
Cost-Sensitive Exploration in
Bayesian Reinforcement Learning

Dongho Kim
Department of Engineering

University of Cambridge, UK
dk449@cam.ac.uk

Kee-Eung Kim
Dept of Computer Science

KAIST, Korea
kekim@cs.kaist.ac.kr

Pascal Poupart
School of Computer Science

University of Waterloo, Canada
ppoupart@cs.uwaterloo.ca

Abstract

In this paper, we consider Bayesian reinforcement learning(BRL) where actions
incur costs in addition to rewards, and thus exploration hasto be constrained in
terms of the expected total cost while learning to maximize the expected long-
term total reward. In order to formalize cost-sensitive exploration, we use the
constrained Markov decision process (CMDP) as the model of the environment, in
which we can naturally encode exploration requirements using the cost function.
We extend BEETLE, a model-based BRL method, for learning in the environment
with cost constraints. We demonstrate the cost-sensitive exploration behaviour in
a number of simulated problems.

1 Introduction

In reinforcement learning (RL), the agent interacts with a (partially) unknown environment, classi-
cally assumed to be a Markov decision process (MDP), with thegoal of maximizing its expected
long-term total reward. The agent faces the exploration-exploitation dilemma: the agent must se-
lect actions that exploit its current knowledge about the environment to maximize reward, but it
also needs to select actions that explore for more information so that it can act better. Bayesian RL
(BRL) [1, 2, 3, 4] provides a principled framework to the exploration-exploitation dilemma.

However, exploratory actions may have serious consequences. For example, a robot exploring in an
unfamiliar terrain may reach a dangerous location and sustain heavy damage, or wander off from the
recharging station to the point where a costly rescue mission is required. In a less mission critical
scenario, a route recommendation system that learns actualtravel times should be aware of toll fees
associated with different routes. Therefore, the agent needs to carefully (if not completely) avoid
critical situations while exploring to gain more information.

The constrained MDP (CMDP) extends the standard MDP to account for limited resources or mul-
tiple objectives [5]. The CMDP assumes that executing actions incur costsand rewards that should
be optimized separately. Assuming the expected total reward and cost criterion, the goal is to find
an optimal policy that maximizes the expected total reward while bounding the expected total cost.
Since we can naturally encode undesirable behaviors into the cost function, we formulate the cost-
sensitive exploration problem as RL in the environment modeled as a CMDP.

Note that we can employ other criteria for the cost constraint in CMDPs. We can make the actual
total cost below the cost bound with probability one using thesample-path costconstraints [6, 7], or
with probability1 − δ using thepercentile costconstraints [8]. In this paper, we restrict ourselves
to the expected total cost constraint mainly due to the computational efficiency in solving the con-
strained optimization problem. Extending our work to othercost criteria is left as a future work. The
main argument we make is that the CMDP provides a natural framework for representing various
approaches to constrained exploration, such assafe exploration[9, 10].

1

In order to perform cost-sensitive exploration in the Bayesian RL (BRL) setting, we cast the problem
as a constrained partially observable MDP (CPOMDP) [11, 12]planning problem. Specifically, we
take a model-based BRL approach and extend BEETLE [4] to solve the CPOMDP which models
BRL with cost constraints.

2 Background

In this section, we review the background for cost-sensitive exploration in BRL. As we explained
in the previous section, we assume that the environment is modeled as a CMDP, and formulate
model-based BRL as a CPOMDP. We briefly review the CMDP and CPOMDP before summarizing
BEETLE, a model-based BRL for environments without cost constraints.

2.1 Constrained MDPs (CMDPs) and Constrained POMDPs (CPOMDPs)

The standard (infinite-horizon discounted return) MDP is defined by tuple〈S,A, T,R, γ, b0〉 where:
S is the set of statess; A is the set of actionsa; T (s, a, s′) is the transition function which denotes
the probabilityPr(s′|s, a) of changing to states′ from s by executing actiona; R(s, a) ∈ ℜ is the
reward function which denotes the immediate reward of executing actiona in states; γ ∈ [0, 1) is
the discount factor;b0(s) is the initial state probability for states. b0 is optional, since an optimal
policy π∗ : S → A that maps from states to actions can be shown not to be dependent onb0.

The constrained MDP (CMDP) is defined by tuple〈S,A, T,R,C, ĉ, γ, b0〉 with the following addi-
tional components:C(s, a) ∈ ℜ is the cost function which denotes the immediate cost incurred by
executing actiona in states; ĉ is the bound on expected total discounted cost.

An optimal policy of a CMDP maximizes the expected total discounted reward over the infinite
horizon, while not incurring more than̂c total discounted cost in the expectation. We can formalize
this constrained optimization problem as:

maxπ Vπ s.t. Cπ ≤ ĉ.

where Vπ = Eπ,b0 [
∑∞

t=0 γtR(st, at)] is the expected total discounted reward, andCπ =
Eπ,b0 [

∑∞
t=0 γtC(st, at)] is the expected total discounted cost. We will also useCπ(s) to denote

the expected total cost starting from the states.

It has been shown that an optimal policy for CMDP is generallya randomized stationary policy [5].
Hence, we define a policyπ as a mapping of states to probability distributions over actions, where
π(s, a) denotes the probability that an agent will execute actiona in states. We can find an optimal
policy by solving the following linear program (LP):

max
x

∑

s,a

R(s, a)x(s, a) (1)

s.t.
∑

a

x(s′, a) − γ
∑

s,a

x(s, a)T (s, a, s′) = b0(s
′) ∀s′

∑

s,a

C(s, a)x(s, a) ≤ ĉ and x(s, a) ≥ 0 ∀s, a

The variablesx’s are related to the occupancy measure of optimal policy, wherex(s, a) is the ex-
pected discounted number of times executinga at states. If the above LP yields a feasible solution,
optimal policy can be obtained byπ(s, a) = x(s, a)/

∑
a′ x(s, a′). Note that due to the introduc-

tion of cost constraints, the resulting optimal policy is contingent on the initial state distributionb0,
in contrast to the standard MDP of which an optimal policy canbe independent of the initial state
distribution. Note also that the above LP may be infeasible if there is no policy that can satisfy the
cost constraint.

The constrained POMDP (CPOMDP) extends the standard POMDP in a similar manner. The stan-
dard POMDP is defined by tuple〈S,A,Z, T,O,R, γ, b0〉 with the following additional components:
the setZ of observationsz, and the observation probabilityO(s′, a, z) representing the probability
Pr(z|s′, a) of observingz when executing actiona and changing to states′. The states in the
POMDP are hidden to the agent, and it has to act based on the observations instead. The CPOMDP

2

Algorithm 1: Point-based backup ofα-vector pairs with admissible cost

input : (b, d) with belief stateb and admissible costd; setΓ of α-vector pairs
output: setΓ′

(b,d) of α-vector pairs (contains at most 2 pairs for a single cost function)
// regress
foreach a ∈ A do

αa,∗
R = R(·, a), αa,∗

C = C(·, a)
foreach (αi,R, αi,C) ∈ Γ, z ∈ Z do

αa,z
i,R(s) =

∑
s′ T (s, a, s′)O(s′, a, z)αi,R(s′)

αa,z
i,C(s) =

∑
s′ T (s, a, s′)O(s′, a, z)αi,C(s′)

// backup for each action
foreach a ∈ A do

Solve the following LP to obtain best randomized action at the next time step:

max
w̃iz,dz

b ·
∑

i,z

w̃izα
a,z
i,R subject to

b ·
∑

i w̃izα
a,z
i,C ≤ dz ∀z

∑
i w̃iz = 1 ∀z

w̃iz ≥ 0 ∀i, z
∑

z dz = 1
γ
(d − C(b, a))

αa
R = αa,∗

R + γ
∑

i,z w̃izα
a,z
i,R

αa
C = αa,∗

C + γ
∑

i,z w̃izα
a,z
i,C

// find the best randomized action for the current time step
Solve the following LP with :

max
wa

b ·
∑

a

waαa
R subject to

b ·
∑

a waαa
C ≤ d∑

a wa = 1

wa ≥ 0 ∀a

return Γ′
(b,d) = {(αa

R, αa
C)|wa > 0}

is defined by adding the cost functionC and the cost bound̂c into the definition as in the CMDP. Al-
though the CPOMDP is intractable to solve as is the case with the POMDP, there exists an efficient
point-based algorithm [12].

The Bellman backup operator for CPOMDP generates pairs ofα-vectors(αR, αC), each vector
corresponding to the expected total reward and cost, respectively. In order to facilitate defining the
Bellman backup operator at a belief state, we augment the belief state with a scalar quantity called
admissible cost[13], which represents the expected total cost that can be additionally incurred for
the future time steps without violating the cost constraint. Suppose that, at time stept, the agent
has so far incurred a total cost ofWt, i.e., Wt =

∑t
τ=0 γτC(sτ , aτ). The admissible cost at

time stept + 1 is defined asdt = 1
γt+1 (ĉ − Wt). It can be computed recursively by the equation

dt+1 = 1
γ
(dt −C(st, at)), which can be derived fromWt = Wt−1 +γC(st, at), andd0 = ĉ. Given

a pair of belief state and admissible cost(b, d) and the set ofα-vector pairsΓ = {(αi,R, αi,C)}, the
best (randomized) action is obtained by solving the following LP:

max
wi

b ·
∑

i

wiαi,R subject to

b ·
∑

i wiαi,C ≤ d∑
i wi = 1

wi ≥ 0 ∀i

wherewi corresponds to the probability of choosing the action associated with the pair(αi,R, αi,C).
The point-based backup for CPOMDP leveraging the above LP formulation is shown in Algo-
rithm 1.1

1Note that this algorithm is an improvement over the heuristic distribution of the admissible cost to each
observation by ratioPr(z|b, a) in [12]. Instead, we optimize the cost distribution by solving an LP.

3

2.2 BEETLE

BEETLE [4] is a model-based BRL algorithm, based on the idea that BRL can be formulated
as a POMDP planning problem. Assuming that the environment is modeled as a discrete-state
MDP P = 〈S,A, T,R, γ〉 where the transition functionT is unknown, we treat each transi-
tion probability T (s, a, s′) as an unknown parameterθs,s′

a and formulate BRL as a hyperstate
POMDP 〈SP , AP , ZP , TP , OP , RP , γ, b0〉 where SP = S × {θs,s′

a }, AP = A, ZP = S,
TP (s, θ, a, s′, θ′) = θs,s′

a δθ(θ
′), OP (s′, θ′, a, z) = δs′(z), andRP (s, θ, a) = R(s, a). In sum-

mary, the hyperstate POMDP augments the original state space with the set of unknown parameters
{θs,s′

a }, since the agent has to take actions without exact information on the unknown parameters.

The belief stateb in the hyperstate POMDP yields the posterior ofθ. Specifically, assuming a
product of Dirichlets for the belief state such that

b(θ) =
∏

s,a

Dir(θs,∗
a ;ns,∗

a)

whereθs,∗
a is the parameter vector of multinomial distribution defining the transition function for

states and actiona, andns,∗
a is the hyperparameter vector of the corresponding Dirichlet distri-

bution. Since the hyperparameterns,s′

a can be viewed aspseudocounts, i.e., the number of times
observing transition(s, a, s′), the updated belief after observing transition(ŝ, â, ŝ′) is also a product
of Dirichlets:

bŝ,ŝ′

â (θ) =
∏

s,a

Dir(θs,∗
a ;ns,∗

a + δŝ,â,ŝ′(s, a, s′))

Hence, belief states in the hyperstate POMDP can be represented by|S|2|A| variables one for each
hyperparameter, and the belief update is efficiently performed by incrementing the hyperparmeter
corresponding to the observed transition.

Solving the hyperstate POMDP is performed by dynamic programming with the Bellman backup
operator [2]. Specifically, the value function is represented as a setΓ of α-functions for each state
s, so that the value of optimal policy is obtained byV∗

s (b) = maxα∈Γ αs(b) whereαs(b) =∫
θ
b(θ)αs(θ)dθ. Using the fact thatα-functions are multivariate polynomials ofθ, we can obtain

an exact solution to the Bellman backup.

There are two computational challenges with the hyperstatePOMDP approach. First, being a
POMDP, the Bellman backup has to be performed on all possiblebelief states in the probability
simplex. BEETLE adopts Perseus [14], performing randomized point-based backups confined to
the set of sampled(s, b) pairs by simulating a default or random policy, and reducingthe total
number of value backups by improving the value of many beliefpoints through a single backup.
Second, the number of monomial terms in theα-function increases exponentially with the number
of backups. BEETLE chooses a fixed set of basis functions and projects theα-function onto a linear
combination of these basis functions. The set of basis functions is chosen to be the set of monomials
extracted from the sampled belief states.

3 Constrained BEETLE (CBEETLE)

We take an approach similar to BEETLE for cost-sensitive exploration in BRL. Specifically, we for-
mulate cost-sensitive BRL as a hyperstate CPOMDP〈SP , AP , ZP , TP , OP , RP , CP , ĉ, γ, b0〉where
SP = S × {θs,s′

a }, AP = A, ZP = S, TP (s, θ, a, s′, θ′) = θs,s′

a δθ(θ
′), OP (s′, θ′, a, z) = δs′(z),

RP (s, θ, a) = R(s, a), andCP (s, θ, a) = C(s, a).

Note that using the cost functionC and cost bound̂c to encode the constraints on the exploration
behaviour allows us to enjoy the same flexibility as using thereward function to define the task
objective in the standard MDP and POMDP. Although, for the sake of exposition, we use a single
cost function and discount factor in our definition of CMDP and CPOMDP, we can generalize the
model to have multiple cost functions that capture different aspects of exploration behaviour that
cannot be put together on the same scale, and different discount factors for rewards and costs. In
addition, we can even completely eliminate the possibilityof executing actiona in states by setting
the discount factor to 1 for the cost constraint and impose a sufficiently low cost bound̂c < C(s, a).

4

Algorithm 2: Point-based backup ofα-function pairs for the hyperstate CPOMDP2

input : (s, n, d) with states, Dirichlet hyperparametern representing belief stateb, and admissible
costd; setΓs of α-function pairs for each states

output: setΓ′
(s,n,d) of α-function pairs (contains at most 2 pairs for a single cost function)

// regress
foreach a ∈ A do

αa,∗
R = R(s, a), αa,∗

C = C(s, a) // constant functions
foreach s′ ∈ S, (αi,R, αi,C) ∈ Γs′ do

αa,s′

i,R = θs,s′

a αi,R, αa,s′

i,C = θs,s′

a αi,C // multiplied by variableθs,s′

a

// backup for each action
foreach a ∈ A do

Solve the following LP to obtain best randomized action at the next time step:

max
w̃

is′
,dz

∑

i,s′

w̃is′αa,s′

i,R (b) subject to

∑
i w̃is′αa,s′

i,C (b) ≤ ds′ ∀s′
∑

i w̃is′ = 1 ∀s′

w̃is′ ≥ 0 ∀i, s′
∑

z ds′ = 1
γ
(d − C(s, a))

αa
R = αa,∗

R + γ
∑

i,s′ w̃is′αa,s′

i,R , αa
C = αa,∗

C + γ
∑

i,s′ w̃is′αa,s′

i,C

// find the best randomized action for the current time step
Solve the following LP with :

max
wa

∑

a

waαa
R(b) subject to

∑
a waαa

C(b) ≤ d∑
a wa = 1

wa ≥ 0 ∀a

return Γ′
(s,n,d) = {(αa

R, αa
C)|wa > 0}

We call our algorithm CBEETLE, which solves the hyperstate CPOMDP planning problem. As
in BEETLE, α-vectors for the expected total reward and cost are represented asα-functions in
terms of unknown parameters. The point-based backup operator in Algorithm 1 naturally extends
to α-functions without significant increase in the computationcomplexity: the size of LP does not
increase even though the belief states represent probability distributions over unknown parameters.
Algorithm 2 shows the point-based backup ofα-functions in the hyperstate CPOMDP. In addition,
if we choose a fixed set of basis functions for representingα-functions, we can pre-compute the
projections ofα-functions (̃T , R̃, andC̃) in the same way as BEETLE. This technique is used in the
point-based backup, although not explicitly described in the pseudocode due to the page limit.

We also implemented the randomized point-based backup to further improve the performance. The
key step in the randomized value update is to check whether a newly generatedα-function pairs
Γ = {(αi,R, αi,C)} from a point-based backup yields improved value at some other sampled belief
state(s, n, d). We can obtain the value ofΓ at the belief state by solving the following LP:

max
wi

∑

i

wiαi,R(b) subject to

∑
i wiαi,C(b) ≤ d∑
i wi = 1

wi ≥ 0 ∀i

(2)

If we can find an improved value, we skip the point-based backup at(s, n, d) in the current iteration.
Algorithm 3 shows the randomized point-based value update.

In summary, the point-based value iteration algorithm for CPOMDP and BEETLE readily provide
all the essential computational tools to implement the hyperstate CPOMDP planning for the cost-
sensitive BRL.

2Theα-functions in the pseudocode are functions ofθ andα(b) is defined to be
R

θ
b(θ)α(θ)dθ as explained

in Sec. 2.2.

5

Algorithm 3: Randomized point-based value update for the hyperstate CPOMDP
input : setB of sampled belief points, and setΓs of α-function pairs for each states
output: setΓ′

s of α-function pairs (updated value function)
// initialize
B̃ = B // belief points needed to be improved
foreach s ∈ S do

Γ′
s = ∅

// randomized backup
while B̃ 6= ∅ do

Samplẽb = (s̃, ñ, d̃) ∈ B̃

ObtainΓ′
b̃

by point-based backup atb̃ with {Γs|∀s ∈ S} (Algorithm 2)
Γ′

s̃ = Γ′
s̃ ∪ Γ′

b̃

foreach b ∈ B do
CalculateV ′(b) by solving the LP Eqn. 2 withΓ′

b̃

B̃ = {b ∈ B : V ′(b) < V (b)}

return {Γ′
s|∀s ∈ S}

(a) (b)

Figure 1: (a) 5-state chain: each edge is labeled with action, reward, and cost associated with the
transition. (b)6 × 7 maze: a6 × 7 grid including the start location with recharging station (S), goal
location (G), and 3 flags to capture.

4 Experiments

We used the constrained versions of two standard BRL problems to demonstrate the cost-sensitive
exploration. The first one is the 5-state chain [15, 16, 4], and the second one is the6 × 7 maze [16].

4.1 Description of Problems

The 5-state chain problem is shown in Figure 1a, where the agent has two actions 1 and 2. The agent
receives a large reward of 10 by executing action 1 in state 5,or a small reward of 2 by executing
action 2 in any state. With probability0.2, the agent slips and makes the transition corresponding
to the other action. We defined the constrained version of theproblem by assigning a cost of 1 for
action 1 in every state, thus making the consecutive execution of action 1 potentially violate the cost
constraint.

The6 × 7 maze problem is shown in Figure 1b, where the white cells are navigatable locations and
gray cells are walls that block navigation. There are 5 actions available to the agent: move left, right,
up, down, or stay. Every “move” action (except for the stay action) can fail with probability 0.1,
resulting in a slip to two nearby cells that are perpendicular to the intended direction. If the agent
bumps into a wall, the action will have no effect. The goal of this problem is to capture as many
flags as possible and reach the goal location. Upon reaching the goal, the agent obtains a reward
equal to the number of flags captured, and the agent gets warped back to the start location. Since
there are 33 reachable locations in the maze and 8 possible combinations for the status of captured
flags, there are a total of 264 states. We defined the constrained version of the problem by assuming
that the agent is equipped with a battery and every action consumes energy except the stay action at

6

recharging station. We modeled the power consumption by assigning a cost of 0 for executing the
stay action at the recharging station, and a cost of 1 otherwise. Thus, the battery recharging is done
by executing stay action at the recharging station, as the admissible cost increases by factor1/γ.3

4.2 Results

Table 1 summarizes the experimental results for the constrained chain and maze problems.

In the chain problem, we used two structural prior models, “tied” and “semi”, among three priors
experimented in [4]. Both chain-tied and chain-semi assumethat the transition dynamics are known
to the agent except for the slip probabilities. In chain-tied, the slip probability is assumed to be
independent of state and action, thus there is only one unknown parameter in transition dynamics.
In chain-semi, the slip probability is assumed to be action dependent, thus there are two unknown
parameters since there are two actions. We used uninformative Dirichlet priors in both settings.
We excluded experimenting with the “full” prior model (completely unknown transition dynamics)
since even BEETLE was not able to learn a near-optimal policyas reported in [4].

We report the average discounted total reward and cost as well as their 95% confidence intervals
for the first 1000 time steps using 200 simulated trials. We performed 60 Bellman iterations on 500
belief states, and used the first 50 belief states for choosing the set of basis functions. The discount
factor was set to 0.99.

Whenĉ=100, which is the maximum expected total cost that can be incurred by any policy, CBEE-
TLE found policies that are as good as the policy found by BEETLE since the cost constraint has no
effect. As we impose tighter cost constraints byĉ=75, 50, and 25, the policies start to trade off the
rewards in order to meet the cost constraint. Note also that,although we use approximations in the
various stages of the algorithm,ĉ is within the confidence intervals of the average total cost,meaning
that the cost constraint is either met or violated by statistically insignificant amounts. Since chain-
semi has more unknown parameters than chain-tied, it is natural that the performance of CBEETLE
policy is slighly degraded in chain-semi. Note also that as we impose tighter cost constraints, the
running times generally increase. This is because the cost constraint in the LP tends to become
active at more belief states, generating twoα-function pairs instead of a singleα-function pair when
the cost constaint in the LP is not active.

The results for the maze problem were calculated for the first2000 time steps using 100 simulated
trials. We performed 30 Bellman iterations on 2000 belief states, and used 50 basis functions. Due
to the computational requirement for solving the large hyperstate CPOMDP, we only experimented
with the “tied” prior model which assumes that the slip probability is shared by every state and
action. Running CBEETLE witĥc = 1/(1 − 0.95) = 20 is equivalent to running BEETLE without
cost constraints, as verified in the table.

We further analyzed the cost-sensitive exploration behaviour in the maze problem. Figure 2 com-
pares the policy behaviors of BEETLE and CBEETLE(ĉ=18) in the maze problem. The BEETLE
policy generally captures the top flag first (Figure 2a), thennavigates straight to the goal (Figure 2b)
or captures the right flag and navigates to the goal (Figure 2c). If it captures the right flag first, it then
navigates to the goal (Figure 2d) or captures the top flag and navigates to the goal (Figure 2e). We
suspect that the reason the third flag on the left is not captured is due to the relatively low discount
rate, hence ignored due to numerical approximations. The CBEETLE policy shows a similar cap-
ture behaviour, but it stays at the recharging station for a number of time steps between the first and
second flag captures, which can be confirmed by the high state visitation frequency for the cell S in
Figures 2g and 2i. This is because the policy cannot navigateto the other flag position and move to
the goal without recharging the battery in between. The agent also frequently visits the recharging
station before the first flag capture (Figure 2f) because it actively explores for the first flag with a
high uncertainty in the dynamics.

3It may seem odd that the battery recharges at an exponential rate. We can setγ = 1 and make the cost
function assign, e.g., a cost of -1 for recharging and 1 for consuming, but our implementation currently assumes
same discount factor for the rewards and costs. Implementation for different discount factors is left as a future
work, but note that we can still obtain meaningful results withγ sufficiently close to 1.

7

Table 1: Experimental results for the chain and maze problems.
problem algorithm ĉ utopic avg discounted avg discounted time

value total reward total cost (minutes)

BEETLE − 354.77 351.11±8.42 − 1.0
chain-tied 100 354.77 354.68±8.57 100.00±0 2.4
|S| = 5 CBEETLE 75 325.75 287.70±8.17 75.05±0.14 2.4
|A| = 2 50 296.73 264.97±7.06 49.96±0.09 44.3

25 238.95 212.19±4.98 25.12±0.13 80.59

BEETLE − 354.77 351.11±8.42 − 1.6
chain-semi 100 354.77 354.68±8.57 100.00±0 3.7
|S| = 5 CBEETLE 75 325.75 287.64±8.16 75.05±0.14 3.8
|A| = 2 50 296.73 256.76±7.23 50.09±0.14 70.7

25 238.95 204.84±4.51 25.01±0.16 139.3

maze-tied BEETLE − 1.03 1.02±0.02 − 159.8
|S| = 264 CBEETLE 20 1.03 1.02±0.02 19.04±0.02 242.5
|A| = 5 18 0.97 0.93±0.04 17.96±0.46 733.1

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 2: State visitation frequencies of each location in the maze problem over 100 runs. Brightness
is proportional to the relative visitation frequency. (a-e) Behavior of BEETLE (a) before the first
flag capture, (b) after the top flag captured first, (c) after the top flag captured first and the right flag
second, (d) after the right flag captured first, and (e) after the right flag captured first and the top flag
second. (f-j) Behavior of CBEETLE (ĉ = 18). The yellow star represents the current location of the
agent.

5 Conclusion

In this paper, we proposed CBEETLE, a model-based BRL algorithm for cost-sensitive exploration,
extending BEETLE to solve the hyperstate CPOMDP which models BRL using cost constraints. We
showed that cost-sensitive BRL can be effectively solved bythe randomized point-based value iter-
ation for CPOMDPs. Experimental results show that CBEETLE can learn reasonably good policies
for underlying CMDPs while exploring the unknown environment cost-sensitively.

While our experiments show that the policies generally satisfy the cost constraints, it can still po-
tentially violate the constraints since we approximate thealpha functions using a finite number of
basis functions. As for the future work, we plan to focus on making CBEETLE more robust to the
approximation errors by performing a constrained optimization when approximating alpha functions
to guarantee that we never violate the cost constraints.

Acknowledgments

This work was supported by National Research Foundation of Korea (Grant# 2012-007881), the
Defense Acquisition Program Administration and Agency forDefense Development of Korea (Con-
tract# UD080042AD), and the SW Computing R&D Program of KEIT(2011-10041313) funded by
the Ministry of Knowledge Economy of Korea.

8

References

[1] R. Howard.Dynamic programming. MIT Press, 1960.

[2] M. Duff. Optimal learning: Computational procedures for Bayes-adaptive Markov decision
processes. PhD thesis, University of Massachusetts, Amherst, 2002.

[3] S. Ross, J. Pineau, B. Chaib-draa, and P. Kreitmann. A Bayesian approach for larning and
planning in partially observable markov decision processes. Journal of Machine Learning
Research, 12, 2011.

[4] P. Poupart, N. Vlassis, J. Hoey, and K. Regan. An analyticsolution to descrete Bayesian
reinforcement learning. InProc. of ICML, 2006.

[5] E. Altman. Constrained Markov Decision Processes. Chapman & Hall/CRC, 1999.

[6] K. W. Ross and R. Varadarajan. Markov decision-processes with sample path constraints - the
communicating case.Operations Research, 37(5):780–790, 1989.

[7] K. W. Ross and R. Varadarajan. Multichain Markov decision-processes with a sample path
constraint - a decomposition approach.Mathematics of Operations Research, 16(1):195–207,
1991.

[8] E. Delage and S. Mannor. Percentile optimization for Markov decision processes with param-
eter uncertainty.Operations Research, 58(1), 2010.

[9] A. Hans, D. Schneegaß, A. M. Schäfer, and S. Udluft. Safe exploration for reinforcement
learning. InProc. of 16th European Symposium on Artificial Neural Networks, 2008.

[10] T. M. Moldovan and P. Abbeel. Safe exploration in Markovdecision processes. InProc. of
NIPS Workshop on Bayesian Optimization, Experimental Design and Bandits, 2011.

[11] J. D. Isom, S. P. Meyn, and R. D. Braatz. Piecewise lineardynamic programming for con-
strained POMDPs. InProc. of AAAI, 2008.

[12] D. Kim, J. Lee, K.-E. Kim, and P. Poupart. Point-based value iteration for constrained
POMDPs. InProc. of IJCAI, 2011.

[13] A. B. Piunovskiy and X. Mao. Constrained Markovian decision processes: the dynamic pro-
gramming approach.Operations Research Letters, 27(3):119–126, 2000.

[14] M. T. J. Spaan and N. Vlassis. Perseus: Randomized point-based value iteration for POMDPs.
Journal of Artificial Intelligence Research, 24, 2005.

[15] R. Dearden, N. Friedman, and D. Andre. Bayesian Q-learning. In Proc. of AAAI, 1998.

[16] M. Strens. A Bayesian framework for reinforcement learning. InProc. of ICML, 2000.

9

