AMBULATORY MEASUREMENT OF DUAL-TASKING BEHAVIOUR: METHOD AND PRELIMINARY EVALUATION IN OLDER ADULTS

Tung, JY^{1,2}, Roy, EA¹, Poupart, P² ¹Department of Kinesiology, University of Waterloo, Waterloo, Canada ²David Cheriton School of Computing Science, University of Waterloo, Waterloo, Canada

INTRODUCTION

Along with amnesia, decline of attention control of executive functions is among the earliest symptoms of dementia. Task performance under conditions of divided attention, or dual-tasking, are sensitive indicators. In particular, there is mounting evidence of poor performance of walking and talking simultaneously in patients with Alzheimer's disease [1]. While the laboratory evidence has been growing, there is a lack of translational research examining dual-task behaviour in everyday life. The objectives of this study are to: 1) develop an ambulatory technique of capturing dual-tasking behaviour and, 2) characterize the frequency of naturally occurring dual-task events in older adults.

METHODS

Ten community-dwelling older adults without mobility or cognitive impairment participated in the study. Ambulatory dual-tasking behaviour was assessed over a 3 daytime collection period (\approx 24 hrs). Participants wore: 1) 3-D accelerometers (X6-2 Mini, Gulf Coast Data Concepts, Inc.) on each ankle, and 2) a microphone attached to a smartphone (Nexus 1, Google, Inc.). For privacy, the audio recording system allowed the ability to be turned off and to remove previously recorded data.

Ankle acceleration data was high-pass filtered to remove gravity, followed by identification of bilateral limb activity using a cross-spectral approach. Time segments with bilateral leg activity were then inspected visually to confirm walking (\geq 3 steps). Audio data corresponding to the gait periods were segmented from the full record, and a standard voice activity detection algorithm (G.729, [2]) was applied. Detected voice activity was confirmed manually by a researcher.

RESULTS

To date, data from 2 of 10 participants have been processed. Over the 3 day collection, the total number of gait segments observed was 1085 and 807 for participant 1 (P1) and 2 (P2), respectively, with mean durations of 11.3s (P1) and 7.1s (P2). Corresponding audio data was recorded for the majority of the gait segments [P1: 673/1085 (62%); P2: 696/807 (86%)]. Verbal activity was detected in 297/673 (44%) and 252/696 (36%) of the gait segments for P1 and P2, respectively.

DISCUSSION AND CONCLUSION

The first objective of developing an ambulatory technique of capturing dual-tasking behaviour was achieved. Participants complied with wearing and using the equipment throughout the collection. Efforts to meet the second objective of characterizing dual-task activity are on-going. Surprisingly, initial data from 2 participants yielded occurrences of dual-tasking in greater than ½ of gait periods (with a corresponding audio record). On-going work is focused on analyzing the remainder of the collected data and examining the influence of dual-tasking on gait characteristics (e.g., cadence, step time variability). Future work will extend collection to examine ambulatory dual-task behaviour in cognitively-impaired populations.

REFERENCES

 P. L. Sheridan, et al. Influence of executive function on locomotor function: divided attention increases gait variability in Alzheimer's disease. JAGS. 2003; 51:1633–1637.
A. Benyassine, et al. ITU-T Recommendation G. 729 Annex B: a silence compression scheme for use with G. 729 optimized for V. 70 digital simultaneous voice and data applications. IEEE Communications. 1997; 35: 64–73.