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Abstract

Query-Based Diagnostics refers to the simultaneous building and use of Bayes network

diagnostic models, removing the distinction between elicitation and inference phases. In

this paper we describe a successful �eld trial of such a system in manufacturing. The

detailed session logs that are collected during use of the system reveal how the model

evolved in use, and pose challenging questions on how the models can be adapted to

session outcomes.

1 Introduction

Diagnostic models for optimizing fault isolation

represented as Bayes networks is a mature �eld

that has seen numerous practical applications.

These models have been shown to perform well

given one has a comprehension model of the

domain to which they apply. In many cases

the challenge is to come up with an adequate

model: This is the so-called �knowledge elici-

tation bottleneck.� As described in a previous

paper (Agosta et al., 2008) we proposed an ap-

proach to ease model creation, by combining the

elicitation and model-building phase with the

model use phase so that the model is improved

as it is used. This combination accords well with

the expert's view of the process: In the midst of

actual problem-solving is the time when the ex-

pert is most aware of her mental model, and is

best able to express it. We've called this ap-

proach query-based diagnostics, (QBD) to high-

light the dependence of the model on the user's

inquiries as they use the model. We report here

the �eld trial results that we had proposed to

undertake then. The reader is referred to that

paper for the motivation and details of the web-

based application which is described therein.

A diagnostic troubleshooting QBD applica-

tion employing these ideas has been successfully

�elded and evaluated by Intel Manufacturing to

validate its use in practice. We will refer to it

here as �The QBD Application.� This paper de-

scribes the design and scope of the evaluation

trial and the factors that led to its success.

At the start of our involvement with our

client, we attempted to implement knowledge-

based Bayes network diagnostics for corrective

maintenance of factory equipment. Our client

was critical of the need to pre-build models by

conventional elicitation methods, because engi-

neers and technicians could not be spared to

be taken out of their daily activities for model-

building, which in their opinion properly be-

longed under their control. Also repair knowl-

edge is dynamic and would quickly get out of

date. The alternative of learning models by sta-

tistical methods is not practical because fail-

ures are relatively rare by their nature, mak-

ing available data too sparse. Our response

to this quandary was to integrate model cre-

ation within the routine work-�ow by which

they were trained, by this aforementioned ap-

proach of mingling model creation and use.

Corrective maintenance refers to unantici-

pated failure of equipment that takes it out

of production. The transition from operating

to not operating is the breakdown; the transi-

tion back is the repair. When a factory opera-

tion is capacity limited, as opposed to demand

limited, equipment breakdowns that constrain



capacity incur signi�cant revenue opportunity

losses. The purpose of the evaluation trial was

to validate that such losses could be substan-

tially avoided by adoption of the QBD Applica-

tion.

The QBD Application contributes to the Lean

Manufacturing philosophy of the �rm, speci�-

cally by standardizing problem-solving for di-

agnosis and repair. �Lean� refers to the meth-

ods made popular by Toyota for continuous e�-

ciency improvement (Womack, 1990). The justi-

�cation for the Application as a way to promote

knowledge-sharing and the criteria on which it

was evaluated both have their roots in �Lean.�

The trial was evaluated by the QBD Applica-

tion's estimated contribution to the overall prof-

itability of the factory. By virtue of running the

software in the �eld we were also able to col-

lect detailed session logs capturing user actions

that revealed how the Application performed.

After a brief look at the relevant literature in

Section 2, we detail the analysis and �ndings of

the evaluation, and the case they make for QBD

in Section 3.

The success of the trial leads to several new

challenges. One raised in our previous work is

the adaptation of the model as sessions generate

veri�ed cases. In the course of the trial it also

became apparent that user feedback, both active

and passive in the sense of expert users following

or not following the model's recommended steps

can be used to improve the model. We discuss

this in Section 4 of the paper.

2 Background

For the developments in Bayes networks for

building normative troubleshooting models and

the �urry of research done in the 80's and 90's

on this topic we refer the reader to (Jensen,

2001), particularly in the bibliography included

in the Preface. In a conventional application the

model guides the user during a diagnostic ses-

sion with a ranking of causes and tests. Causes

are ranked by their marginal posteriors, condi-

tioned on the evidence o�ered by the user, and

tests are ranked by diagnostic value, often ap-

proximated as mutual information, or decrease

in entropy of the causes' marginals. The model

is run repeatedly, creating a dialog with the user

of test suggestions alternating with test execu-

tion and the entering of new evidence into the

model.

As described in the previous paper, the QBD

application extends the concept of a diagnostic

session by with editing functionality for active

input of causal relations between variables, and

simple inferences of causal relations based on

passive observation of model building steps all

captured by detailed logging of diagnostic ses-

sions. Thus at any point in the session, the ac-

tions available to the user are

1. Enter a test result as evidence,

2. Create a new cause or new test node,

3. Add or remove a dependency arc between

a cause and test node,

4. Choose a cause on which to perform a re-

pair, ending the session.

In this way we were able to create models

without making the Bayes network explicit. The

goal is to have the software bootstrap the mod-

eling task, so that, in principle the software

could be �elded before any model-building com-

menced. Not surprisingly the model complex-

ity is limited. The models are relatively sparse

bipartite graphs with probabilities set qualita-

tively; see Figure 2 for an example. Despite

their simplicity they suit the situation well, with

the right blend of dynamicism, ease of use and

comprehensive knowledge-capture.

There is a small but growing literature on

applications of diagnostics Bayes networks and

their evaluation in use (Pourret et al., 2008).

This literature is largely concerned with their

accuracy (Przytula et al., 2003). Published

cases where the net bene�t of an application in

use are unknown to the authors, especially of

the type we o�er here.

3 Evaluation Trial

This section describes the purpose of the trial,

the evaluation design, and what the results were.



The trial ran for seven weeks in one factory, with

the team responsible for four types of equipment

used in semiconductor process fabrication. The

evaluation e�ort was carried out by the team

that owns the Lean program.

3.1 Purpose of evaluation

An �ROI� study is required by the �rm before it

will adopt new software. Although the factory

has implemented comprehensive data collection

and analysis in all aspects of process and equip-

ment monitoring, there is no system for the cap-

ture and use of �soft� user knowledge. In par-

ticular, support for maintenance activities ex-

tends only to on-line display of reference manu-

als. The QBD Application was the �rst trial in

Manufacturing where the collection of soft data

has been justi�ed by its e�ect on improving key

measures of performance.

3.2 ROI analysis

With the caveat that con�dentiality considera-

tions prevent revealing in this paper actual �-

nancial cost numbers, we can say that the trial

showed substantial improvements in key mea-

sures of performance by which the success of

the factory is evaluated. Expressed in dollar

amounts, the net value of the trial would more

than justify the annual budget for the entire lab

where the Application was developed!

In the ROI analysis design, the value of the

Application was expressed solely by its e�ect on

equipment utilization. Capital utilization and

resultant improvement in revenue dwarfed all

other cost and bene�t terms. Direct labor and

material cost and savings, for instance were im-

material in comparison.

3.2.1 Trial and Model Assumptions

Despite the use of the term �ROI�, the value

analysis consisted of computing change in rev-

enue net of cost, extrapolated to a year.

Assumptions: Three assumptions were

made: 1) The equipment to which the model is

applied constrains current production capacity.

2) The model would self-populate during the

trial. 3) Technicians of various abilities would

be involved, some contributing knowledge to

Improvement in Means over Baseline

MTBF 14%

MTTR 24%

Table 1: Mean values for performance improve-

ments for weeks 14-20 compared to weeks 1-13.

the Application, others bene�ting from the

knowledge that had been entered.

Bene�t: Management systems in the factory

track Time To Repair (TTR) and Time Between

Failure (TBR) by recording the times each ma-

chine goes down and comes back up. The change

in equipment availability is a function of Mean

TTR and Mean TBR. Improvement in factory

throughput is estimated from availability of the

capacity-limiting equipment step in the produc-

tion process. Then, knowing weekly production

throughput and �nancial contribution of each

unit of product, additional revenue can be es-

timated. In short, starting with uptime and

downtime statistics to estimate improvement in

availability, one can estimate

increased_revenue

= availability_improvement(MTTR,MTBF )

×production_volume

×contribution/unit (1)

Cost: The only direct cost was one additional

half day of the planned Lean Manufacturing

training. There were no additional R&D or

IT infrastructure costs. One might argue that

the time spent in sessions with the Application

should be counted: From the session logs, we

generously estimated that a total of less than

two weeks of labor over the entire trial.

3.2.2 Results

We present here quantitative results for one

of the four types of equipment involved. The

conclusions are similar for each. MTTR and

MTBR improved for the pilot period compared

to the baseline period. Boxplots for both peri-

ods are shown in Figure 1. The total repair

time decreased by 41% while Mean Time

to Repair decreased by 24%, as shown in



Variance Weeks Decrease P value

1-13 14-20

Repair

Variance 1443. 148.8 0.103 0.0054

Availability

Variance 50.51 6.90 0.137 0.011

Table 2: Variance reduction for the trial period

compared to the previous period.

Table 1. More impressive is the improve-

ment due to the variance of availability,

which decreased by more than a factor

of 10, as shown in Table 2, a decrease that

passed a conventional test for statistical signi�-

cance.

Since the QBD Application was an integral

part of a new Lean program, it is not possible

to tease apart the contribution of the Lean phi-

losophy and the introduction of the Application;

the software would not have been used had it not

been part of the program, and the Lean work-

�ow would not have been enforced without the

software.

Clearly the decrease in repair variance has

substantial value for manufacturing perfor-

mance, on a par with the value of improvements

in MTBF and MTTR. Ironically there were no

�nancial analysis techniques available to value

this decrease, even though its contribution may

be more important than the value attributed to

the increase in availability.

3.3 Model-building During Sessions

A bene�t of the detailed session logging is the

record of when and how model building occurred

during diagnostic sessions. In this section we

consider the sessions for the three machines for

one type of equipment. The session logs cap-

tured the entire sequence of user actions: the

symptom indicating the breakdown, each cause

or test selected, what values tests were set to,

and most importantly when causes, tests or de-

pendencies were added to the models.

If we also had had detailed TTR and TBF

records for each machine we could have associ-

ated sessions with repairs to obtain a more de-
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Figure 1: Compared to the previous period, the mean
repair hours per week decreased substantially, relieving
a production bottleneck and leading to an increase in
overall factory availability.

tailed analysis of the relationship between them,

and a session-level analysis of e�ectiveness.

We validated our presumption in the previ-

ous paper, that within a few months mod-

els would mature in size, incorporating

a useful level of coverage. Model build-

ing occurred continually and extensively dur-

ing the trial, validating our supposition that in-

termingling model-building with diagnostic ses-

sions can replace conventional means of model

elicitation. During the trial's seven weeks, users

ran 157 sessions, 54 of which terminated with

a repair action. Also we counted the number of

diagnostic and model building actions in each

session; the cumulative counts over all sessions,

shown in Figure 3, show the rate of model-

building. Our surrogate for diagnostic steps

were the actions of setting the value of a test

variable. Model building steps (e.g. adding a

cause, test or dependency) out-paced diagnostic

steps, except for a few short intervals near the

end of the trial. We interpret this to imply that

the models had not yet reached �saturation� by

the trial's end. We would expect that we'd see

the rate of testing surpass the rate of additions

to the model as models continued to mature.

The arcs shown in the created network, Fig-

ure 2, were inferred from the sequence of user



Figure 2: The bipartite network created in use during the pilot contains 115 test and 82 root cause variables,
connected by 188 dependencies. Causes appear in the top row, and tests in the bottom.
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Figure 3: Model building occurred consistently over
the course of the 157 sessions during the trial, with a
slight decline during the end, and out-pacing the rate of
diagnostic actions, except occasionally towards the end.

actions. The result is to generate a singly con-

nected, network of test and cause pairs with all

causes linked to one common symptom. All arcs

that were not generated in this automatic fash-

ion were added explicitly, using a cause-to-test

linking feature in the interface.

4 Adaptation

In this section we present a method where we

can make improvements to models by incorpo-

rating the results of explicit user feedback from

sessions. There are two types of feedback we

consider, �rst the user's ranking of causes, sec-

ondly of tests. Both types are represented as

cases, serving as constraints to which the model

should conform, as explained in the previous pa-

per, where this consistency condition was pre-

sented:

De�nition 1 (Case Cause-Consistency1). A

model M∗ is cause-consistent with a case j, to
level k, if the list of ordered fault marginals

given the evidence e(j) agrees with the case:

P
(
C(1) | e(j),M∗

)
≥ . . . ≥ P

(
C(k) | e(j),M∗

)
.

A case that raised cause consistency would

occur if, after completing the diagnosis test se-

quence, the diagnostician discovers in the course

of repair that C∗ is the cause of the breakdown,
not the C recommended by the model.

Extending the last paper, we consider an-

other consistency condition that follows from

the user's behavior in selecting tests in a di�er-

ent order than the diagnostic ranking provided

by the model.

De�nition 2 (Case Test-Consistency). A

model M∗ is test-consistent with a case j,
to level k, if the list of ordered diagnos-

tic test values MI
(
T (i) | e(j)

)
for tests T (i)

given the evidence e(j) agrees with the case:

MI
(
T (1) | e(j),M∗

)
≥ . . . ≥ MI

(
T (k) | e(j),M∗

)
.

For example, if, after observing the vector

of evidence e, the diagnostician picks test T ∗

rather than a test T that is ranked with higher

diagnostic value, then the model is inconsistent

with the diagnostician's choice. In the QBD Ap-

plication, diagnosticians cannot indicate an in-

consistency in test selections directly, but incon-

sistencies appear when the highest ranked test

computed by the model with the evidence at

that point in the session sequence is not the one

chosen by the diagnostician. This is can be de-

termined by running the model and comparing

1This is the de�nition from (Agosta et al., 2008)



its recommendations to test actions in the ses-

sion log.

4.1 Modifying the network

If we believe the cases o�ered by experts that

are inconsistent with the model are correct (and

thus the model is giving the wrong recommenda-

tion), the model can be improved by modifying

it to be consistent with the cases.

Consider the simple case of a four node net-

work, as shown in Figure 4, but with the arc

from C1 to T2 missing, such that the network

is singly connected. The upper layer nodes la-

beled with Cx represent possible causes. The

lower layer nodes labeled Ty represent possible

diagnostic tests. Assume the case where the di-

agnostician ranks T1 higher than T2, in contrast

to the model's ranking, which is the reverse.

Consistency could be restored by either modi-

fying the CPT of T1, since it arbitrates between

the two causes, or, assuming T1 is a Noisy-OR,

symmetric in both causes, exploiting its �Inde-

pendence of Causal In�uences� property using

T2 to change the balance between causes. The

�rst approach is more direct, and seems most

natural given its role in relating the two causes.

In the opposite case where the diagnostician

ranks T2 higher than T1, in contrast to the

model's ranking, the same options apply, to

change the CPT of either T1 or T2 to restore

consistency. However it may be most natural to

add the arc from C1 to T2, so that T2 is infor-

mative of both causes.

Once the network is multiply connected, such

as the fully connected version in Figure 4, then

intuitions are not so simple about how to modify

the network to achieve consistency, and we pro-

pose a method that resorts to formulating the

problem as a constrained optimization problem.

We show in the next section how this might be

done, and why the constraints being non-convex

make this problem challenging.

4.2 Model Re�nement as Optimization

We consider how a test-consistency constraint

may be applied to an existing model by revising

the parameters of the model such that the model

becomes consistent with the case. To elabo-

Figure 4: A bipartite diagnostic Bayes network with
two causes and two tests.

rate our approach for model re�nement, we use

the simple diagnostic Bayesian network shown

in Figure 4.

Assume that both causes and tests are

binary variables. The variable c
(x)
i in-

dicates the value for P(Cx = i) whereas

the variable tym|c1c2 indicates the value for

P (Ty = m |C1 = c1, C2 = c2). The tables in

Figure 4 only show half of the CPTs for these

variables for the case where the value of the vari-

able is true.

If a model is inconsistent with a case, it means

that the parameters of this Bayesian network

i.e., the Conditional Probability Tables (CPTs)

are not accurate due to which the ranking of

tests is incorrect. Thus, our goal is to re�ne

these parameters (or CPTs). If the model is

consistent with a case, we may not need to re�ne

the parameters, however it is still necessary to

impose a constraint so that future re�nements

due to another case do not result in a model that

is inconsistent to a previous case.

Consider the case where an expert chooses

test T1 initially without any evidence. We

express the diagnostic value as mutual in-

formation. Thus the mutual information

MI(C1, C2 |T1) of the causes C1, C2 and test T1

will be higher than that of the causes C1, C2 and

test T2. We can express this information as the

following inequality constraint.

MI(C1, C2 |T1) ≥ MI(C1, C2 |T2) (2)

Writing out the mutual information:

MI(C1 . . . Cn |Ty) = H(C1 . . . Cn)−∑
m∈{T,F}

tymH(C1 . . . Cn|Ty = m), (3)



where H(C1 . . . Cn) refers to the joint entropy
of the network's causes, computed as follows:

H(C1 . . . Cn) = −
∑

c1,c2∈{T,F}

P(c1, c2) log2 (c1, c2).

(4)

Using Equations 3 and 4, we can rewrite the

constraint in Equation 2 as follows.

0 ≥−
∑

t1,c1,c2∈{T,F}

P(t1)P (c1, c2 | t1) log2 P (c1, c2 | t1)

+
∑

t2,c1,c2∈{T,F}

P(t2)P (c1, c2 | t2) log2 P (c1, c2 | t2)

(5)

The constraint shown in Equation 5 is non-

linear. This is evident if we use Bayes' theorem

and rewrite the constraint only using the param-

eters of the Bayes network as shown here:

0 ≥
∑

i,j∈{T,F}

c
(1)
i c

(2)
j

2∑
y=1

∑
m∈{T,F}

t
(y)
m|i,j×[

log2 t
(y)
m|i,j + log2 c

(1)
i + log2 c

(2)
j − log2 k

(y)
m

]
(6)

In the above equation, k
(y)
m are normalization

constants. They can be evaluated as follows.

k(y)m =
∑

i,j∈{T,F}

t
(y)
m|i,jc

(1)
i c

(2)
j

The CPTs for the causes are the priors over

those causes. This information can be learned

using historical data as it only relates to the

frequency with which a cause occurs. Thus, we

can exclude this from the set of the parameters

to be learned or re�ned and restrict ourselves

to the CPTs of the tests, which are of the form

t
(y)
m|i,j in Equation 6.

The above constraint is the simplest possible

version of a network, where there are only two

causes, two nodes and no evidence available. For

more complex networks, the constraints will be

more complicated.

Most signi�cantly, this constraint is not con-

vex. It is well-known that entropy is concave,

while mutual information is neither concave nor

convex (Cover and Thomas, 1991). Since our

constraint is a di�erence of mutual information

it follows that it is a di�erence of two non-convex

functions. There has been previous work on us-

ing EM algorithm with constraints to learn the

parameters of a Bayes network (Niculescu et al.,

2006). However, the constraints considered in

those settings are linear, and thus convex.

This problem is also di�erent as unlike tradi-

tional parameter learning problems, we do not

have a lot of data to learn from. Thus, the

traditional objective function of maximizing the

data log likelihood may also not be useful as

it could lead to over-�tting. Finally, we are al-

ready provided an existing model which needs to

be re�ned rather than a new model learned from

scratch. An alternate approach is to minimize

distance from the original model using a mea-

sure such as an Lp-norm. However, this may not

lead to a robust approach since when the model

is not consistent, the distance measure will force

the re�ned model to be at a corner point of the

new feasible region. Instead, we are interested in

an objective function that forces the parameters

of the re�ned model to lie in the interior of the

new feasible region, as far as possible from all

the constraint surfaces. In this manner, the re-

�ned model is more likely to be consistent with

any future constraints. Currently we are inves-

tigating the use of KL-divergence as a possible

objective function that can help us achieve this

goal.

5 Conclusion

The results presented in this paper show over-

whelming bene�ts from employing an implemen-

tation of a QBD Application; bene�ts that out-

weighed costs by orders of magnitude, and made

a material di�erence in the factory's estimated

�nancial performance. One may wonder what

this is attributable to, given the simplicity of the

models and their lack of maturity, being created

in the course of the trial. The answer is that the

success of the trial relied on success in all three

areas, �nancial, organizational and human in-

terface. The lessons learned from this trial are



several:

1. Diagnostic applications have a natural ap-

plication in improving equipment e�ciency.

In capital-intensive companies, improving

capital e�ciency justi�es such applications

since these savings dwarf those in other ar-

eas such as direct costs of labor and mate-

rials.

2. Lean manufacturing principles pave the

way for introducing technology to improve

e�ciency, by making it clear to the organi-

zation where the technology �ts. Manage-

ment in the organization views the applica-

tion as a way to capture and share �tribal�

knowledge for Lean problem solving.

3. A new technology has to make the job eas-

ier for the person who uses it, or else it

will not be adopted. Here the users com-

ments were varied, ranging from �no tool

(i.e. computer application) has as comfort-

able a user interface as QBD�; to critical:

�System design still needs improvement to

simplify usage� and �(It) Would be best if

system was integrated into existing tools.�

It is well known that working in a domain

is facilitated by agreeing on a common, famil-

iar vocabulary with the domain expert. Analo-

gously, adopting a standard work-�ow from the

way that the client believes the diagnostic task

should be performed, as the application work-

�ow is also key to the application's acceptance.

Knowledge elicitation methods recognize the im-

portance of process and task analysis (Schreiber

et al., 2000). Ours is a stronger statement, that

the process steps incorporated in the application

adopt the normative model that the organiza-

tion uses.

In addition to the validation of the applica-

tion, the trial identi�ed areas for future work.

The plan for the current software is to improve

the interface and integration into existing soft-

ware systems, and prove these changes in ad-

ditional trials. Also the trial revealed other

places where user actions may be used as in-

put for the automated learning methods we are

developing to improve the model, for instance

Test-Consistency. Furthermore we are also con-

sidering the applicability of QBD to other di-

agnostic problem solving tasks, and to extend

the method with test and repair costs and with

replacement and repair actions, in a dynamic

model.
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