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Abstract

We propose SoF (Soft-cluster matrix Factorization), a prob-
abilistic clustering algorithm which softly assigns each data
point into clusters. Unlike model-based clustering algorithms,
SoF does not make assumptions about the data density distri-
bution. Instead, we take an axiomatic approach to define 4
properties that the probability of co-clustered pairs of points
should satisfy. Based on the properties, SoF utilizes a dis-
tance measure between pairs of points to induce the con-
ditional co-cluster probabilities. The objective function in
our framework establishes an important connection between
probabilistic clustering and constrained symmetric Nonneg-
ative Matrix Factorization (NMF), hence providing a theo-
retical interpretation for NMF-based clustering algorithms.
To optimize the objective, we derive a sequential minimiza-
tion algorithm using a penalty method. Experimental results
on both synthetic and real-world datasets show that SoF sig-
nificantly outperforms previous NMF-based algorithms and
that it is able to detect non-convex patterns as well as cluster
boundaries.

Introduction

Clustering algorithms have played an important role in var-
ious research tasks, including but not limited to document
clustering (Steinbach et al. 2000; Xu, Liu, and Gong 2003),
image segmentation (Shi and Malik 2000) and gene cluster-
ing (Thalamuthu et al. 2006). Recently, probabilistic cluster-
ing has gained in popularity and application (He et al. 2011;
Jain 2010; Aggarwal and Reddy 2013) because the proba-
bilistic nature of the clusters facilitates their integration into
several tasks including latent semantic indexing (Ding, Li,
and Peng 2008), probabilistic pre-training in deep learning
techniques (Erhan et al. 2010), etc. Most of the existing
probabilistic clustering algorithms attempt to infer the pos-
terior cluster distribution by assuming a family of density
distributions, typical examples include the Gaussian mixture
model, the Dirichlet process (Biernacki, Celeux, and Gov-
aert 2000), the Wishart-Dirichlet process (Vogt et al. 2010),
etc. However, the assumed family may not include the distri-
bution of the data, hence a flexible and data-driven approach
is desirable.
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In this paper, we propose a novel probabilistic clustering
algorithm based on Soft-cluster Matrix Factorization (SoF).
Different from previous approaches, SoF does not make as-
sumptions about the data density distribution. Instead, SoF
employs a distance function between pairs of input points
to induce their co-cluster probabilities. By directly consid-
ering the co-cluster probabilities, SOF can model clusters
with various patterns, including both convex and non-convex
clusters. The input to SoF consists of a set of data points, a
distance function L over these data points, and the number
of clusters, K. As we will see later, the choice of distance
function L reflects our prior knowledge about the clustering
task.

SoF has a close connection with constrained symmet-
ric NMF. In the past few years, algorithms for solving
NMF have been studied extensively (Seung and Lee 2001;
Kim and Park 2008a; 2008b; 2008c; Kuang, Park, and Ding
2012) and applied to clustering tasks. However, to the best
of our knowledge, the connection between NMF and prob-
abilistic clusterings is not well understood. The objective
function in our framework reveals an intrinsic connection
between probabilistic clustering and constrained symmetric
NMEF, hence giving a theoretical justification for the applica-
tion of symmetric NMF techniques to clustering tasks. Fur-
thermore, we will show that the true pairwise co-cluster ma-
trix for probabilistic clustering is actually a completely pos-
itive matrix, which is NP-hard to determine (Berman and
Shaked-Monderer 2003). Our clustering algorithm can then
be viewed as approximating the completely positive matrix
in a relaxed cone space, which is a better approximation than
other existing NMF based algorithms. To solve SoF effi-
ciently, we derive a sequential minimization framework to
optimize the objective. Experiments on both synthetic and
real-world datasets show that SoF is able to find non-convex
clusters due to the absence of any density assumption and
its probabilistic nature can be used to detect boundaries be-
tween multiple clusters.

Preliminaries
Given a set of input points I = {v; € R% |i =1,..., N}
and the number of clusters K, the task of probabilistic clus-
tering is to associate a probability vector p € R¥ to each
point v € I, where the jth component of p represents the
probability that v is assigned to the jth cluster. The proba-



bility vector p should satisfy p = 0 and 17p = 1.!

Let V be a continuous random vector in R? for input
points and C be a categorical random variable which takes
a cluster label from {1,...,K}. We use p(V,C) to de-
note the joint probability distribution over domain(V) x
domain(C). Each sample from the joint probability distri-
bution is a pair (v, ¢), where v is the point we observe and ¢
denotes the cluster label associated with v. We assume that
all the pairs (point and its label) are sampled from a mix-
ture model independently. More precisely, we assume there
are K' components where each component corresponds to a
cluster. Each component can generate observed data based
on its conditional distribution p(V|C' = k), k = 1,..., K
independently. Unlike traditional mixture models, we do
not assume any fixed form for the conditional distributions
p(V|C = k). Moreover, for different k’s, the conditional
distribution can take different forms.

Soft-cluster Matrix Factorization

We formally define a probabilistic clustering function as fol-
lows:

Definition 1. Given an input set I = {v; € R? | i =
1,..., N} with some fixed dimension d, a distance func-
tion L : R? x R? — R, that is reflexive, symmetric and
positive definite”, and a fixed number of clusters K, a prob-
abilistic clustering algorithm is a function that takes I, L, K
as inputs and for each v € I, outputs a vector p, € SK-1,
where S~ represents the K — 1 dimensional probability
simplex.

Given I,L,K, a probabilistic clustering algorithm
should, for each v € I, output a probability vector which
is close to the true posterior probability vector, i.e., py ~
(p(C =1V =v),...,p(C = K|V = v))T. The choice of
distance function L(-,-) reflects our prior knowledge about
the clustering task, where the basic assumption is that points
which are close in terms of L tend to reside in the same clus-
ter and points which are far away from each other in terms
of L tend to reside in different clusters.

Co-cluster Probability

The distance function L : R? x RY — R, measures how
close two points are. One of the key questions in clustering is
how can we obtain a similarity measure between input points
in terms of the distance function L? More specifically, what
is the probability that two points belong to the same cluster?

We propose the following four basic properties to find ap-
propriate expressions for the probability that a pair of points
is co-clustered based on the distance function L. Hence,
Vvi,ve € R? we will use po(vy, va) to denote the em-
pirical probability that v; and v, reside in the same cluster.
A co-cluster probability pc (-, -) should satisfy the following
four properties:

"We use > to denote the element-wise greater than between
matrices of the same dimension.
’The distance function L(-, -) is not required to be a metric.

1. Boundary property: Vv, ve € R, if L(vy, Vo) = 0, then
pc(vi,va) = 1;if L(vy,ve) — o0, then po (v, va) —
0.

2. Symmetry property: Vvi,ve € R% po(vy,ve) =
pc (VQ, V1)~

3. Monotonicity property: Vv, va, vy € R%, po(vy, va) <
pc(vi,vs) if and only if L(vy,ve) > L(vy,vs).

4. Tail property: Given Vvi,vy, vy € R4, % >
Gpeiva) |if and only if L(vi,va) > L(v1, V)

The boundary property forces pc (-, -) to be a valid probabil-
ity metric and the symmetry property allows the arguments
of pe(+, -) to be interchangeable. The monotonicity property
formalizes our intuition that closer points tend to be more
likely to reside in the same cluster. This property also sug-
gests that L(-,-) should be well-chosen to reflect our prior
knowledge about the data. The tail property can be inter-
preted as follows: changes in the distance of two points will
have an impact on the co-cluster probability that diminishes
with the increase of the distance between them.

Proposition 1. Given a distance function L : R? x R? —
R, there exists a family of co-cluster probability functions
po(vi, va) = e~ ¢L(vVi:v2) which satisfy the boundary, sym-
metry, monotonicity and tail properties simultaneously for
any constant ¢ > 0.

Proof. The boundary property is satisfied since e=° = 1
and e~ “>*° = 0. The symmetry property follows from the fact
that L is symmetric. The monotonicity property holds since
e~ cLvi,v2) < e cLvivs) L(Vl,Vg) > L(Vl,Vg).
The tail property can be derived as follows:

8PC(V1» V2)
8[4(V17 Vg)

< Opc(vi,vs)
- 8L(V1,V3)

< ‘_ce—CL(Vl,Vg)

‘ _ce—cL(vl,vQ)

ech(vl,vz) < e*CL(Vl,VS)
< L(Vl,Vg) Z L(V17V3)
O

For the specific choice where L is the squared Euclidean
distance, our construction of the co-cluster probability func-
tion coincides with the Gaussian kernel. Similarly, when L
is the Euclidean distance, the co-cluster probability function
is equivalent to the Laplacian kernel. Note however that our
framework is more general in the sense that one may use
other kinds of distance functions L that may not lead to well-
known kernels. In e ~“(V1:¥2) we have a scaling parameter
c. When ¢ — 0, the probability that any two points belong to
the same cluster tends to 1 and a single global cluster holds
all the data points; when ¢ — oo, the co-cluster probability
of any two points tends to 0 and each point forms its own
cluster. Hence, the clustering quality is very sensitive to the
choice of scaling parameter c. Later we will discuss a strat-
egy to avoid manually tunning the scaling parameter ¢ while
at the same time achieving the scaling invariant property of



clustering (Kleinberg 2003). Henceforth, for simplicity of
the notation, we will implicitly assume ¢ = 1.

Probabilistic Clustering

We use P € RV*N tg denote the soft-cluster matrix, where
Pij 2 pc(vi,vj) = e FVivi) is the empirical probability
that two points are clustered together. In our setting, P acts
as the refined prior knowledge extracted from the raw input
to guide the probabilistic clustering algorithm in the learning
process.

Based on our probabilistic model, given v;,v;, i # j,
the true probability that v;, v; belong to the same cluster,
Pr(v; ~ v;), is given by

K
Pr(vi ~ vj) = Zp(ci =cCj = k|Vz‘7Vj)

o
—

p(vi,ci = k)p(vj,c; = k)
p(Vz', Vj)

(1L

&
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p(e;i = k|vi)p(c; = k|v;) = Py, Py,

x>
Il

1

where (; and (5 follow from the i.i.d. assumption of the data
generation process.

Given the joint probability distribution p(V, C), we can
compute the conditional probability distribution of clus-

ter label C' given V by p(C|V) = %. Let W =

[Wij]NXK € RfXK, where Wij = p(Cz = ]|V2) We
rewrite Pr(v; ~ v;) as:

K
Pr(vi~vy) =Y WyWe = W W1 (1)
k=1

where W,. represents the ith row vector of matrix W. Let’s
define Pr(V ~ V') £ [Pr(v; ~ v;)|nxn and express it in
matrix form:

Pr(V~V)=ww? )

The ith row of W corresponds to the conditional prob-
ability vector that v; belongs to different clusters, i.e.,
Wi, = pfi. We see that the true co-cluster probability ma-
trix Pr(V ~ V') is both nonnegative and symmetric pos-
itive semidefinite. Furthermore, it can be factorized as the
product of a nonnegative matrix and its transpose. Such a
matrix is known as the Completely Positive matrix (C.P. ma-
trix) in the literature (Berman and Shaked-Monderer 2003;
Dickinson and Gijben 2014). C.P. matrices are contained
in the intersection of the positive semidefinite cone and
the nonnegative cone, but they are a strict subset of this
class (Dickinson and Gijben 2014). We will use the C.P.
cone to denote the set of C.P. matrices. It has recently been
proven that determining whether a given matrix is in the C.P.
cone is NP-hard (Dickinson and Gijben 2014). From this
perspective, our construction of the soft-cluster matrix is ac-
tually a relaxation that allows us to search in the intersection
of the nonnegative cone and the positive semidefinite cone,
which is a strict superset of the C.P. cone.

Our goal is to learn the matrix W from the inputs I, L, K.
Given I, L, K, the soft-cluster matrix P, which satisfies the
four properties and admits the form e ~2() is a relaxation
and approximation of the true co-cluster matrix Pr(V ~
V'). Therefore we obtain a natural learning paradigm to es-
timate the optimal W, denoted by W *:

minimizey ||P — WWT|[2,
subjectto W e RY*F Wik =1y

where 1 and 1y are K and /N dimensional column vectors
whose components are all 1; || - || p represents the Frobenius
norm of a matrix where [|A||r = (32, A%)"/. Before
tackling the optimization problem above, we discuss some
of its properties and its relations to other clustering algo-
rithms.

1) SoF is closely related to other clustering algo-
rithms, including Kernel Kmeans (Dhillon, Guan, and Kulis
2004), Spectral Clustering (Ding, He, and Simon 2005)
and Symmetric Nonnegative Matrix Factorization (Sym-
NMF) (Kuang, Park, and Ding 2012), but it also exhibits sig-
nificant differences. We list the connections and differences
among those methods in Table 1. In summary, the matrix
P used in SoF is nonnegative as well as symmetric positive
semidefinite (S.P.D.), which distinguishes it from all other
three methods. Meanwhile, the linear constraints W1 = 1
together with the nonnegativity constraint in SoF make the
solution clearly interpretable as a probabilistic assignment
of points to clusters, while all other three methods seek to
find data representations in either kernel spaces or reduced
eigenspaces.

2) The decision version of the optimization problem in (3)
is closely connected to the strong membership problem for
the C.P. cone, which asks given an S.P.D matrix P which is
nonnegative, whether there exists a nonnegative matrix W
such that P = WWT. It’s then easily seen that the deci-
sion version of (3) is essentially a restricted version of the
strong membership problem for the C.P. cone, which is NP-
hard. We conjecture that the decision version of (3) is also
NP-hard because of its close connection to the strong mem-
bership problem for the C.P. cone. If this is the case, the op-
timization problem formulated in (3) is also NP-hard. How-
ever, the validation of this conjecture is out of the scope of
this paper and we leave it for future work.

3) The optimization problem (3) is non-convex in general
because the objective function contains a fourth order poly-
nomial in W whose Hessian matrix cannot be guaranteed
to be positive semi-definite. The nonnegative constraint to-
gether with the IV linear constraints make it even harder to
solve exactly because it is known that solving NMF exactly
is NP-hard (Vavasis 2009). Therefore, instead of looking for
a global optimal solution, we seek to find a local optimal so-
lution that is tractable to compute and at the same time close
to a global optimum.

4) The optimal solution W* is not unique. Given an opti-
mal solution W*, we can construct another optimal solution
W* = W*IL, where Il is a K x K permutation matrix.} The

3)

3 A permutation matrix is a square binary matrix that has exactly
one entry 1 in each row and each column and Os elsewhere.



effect of right multiplication of II is to permute the labels of
the clusters. Considering all possible permutations of cluster
labels, there are at least K'! optimal solutions. However, any
one of the optimal solutions suffices since we do not care
about the exact labeling of each cluster.

5) In clustering, we often prefer a sparse solution matrix
W* since only the data points near the boundary of multiple
clusters may have a dense probability vector, which means
that the majority of the row vectors in W* should be sparse.
This observation will help us to construct an equivalent char-
acterization of (3) in the next section. Furthermore, we can
choose a sparse initial matrix W (%) as a starting point for our
iterative algorithm introduced in the next section to optimize
the objective function based on the sparsity nature of W.

Optimization Algorithm

In this section, we focus on solving the problem in (3) for-
mulated as a constrained norm-minimization problem. As
discussed in the previous section, it is difficult to solve
this problem exactly. Hence, we seek an approximation
procedure by converting the original constrained optimiza-
tion problem into a sequence of unconstrained optimization
problems by using a penalty method. More concretely, we
transform the two constraints in (3) into penalty functions
that are added to the objective to penalize solutions that are
not feasible:

minimizey, ||P — WW7|[% — A 32, min{0, Wi;}
2| [Wik — 1n]3
“

The second term in (4) is a hinge-loss that penalizes ele-
ments in W which do not lie in the nonnegative cone. One
can also use the log-barrier function —A; },; log(W;;) as
the penalty term. Here we choose the hinge-loss rather than
the log-barrier because we seek a sparse solution (the log-
barrier function often pushes the solution away from the
boundary of the feasible region until the coefficient A\; — 0).
The third term in (4) is an {5 regularization term to penalize
rows of W that violate the linear constraints.

In (4), A1, A2 € R, determine the tradeoff between the
accuracy of the approximation procedure and the feasibility
of the solution. With A\; and Ay — oo, any violations of the
constraints will be greatly penalized and the solution is guar-
anteed to be in the feasible region. On the other hand, the
objective term ||P — WWT||% may be dominated by these
two penalty terms, causing the solution to be inaccurate.

To combine the best of two worlds, we propose a sequen-
tial minimization framework: for each fixed pair (A1, A2),
we optimize (4) to find a local minimum solution W (Ay, A2)
which depends on the current (A1, \2), then we increase the
parameters (A1, A2) by a factor ;1 > 1 and restart the op-
timization with W (A1, \2) as the initial point. To increase
the approximation accuracy when A; and Ao get larger, we
increase the number of steps per iteration, ensuring that the
penalty terms will vanish as the solution becomes feasible,
and the objective term will get fully optimized. The whole
process is repeated until the current solution is a stationary
point.

To apply the sequential minimization framework, we be-
gin by deriving the gradient for the unconstrained objective
function. Throughout this paper we will use the numerator
layout (Minka 2000) to compute the differentials, then the
gradient is simply the transpose of the corresponding differ-
ential. First consider the differential of ||P — WWT||2, with
respect to W:

dl|P —WWT||% = du{(PT —WWT)(P - WWT)}
= 2r{(WWT — PTYaww™}
= 4r{WT(Ww? — PT)daw'}

Note that we are using the fact tr(AB) = tr(BA) together
with tr(AT) = tr(A). Hence the gradient of the first term in
(4)is:

Vwd{[|P = WWT[|2} =4WWT —P)W (5

Using the same trick we can compute the gradients of the
second term and third term in (4) as:

Vir{=AY_min{0,Wi;}} = =M (Tw<o © 1n1k) (6)
ij
and
Vi { el [Wik — 1n|3} = 20 (Wik1E — 1x1%) (7)

where © is the Hadamard product of two matrices, i.e., the
element-wise product, and Iy ¢ is the indicator function
I, <o applies to every element of V.

The gradient of the unconstrained optimization objective
is the combination of the three gradients above. Once we ob-
tain a closed form solution to compute the gradient matrix,
we can apply various kinds of unconstrained minimization
algorithms, e.g., gradient descent, conjugate gradient or L-
BFGS (Andrew and Gao 2007) to obtain a local minimum
of (4). For illustrative purposes, we provide an algorithm us-
ing gradient descent in Alg. 1. Assuming the algorithm will
perform 7 iterations in each inner loop, the time complexity
of Alg. 1is O(TN?K log,(\/e€)).

Experiments

We first review how to construct a reasonable distance func-
tion L required in Alg. 1. To demonstrate our algorithm, we
first apply SoF on synthetic data, which consists of both con-
vex and non-convex patterns, and then we compare SoF with
multiple clustering algorithms on real-world datasets.

Distance Function

Our probabilistic clustering algorithm requires a distance
function L(-, -) over all pairs of points as an input. As men-
tioned before, the choice of scale parameter ¢ will have an
impact on the final clustering and furthermore is problem
dependent. To avoid an annoying tuning process, we pro-
pose to use a relative distance L'(-,-) induced from the ab-
solute distance L(-,-). More specifically, for any two points
L(v;,v;
v;,v; € I, wedefine L'(v;,v;) as L' (v;,v;) = \/0(7777\/%
where o, is the distance between v; and the nth closest
point of v; measured by L. Intuitively, o;,, defines the scope



Table 1: Connections and differences among clustering algorithms

| |  Kernel Kmeans | Spectral Clustering [ SymNMF [ SoF ‘
Objective | min [|[K — WWT[% min [|[L — WWT[[% min [|[A — WWT|[% min [|P — WWT|[%
Property K is S.PD. L is graph Laplacian, S.P.D. | A is similarity matrix | P is nonnegative, S.P.D.
Constraint | WIW =1, W = 0 WTw =1 W >0 W=0,Wl=1

Algorithm 1 Sequential Minimization to Unconstrained
Problem

Input: [ = {v1,...,
K, scale factor ¢ > 0, initial penalty parameters \;
)\éo) > 0, step-factor 4 > 1, initial learning rate 0 <

~(0) < 1, threshold 0 < €1, €2 < 1.
Output K dimensional probability vector p, Vv € 1.

v }, distance function L, # of clusters
©)

1: Build distance matrix D such that D;; = L(v;, v;).
2: Build soft-cluster matrix P such that P;; = e~¢Pii.
3: Initialize matrix W(® € RY*X.

4: repeat

s Wi e wliY

6:  repeat

7: Compute the gradient Vyy f (Wl(t)) according to

(5), (6) and (7).

8: Wl(Jtr)l — W(t W(t)VWf(VVz(t))-

9 until W, — W < e
10: W —wi

1 AP AP s

120 A AW g

13: D Oy,

14: until A" > 1/¢5 and AY) > 1/e,
15: return W*

of v;, which, to some extent, converts the absolute distance
between two points into a relative distance. This transfor-
mation will also give us the scaling invariant property in the
sense that enlarging or shrinking distances between pairs of
points by a constant factor will not affect the clustering re-
sult. More specifically, consider the distance L(-, -) between
a pair of points that have been scaled by a constant factor
« > 0, the relative distance will still remain the same:

OZL(V“V]) _ L(Viavj)

In our experiments, we choose L(-,-) to be the Euclidean
distance between each pair of points and set n = 10. Differ-
ent values of n will still affect the clustering, but it will not
affect it too much in practice.

L'(vi,v;) = = L'(v;,v;)

Synthetic Dataset

To visualize the performance of SoF, we perform experi-
ments on the synthetic data set used in (Zelnik-Manor and

Perona 2004) and generated by (Pei and Zaiane 2006)*.
Due to the probabilistic nature of SoF, for each point v,
we pick its label by maximizing the conditional probability
plec=k|v),e=1,..., K. We break ties randomly.

Clustering Quality The 6 patterns shown in Fig. 1 have
different cluster structures, and some of them are not con-
vex, e.g., 1, 2, 3 and 6. The clustering results are shown in
Fig. 1, where different colors correspond to different clusters
found by SoF. Since SoF does not make any density assump-
tion, it is able to detect various cluster structures, including
convex and non-convex patterns. The fifth pattern in Fig. 1
is generated from 2 Gaussians. However, with the number
of clusters K set to be 3, our algorithm is still able to find a
reasonable clustering and to quantify the uncertainties along
the cluster gap (as shown in Fig. 2).

Figure 1: 6 synthetic patterns, where the # of clusters K from
left to right and top to bottom is (1) K = 3, (2) K = 5, (3)
K=34K=3,6K=3,06)K=2.

5

Figure 2: Entropy graphs for 6 patterns in Fig. 1.

*http://webdocs.cs.ualberta.ca/~yaling/
Cluster/Php/data_gen.php



Clustering Boundary by Quantifying Uncertainties
Given a probability vector p € SX~1, we use entropy to
measure the uncertainty of cluster assignments of the cor-
responding data points: entropy(p) = — Zfil p; log p;.
Hence, points on the cluster boundaries will have a higher
entropy while those that are inside a cluster should have
lower entropy. Fig. 2 shows the entropy graphs where
brighter colors, including yellow and red, indicate a higher
entropy value while dark colors such as blue and dark green
indicate a lower entropy value. We can visualize the cluster
boundaries by checking points associated with brighter col-
ors in convex patterns, e.g. 4 and 5. Furthermore, it can be
seen that most of the points (with dark blue colors) belong
to a single cluster, indicating that the solutions obtained by
SoF are sparse, which is a desirable property in clustering.

Real-world Dataset

Table 2: Statistics of Datasets

Data sets # Objects  # Attributes  # Classes

blood (BL) 748 4 2
breast_t (BT) 106 9 6
glass (GL) 214 9 6
iris (IRIS) 150 4 3
ecoli (ECO) 336 7 8
satimage (IMG) 4435 36 6
pendigits (DIG) 10992 16 10

Experimental Setup We use 7 real-world data sets from
the UCI Machine Learning Repository’. The statistics of the
datasets are summarized in Table 2. More detailed informa-
tion about these data sets can be found at the UCI Machine
Learning Repository. The points in each dataset are associ-
ated with true labels, which will be used as ground truth for
the evaluation of different clustering algorithms.

To evaluate the performance of SoF and compare it with
other hard clustering algorithms, we assign each point to the
cluster with the highest probability: [, = argmax_p(c|v).
It is commonly admitted that the validation of clustering
structures is the most difficult task of clustering analysis
(Jain and Dubes 1988). In our experiments we use three ro-
bust measures to evaluate clustering performance, namely
purity, rand index and accuracy (Jain and Dubes 1988;
Cai, He, and Han 2011; Murphy 2012).

1. Purity. Let N;; be the number of objects in cluster 7 that

belong to class j, and let N; = Zle N;; be the total

number of objects in cluster i. Define p;; = N;;/Ny;
this is the empirical probability that a point in cluster
1 is from class j. The purity of a cluster is defined as
pi & max; p;;, and the overall purity of a clustering is

defined as N
purity Z N

The purity ranges from O to 1, and the higher the purity,
the better the clustering result.

Jarchive.ics.uci.edu/ml/datasets.html

2. Rand Index. Let U = {uy,...,ug} and V =
{v1,...,vc} be two different partitions of the N data
points, i.e., two different flat clusterings. We assume V' to
be the ground truth clustering, which is induced by class
labels. Now define a 2 X 2 contingency table, contain-
ing the following numbers: TP, TN, FP and FN. TP is the
number of pairs that are in the same cluster in both U and
V' (true positives); TN is the number of pairs that are in
the different clusters in both U and V' (true negatives); FN
is the number of pairs that are in the different clusters in
U but the same cluster in V' (false negative); and FP is
the number of pairs that are in the same cluster in U but
different clusters in V' (false positive). The Rand Index is
defined as:

A TP+TN

~ TP+FP+FN+TN
Rand index can be interpreted as the fraction of correctly
clustered pairs. Clearly 0 < R < 1, and the larger the
rand index, the better the clustering.

3. Accuracy. Let N be the total number of objects. For the
ith object, we use u; to denote the label generated by
the clustering algorithm and v; to denote the ground truth
class label associated with the ¢th object. The accuracy is
defined as

0(vs, map(uy;))
N

where d(,-) is the Kronecker delta function, map(-) is
the permutation that maps each cluster label generated by
the clustering algorithm to a class label of the data cor-
pus. The best mapping can be obtained by Kuhn-Munres’
algorithm (Lovasz and Plummer 1986). The higher the ac-
curacy, the better the clustering result.

We compare the clustering qualities based on purity, rand

index and accuracy of the following clustering algorithms:

1. Standard K-means (K-means) and Spherical K-means (S-
means). For two data points v; and v, standard K-means
uses the Euclidean distance ||v; — v;||» as its distance
function while spherical K-means uses 1 — cos(v;, v;) as
its distance function.

2. Gaussian Mixture Model (GMM). EM algorithm is used
to fit data density distributions and the number of compo-
nents is given by the true number of clusters in the data
set.

3. Spectral clustering-Normalized Cut (SP-NC) and Spec-
tral clustering-Ng (SP-NJW). There are two streams of
spectral clustering algorithms, namely normalized cut,
proposed by Shi and Malik, and Ng-Jordan algorithm,
proposed by Ng et al.. In both algorithms, K-means is
used as the final procedure to obtain the low-dimensional
clustering.

4. Standard NMF and Regularized NMF (RNMF). Non-
negative matrix factorization based methods, including
NMF and its regularized variant, work on a sample ma-
trix directly to obtain a low dimensional representation
of the original high dimensional input data. These algo-
rithms interpret each data point by its low dimensional ap-
proximation and assign each data point its cluster label by

accuracy =



maximal approximation coefficient in the lower dimen-
sional space. In our experiments, we use the alternating
non-negative least square algorithm (Kim and Park 2008a;
2008c). Based on standard NMF, regularized NMF adds
two Frobenius regularized terms to penalize non-negative
matrix factorization with large elements in the two result-
ing matrices.

5. GNMF. Cai et al. proposed GNMF to take neighboring
relationships into account by adding a graph-theoretic
penalty term to standard NMF.

6. SymNMF. Kuang, Park, and Ding proposed SymNMF as
a Newton-like algorithm to solve symmetric non-negative
matrix factorization problems, including graph clustering
problems. Different from our probabilistic clustering al-
gorithm, SymNMF factorizes the Graph Laplacian Ma-
trix (Shi and Malik 2000; Ng et al. 2002) and interprets
the result as NMF does.

7. SoF. Our proposed probabilistic clustering algorithm us-
ing sequential gradient descent minimization.

Table 3: Average purity over 20 runs on 7 UCI data sets.

BL BT GL IRIS ECO IMG DIG
K-means 0.76 0.43 0.56 0.87 0.80 0.70 0.71
S-means 0.76 0.43 0.57 0.92 0.76 0.63 0.71
GMM 0.77 0.46 0.52 0.89 0.81 0.74 0.70
SP-NC 0.78" 0.42 0.38 0.86 0.81 0.30 0.11
SP-NJW 0.76 0.40 0.38 0.59 0.80 0.48 0.13

NMF 076 | 043 058 | 079 | 073 057 | 047
RNMF 076 | 028 | 052 | 084 | 070 | 056 | 045
GNMF 0.76 0.44 0.55 0.85 0.77 0.71 0.71

SymNMF 076 | 047 | 060 | 088 | 081 | 0777 | 076

SoF 076 | 0517 | 0.64T | 095 | 0857 | 075 | 0.82F

Table 4: Average rand index over 20 runs on 7 UCI data sets.

BL BT GL | RIS | Eco | MG | DIG
K-means 0.60 | 071 069 | 086 | 0.81 | 081 0.91
S-means 052 | 076 069 | 092 | 078 | 081 0.91
GMM 057 | 076 064 | 088 | 0.85 | 0.83 0.91
SP-NC 0.64 | 074 043 | 085 | 0.81 0.32 0.11
SP-NJW 051 | 071 053 | 060 | 080 | 0.74 0.41
NMF 056 | 0.65 071 | 081 | 081 | 0.80 0.86
RNMF 059 | 038 065 | 085 | 078 | 0.79 0.86
GNMF 0.60 | 0.68 070 | 085 | 0.80 | 077 0.91
SymNMF || 062 | 0.77 070 | 088 | 0.83 | 0.83 0.91
SoF 0.64 | 0797 | 0737 | 093 | 0.85 | 0.86" | 0.94F

Results and Analysis Experimental results on 7 UCI data
sets are reported in Tables 3, 4 and 5. We run each cluster-
ing algorithm 20 times on each data set and report the av-
erage performance. The algorithms which achieve the high-
est mean over 20 runs are highlighted with bold font and
those that are statistically better according to the Wilcoxon
signed-rank test (Wilcoxon and Wilcox 1964) with p-value
< 0.05 are marked with a dagger, . Among all the algo-
rithms, K-means and S-means are the fastest. As the algo-
rithm is currently implemented, SoF is slower than previ-

Table 5: Average accuracy over 20 runs on 7 UCI data sets.

BL BT GL | IRIS | ECO | IMG | DIG
K-means 073 | 034 | 051 | 086 | 0.60 0.63 0.68
S-means 061 | 039 | 052 | 090 | 056 0.61 0.67
GMM 066 | 043 | 046 | 086 | 0.68 0.69 0.67
SP-NC 073 | 041 | 037 | 085 [ o0.61 0.28 0.11
SP-NJW 056 | 042 | 033 | 056 | 058 0.37 0.12
NMF 068 | 039 | 050 | 079 | 0.66 0.53 0.44
RNMF 071 | 027 | 051 | 0.84 | 059 0.52 0.41
GNMF 072 | 036 | 044 | 081 | 056 0.54 0.67
SymNMF || 076 | 042 | 046 | 087 | 0.66 0.68 0.67
SoF 076 | 048" | 047 | 094 | 074 | 0717 | 0.82f

ous NMF based clustering methods, including NMF, RNMF,
GNMF and SymNMF because of SoF’s sequential mini-
mization framework. One possible direction to make SoF
more scalable is to utilize the potential sparse structure of
the empirical pairwise co-cluster matrix.

Since the datasets from different domains present differ-
ent patterns, our probabilistic clustering algorithm is not bi-
ased to a specific domain and it achieves superior results
on all three measures in nearly all of the clustering tasks.
For some tasks, the comparative algorithms may happen to
make the right assumption about the underlying data density
and thus yield better results (e.g., spectral clustering is the
best for blood), but these assumptions may hurt the perfor-
mance when they do not hold in other datasets (e.g., spectral
clustering performs badly on satimage and pendigits). Fur-
thermore, SoF consistently outperforms other NMF based
algorithms, including NMF, RNMF and GNMEF, on almost
all the datasets.

Conclusions

In this paper we propose a novel probabilistic clustering
algorithm whose objective is axiomatically derived from a
set of properties characterizing the co-cluster probability in
terms of pairwise distances. Our approach can be viewed
as a relaxation of C.P. programming, which intrinsically re-
veals a close relationship between probabilistic clustering
and symmetric NMF-based algorithms. We further design a
sequential minimization framework to find a local minimum
solution. Experiments on synthetic and real-world datasets
show encouraging results. Future work includes speeding up
our sequential minimization framework by utilizing the po-
tential sparsity structure of the empirical pairwise co-cluster
matrix so that it scales linearly with the non-zero elements
in the matrix.
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