean and variance of the predictive Gaussian distribution.
The calculation of variance takes almost two thirds of the total pre-
diction time. For an application of the response time model which
does not require the predictive variance, only the mean response
time can be computed to further reduce the prediction cost.

Data Reuse Costs: We adopt the policy of keeping prior data
when new hyper-parameters are selected as in the case where re-
source allocations for a DBMS are changed. This requires re-
computation of the covariance matrix with the new kernel function
and then the inverse of the matrix. The total cost of this operation
is approximately 7 seconds for 22 models with 1000 data samples
each. Thetimetaken scaleslinearly with the number of query types
given afixed number of samplesfor each model. Similarly, the cost
of extending al existing data samples (22 x 1000) by an additional
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‘0" when anew query is added is reasonable (< 2 seconds) consid-
ering the frequency of such additions.

8.3.2 Adapting to Dynamic Configurations

In order to model new (unseen) configurations, we learn an of-
fline configuration model from the data collected at five buffer pool
configurations on a physical machine with 2 cores at 2.2GHz with
8GB memory. We encode the CPU, memory, and buffer pool size
as discussed in Section 7.

Online Response Time Models: Queries are generated and run
online on aVM with 4GB memory and 3 cores at 2.2GHz (config
1in Figure 6) and models are created for each query type dynami-
cally by getting the kernel function hyper-parameters from GPCM.
Note that in this case we have no prior response time data and the
models are learned from scratch for this configuration. The blue
linein Figure 6 shows that the average percentage error falls below
20% when the model has seen only under 40 samples on average.
After the modd’s error rate falls below 12%, we reduce the num-
ber of VM CPUs from 3 to 2 and its memory from 4 GB to 2 GB
(config 2 in Figure 6).

A simplepolicy isto get new hyper-parameters from the configu-
ration model, discard the previously accumulated data by the online
response time model, and learn the model for the new configuration
from scratch as done for the previous configuration. As show in
Figure 6 (red), a drawback of this approach is that initially before
the model converges, the error rate can be very high. To prevent
this from happening, the online model keeps al the existing data
accumulated from previous configurations and evolves by incorpo-
rating actual observed response time data. Keeping response time
data collected from the previous configuration until new data re-
placesit, significantly reduces the maximum error. Thisisshownin
Figure 6 (green), where the model converges more quickly as com-
pared to the case of starting from scratch (red). However, to reuse
the previous response time data, we have to recompute the K—*
matrix for each query’s model. The cost associated with this com-
putation is discussed in Section 8.3.1. This computation is done by
the online model, whenever the resource allocation is changed.

Comparison with Offline Trained Models: Dashed lines in
Figure 6 show the performance of offline trained models for the
two unseen configurations for the queries seen online. These of-
fline models are trained retrospectively for comparison purposes,
i.e,, the offline models are trained for the response time data seen
during online operation. As shown in Figure 6, the online models
converge quickly below reasonable error rates (< 20% ) for config-
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Figure 7: Online performance models for changing workload

urations for which we have no previous training data and ultimately
approach the accuracy of models that are trained offline specifically
for these configurations.

8.3.3 Adapting to Dynamic Workloads

In addition to being used for unseen configurations the offline
trained configuration model is used to learn response time models
for unseen workloads. In this experiment, query mixes are gen-
erated and run against a DBMS with 2GB buffer pool size. The
online response time models are learned from scratch for 17 ran-
domly selected TPC-H query types and shown in Figure 7 (blue
line). When the average accuracy of the models falls below 10%,
the workload is changed by introducing the remaining 5 TPC-H
query typesin the system.

A simple policy for dealing with changing workloads is to dis-
card all prior dataaccumulated by the online modelsand start learn-
ing online models from scratch (red line in Figure 7). The main
drawback of this approach is that the initial error is too high and
the models take longer to converge below acceptable error rates.
The policy adopted for changing workloads is to extend the ex-
isting query mix vectors (Section 6). The models then evolve by
incorporating new real-time response time data. As shown in Fig-
ure 7, thereis a slight increase in error with the addition of 5 new
query types and the models then converge quickly below an aver-
age error of less than 20%. Similar to Figure 6, the dashed lines
in Figure 7 represent the error rates for the offline models trained
retrospectively for the two workloads with 17 and 22 query types.

8.4 Model Robustness

8.4.1 Impact of new queries

In this experiment, we show that GP models generalize very well
and are capable of modeling the addition of new query types on-
line. Wetrain our models offline using query mixes with 17 TPC-H
query types. While the system isrunning, weintroduce the remain-
ing 5 query types which our trained model has never seen before.
Figure 8 shows the impact of new queries on the model accuracy
of existing queries for various GP models. The increase in per-
centage error for the model is relative to the percentage error when
the model is running online and there are no new queries. Fig-
ure 8 shows that the accuracy of all the models decreases since
each model is trained using query mixes with fewer query types
(17) than the actua types (22) running in the system. LQMM and
GPMM both suffer from addition of new queries with the overall
percentage error increasing by almost 12% and 10%, respectively.
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Figure8: Impact of new querieson trained query models

However, GPMLM fares very well with an overall increase of less
than 4% in percentage error. The reason for this resilience is that
although the number of queries of each new query type is not cap-
tured by the query mix in GPMLM, but the contribution by new
queries to the overall load on the system is effectively captured by
the model. These results clearly demonstrate that GPMLM s bet-
ter suited to handle the addition of new query types as compared
to mix only models. Note that we adopt the policy of extending
the query mix samples whenever anew query type is added, result-
ing in a similar convergence of al query models as described in
Section 8.3.3 after theinitia risein error shown in Figure 8.

8.4.2 Online Model Convergence

In this section, we describe how models can be learned efficiently
for new query types on-the-fly, as opposed to requiring offline re-
training. We train an offline model for 21 query types and learn
the model online for a new query type using GPMM and GPMLM
models with RQ kernel and O mean. The experiment is repeated
for al 22 TPC-H query types where the offline model istrained for
the remaining 21 queries on a 512MB buffer pool allocation. For
the new query type, we have no training data so we generate ran-
dom query mixes online, creating and evolving a new model dy-
namically for the query. As described before, new response times
can be incorporated into the model efficiently. However, hyper-
parameter optimization cannot be performed online. For RQ ker-
nel and O mean, our god is to estimate values of 7, sfc, « for the
response time model of a new query type. We compare three dif-
ferent schemesfor selecting hyper-parameters to seed the model for
new query type.

1. Uninformative Hyper-Parameters. We set the values of all
three kernel hyper-parameters to 0. Figure 9 shows that without a
proper kernel function the online models converge at a very slow
rate, even with the addition of new response time data. This coun-
ters any advantage gained by online modeling as the prediction er-
ror will be too high for too long. In fact, GPMLM model performs
worse than the GPMM model and the APE is more than 50% even
after the addition of 370 response times.

2. Average Hyper-Parameters: In this scheme, we simply take
the average of the hyper-parameters of the 21 query models that
were trained offline and use these values as hyper-parameters for
the response time model of a new query type. As shown in Fig-
ure 9, the average hyper-parameter selection yields an online model
that converges quickly. This also demonstrates the dependence of
hyper-parameters on the configuration. However, a limitation of
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Figure9: Comparison of hyper-parameter selection schemes

this approach isthat when we have no offline trained model for any
query, asin the case of unseen configurations, we will not have any
hyper-parameters to work with.

3. Predicting Hyper-Par ameters with GPCM : We next lever-
age the configuration model to predict the hyper-parameters for
the response time model of a new query type. The three hyper-
parameters are a function of mean response time, variance of re-
sponse time, and the buffer pool. In this case the GPCM is learned
for 3 buffer pool configurations (32MB, 512MB and 2GB). The
configuration model waits for five response time samples and then
generates hyper-parameters for initializing response time models.
The GPCM generates new hyper-parameters after every k=50 sam-
ples to ensure that we have “good” parameters based on the cur-
rent average response time of a new query type. Note that when
new hyper-parameters are generated, the response time model re-
computes the inverse covariance matrix (X ~'). Thisis the same
as when new hyper-parameters are generated for unseen configu-
rations. Both GPMM and GPML models do better with hyper-
parameters predicted using GPCM, requiring fewer than half the
samples compared to the average hyper-parameters case to con-
verge to an error below 20%. The dashed line in Figure 9 repre-
sents the offline model trained retrospectively for the query mixes
seen online by the DBMS with optimized hyper-parameters. The
results show that most gains are made for the first hundred samples,
motivating us to set a cap on the number of data samples (C).

8.4.3 Configuration Model Accuracy

In this experiment we compare the response time model’s er-
ror rate for the three different VM configurations when the hyper-
parameters are predicted using GPCM to the error rate for an offline
trained response time model for each configuration. The three con-
figurations aretermed Viin, Vined, 8d Vina, and are described in
Figure 10. The x-axis represents the offline trained response time
models for different configurations that are used to learn GPCM.
This learned GPCM s then used to predict the hyper-parameters
for configurations for which there is no offline trained model. The
hyper-parameters are used to train models for all 22 TPC-H query
types for the previously unseen configuration. The y-axis in the
figure represents the difference in APE between the online trained
model and an offline trained model. The offline model istrained by
waiting till 100 samples have been observed by the online model
then learning the offline model from these samples. The offline
model in this case represents an ideal case where the training data
is exactly the same asthe test data. V;,,.4 generally has the small-
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est difference in error when hyper-parameters are predicted from
GPCM trained using one or two other VM configurations. On the
other hand the two cases where we see the greatest increase in error
for the online trained models are when GPCM istrained for V.44
and hyper-parameters are predicted for V..., (7.8%) and similarly
when GPCM istrained for V,,,.,, and the hyper-parameters are pre-
dicted for Va2 (10.3%). The reason for thisis that the configura-
tion for which an offline model istrained isfar from the configura-
tion for which hyper-parameters are predicted.

9. DISCUSSION AND FUTURE WORK

Since the online response time models rely on the configuration
model for getting good hyper-parameters, in cases when the con-
figuration model is learned for configurations that are very differ-
ent from the configuration for which an online model islearned, the
prediction error can be high. However, since the space of valid con-
figurations is small compared to the space of possible workloads, a
DBA can easily train the configuration model for a few represen-
tative configurations and still get high convergence rates for online
models for various unseen configurations and workloads.

Although we target database appliances in this work, our tech-
niques are not specific to database workloads and can be applied to
other workloads that have well defined request typeswhere requests
of aparticular type are expected to behave similarly. Examplesin-
clude HTTP requests in a web-server, or different servlet typesin
an application server. Applying our techniques to these systemsis
part of our future work.

10. CONCLUSION

We presented a novel experiment-driven performance model for
predicting DBMS query response times using Gaussian Process
models based on Bayesian learning techniques. One of the main
strengths of using a Bayesian approach isthat it allows the model to
effectively adapt to changes in the query workload, database char-
acteristics, or machine configuration in an online manner, without
the need for re-training. Thisisin stark contrast to all prior work
in this area, which required re-training the model for any of these
changes. The ability of a response time model to adapt online to
changes in configurations is highly desirablein today’s cloud com-
puting environments where changes are frequent. For example re-
sources allocated to a database appliance can change online viathe
virtualization layer. Through extensive experimentation using the
TPC-H benchmark, we show that our best model (GPMLM) per-

forms very well in terms of goodness of fit, accuracy, and model
training/prediction time. We also show that our models are able
to quickly adapt to new unseen configurations, demonstrating their
applicability to the dynamic environment of the cloud.
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