Cost-Sensitive Exploration in
Bayesian Reinforcement L earning

Dongho Kim Kee-Eung Kim Pascal Poupart
Department of Engineering Dept of Computer Science School of Computer Science
University of Cambridge, UK KAIST, Korea University of Waterloo, Canada
dk449@am ac. uk keki m@&s. kai st. ac. kr ppoupart @s. uwat er |l 0o. ca

Abstract

In this paper, we consider Bayesian reinforcement lear(®i).) where actions
incur costs in addition to rewards, and thus explorationtbdse constrained in
terms of the expected total cost while learning to maximiee éxpected long-
term total reward. In order to formalize cost-sensitivelesqtion, we use the
constrained Markov decision process (CMDP) as the modékoéhvironment, in
which we can naturally encode exploration requirementsguie cost function.
We extend BEETLE, a model-based BRL method, for learningérenvironment
with cost constraints. We demonstrate the cost-sensitigrtion behaviour in
a number of simulated problems.

1 Introduction

In reinforcement learning (RL), the agent interacts witpar{ially) unknown environment, classi-
cally assumed to be a Markov decision process (MDP), withgthed of maximizing its expected
long-term total reward. The agent faces the exploratigriegtation dilemma: the agent must se-
lect actions that exploit its current knowledge about théirenment to maximize reward, but it
also needs to select actions that explore for more infoonmato that it can act better. Bayesian RL
(BRL) [1, 2, 3, 4] provides a principled framewaork to the exltion-exploitation dilemma.

However, exploratory actions may have serious consegsefoe example, a robot exploring in an
unfamiliar terrain may reach a dangerous location and suiséavy damage, or wander off from the
recharging station to the point where a costly rescue missioequired. In a less mission critical
scenario, a route recommendation system that learns acvel times should be aware of toll fees
associated with different routes. Therefore, the agendsée carefully (if not completely) avoid
critical situations while exploring to gain more informaii

The constrained MDP (CMDP) extends the standard MDP to atdoulimited resources or mul-
tiple objectives [5]. The CMDP assumes that executing astincur costsind rewards that should
be optimized separately. Assuming the expected total ckaad cost criterion, the goal is to find
an optimal policy that maximizes the expected total rewahderbounding the expected total cost.
Since we can naturally encode undesirable behaviors ietadkt function, we formulate the cost-
sensitive exploration problem as RL in the environment nextias a CMDP.

Note that we can employ other criteria for the cost constiailCMDPs. We can make the actual
total cost below the cost bound with probability one usirgglample-path costonstraints [6, 7], or
with probability 1 — § using thepercentile costonstraints [8]. In this paper, we restrict ourselves
to the expected total cost constraint mainly due to the caatiomal efficiency in solving the con-
strained optimization problem. Extending our work to otbest criteria is left as a future work. The
main argument we make is that the CMDP provides a naturaldwark for representing various
approaches to constrained exploration, suckeds explorationf9, 10].

In order to perform cost-sensitive exploration in the BagefL (BRL) setting, we cast the problem
as a constrained partially observable MDP (CPOMDP) [11 pl&jning problem. Specifically, we
take a model-based BRL approach and extend BEETLE [4] teesble CPOMDP which models
BRL with cost constraints.

2 Background

In this section, we review the background for cost-seresigi¥ploration in BRL. As we explained
in the previous section, we assume that the environment telad as a CMDP, and formulate
model-based BRL as a CPOMDP. We briefly review the CMDP and PR before summarizing

BEETLE, a model-based BRL for environments without coststi@ints.

2.1 Constrained MDPs (CMDPs) and Constrained POM DPs (CPOM DPs)

The standard (infinite-horizon discounted return) MDP irebel by tuple(S, A, T', R, ~y, by) where:

S is the set of states, A is the set of actions; T'(s, a, s’) is the transition function which denotes
the probabilityPr(s’|s, a) of changing to state’ from s by executing actiom; R(s,a) € R is the
reward function which denotes the immediate reward of etkeguwactiona in states; v € [0,1) is
the discount factorb, (s) is the initial state probability for state b, is optional, since an optimal
policy 7* : S — A that maps from states to actions can be shown not to be deeori).

The constrained MDP (CMDP) is defined by tuple A, T, R, C, &,~, by) with the following addi-
tional componentsC(s,a) € R is the cost function which denotes the immediate cost irclby
executing actiom in states; ¢ is the bound on expected total discounted cost.

An optimal policy of a CMDP maximizes the expected total disated reward over the infinite
horizon, while not incurring more thantotal discounted cost in the expectation. We can formalize
this constrained optimization problem as:

max, V* s.t. CT <é.

where V™ = E_, [> oo R(si,a.)] is the expected total discounted reward, affd =
Er o[> ieo v Cl(st,a¢)] is the expected total discounted cost. We will also Gi3és) to denote
the expected total cost starting from the state

It has been shown that an optimal policy for CMDP is generaltgndomized stationary policy [5].
Hence, we define a policy as a mapping of states to probability distributions oveioast where
7(s,a) denotes the probability that an agent will execute actiomstates. We can find an optimal
policy by solving the following linear program (LP):

mngR(s,a)x(s,a) 1)
s.t. Zx(s’, a) — WZx(s,a)T(s,a, s') =bg(s") Vs
ZC(S,a)x(s,a) <¢ and z(s,a) >0 Vs,a

The variables:’s are related to the occupancy measure of optimal policgred(s, a) is the ex-
pected discounted number of times executirag states. If the above LP yields a feasible solution,
optimal policy can be obtained by(s,a) = z(s,a)/ >, x(s,a’). Note that due to the introduc-
tion of cost constraints, the resulting optimal policy isitngent on the initial state distributidp,

in contrast to the standard MDP of which an optimal policy banindependent of the initial state
distribution. Note also that the above LP may be infeasitileere is no policy that can satisfy the
cost constraint.

The constrained POMDP (CPOMDP) extends the standard POMRRimilar manner. The stan-
dard POMDRP is defined by tuplé, A, Z, T, O, R, v, by) with the following additional components:
the setZ of observationg, and the observation probability(s’, a, z) representing the probability
Pr(z|s’,a) of observingz when executing actioa and changing to stat¢. The states in the

POMDP are hidden to the agent, and it has to act based on tkevatiens instead. The CPOMDP

Algorithm 1. Point-based backup ef-vector pairs with admissible cost

input : (b, d) with belief stateh and admissible cost; setl” of a-vector pairs
output: setl“(b) of a-vector pairs (contains at most 2 pairs for a single costtfang

Il regress
foreach a € A do

)
a?jé(5= Z T(s,
() Zs’ T(S,
1 backup for each action

foreach a € A do
Solve the following LP to obtain best randomized action atribxt time step:

b- Z wzza @,z < d Vz
. iz —]_ VZ
max b Zwma % subject to %}:> 0 Vi s

Zz d. = %(d - C(b7 a))

Oé(;;i = a%’* + '}/Zi,z ﬁ)iza?;];
| ol =agT + X, Wiayl
/I find the best randomized action for the current time step
Solve the following LP with :

b->, wead < d
max b- ZwaaR subjectto Y, w, =1
a we >0 Va

return ',y = {(a%, a¢)|wa > 0}

is defined by adding the cost functiGhand the cost bounglinto the definition as in the CMDP. Al-
though the CPOMDRP is intractable to solve as is the case W&fPOMDP, there exists an efficient
point-based algorithm [12].

The Bellman backup operator for CPOMDP generates pairs-egctors(ag, ac), each vector
corresponding to the expected total reward and cost, régglgc In order to facilitate defining the
Bellman backup operator at a belief state, we augment thef lsthte with a scalar quantity called
admissible cosf13], which represents the expected total cost that can diiacklly incurred for
the future time steps without violating the cost constrafBtippose that, at time stépthe agent

has so far incurred a total cost Wt, ie., W, = ZZZO v"C(sr,a;). The admissible cost at
time stept + 1 is defined asl; = 7,+1 (¢ — W,). It can be computed recursively by the equation
diy1 = ;(dt — C(s¢,az)), which can be derived from; = W;_1 +~vC(s¢, at), anddy = é. Given

a pair of belief state and admissible c@istd) and the set ofi-vector paird” = {(a; gz, @)}, the
best (randomized) action is obtained by solving the follaydLP:

b->, wias o <d
maxb sz% r Subjectto > w; =1
i w; >0 Vi
wherew; corresponds to the probability of choosing the action dased with the pailo; r, a; ¢).

The point-based backup for CPOMDP leveraging the above kfdtation is shown in Algo-
rithm 1.2

!Note that this algorithm is an improvement over the heuristic distribution of dn@issible cost to each
observation by rati®r(z|b, a) in [12]. Instead, we optimize the cost distribution by solving an LP.

2.2 BEETLE

BEETLE [4] is a model-based BRL algorithm, based on the ided BRL can be formulated
as a POMDP planning problem. Assuming that the environmemadeled as a discrete-state
MDP P = (S, A, T, R,v) where the transition functiofi’ is unknown, we treat each transi-

tion probability T'(s, a, s’) as an unknown parametégvS' and formulate BRL as a hyperstate
POMDP <SP,AP,ZP,TP,OP,RP,’)/,Z70> where Sp = S x {92’5,}, Ap = A, Zp = S,
Tp(s,0,a,s,0") = 05564(0"), Op(s',0',a,z) = 64(2), andRp(s,0,a) = R(s,a). In sum-
mary, the hyperstate POMDP augments the original stateespitic the set of unknown parameters
{65"}, since the agent has to take actions without exact infoomath the unknown parameters.

The belief stateh in the hyperstate POMDP vyields the posteriorfof Specifically, assuming a
product of Dirichlets for the belief state such that

HDlr 05" mo")

where#:* is the parameter vector of multinomial distribution defgithe transition function for
states and actiona, andn?* is the hyperparameter vector of the corresponding Dirtcthigtri-

bution. Since the hyperparamebejvs’ can be viewed apseudocounts.e., the number of times
observing transitions, a, s’), the updated belief after observing transiti@na, §') is also a product

of Dirichlets:
HDlr 92*, a* 69,&,&’(57a75/))

Hence, belief states in the hyperstate POMDP can be repeesby|S|?| A| variables one for each
hyperparameter, and the belief update is efficiently peréat by incrementing the hyperparmeter
corresponding to the observed transition.

Solving the hyperstate POMDP is performed by dynamic prognang with the Bellman backup
operator [2]. Specifically, the value function is represeras a sef’ of a-functions for each state
S, so that the value of optimal policy is obtained by (b) = max,er as(b) whereay(b) =
fe 0)de. Using the fact thatv-functions are multivariate polynomials 6f we can obtain
an exact solutlon to the Bellman backup.

There are two computational challenges with the hyperd&@&IDP approach. First, being a
POMDP, the Bellman backup has to be performed on all posbiblief states in the probability
simplex. BEETLE adopts Perseus [14], performing randothjzeint-based backups confined to
the set of sampleds, b) pairs by simulating a default or random policy, and redudimg total
number of value backups by improving the value of many bgl@hts through a single backup.
Second, the number of monomial terms in thidunction increases exponentially with the number
of backups. BEETLE chooses a fixed set of basis functions esjdgts then-function onto a linear
combination of these basis functions. The set of basis ilumeis chosen to be the set of monomials
extracted from the sampled belief states.

3 Constrained BEETLE (CBEETLE)

We take an approach similar to BEETLE for cost-sensitivdagtion in BRL. Specifically, we for-
mulate cost-sensitive BRL as a hyperstate CPOMBP, Ap, Zp, Tp,Op, Rp,Cp, ¢,v, by) Wwhere
Sp =S x{055}, Ap = A, Zp = S, Tp(s,0,a,5,0") = 05 64(0), Op(s',0',a,z) = 6y (2),
Rp(s,0,a) = R(s,a),andCp(s,0,a) = C(s,a).

Note that using the cost functiafi and cost bound to encode the constraints on the exploration
behaviour allows us to enjoy the same flexibility as usingréneard function to define the task
objective in the standard MDP and POMDP. Although, for theesaf exposition, we use a single
cost function and discount factor in our definition of CMDRI&BPOMDP, we can generalize the
model to have multiple cost functions that capture differspects of exploration behaviour that
cannot be put together on the same scale, and differentutis€actors for rewards and costs. In
addition, we can even completely eliminate the possibdftgxecuting actiom in states by setting
the discount factor to 1 for the cost constraint and imposséfecently low cost bound < C(s, a).

Algorithm 2: Point-based backup ef-function pairs for the hyperstate CPOMBP

input : (s, n,d) with states, Dirichlet hyperparameter representing belief state and admissible
costd; setI’, of a-function pairs for each state
output: setl“’(s nd) of a-function pairs (contains at most 2 pairs for a single costfion)

Il regress
foreach a € A do
ap” = R(s,a), ai" =C(s,a) Il constant functions
foreach s’ € S, (v g, vi,c) € 'y do
t aly =05 iR, afd =05"a;c Il multiplied by variableds*’

/I backup for each action
foreach a € A do
Solve the following LP to obtain best randomized action atribxt time step:

’

> wi‘g/a??’é (b) <dg V&
Yo Wi =1 Vs

Wiy >0 Vi,s

5. dy = L(d— C(s,a)

max Zwis,aﬁ’g/(b) subject to

W, g1 ,dz

’
»S

| ag= ap’ +y D lDis’OéZ}; , el =ad" +n D Wis 8
/I find the best randomized action for the current time step
Solve the following LP with :

Y oa War(b) < d
max Y weah(b) subjectto >, w, =1
“a we, >0 Va

return I) = {(af, a¢)[wa > 0}

We call our algorithm CBEETLE, which solves the hyperstaOBDP planning problem. As

in BEETLE, a-vectors for the expected total reward and cost are repedesa-functions in
terms of unknown parameters. The point-based backup @penaflgorithm 1 naturally extends

to a-functions without significant increase in the computatomplexity: the size of LP does not
increase even though the belief states represent pralyatiiributions over unknown parameters.
Algorithm 2 shows the point-based backupaefunctions in the hyperstate CPOMDP. In addition,
if we choose a fixed set of basis functions for representisfgnctions, we can pre-compute the
projections ofr-functions (T, R, andC) in the same way as BEETLE. This technique is used in the
point-based backup, although not explicitly describedapgseudocode due to the page limit.

We also implemented the randomized point-based backuptttefumprove the performance. The
key step in the randomized value update is to check whethemdyrgeneratedv-function pairs
I' = {(oi,r, i,c)} from a point-based backup yields improved value at some stnapled belief
state(s, n, d). We can obtain the value &f at the belief state by solving the following LP:

> wia; o(b) < d
maXZwiai,R(b) subjectto >, w; =1 (2)
b w; >0 Vi
If we can find an improved value, we skip the point-based bpekys, n, d) in the current iteration.
Algorithm 3 shows the randomized point-based value update.

In summary, the point-based value iteration algorithm f&xGBDP and BEETLE readily provide
all the essential computational tools to implement the hstiage CPOMDP planning for the cost-
sensitive BRL.

2Thea-functions in the pseudocode are functiong ainda(b) is defined to bef, b(0)(0)d6 as explained
in Sec. 2.2.

Algorithm 3: Randomized point-based value update for the hyperstateMIFO

input : setB of sampled belief points, and sét of a-function pairs for each state
output: setl, of a-function pairs (updated value function)
initialize
B =B [l belief points needed to be improved
foreach s € S do
L T5=0
/I randomized backup
while B # 0 do
Sampleh = (3,7,d) € B
ObtainI"} by point-based backup awith {T,|Vs € S} (Algorithm 2)
I, =T;Ul}
foreach b € B do
L CalculateV’ (b) by solving the LP Eqn. 2 with

| B={beB:V'(b) <V(b)}
return {I';|Vs € S}

(@) (b)

Figure 1: (a) 5-state chain: each edge is labeled with acteward, and cost associated with the
transition. (b)6 x 7 maze: & x 7 grid including the start location with recharging stati&),(goal
location (G), and 3 flags to capture.

4 Experiments

We used the constrained versions of two standard BRL prabterdemonstrate the cost-sensitive
exploration. The first one is the 5-state chain [15, 16, 44, lue second one is thiex 7 maze [16].

4.1 Description of Problems

The 5-state chain problem is shown in Figure 1a, where thetdiges two actions 1 and 2. The agent
receives a large reward of 10 by executing action 1 in state & ,small reward of 2 by executing
action 2 in any state. With probability.2, the agent slips and makes the transition corresponding
to the other action. We defined the constrained version optbblem by assigning a cost of 1 for
action 1 in every state, thus making the consecutive ex@tofiaction 1 potentially violate the cost
constraint.

The6 x 7 maze problem is shown in Figure 1b, where the white cells avégatable locations and
gray cells are walls that block navigation. There are 5 astevailable to the agent: move left, right,
up, down, or stay. Every “move” action (except for the stagiaa) can fail with probability 0.1,
resulting in a slip to two nearby cells that are perpendictdahe intended direction. If the agent
bumps into a wall, the action will have no effect. The goalto$ tproblem is to capture as many
flags as possible and reach the goal location. Upon reachangdal, the agent obtains a reward
equal to the number of flags captured, and the agent gets evhgmk to the start location. Since
there are 33 reachable locations in the maze and 8 possitleircations for the status of captured
flags, there are a total of 264 states. We defined the constiaersion of the problem by assuming
that the agent is equipped with a battery and every actioswrors energy except the stay action at

recharging station. We modeled the power consumption kgraiag a cost of 0 for executing the
stay action at the recharging station, and a cost of 1 otkerwihus, the battery recharging is done
by executing stay action at the recharging station, as thesaible cost increases by factofy.

4.2 Results

Table 1 summarizes the experimental results for the cansttahain and maze problems.

In the chain problem, we used two structural prior modeigdtand “semi”, among three priors
experimented in [4]. Both chain-tied and chain-semi asstinagthe transition dynamics are known
to the agent except for the slip probabilities. In chaimktithe slip probability is assumed to be
independent of state and action, thus there is only one umkip@arameter in transition dynamics.
In chain-semi, the slip probability is assumed to be actiepethdent, thus there are two unknown
parameters since there are two actions. We used uninfaenBirichlet priors in both settings.
We excluded experimenting with the “full” prior model (cofately unknown transition dynamics)
since even BEETLE was not able to learn a near-optimal palcseported in [4].

We report the average discounted total reward and cost dsawéheir 95% confidence intervals

for the first 1000 time steps using 200 simulated trials. Wiéopeed 60 Bellman iterations on 500

belief states, and used the first 50 belief states for chgdbim set of basis functions. The discount
factor was set to 0.99.

When¢é=100, which is the maximum expected total cost that can heriad by any policy, CBEE-
TLE found policies that are as good as the policy found by BEE$ince the cost constraint has no
effect. As we impose tighter cost constraintsdsy’s, 50, and 25, the policies start to trade off the
rewards in order to meet the cost constraint. Note also dfthipugh we use approximations in the
various stages of the algorithiis within the confidence intervals of the average total qosianing
that the cost constraint is either met or violated by sia#ly insignificant amounts. Since chain-
semi has more unknown parameters than chain-tied, it isadahat the performance of CBEETLE
policy is slighly degraded in chain-semi. Note also that asimpose tighter cost constraints, the
running times generally increase. This is because the arst@int in the LP tends to become
active at more belief states, generating twéunction pairs instead of a singtefunction pair when
the cost constaint in the LP is not active.

The results for the maze problem were calculated for theZD60 time steps using 100 simulated
trials. We performed 30 Bellman iterations on 2000 beliafest, and used 50 basis functions. Due
to the computational requirement for solving the large hgtate CPOMDP, we only experimented
with the “tied” prior model which assumes that the slip prollity is shared by every state and
action. Running CBEETLE witk = 1/(1 — 0.95) = 20 is equivalent to running BEETLE without
cost constraints, as verified in the table.

We further analyzed the cost-sensitive exploration behavin the maze problem. Figure 2 com-
pares the policy behaviors of BEETLE and CBEETEE(8) in the maze problem. The BEETLE
policy generally captures the top flag first (Figure 2a), thavigates straight to the goal (Figure 2b)
or captures the right flag and navigates to the goal (Figurdfitcaptures the right flag first, it then
navigates to the goal (Figure 2d) or captures the top flag andjates to the goal (Figure 2e). We
suspect that the reason the third flag on the left is not cagtisrdue to the relatively low discount
rate, hence ignored due to numerical approximations. ThEEJR E policy shows a similar cap-
ture behaviour, but it stays at the recharging station farralver of time steps between the first and
second flag captures, which can be confirmed by the high dtitetion frequency for the cell S in
Figures 2g and 2i. This is because the policy cannot navigdtee other flag position and move to
the goal without recharging the battery in between. The tglso frequently visits the recharging
station before the first flag capture (Figure 2f) becausetitely explores for the first flag with a
high uncertainty in the dynamics.

%It may seem odd that the battery recharges at an exponential rateanety = 1 and make the cost
function assign, e.g., a cost of -1 for recharging and 1 for comsgrbut our implementation currently assumes
same discount factor for the rewards and costs. Implementation feratif discount factors is left as a future
work, but note that we can still obtain meaningful results witsufficiently close to 1.

Table 1: Experimental results for the chain and maze prablem

problem algorithm é utopic avg discounted avg discounted time
value total reward total cost (minutes)

BEETLE — 354.77 351.148.42 — 1.0

chain-tied 100 354.77 354.688.57 100.0&0 24
|S] =5 CBEETLE 75 325.75 287.798.17 75.05:0.14 24
|A] =2 50 296.73 264.977.06 49.96:0.09 44.3
25 238.95 212.194.98 25.12-0.13 80.59

BEETLE — 354.77 351.148.42 — 1.6

chain-semi 100 354.77 354.688.57 100.06:0 3.7
|S] =5 CBEETLE 75 325.75 287.648.16 75.05:0.14 3.8
|A] =2 50 296.73 256.767.23 50.09:0.14 70.7
25 238.95 204.844.51 25.010.16 139.3
maze-tied BEETLE — 1.03 1.02+0.02 — 159.8
|S| =264 | CBEETLE 20 1.03 1.020.02 19.04:0.02 2425
|[A| =5 18 0.97 0.930.04 17.96:0.46 733.1

®) (h) (i) 0

Figure 2: State visitation frequencies of each locatioh&rhaze problem over 100 runs. Brightness
is proportional to the relative visitation frequency. (jaBehavior of BEETLE (a) before the first
flag capture, (b) after the top flag captured first, (c) aftertthp flag captured first and the right flag
second, (d) after the right flag captured first, and (e) afteright flag captured first and the top flag
second. (f-j) Behavior of CBEETLE:(= 18). The yellow star represents the current location of the
agent.

5 Conclusion

In this paper, we proposed CBEETLE, a model-based BRL dtguarior cost-sensitive exploration,

extending BEETLE to solve the hyperstate CPOMDP which n®B&L using cost constraints. We
showed that cost-sensitive BRL can be effectively solvethibyrandomized point-based value iter-
ation for CPOMDPs. Experimental results show that CBEET&E learn reasonably good policies
for underlying CMDPs while exploring the unknown envirommeost-sensitively.

While our experiments show that the policies generally Batise cost constraints, it can still po-
tentially violate the constraints since we approximateahpha functions using a finite number of
basis functions. As for the future work, we plan to focus orkimg CBEETLE more robust to the
approximation errors by performing a constrained optitiiwewhen approximating alpha functions
to guarantee that we never violate the cost constraints.

Acknowledgments

This work was supported by National Research Foundationavé& (Grant# 2012-007881), the
Defense Acquisition Program Administration and AgencyDefense Development of Korea (Con-
tract# UD0O80042AD), and the SW Computing R&D Program of KE2011-10041313) funded by
the Ministry of Knowledge Economy of Korea.

References

[1] R. Howard.Dynamic programmingMIT Press, 1960.

[2] M. Duff. Optimal learning: Computational procedures for Bayes-atilee Markov decision
processesPhD thesis, University of Massachusetts, Amherst, 2002.

[3] S. Ross, J. Pineau, B. Chaib-draa, and P. Kreitmann. Ae8ian approach for larning and
planning in partially observable markov decision process#ournal of Machine Learning
Research12, 2011.

[4] P. Poupart, N. Vlassis, J. Hoey, and K. Regan. An analstitition to descrete Bayesian
reinforcement learning. IRroc. of ICML, 2006.

[5] E. Altman. Constrained Markov Decision Process&€hapman & Hall/CRC, 1999.

[6] K. W. Ross and R. Varadarajan. Markov decision-procesgth sample path constraints - the
communicating caséOperations Resear¢i37(5):780-790, 1989.

[7] K. W. Ross and R. Varadarajan. Multichain Markov deaisfrocesses with a sample path
constraint - a decomposition approadtiathematics of Operations Researdlt(1):195-207,
1991.

[8] E. Delage and S. Mannor. Percentile optimization for kéerdecision processes with param-
eter uncertaintyOperations Resear¢®8(1), 2010.

[9] A. Hans, D. Schneegal3, A. M. Safer, and S. Udluft. Safe exploration for reinforcement
learning. InProc. of 16th European Symposium on Artificial Neural Neksa2008.

[10] T. M. Moldovan and P. Abbeel. Safe exploration in Marlaecision processes. Froc. of
NIPS Workshop on Bayesian Optimization, Experimentalddeand Bandits2011.

[11] J. D. Isom, S. P. Meyn, and R. D. Braatz. Piecewise lirdgaramic programming for con-
strained POMDPs. IRroc. of AAA|] 2008.

[12] D. Kim, J. Lee, K.-E. Kim, and P. Poupart. Point-basedugaiteration for constrained
POMDPs. InProc. of IJCA| 2011.

[13] A. B. Piunovskiy and X. Mao. Constrained Markovian dgonh processes: the dynamic pro-
gramming approachOperations Research Lettei7(3):119-126, 2000.

[14] M. T.J. Spaan and N. Vlassis. Perseus: Randomized-pased value iteration for POMDPs.
Journal of Artificial Intelligence ResearcB@4, 2005.

[15] R. Dearden, N. Friedman, and D. Andre. Bayesian Q-lagrrin Proc. of AAA) 1998.
[16] M. Strens. A Bayesian framework for reinforcement feag. InProc. of ICML, 2000.

