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Abstract

We present a model for buying agents in e-marketplaces to in-
terpret evaluations of sellers provided by other buying agents,
known as advisors. The interpretation of seller evaluations
is complicated by the inherent subjectivity of each advisor,
the possibility that advisors may deliberately provide mis-
leading evaluations to deceive competitors and the dynamic
nature of seller and advisor behaviours that may naturally
change seller evaluations over time. Using a Bayesian ap-
proach, we demonstrate how to cope with subjectivity, de-
ception and change in a principled way. More specifically, by
modeling seller properties and advisor evaluation functions
as dynamic random variables, buyers can progressively learn
a probabilistic model that naturally and “correctly” calibrates
the interpretation of seller evaluations without having to re-
sort to heuristics to explicitely detect and filter/discount unre-
liable seller evaluations. Our model, called BLADE, is shown
empirically to achieve lower mean error in the estimation of
seller properties when compared to other models for reason-
ing about advisor ratings of sellers in electronic maketplaces.

1 Introduction
Consider an electronic marketplace where buyers who are
interested in acquiring goods are represented by buying
agents, running algorithms designed to make effective se-
lection of selling agents. In scenarios where buyers can only
inspect the goods after purchase, it is important to develop
strategies to determine the reliability of the sellers prior to
a purchase. Various models have been developed to enable
a buying agent to learn from past experience with sellers, in
order to make effective decisions in future transactions (Tran
& Cohen 2004; Vidal & Durfee 1996). Another approach
is to enable a buying agent to obtain advice from other
buying agents in the marketplace (advisors) (e.g (Zacharia,
Moukas, & Maes 1999; Whitby, Josang, & Indulska 2004;
Yu & Singh 2003; Teacy et al. 2005).

The challenge then becomes how to interpret information
about sellers from advisor agents according to: subjective
differences between the buyer and advisor, possible decep-
tion on the part of the advisor and changes over time in views
of advisors and performance of sellers.
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A common approach is to have advisors report a single
reputation rating for each seller to the buying agent and then
to provide a mechanism for detecting and addressing any
unreliable ratings that are provided. Detection is usually
done by verifying whether the ratings of an advisor differ
significantly from some aggregate statistic of the ratings of
all the advisors together (Whitby, Josang, & Indulska 2004)
or from the buyer’s own experience (Teacy et al. 2005;
Yu & Singh 2003). Ratings deemed unreliable are then dis-
counted in the aggregation or simply filtered out. While this
is a reasonable approach, a significant amount of informa-
tion may be lost as a result of discounting/filtering unreliable
ratings.

In some cases, when an advisor is known to consistently
bias its ratings (e.g. always exaggerating positively or neg-
atively, or always reporting the opposite of what it thinks),
it is in fact possible to “re-interpret” the ratings and to re-
duce the need for discounting. We propose a new model,
called BLADE (Bayesian Learning to Adapt to Deception in
E-Marketplaces), that re-interprets unreliable ratings when-
ever possible. More specifically, we develop a Bayesian ap-
proach that models both a set of seller properties and the
ratings provided by the advisors, considering each to be ran-
dom variables. Then, the evaluation function used by each
advisor in reporting a rating to a buying agent is learned over
time and is used by our system to re-interpret ratings (in spite
of any subjective differences or possible deception) in terms
of those properties of the seller that matter to the buyer.

We demonstrate empirically that BLADE achieves higher
accuracy in learning about sellers than two existing Bayesian
models (BRS (Whitby, Josang, & Indulska 2004) and
TRAVOS (Teacy et al. 2005)) since it can often reduce the
need for discounting/filtering (potentially unreliable) ratings
provided by subjective and/or deceptive advisors. We also
discuss how to adjust our model to cope with change in seller
and advisor behaviour, over time and present experimental
results to demonstrate the value of our approach. Our con-
clusion is that it is possible to apply a principled method of
Bayesian learning to acquire deeper models of advisors and
sellers that make more effective use of the information that
is modeled. This is an important step in providing buyers
with an effective method of selecting reputable sellers with
whom to do business in electronic marketplaces.



2 Background
In order to appreciate the value of our approach to modeling
reputation in electronic marketplaces, it is important to un-
derstand some of the competing social network models pro-
posed by other researchers. For example, Histos, proposed
by Zacharia et al. (1999) provides for chains of trust among
agents, but does not have a mechanism to adjust for subjec-
tive differences or to deal with deceptive advice. Sabater
and Sierra (2001) offer a rich multi-faceted model of repu-
tation, but do not explicitly account for dishonesty among
agents. Furthermore, these approaches are not probabilistic,
and as such operate using various formulae with weights or
thresholds.

Recent work has lead to more principled models grounded
in Dempster-Schaefer theory and probability theory but still
including heuristics for detecting and discounting unreliable
ratings. For instance, Yu and Singh (2003) adopt Dempster-
Schaefer theory to model the amount of evidence for and
against a reputation value. Deception and subjectivity are
addressed by taking a weighted majority of the ratings of
each advisor according to how sucessful each advisor has
been at predicting seller reputations. Whitby et al. (2004)
and Teacy et al. (2005) adopt probability theory to develop
two Bayesian models repectively called BRS and TRAVOS.
Both models use ratings corresponding to the number of sat-
isfactory and unsatisfactory seller interactions to construct
a Beta distribution representing the seller’s reputation. To
mitigate the effect of deceptive advice, TRAVOS computes
a probability of accuracy measuring the likelihood that an
advisor’s rating matches the buyer’s own opinion. A heuris-
tic is then used to effectively discount ratings by a factor
corresponding to this accuracy probability. In contrast, BRS
uses the combined ratings of all advisors to eliminate the
ratings that differ significantly from the majority, assuming
that the majority is right.

While these models are grounded in principled theories,
they still make use of heuristics to deal with unreliable rat-
ings. By weighting, discounting or eliminating ratings, use-
ful information may be thrown away. For instance, when an
advisor offers consistent yet deceptive/subjective advice, it
may be possible to adjust the rating instead of diminishing
its importance. In the next section, we introduce our model,
BLADE, and discuss how it interprets information from ad-
visors about sellers in a more inclusive and effective manner.

3 BLADE model
We now describe our Bayesian modeling approach to han-
dle subjectivity, deception and change, called BLADE. We
first describe a Bayesian network (BN) that enables buyers
to learn seller properties and advisor evaluation functions.
Then, this basic BN is expanded into a dynamic Bayesian
network (DBN) in Section 3.2 to allow seller and advisor
behaviours to change over time. Throughout the paper we
use the convention that capital letters (e.g. F ) denote vari-
ables, lowercase letters denote values (e.g. f ), bold letters
denote vectors or sets (e.g. F = {F1, . . . , Fk}).

We begin by assuming that the value derived from a pur-
chase is a function of multiple aspects of the transaction. For

example, a buyer’s utility1 U b may depend on the shipping
time and the condition of the good purchased such as the
precision of the machining of automative parts in a car man-
ufacturing setting. In general, the aspects of the purchase
that determine the buyer’s utility are determined by what
can be considered some intrinsic properties of the seller. We
denote by F s = {F s

1 , . . . , F s
k} the set of features (or prop-

erties) that seller s exhibits in a given transaction. For our
purposes, each feature F s

i can take on a finite number of
discrete values often simply refered as fs

i . For instance, a
feature representing shipping time could take on the values
{on time, one day late, one week late, more than one week
late, did not arrive}. Since a seller’s behaviour is not de-
terministic (i.e. the values of the features may vary from
one transaction to another), we regard seller features F s

i as
random variables whose values fs

i are drawn from respec-
tive multinomial distributions Pr(F s

i ). Those multinomial
distributions are the quantities that a buyer would like to es-
timate since they correspond to the intrinsic likelihood that
each seller will exhibit some properties in a transaction.

Each buyer can gather information about the distribution
from which the seller properties are drawn by purchasing
goods from that seller, and by collecting information from
other buyers in the marketplace who are acting as advisors.
The information given by an advisor a about seller s takes
the form of a rating ra

s chosen from a finite number of dis-
crete values such as {satisfied, unsatisfied} or a number
on a scale of 1 to 10 for example. Since ratings may vary
with each transaction, Ra

s is considered a random variable.
We allow the domain of each Ra

s to be different, reflecting
the fact that different advisors may choose a different range
of values to report their ratings. Note also that we do not as-
sume that identical ratings necessarily mean the same thing
when given by different advisors nor that the ratings neces-
sarily reflect the advisor’s utility since an advisor may try
to deceive by reporting misleading ratings. In general, we
allow the evaluation function that maps the aspects of a pur-
chase to the rating to be subjective and therefore specific to
each advisor. Since this mapping may not always be a de-
terministic function of the seller properties due to inherent
noise or the presence of additional factors not captured by
the seller properties, the evaluation function is modeled as
a conditional probability distribution Pr(Ra

s |F s). Figure 1
illustrates by a BN the probabilistic dependencies of buyer
utility and advisor ratings on seller properties.

In scenarios where a seller has a large number of features
that would yield an intractable BN, we can use feature se-
lection techniques from machine learning (Blum & Langley
1997) to reduce the number of features. Note also that the
BN in Figure 1 shows feature variables that are independent
of each other simply to keep the exposition simple. Noth-
ing in our model prevents the addition of arcs between the
feature variables to introduce dependencies.

The inherent behaviour of each seller (i.e., Pr(F s
i ))

and the evaluation function used by each advisor (i.e.,
Pr(Ra

s |F
s)) are not generally known by a buyer. Never-

theless, those distributions can be learned as a buyer inter-

1Utility derived by a buyer from a transaction.



U
b

S
R

a1

s

F
s

1
F

s

2
F

s

3

R
a2

s
R

a3

s

Figure 1: Bayesian Network illustrating the conditional de-
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acts with sellers and advisors. We use a Bayesian learning
approach (Heckerman 1998), which allows a buyer to cope
with deception in a principled way, that is, without having
to resort to any heuristic to explicitely detect/filter mislead-
ing ratings. Bayesian learning proceeds by modeling each
unknown with a new random variable θ. For instance, let
θs

i = Pr(F s
i ) encode the unknown properties for each fea-

ture i of seller s. Similarly, let θa
f = Pr(Ra

s |f) encode the
unknown multinomial over ratings given by advisor a when
the seller exhibits feature values f .

With these additional variables, we obtain the BN in Fig-
ure 2 for three advisors, one seller and three features per
seller and the BN in Figure 3 for three advisors, two sell-
ers and three features per seller. The seller behaviours and
advisor evaluation functions are now conditioned on the
θ variables allowing us to specify Pr(F s

i |θs
i ) = θs

i and
Pr(Ra|f , θa

f ) = θa
f . We also represent prior distributions

over each θ with a Dirichlet distribution since Dirichlets are
conjugate priors of multinomials (DeGroot 1970). A Dirich-
let distribution D(θ;n) = kΠiθ

ni−1
i over a multinomial θ is

parameterized by positive numbers ni (known as hyperpa-
rameters) such that ni − 1 can be interpreted as the number
of times that the θi-probability event has been observed. The
expectation of a Dirichlet is given by a ratio of its hyperpa-
rameters (e.g., E(θi) =

∫
θ
θiD(θ;n)dθ = ni/

∑
i ni).
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Figure 2: Bayesian Network model for a buyer, three advi-
sors, one seller and three features per seller. Note that θa

denotes the set of θa
f variables for all f .

Given the BN in Figure 2, the task of learning seller be-
haviours and advisor evaluation functions becomes a ques-
tion of inference. Initially, a buyer starts with priors Pr(θs

i )
and Pr(θa

f ) encoding the likelihood of behaviours for each
seller and evaluation functions for each advisor. As the
buyer interacts with sellers and advisors, it gets to observe
the seller properties of each transaction it enters and the
ratings of the transactions that advisors report. The seller
features fs observed are used as evidence to compute the
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Figure 3: Bayesian Network model for a buyer, three advi-
sors, two sellers and three features per seller. Note that θa

denotes the set of θa
f variables for all f .

posteriors Pr(θs
i |f

s) and Pr(θa
f |f

s). Similarly, the ratings
ra
s observed are used as evidence to compute the posteriors

Pr(θs
i |ra

s ) and Pr(θa
f |ra

s ).
Even though we have a hybrid BN (Ra

s and F s
i are dis-

crete variables while θs
i and θa

f are continuous variables),
those posteriors can be computed in closed form by exploit-
ing the properties of Dirichlets. For instance, Pr(θs

1|ra
s ) is

computed in the usual way by multiplying all the BN condi-
tional probability distributions and summing (or integrating)
over all unobserved variables. We omit the seller index s in
the derivation below to simplify the notation.

Pr(θi|ra) = k
X

f

[

Z
θa

Pr(θa) Pr(ra|f , θa) dθa]

× [
Y
j 6=i

Z
θj

Pr(θj) Pr(fj |θj) dθj ] Pr(θi) Pr(fi|θi) (1)

= k
X

f

[

Z
θa

Pr(θa)θa
r,f dθa]

× [
Y
j 6=i

Z
θj

Pr(θj)θj,fj dθj ] Pr(θi)θi,fi (2)

= k
X

f

E(θa
r,f )[

Y
j 6=i

E(θj,fj )] Pr(θi)θi,fi (3)

=
X
fi

cfiDfi(θi) (4)

Eq. 2 is obtained by substituting Pr(fi|θi) and Pr(ra|f , θa)
by θi,fi

and θa
r,f . Eq. 3 follows from the fact that each inte-

gral amounts to an expectation. Assuming Pr(θi) = D(θi)
then Pr(θi)θi,fi

= Dfi
(θi), which is the same Dirichlet

as D(θi), but with the hyperparameter for fi incremented
by 1. Since each expectation is a scalar, Eq. 4 shows that
Pr(θi|ra) is simply a mixture of Dirichlets. While this
derivation may look complex the computation of the fi-
nal mixture is very simple since we only need to compute
Dirichlet expectations that have a closed form consisting of
a ratio of hyperparameters.

In general, when learning with a BN like the one in Fig-
ure 2, the posteriors of any θ given some evidence are always



mixtures of Dirichlets (Heckerman 1998). Hence we omit
the derivations for Pr(θs

i |f
s), Pr(θa

f |f
s) and Pr(θa

f |ra
s )

since they are similar.
As we incorporate seller properties observed in direct

transactions and ratings reported by advisors, the distribu-
tions over θs and θa will be represented as a mixture of
Dirichlets; however, the number of Dirichlets in each mix-
ture may grow each time a new posterior is calculated. For
instance in the case of Pr(θi|ra) the number of Dirichlets
is multiplied by |Fi| (i.e., size of the domain of Fi), which
leads to an exponential growth. To avoid storing an expo-
nential number of Dirichlets, we approximate mixtures of
Dirichlets by a single Dirichlet whose hyper-parameters are
a mixture of the hyper-parameters of each Dirichlet.X

i

ciD(θ; ni1, . . . , nik) ≈ D(θ;
X

i

cini1, . . . ,
X

i

cinik) (5)

Note however that this approximation has the benefit of pre-
serving expectations (Cowell 1998):Z

θ

θj

X
i

ciD(θ; ni1, . . . , nik)dθ =
X

i

cinij/
X
ij

cinij

=

Z
θ

θjD(θ;
X

i

cini1, . . . ,
X

i

cinik)dθ

Since all the calculations we make only use the expectation
of the θ variables, this approximation is not really an approx-
imation as it preserves a sufficient statistic that allows us to
do calculations exactly.

Let’s now examine how the Bayesian learning approach
copes with deception. In our model, advisor ratings and
seller properties are random variables. The greater the corre-
lation between them the higher their mutual information and
the easier it is to infer the value of one variable given the
value of the other variable. An advisor evaluation function
Pr(Ra

s |F
s) essentially encodes the correlations between rat-

ings and seller properties. The more deterministic the eval-
uation function learned is, the stronger the correlations will
be. So if an advisor tends to report a unique rating (the ac-
tual rating doesn’t matter, as long as it is unique) for each
value of the seller features, then it is possible to infer back
the seller properties. For instance if an advisor tends to re-
port satisfied for one seller when the buyer has established
that the seller usually delivers late and unsatisfied for an-
other seller when the buyer has established that this seller
usually delivers on time, our approach will exploit the cor-
relation between late and satisfied to allow the buyer to in-
terpret satisfied from this advisor as meaning late. Hence
a buyer can equally make use of ratings from honest and
dishonest advisors as long as they are consistent (i.e. use a
fairly deterministic evaluation function).

If an advisor’s evaluation function is quite stochastic and
in the extreme completely random, then it will be more dif-
ficult to infer seller properties. Note that a buyer is not ad-
versely affected when ratings are weakly correlated with the
seller properties, since the algorithm doesn’t try to infer a
single seller property for a given rating, but rather a distri-
bution over seller properties. Hence, when an advisor gives
random ratings, the algorithm will simply infer that all seller
properties are equally likely which amounts to ignoring the

rating. When the ratings are weakly correlated then the algo-
rithm will infer that some properties are only slightly more
likely than others, which can be thought as providing only
a little bit of information. In general, Bayesian learning ex-
tracts just the “right” amount of information from each rat-
ing based on the amount of correlation between ratings and
seller properties.

We can imagine some cases in which an advisor colludes
with a seller, deviating from its standard evaluation function
to offer inflated ratings for that particular seller. The advisor
could most effectively collude by reporting ratings that are
highly correlated with seller properties for every seller ex-
cept the colluding seller. However, it is reasonable to assume
that the ratings of many advisors will be used to model each
seller’s properties and thus a colluding advisor will have a
minimal impact.

3.1 Example
Let us return to the scenario involving sellers with a single
seller property F s which can take the value late or on time
and a single advisor who will offer ratings of either unsatis-
fied or satisfied. This example will walk through how, given
some information about a seller s1, a buyer can learn the
evaluation function of the advisor a and use this information
to infer the property of an unknown seller s2. To aid in con-
ceptualizing the state of the parameters θs1 , θs2 , θa

1 and θa
2 ,

we visualize the distribution over each θ using the probabil-
ity density function.

We begin by assuming that our buyer has already had 10
interactions with s1 where the delivered good was on time 9
times and late only once. The buyer calculates a posterior
Pr(θs1 |fs) after each interaction learning that the seller s1

is usually on time (with a probability density concentrated
near 0.9). Note that in scenarios in which the buyer has had
no experience with advisors (i.e. a new buyer entering the
market), our probabilistic framework allows for an informa-
tive prior to model the advisor’s evaluation function. We
leave the generation of such a prior to future work, but note
that it serves as a starting point. Given any prior, our tech-
nique for adjusting for change discussed in the next section
will eventually converge on a good representation for the ad-
visor evaluation function. Now, at this point, our buyer has
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Figure 4: Parameters before gathering advisor ratings

no information about the advisor a or the seller s2 (Fig 4).
The buyer gathers a set of ratings about the known seller s1

from the advisor; the advisor reports that it is usually unsat-
isfied providing 9 unsatisfied ratings and 1 satisfied rating.
The ratings r provided by the advisor are used to calculate
the posterior Pr(θa

1 |r) and Pr(θa
2 |r) and since our buyer has

already learned that the seller s1 is usually on time, it has



effectively learned that there is a correlation between the rat-
ing of unsatisfied from this advisor with the seller property
on time. Given a set of ratings from the advisor about an

3

0 1Pr(on time) Pr(r | late)

3

0 1

3

0 1Pr(r | on time) Pr(on time)

3

0 1

Θ
s1

P
r(

Θ
s
1
)

Θ
a

1

P
r(

Θ
a 1
)

Θ
a

2

P
r(

Θ
a 2
)

Θ
s2

P
r(

Θ
s
2
)

Figure 5: Parameters after ratings for known seller

unknown seller s2, our buyer can interpret these ratings to
infer back the seller properties which led to each rating. The
advisor says that it is very happy with s2 being satisfied 9
times and only unsatisfied once, but because the buyer has
learned the advisor’s evaluation function, the buyer is able to
interpret being mostly satisfied as indicating that the seller
s2 is usually late. Note that it is possible that the advisor
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Figure 6: Parameters after ratings for unknown seller

is being deliberately deceptive - e.g. it in fact values sellers
who deliver on time but reports the opposite rating, when
asked. It is also possible that there is just a subjective dif-
ference - e.g. the advisor is satisfied when the good arrives
in excellent condition (a different seller property) and this
correlates with arriving late. Without explicitly knowing the
seller property determining the advisor ratings, BLADE is
able to establish a correlation between the ratings reported
and known seller properties and use this to learn the advi-
sor’s subjective evaluation function, to infer the seller prop-
erties of unknown sellers.

In contrast with this example, note that subjec-
tive/deceptive advisors are not expected to report ratings that
are completely anti-correlated with seller properties. Our
approach is equally capable of re-interpreting inaccurate rat-
ings from such advisors as long as their evaluation function
consistently maps each seller property to a unique rating.

Note that the example illustrated in this section is one in
which the buyer is able to learn a strong correlation between
the advisor reporting unsatisfied and the seller being on time.
If the advisor has responses that are more weakly correlated
(for example, reporting unsatisfied 7 out of 10 times), then
we will simply be learning less information about the seller
properties.

3.2 Dynamic sellers and advisors
The behaviour of sellers and advisors may shift over time.
For example a selling agent providing automotive parts may
improve the property representing the precision of a partic-
ular dimension of the delivered part after an upgrade of the

seller’s machining process. Similarly, the evaluation func-
tion of an advisor may change as a result of a change in its
underlying utility function or perhaps simply because it feels
like suddenly misleading.

As is, BLADE weighs equally each piece of evidence
(e.g, rating or observed seller property). Thus, if the buyer
has learned a seller property with high certainty and the
property changes, a significant amount of new evidence
would be necessary to change the buyer’s belief about this
seller property. To effectively adjust what the buyer has
learned to account for change, we incorporate the intuition
that recent evidence is more representative of a seller prop-
erty or buyer utility function, than what has been observed
in the past.

The hyperparameters n1 . . . nk of a Dirichlet distribution
D(θ;n1 . . . nk) can be thought of as representing the num-
ber of past occurrences of each θi-event. To give more
weight to recent observations, we use the same technique
as BRS (Whitby, Josang, & Indulska 2004): we construct a
new Dirichlet D′ after each observation and calculation of
posterior by scaling down each hyperparameter by a con-
stant factor δ ∈ [0, 1] as follows: D′(θ; δn1, . . . , δnk). This
approach increases the uncertainty in the belief distribution
represented by the Dirichlet, giving more weight to subse-
quent observations and allowing the distribution to change
more quickly to accommodate a change in the pattern of ev-
idence. An experiment in the next section demonstrates the
impact of δ on the ability of a buyer to adapt to changes in
the seller properties.

Figure 6 illustrates a Dynamic Bayesian Network repre-
sentation of this process. At each time step the hyperparam-
eters of the Dirichlet for each θ are calculated by scaling by
δ. The variables R and F are conditionally independent of
their values from previous time steps given all θs.
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4 Experiments
We evaluate our approach using a simulated market scenario
to examine how effectively we are able cope with subjec-
tivity and deception by learning the evaluation functions of



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

% of deceptive Advisors

m
ea

n 
er

ro
r

Deception VS mean error

BLADE
TRAVOS
BRS

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

% of noisy Advisors

m
ea

n 
er

ro
r

Noisy Adivsors VS mean error

BLADE
TRAVOS
BRS

0 50 100 150 200 250 300
0

0.05

0.1

0.15

0.2

0.25

Mean Error vs Time

Time

m
ea

n 
er

ro
r

BLADE With Change Adjustment
Standard BLADE Model

(a) (b) (c)

Figure 8: (a) Deception experiment (b) Noise experiment (c) Seller change experiment

advisor agents. We compare our approach to implementa-
tions of TRAVOS and BRS, which both aggregate advisor
information to construct a single seller reputation while mit-
igating the effect of deceptive advice. Both systems collect
opinions from the advisors which consist of the number of
satisfactory and unsatisfactory interactions the advisor has
had with a seller.

To ensure a reasonable comparison, the sellers in our mar-
ket have one seller property which can be thought of as the
reputation of that seller. The advisors use one of two pos-
sible evaluation functions: truthful advisors will directly re-
port the seller property they observed (essentially indicating
whether they were satisfied or unsatisfied), while deceptive
advisors will report the opposite of the seller property they
observed. For the purposes of our evaluation, the market
consists of a set of 11 known sellers that we interact with
directly and 11 unknown sellers that we only gain informa-
tion about through a set of 20 advisors. Each seller is as-
signed an intrinsic reputation Pr(F s = satisfied) from the
set {0, 0.1, 0.2, . . . , 0.9, 1}. Our experiment varies the per-
centage of deceptive advisors and assesses how well each
system is able to integrate the information given by these
deceptive advisors. In the first step of our evaluation the
buyer interacts with the set of known sellers and records the
outcome. Then, the buyer collects a set of opinions from
each advisor about a randomly drawn subset of the known
set of sellers, where each opinion represents 20 advisor-
seller interactions randomly determined by the seller’s rep-
utation Pr(F s = satisfied). The information in this first
step is used by BRS and TRAVOS to detect deceptive ad-
visors and in BLADE to estimate the advisor evaluation
function. Next, our buyer collects opinions about the un-
known sellers in the market (once again based on 20 advisor-
seller interactions) and estimates the reputation value es,
which is the expected reputation of each unknown seller.
Each of the three systems is evaluated by computing the
mean error = 1

N

∑N
s=1 |Pr(F s = satisfied) − es| over

all the N = 11 unknown selling agents s.
Figure 7a graphs change in the mean error of each system

as the percentage of deceptive advisors grows. The mean
error of the reputation estimates constructed by BRS and
TRAVOS increases as the percentage of deceptive advisors

grows. Recall that both systems discount or eliminate opin-
ions which do not match previous opinions (of the group of
advisors or the buyer’s own experience), and as the amount
of deceptive advisors increases the amount of information
useful to each system decreases, increasing the mean error.
Our system assumes that the advisor opinions are derived
from an evaluation function which may not be a direct map-
ping of the seller properties experienced by the advisor. The
result is that we are able to correctly interpret the opinions
of the deceptive advisors and for our system the percentage
of deceptive agents has no impact on the mean error of the
reputation estimate.

The same experimental setup was used to examine how
inconsistent advisors affected BLADE and the other models.
Instead of deceptive advisors we introduce noisy advisors.
Inconsistent advisors are modelled by adding Gaussian noise
with a standard deviation of 0.75 to the distribution gener-
ating the set of ratings provided by the noisy advisor. We
then varied the percentage of noisy advisors in the market
and the results are illustrated in Figure 7b. As expected, the
mean error increases as the inconsistency due to the percent-
age of noisy advisors increases, but BLADE’s performance
is on par with the other models 2.

To verify the effectiveness of our mechanism for incorpo-
rating change we focus on seller properties, noting that the
approach to change of advisor evaluation functions is iden-
tical. We simulate a simple scenario in which a sequence of
ratings are reported by an advisor and at the midpoint of this
sequence the actual seller property generating the ratings is
changed. We compare how well the buyer is able to initially
learn the seller property and adjust what it has learned after
the actual seller property has changed.

To focus on how a change in the distribution over actual
seller properties affects our buyer’s learning of these prop-
erties, we assume that the buyer has already learned the ad-
visor’s evaluation function with high certainty. In our eval-
uation we learned two binary seller properties F s

1 and F s
2

2From an information theoretic perspective, there is no infor-
mation in completely random ratings, so it is normal that none of
the techniques are doing well. It makes sense to ignore random
ratings, which is what BLADE does implicitly and BRS/TRAVOS
do explicitly. This is why all techniques perform equally well.



whose actual distributions were Pr(F s
1 = 1) = 0.7 and

Pr(F s
2 = 1) = 0.3. During the first half of the sequence our

advisor would report ratings derived from observing seller
properties drawn from the actual distribution. Half way
through the sequence, the actual distribution of seller proper-
ties is shifted to Pr(F s

1 = 1) = 0.9 and Pr(F s
2 = 1) = 0.1.

After each reported rating we record the expectation of the
parameters representing seller properties θs

1 and θs
2 and com-

pare this with the actual seller property distributions to gen-
erate the error = E[θs

1] − Pr(F s
1 ); we then average this

error over 50 runs. This evaluation was run using our stan-
dard model without any adjustment for change and repeated
after incorporating our methods to adjust for change. Fig-
ure 7c graphs the mean error at each time step when a rating
is reported. We can see that when the actual seller proper-
ties are shifted, the mean error immediately goes up, but the
rate at which this mean error then drops is far greater when
change is incorporated. Also note, that the initial learning
of the seller properties is not as stable when we incorporate
possible seller change. This is due to the scaling down of the
hyper-parameters specifying the distribution over θs

1 and θs
2

which has the dual effect of allowing for change to be more
quickly incorporated, and increasing uncertainty.

5 Discussion, Conclusions & Future Work
It is useful to note that both BRS and TRAVOS can be re-
cast as Bayesian Networks of the form θ → F s

rep → Ra

in which there is a single seller feature F s
rep correspond-

ing to its reputation. Estimating the reputability of a seller
is achieved by computing the posterior Pr(θ|ra) based on
ratings provided by advisors. Here, the evaluation function
Pr(Ra|F s

rep) is the identity function, assuming that ratings
directly reflect the reputation of the seller. Viewed in this
light, it is then clear that our model offers a generalization
of BRS and TRAVOS with two significant improvements.
First we go beyond a single reputation value and model a
set of seller properties, allowing for a buyer to calculate the
expected utility of a purchase, and not just the level of trust.
Secondly, we use a second parameter θa to model and learn
the advisor’s evaluation function Pr(Ra|fs

rep), which allows
the buyer to re-interpret any ratings that are not a direct
mapping of the seller properties. This re-interpretation al-
lows us to infer back the seller properties despite subjective
or deceptive ratings, as long as they are consistent with the
evaluation function we have learned. Cases where there are
merely subjective differences in evaluating sellers between
advisor and buyer are in fact quite reasonable to expect in
any electronic marketplace, and yet previous research has
focused primarily on detecting and addressing deception.

The BLADE model provides a principled method of
Bayesian learning in order to acquire deeper models of ad-
visors and sellers that use the information available more ef-
fectively without relying on discounting or filtering. In our
approach, then, both subjective differences and deception
are addressed by the same mechanism; we are, moreover,
able to incorporate methods for reasoning about change that
favour more recent information. The result is an improved
methodology for modeling trust between agents in electronic

marketplaces, as an important part of a buying agent’s deci-
sion making about purchases, to avoid disreputable sellers.

One promising area of future work involves extending our
model with actions and rewards within a decision theoretic
framework to actively select which advisors to consult and
which sellers to inquire about in order to minimize the bur-
den of information collection. As a first step, we would ex-
plore the use of a POMDP framework similar to the one pro-
posed in (Regan, Cohen, & Poupart 2005) to generate poli-
cies for selecting optimal actions. Our model could also be
enriched by using iterative preference elicitation to learn the
buyer utility function (Boutilier et al. 2005).
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