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Abstract

Generating texts from structured data (e.g., a table) is im-
portant for various natural language processing tasks such as
question answering and dialog systems. In recent studies, re-
searchers use neural language models and encoder-decoder
frameworks for table-to-text generation. However, these neu-
ral network-based approaches typically do not model the or-
der of content during text generation. When a human writes
a summary based on a given table, he or she would proba-
bly consider the content order before wording. In this paper,
we propose an order-planning text generation model, where
order information is explicitly captured by link-based atten-
tion. Then a self-adaptive gate combines the link-based atten-
tion with traditional content-based attention. We conducted
experiments on the WIKIBIO dataset and achieve higher per-
formance than previous methods in terms of BLEU, ROUGE,
and NIST scores; we also performed ablation tests to analyze
each component of our model.1

Introduction
Generating texts from structured data (e.g., a table) is im-
portant for various natural language processing tasks such
as question answering and dialog systems. Table 1 shows an
example of a Wikipedia infobox (containing fields and val-
ues) and a text summary.

In early years, text generation was usually accomplished
by human-designed rules and templates (Green 2006;
Turner, Sripada, and Reiter 2010), and hence the generated
texts were not flexible. Recently, researchers applied neu-
ral networks to generate texts from structured data (Lebret,
Grangier, and Auli 2016), where a neural encoder captures
table information and a recurrent neural network (RNN) de-
codes this information into a natural language sentence.

Although such neural network-based approaches are ca-
pable of capturing complicated language and can be trained
in an end-to-end fashion, they lack explicit modeling of con-
tent order during text generation. That is to say, an RNN
generates a word at a time step conditioned on previously
generated words as well as table information, which is more
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1Code is available at https://sites.google.com/
site/orderplanningnlg/

Table:
ID Field Content

1 Name Arthur Ignatius Conan Doyle
2 Born 22 May 1859 Edinburgh, Scotland
3 Died 7 July 1930 (aged 71) Crowborough, England
4 Occupation Author, writer, physician
5 Nationality British
6 Alma mater University of Edinburgh Medical School
7 Genre Detective fiction fantasy
8 Notable work Stories of Sherlock Homes

Text: Sir Arthur Ignatius Conan Doyle (22 May 1859 – 7 July
1930) was a British writer best known for his detective fiction fea-
turing the character Sherlock Holmes.

Table 1: An example of a Wikipedia infobox and a reference
text.

or less “shortsighted” and differs from how humans write.
As suggested in the book The Elements of Style,

A basic structural design underlies every kind of writ-
ing . . . in most cases, planning must be a deliberate pre-
lude to writing. (William and White 1999)

This motivates order planning for neural text generation. In
other words, a neural network should model not only word
order (as has been well captured by RNNs), but also the or-
der of content, i.e., fields in a table.

From real summaries, we also observe that table fields
by themselves provide illuminating clues and constraints for
text generation. In the biography domain, for example, the
nationality of a person is typically mentioned before the oc-
cupation. This could benefit from explicit planning of con-
tent order during neural text generation.

In this paper, we propose an order-planning method
for table-to-text generation. Our model is built upon the
encoder-decoder framework and uses RNNs for text syn-
thesis with attention to table entries. Different from existing
neural models, we design a table field linking mechanism,
inspired by temporal memory linkage in the Differentiable
Neural Computer (Graves et al. 2016, DNC). Our field link-
ing mechanism explicitly models the relationship between
different fields, enabling our neural network to better plan
what to say first and what next. Further, we incorporate a
copy mechanism (Gu et al. 2016) into our model to cope
with rare words.



We evaluated our order-planning method on the WIKIBIO
dataset (Lebret, Grangier, and Auli 2016). Experimental re-
sults show that the proposed approach outperforms previ-
ous state-of-the-art results in terms of BLEU, ROUGE, and
NIST metrics. Extensive ablation tests verify the effective-
ness of each component in our model; we also perform vi-
sualization analysis to better understand the proposed order-
planning mechanism.

Approach
Our model takes as input a table (e.g., a Wikipedia infobox)
and generates a natural language summary describing the
information based on an RNN. The neural network contains
three main components:
• An encoder captures table information;
• A dispatcher—a hybrid content- and linkage-based atten-

tion mechanism over the content of a table—plans what
to generate next; and

• A decoder generates a natural language summary using
RNN, where we also incorporate a copy mechanism (Gu
et al. 2016) to cope with rare words.

We elaborate these components in the rest of this section.

Encoder: Table Representation
We design a neural encoder to represent table information.
As shown in Figure 1, the content of each field is split
into separate words and the entire table is transformed into
a large sequence. Then we use a recurrent neural network
(RNN) with long short term memory (LSTM) units (Hochre-
iter and Schmidhuber 1997) to read the content as well as the
corresponding field names.

Concretely, let C be the number of content words in a
table; let ci and fi be the embeddings of a content and its
corresponding field, respectively (i = 1 · · ·C). The input of
LSTM-RNN is the concatenation of fi and ci, denoted as
xi = [fi; ci], and the output, denoted as hi, is the encoded
information corresponding to a content word, i.e.,[

gin; gforget; gout
]
= σ(Wgxi + Ughi−1) (1)

x̃i = tanh(Wxxi + Uxhi−1) (2)

h̃i = gin ◦ x̃i + gforget ◦ h̃i−1 (3)

hi = gout ◦ tanh(h̃i) (4)

where ◦ denotes element-wise product, and σ denotes the
sigmoid function. W ’s and U ’s are weights. Bias terms are
omitted in the equations for clarity. gin, gforget, and gout are
known as input, forget, and output gates.

Notice that, we have two separate embedding matrices for
fields and content words. We observe that the field names of
different data samples mostly come from a fixed set of candi-
dates, which is reasonable in a particular domain. Therefore,
we assign an embedding to a field, regardless of the number
of words in the field name. For example, the field Notable
work in Table 1 is represented by a single field embedding
instead of the embeddings of notable and work.

For content words, we represent them with conven-
tional word embeddings (which are randomly initialized),
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Figure 1: The (a) Encoder and (b) Dispatcher in our model.

and use an LSTM-RNN to summarize the information. In
a table, some fields contain a sequence of words (e.g.,
Name=“Arthur Ignatius Conan Doyle”), whereas other
fields contain a set of words (e.g., Occupation = “writer,
physician”). We do not use much human engineering here
and let an RNN capture such subtlety by itself.

Dispatcher: Planning What to Generate Next

After encoding table information, we use another RNN to
decode a natural language summary (deferred to the next
part). During the decoding process, the RNN is augmented
with a dispatcher that plans what to generate next.

Generally, a dispatcher is an attention mechanism over
table content. At each decoding time step t, the dispatcher
computes a probabilistic distribution αt,i (i = 1 · · ·C),
which is further used for weighting content representa-
tions hi. In our model, the dispatcher is a hybrid of content-
and link-based attention, discussed in detail as follows.

Content-Based Attention. Traditionally, the computation
of attention αt,i is based on the content representation hi

as well as some state during decoding (Bahdanau, Cho, and
Bengio 2015; Mei, Bansal, and Walter 2016). We call this
content-based attention, which is also one component in our
dispatcher.

Since both the field name and the content contain im-
portant clues for text generation, we compute the attention
weights based on not only the encoded vector of table con-
tent hi but also the field embedding fi, thus obtaining the
final attention αcontent

t,i by re-weighting one with the other.



Formally, we have

α̃
(f)
t,i = f>i

(
W (f)yt−1 + b

(f)
)

(5)

α̃
(c)
t,i = h>i

(
W (c)yt−1 + b

(c)
)

(6)

αcontent
t,i =

exp
{
α̃
(f)
t,i α̃

(c)
t,i

}∑C
j=1 exp

{
α̃
(f)
t,j α̃

(c)
t,j

} (7)

where W (f), b(f),W (c), b(c) are learnable parameters; fi
and hi are vector representations of the field name and en-
coded content, respectively, for the ith row. αcontent

t,i is the
content-based attention weights. Ideally, a larger content-
based attention indicates a more relevant content to the last
generated word.

Link-Based Attention. We further propose a link-based
attention mechanism that directly models the relationship
between different fields.

Our intuition stems from the observation that, a well-
organized text typically has a reasonable order of its content.
As illustrated previously, the nationality of a person is of-
ten mentioned before his occupation (e.g., a British writer).
Therefore, we propose a link-based attention to explicitly
model such information.

We construct a link matrix L ∈ Rnf×nf , where nf is the
number of possible field names in the dataset. An element
L [fj , fi] is a real-valued score indicating how likely the field
fj is mentioned after the field fi. (Here, [·, ·] indexes a ma-
trix.) The link matrix L is part of the model parameters and
learned by backpropagation. Although the link matrix ap-
pears to be large in size (1475×1475), a large number of its
elements are not used because most fields do not co-occur in
at least one data sample; in total, we have 53,422 effective
parameters here. In other applications where the link matrix
is dense, low-rank approximations may be used to reduce
the number of parameters.

Formally, let αt−1,i (i = 1 . . . C) be an attention proba-
bility2 over table content in the last time step during gener-
ation. For a particular data sample whose content words are
of fields f1, f2, · · · , fC , we first weight the linking scores
by the previous attention probability, and then normalize
the weighted score to obtain link-based attention probabil-
ity, given by

αlink
t,i = softmax

{ C∑
j=1

αt−1,j ·L [fj , fi]

}
(8)

=
exp

{∑C
j=1 αt−1,j ·L [fj , fi′ ]

}∑C
i′=1 exp

{∑
j αt−1,j ·L [fj , fi′ ]

} (9)

Intuitively, the link matrix is analogous to the transition
matrix in a Markov chain (Karlin 2014), whereas the term∑C

j=1 αt−1,j · L [fj , fi] is similar to one step of transition
in the Markov chain. However, in our scenario, a table in a
particular data sample contains only a few fields, but a field

2Here, αt−1,i uses the hybrid content- and link-based attention,
which will be introduced shortly.

may occur several times because it contains more than one
content word. Therefore, we do not require our link matrix
L to be a probabilistic distribution in each row, but normal-
ize the probabilities afterwards by Equation 9, which turns
out to work well empirically.

Besides, we would like to point out that the link-based
attention is inspired by the Differentiable Neural Com-
puter (Graves et al. 2016, DNC). DNC contains a “linkage-
based addressing” mechanism to track consecutively used
memory slots and thus to integrate order information during
memory addressing. Likewise, we design the link-based at-
tention to capture the temporal order of different fields. But
different from the linking strength heuristically defined in
DNC, the link matrix in our model is directly parameterized
and trained in an end-to-end manner.

Hybrid Attention. To combine the above two attention
mechanisms, we use a self-adaptive gate zt ∈ (0, 1) rep-
resented by a sigmoid unit

zt = σ
(
w>[h′t−1; e

(f)
t ;yt−1]

)
(10)

where w is a parameter vector. h′t−1 is the last step’s hid-
den state of the decoder RNN. yt−1 is the embedding of
the word generated in the last step; e(f)t is the sum of field
embeddings fi weighted by the current step’s field attention
αlink
t,i . As yt−1 and e(f)t emphasize the content and link as-

pects, respectively, the self-adaptive gate z is aware of both.
In practice, we find z tends to address link-based attention
too much3 and thus adjust it by z̃t = 0.2zt+0.5 empirically.

Finally, the hybrid attention, a probabilistic distribution
over all content words, is given by

αhybrid
t = z̃t ·αcontent

t + (1− z̃t) ·αlink
t (11)

Decoder: Sentence Generation
The decoder is an LSTM-RNN that predicts target words in
sequence. We also have an attention mechanism (Bahdanau,
Cho, and Bengio 2015) that summarizes source information,
i.e., the table in our scenario, by weighted sum, yielding an
attention vector at by

at =

C∑
i=1

αhybrid
t,i hi (12)

where hi is the hidden representation obtained by the
table encoder. As αhybrid

t,i is a probabilistic distribution—
determined by both content and link information—over con-
tent words, it enables the decoder RNN to focus on relevant
information at a time, serving as an order-planning mecha-
nism for table-to-text generation.

3One author of this paper has similar experience in another ap-
plication (Meng, Mou, and Jin 2017), where combining content and
temporal information (analogous to order information in this paper)
in a naı̈ve fashion does not yield high performance. Our conjecture
is that, if we directly use Equation 10, the link-based attention is
much simpler, and hence easier to train, than content-based atten-
tion, thus bypassing content information. More in-depth analysis is
needed as future work.
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Figure 2: The decoder RNN in our model, which is enhanced
with a copy mechanism.

Then we concatenate the attention vector at and the em-
bedding of the last step’s generated word yt−1, and use a
single-layer neural network to mix information before feed-
ing to the decoder RNN. In other words, the decoder RNN’s
input (denoted as xt) is

xt = tanh(Wd[at;yt−1] + bd) (13)

where Wd and bd are weights. Similar to Equations 1–4, at
a time step t during decoding, the decoder RNN yields a
hidden representation h′t, based on which a score function
sLSTM is computed suggesting the next word to generate.
The score function is given by

sLSTM
t =Wsh

′
t + bs (14)

where h′t is the decoder RNN’s state. (Ws and bs are
weights.) The score function can be thought of as the input
of a softmax layer for classification before being normalized
to a probabilistic distribution. We incorporate a copy mech-
anism (Gu et al. 2016) into our approach, and the normal-
ization is accomplished after considering a copying score,
introduced as follows.

Copy Mechanism. The copy mechanism scores a content
word ci by its hidden representation hi in the encoder side,
indicating how likely the content word ci is directly copied
during target generation. That is,

st,i = σ(h>i Wc)h
′
t (15)

and st,i is a real number for i = 1, · · · , C (the number of
content words). HereWc is a parameter matrix, and h′ is the
decoding state.

In other words, when a word appears in the table content,
it has a copying score computed as above. If a wordw occurs
multiple times in the table content, the scores are added as
follows

scopy
t (w) =

C∑
i=1

st,i · 11{ci=w} (16)

where 11{ci=w} is a Boolean variable indicating whether the
content word ci is the same as the word w we are consider-
ing.

Finally, the LSTM score and the copy score are added for
a particular word and further normalized to obtain a proba-
bilistic distribution over candidate words, given by

st(w) = sLSTM
t (w) + scopy

t (w) (17)

pt(w) = softmax (st(w)) =
exp{st(w)}∑

w′∈V
⋃
C
exp{st(w′)}

(18)

where V refers to the vocabulary list and C refers to the set
of content words in a particular data sample. In this way,
the copy mechanism can either generate a word from the
vocabulary or directly copy a word from the source side.
This is helpful in our scenario because some fields in a table
(e.g., Name) may contain rare or unseen words and the copy
mechanism can cope with them naturally.

Training and Inference
Our training objective is the negative log-likelihood of a sen-
tence y1 · · · yT in the training set.

J = −
T∑

t=1

log p(yt|y0 · · · yt−1) (19)

where p(yt|·) is computed by Equation 18. An `2 penalty is
also added as in most other studies.

Since all the components described above are differen-
tiable, our entire model can be trained end-to-end by back-
propagation.

During inference, we use greedy search for simplicity, i.e.,
for each time step t, the word with the largest probability is
chosen, given by yt = argmaxw pt(w). The decoding pro-
cess terminates when a special symbol <eos> is generated,
indicating the end of a sequence.

Experiments
Dataset
We used the newly published WIKIBIO dataset (Lebret,
Grangier, and Auli 2016),4 which contains 728,321 biogra-
phies from WikiProject Biography5 (originally from English
Wikipedia, September 2015).

4https://github.com/DavidGrangier/
wikipedia-biography-dataset

5https://en.wikipedia.org/wiki/Wikipedia:
WikiProject_Biography



Group Model BLEU ROUGE NIST
Previous results KN 2.21 0.38 0.93

Template KN 19.80 10.70 5.19

Table NLMl 34.70 25.80 7.98

Our results Content attention only 41.38 34.65 8.57
Order planning (full model) 43.91 37.15 8.85

Table 2: Comparison of the overall performance between our model and previous methods. lBest results in Lebret, Grangier,
and Auli (2016).

Each data sample comprises an infobox table of field-
content pairs, being the input of our system. The generation
target is the first sentence in the biography, which follows the
setting in previous work (Lebret, Grangier, and Auli 2016).
Although only the first sentence is considered in the experi-
ment, the sentence typically serves as a summary of the ar-
ticle. In fact, the target sentence has 26.1 tokens on average,
which is actually long. Also, the sentence contains informa-
tion spanning multiple fields, and hence our order-planning
mechanism is useful in this scenario.

We applied the standard data split: 80% for training and
10% for testing, except that model selection was performed
on a validaton subset of 1000 samples (based on BLEU-4).

Settings
We decapitalized all words and kept a vocabulary size of
20,000 for content words and generation candidates, which
also followed previous work (Lebret, Grangier, and Auli
2016). Even with this reasonably large vocabulary size, we
had more than 900k out-of-vocabulary words. This rational-
izes the use of the copy mechanism.

For the names of table fields, we treated each field name as
a special token. By removing non-text fields whose content
is “none” (e.g., Image) and grouping fields occurring less
than 100 times as an “Unknown” field, we had 1475 different
field names in total.

In our experiments, both words’ and table fields’ embed-
dings were 400-dimensional and LSTM layers were 500-
dimensional. Notice that, a field (e.g., “name”) and a con-
tent/generation word (e.g., also “name”), even with the same
string, were considered as different tokens; hence, they had
different embeddings. We randomly initialized all embed-
dings, which were tuned during training.

We used Adam (Kingma and Ba 2015) as the optimiza-
tion algorithm with a batch size of 32; other hyperparame-
ters were set to default values.

Baselines
We compared our model with previous results using either
traditional language models or neural networks.

• KN and Template KN (Heafield et al. 2013): Lebret,
Grangier, and Auli (2016) train an interpolated Kneser-
Ney (KN) language model for comparison with the
KenLM toolkit. They also train a KN language model
with templates.

Component BLEU ROUGE NIST
Content att. 41.38 34.65 8.57
Link att. 38.24 32.75 8.36
Hybrid att. 43.01 36.91 8.75

Copy+Content att. 41.89 34.93 8.63
Copy+Link att. 39.08 33.47 8.42
Copy+Hybrid att. 43.91 37.15 8.85

Table 3: Ablation test.

• Table NLM: Lebret, Grangier, and Auli (2016) propose an
RNN-based model with attention and copy mechanisms.
They have several model variants, and we quote the high-
est reported results.
We report model performance in terms of several metrics,

namely BLEU-4, ROUGE-4, and NIST-4, which were com-
puted by standard software, NIST mteval-v13a.pl (for BLEU
and NIST) and MSR rouge-1.5.5 (for ROUGE). We did not
include the perplexity measure from Lebret, Grangier, and
Auli (2016) because the copy mechanism makes the vocab-
ulary size vary among data samples, and thus the perplexity
is not comparable among different approaches.

Results
Overall Performance. Table 2 compares the overall per-
formance with previous work. We see that, modern neural
networks are considerably better than traditional KN models
with or without templates. Moreover, our base model (with
content-attention only) outperforms Lebret, Grangier, and
Auli (2016), showing our better engineering efforts. After
adding up all proposed components, we obtain +2.5 BLEU
and ROUGE improvement and +0.3 NIST improvement,
achieving new state-of-the-art results.

Ablation Test. Table 3 provides an extensive ablation test
to verify the effectiveness of each component in our model.
The top half of the table shows the results without the copy
mechanism, and the bottom half incorporates the copying
score as described previously. We observe that the copy
mechasnim is consistently effective with different types of
attention.

We then compare content-based attention and link-based
attention, as well as their hybrid (also Table 3). The results
show that, link-based attention alone is not as effective as
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Figure 3: Comparing the self-adaptive gate with interpola-
tion of content- and link-based attention. z = 0 is link-based
attention, z = 1 is content-based attention.

content-based attention. However, we achieve better perfor-
mance if combining them together with an adaptive gate,
i.e., the proposed hybrid attention. The results are consistent
in both halves of Table 3 (with or without copying) and in
terms of all metrics (BLEU, ROUGE, and NIST). This im-
plies that content-based attention and link-based attention do
capture different aspects of information, and their hybrid is
more suited to the task of table-to-text generation.

Effect of the gate. We are further interested in the effect
of the gate z, which balances content-based attentionαcontent

and link-based attentionαlink. As defined in Equation 11, the
computation of z depends on the decoding state as well as
table information; hence it is “self-adaptive.” We would like
to verify if such adaptiveness is useful, and thus designed
a controlled experiment where the gate z was manually as-
signed in advance and fixed during training. In other words,
the setting was essentially a (fixed) interpolation between
αcontent andαlink. Specifically, we tuned z from 0 to 1 with a
granularity of 0.1, and plot BLEU scores as the comparison
metric in Figure 3.

As seen, interpolation of content- and link-based atten-
tion is generally better than either single mechanism, which
again shows the effectiveness of hybrid attention. However,
the peak performance of simple interpolation (42.89 BLEU
when z = 0.4) is worse than the self-adaptive gate, imply-
ing that our gating mechanism can automatically adjust the
importance of αcontent and αlink at a particular time based on
the current state and input.

Different Ways of Using Field Information. We are cu-
rious whether the proposed order-planning mechanism is
better than other possible ways of using field information.
We conducted two controlled experiments as follows. Sim-
ilar to the proposed approach, we multiplied the attention
probability by a field matrix and thus obtained a weighted
field embedding. We fed it to either (1) the computation of
content-based attention, i.e., Equations 5–6, or (2) the RNN
decoder’s input, i.e., Equation 13. In both cases, the last
step’s weighted field embedding was concatenated with the
embedding of the generated word yt−1.

From Table 4, we see that feeding field information to the

Feeding field info to . . . BLEU ROUGE NIST
None 41.89 34.93 8.63
Computation of αcontent 40.52 34.95 8.57
Decoder RNN’s input 41.96 35.07 8.61

Hybrid att. (proposed) 43.91 37.15 8.85

Table 4: Comparing different possible ways of using field
information. “None”: No field information is fed back to
the network, i.e., content-based attention computed by Equa-
tion 7 (with copying).

computation ofαcontent interferes content attention and leads
to some performance degradation, and that feeding it to de-
coder RNN slightly improves model performance. However,
both controlled experiments are worse than the proposed
method. The results confirm that our order-planning mech-
anism is indeed useful in modeling the order of fields, out-
performing several other approaches that use the same field
information in a naı̈ve fashion.

Case Study and Visualization
We showcase an example in Table 5. With only content-
based attention, the network is confused about when the
word American is appropriate in the sentence, and corrupts
the phrase former governor of the federal reserve system
that appears in the reference. However, when link-based at-
tention is added, the network is more aware of a natural
order between fields “Nationality” and “Occupation” (al-
though necessarily appearing in the particular reference),
and generates the nationality American before the occu-
pation economist. This process can also be visualized in
Figure 4. Here, we plot our model’s content-based atten-
tion, link-based attention, and their hybrid. (The content-
and link-based attention probabilities may be different from
those separately trained in the ablation test.) After generat-
ing “emmett john rice ( december 21, 1919 – march 10, 2011
) was,” content-based attention skips the nationality and fo-
cuses more on the occupation. Link-based attention, on the
other hand, provides a strong clue suggesting to generate the
nationality first and then occupation.

Related Work
Text generation has long aroused interest in the NLP com-
munity due to is wide applications including automated nav-
igation (Dale, Geldof, and Prost 2003) and weather forecast-
ing (Reiter et al. 2005). Traditionally, text generation can
be divided into several steps (Stent, Prassad, and Walker
2004): (1) content planning defines what information should
be conveyed in the generated sentence; (2) sentence plan-
ning determines what to generate in each sentence; and (3)
surface realization actually generates those sentences with
words.

In early years, surface realization was often accomplished
by templates (Van Deemter, Theune, and Krahmer 2005)
or statistically learned (shallow) models, e.g., probabilis-
tic context-free grammars (Belz 2008) and language mod-



Name
Birth date
Birth place

Death date
Death place

Nationality
Occupation

Known for

Emmett John Rice
December 21, 1919
Florence, South Carolina,
United States
March 10, 2011 (aged 91)
Camas, Washington, 
United States
American
Governor of the Federal 
Reserve System, 
Economics Professor
Expert in the Monetary 
System of Developing 
Countries, Father to
Susan E. Rice

Reference emmett john rice ( december 21 , 1919 – march 10 , 2011 ) was a
former governor of the federal reserve system , a Cornell university
economics professor , expert in the monetary systems of developing
countries and the father of the current national security advisor to
president barack obama , susan e . rice .

Content-based
attention

emmett john rice ( december 21 , 1919 – march 10 , 2011 ) was an
economist , author , public official and the former american governor
of the federal reserve system , the first african american UNK .

Hybrid attention emmett john rice ( december 21 , 1919 – march 10 , 2011 ) was an
american economist , author , public official and the former governor
of the federal reserve system , expert in the monetary systems of
developing countries .

Table 5: Case study. Left: Wikipedia infobox. Right: A reference and two generated sentences by different attention (both with
the copy mechanism).

els (Angeli, Liang, and Klein 2010), with hand-crafted fea-
tures or rules. Therefore, these methods are weak in terms of
the quality of generated sentences. For planning, researchers
also apply (shallow) machine learning approaches. Barzilay
and Lapata (2005), for example, model it as a collective clas-
sification problem, whereas Liang, Jordan, and Klein (2009)
use a generative semi-Markov model to align text segments
and assigned meanings. Generally, planning and realization
in the above work are separate and have difficulty in captur-
ing the complexity of language due to the nature of shallow
models.

Recurrent neural networks (RNNs) are now playing a
more important role in natural language generation. As
RNNs can automatically capture highly complicated pat-
terns during end-to-end training, they have successful appli-
cations including machine translation (Bahdanau, Cho, and
Bengio 2015), dialog systems (Shang, Lu, and Li 2015), and
text summarization (Tan, Wan, and Xiao 2017).

Researchers are also beginning to use RNNs for text gen-
eration from structured data. Mei, Bansal, and Walter (2016)
propose a coarse-to-fine grained attention mechanism that
selects one or more records (e.g., a piece of weather forecast)
by a precomputed but fixed probability and then dynamically
attends to relevant content during decoding. Lebret, Grang-
ier, and Auli (2016) incorporate the copy mechanism (Gu
et al. 2016) into the generation process. However, the above
approaches do not explicitly model the order of content. It is
also nontrivial to combine traditional planning techniques to
such end-to-end learned RNN.

Our paper proposes an order-planning approach by de-
signing a hybrid of content- and link-based attention. The
model is inspired by hybrid content- and location-based ad-
dressing in the Differentiable Neural Computer (Graves et
al. 2016), where the location-based addressing is defined
heuristically. Our model is also similar to a hybrid content
and temporal analysis of multi-party conversations in one
author’s previous work (Meng, Mou, and Jin 2017); how-
ever, the temporal information in Meng, Mou, and Jin (2017)
is modeled by a vector. Instead, this paper proposes a
transition-like link matrix that models how likely a field is
mentioned after another, which is more suited in our sce-
nario. Our entire model is differentiable, and thus the plan-
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Figure 4: Visualization of attention probabilities in our
model. x-axis: generated words “. . . ) was an american
economist . . . ”; y-axis: 〈field : content word〉 pairs in the
table. (a) Content-based attention. (b) Link-based attention.
(c) Hybrid attention. Subplot (b) exhibits strips because, by
definition, link-based attention will yield the same score for
all content words with the same field. Please also note that
the columns do not sum to 1 in the figure because we only
plot a part of the attention probabilities.

ning and realization steps in traditional language generation
can be learned end-to-end.

Conclusion
In this paper, we propose an order-planning neural network
that generates text from a table (Wikipedia infobox). The
text generation process is built upon an RNN with attention
to table content. Different from traditional content-based at-
tention, we explicitly model the order of content by a link
matrix, based on which we compute a link-based attention.
Then a self-adaptive gate balances the content- and link-
based attention mechanisms. We further incorporate a copy
mechanism to our model to cope with rare or unseen words.



We evaluated our approach on a newly proposed large-
scale dataset, WIKIBIO. Experimental results show that we
outperform previous results in terms of BLEU, ROUGE,
and NIST scores. We also performed extensive ablation tests
showing the effectiveness of the copy mechanism, as well as
the hybrid attention of content and linking information. We
compared our order-planning mechanism with other possi-
ble ways of modeling fields; the results confirm that the pro-
posed method is better than feeding field embedding to the
network in a naı̈ve fashion. Finally we provide a case study
and visualize the attention scores so as to better understand
our model.
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