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Abstract

In this paper we consider a (possibly continuous)
space of Bernoulli experiments. We assume that
the Bernoulli distributions are correlated. All evi-
dence data comes in the form of successful or failed
experiments at different points. Current state-of-
the-art methods for expressing a distribution over
a continuum of Bernoulli distributions use logistic
Gaussian processes or Gaussian copula processes.
However, both of these require computationally
expensive matrix operations (cubic in the general
case). We introduce a more intuitive approach, di-
rectly correlating beta distributions by sharing ev-
idence between them according to a kernel func-
tion, an approach which has linear time complexity.
The approach can easily be extended to multiple
outcomes, giving a continuous correlated Dirichlet
process, and can be used for both classification and
learning the actual probabilities of the Bernoulli
distributions. We show results for a number of data
sets, as well as a case-study where a mixture of con-
tinuous beta processes is used as part of an auto-
mated stroke rehabilitation system.

1 Introduction
In this paper, we investigate a class of problems in which the
objective is to model a correlated set of Bernoulli experiments
(weighted coin flips). This class arises, for example, in a reha-
bilitation setting where a patient can succeed or fail at an exer-
cise, and success will depend on some parameter, x (e.g. the
resistance or weight in the exercise). As x changes, so does
the probability of success, but not necessarily monotonically.
For example, a person attempting to regain use of his/her arm
after stroke is attempting to rehabilitate their nervous system
as well as their muscles or bones. Neurological rehabilitation
can show unusual patterns, as different pathways in the ner-
vous system can lead to different abilities in the patient. Thus,
while for any fixed parameter setting x, the probability distri-
bution is a Bernoulli, we may be able to assume some degree
of correlation between the Bernoulli variables at different x
values. This correlation can lead to increased robustness in
the face of limited or noisy training data. In this paper, we

show how a set of correlated beta processes can be used to ef-
ficiently model this space, and how this can lead to efficiency
and robustness gains in simulated and real-world domains.

There are several methods which could be used to corre-
late the belief distributions of different experiments. A well-
known and often used method is using logistic Gaussian Pro-
cesses [Tokdar and Ghosh, 2007]. Here a Gaussian Process
(GP) is used to learn a real-valued function over S by keep-
ing a multivariate normal distribution, and this function is
then ‘squashed’ by using a sigmoid function to give values
between 0 and 1. An elaborate explanation of this approach
can be found in [Rasmussen and Williams, 2006]. One prob-
lem with this approach is that the posterior distribution af-
ter observing the outcome of an experiment is not a normal-
distribution. The posterior is approximated by a Laplace ap-
proximation or by using Monte-Carlo sampling.

Another approach is by using a copula to map a GP to
beta-distributions [Wilson and Ghahramani, 2010]. In this
case, too, the posterior distribution has to be approximated
by a Gaussian. A major drawback of using either of these GP
methods is that they require a matrix inversion or the compu-
tation of a Cholesky decomposition of the covariance matrix
of all the observed data points, which has cubic time com-
plexity in general. Even with an incremental approach each
incremental step still has quadratic time complexity. When
the amount of data grows large, this is a serious disadvantage.

Instead of working with a latent GP, which is then trans-
lated to a distribution over probabilities, it would be more in-
tuitive to work in the space of the probabilities straight away,
keeping a beta-distribution for all the experiments and assum-
ing these are correlated in such a way that experience can be
easily shared according to a kernel function between the ex-
periments. In this paper we suggest a method for easily shar-
ing the data between the experiments and keeping a contin-
uous, correlated multi-variate beta-distribution, or a contin-
uous correlated beta process1 (CCBP). Time complexity for
prediction is, for this approach, linear in the amount of data.

The rest of this paper is structured as follows. In Section 3
the underlying theory and outline of the resulting algorithm
are explained. In Section 4 we show various experimental re-

1It is unfortunate that there is already a graphical model with the
name beta process [Ghahramani et al., 2006], however, our name is
chosen to make the correspondence with GPs clear.



sults, comparing the CCBP approach to the experiments of
[Rasmussen and Williams, 2006] using logistic GPs. A spe-
cific case study showing how CCBPs could be used in an au-
tomated stroke rehabilitation system, where exercises can be
chosen from a continuous space of difficulties is presented
in Section 5. Finally, Section 6 presents the conclusions and
discusses possible routes for future work.

2 Background
Consider a space S of Bernoulli experiments Sx ∈ S indexed
by x ∈ X with an unknown probability θ(x) = Pr(Sx = 1)
of being successful. We denote successful experiments by
1 and unsuccessful experiments by 0. A conjugate prior for
the distribution over θ(x) would be given by having a beta
distribution for each possible experiment Sx:

Pr(θ(x)) = Beta(α(x), β(x)) ∝ θ(x)α(x)−1(1− θx)β(x)−1

After observing the outcome s of experiment Sx, we would
update the distribution over θ(x) according to Bayes’ rule to
obtain the posterior:

Pr(θ(x)|Sx = s) ∝ Pr(θ(x) Pr(Sx = s|θ(x))
∝ θ(x)α(x)+δ(s=1)−1(1− θ(x))β(x)+δ(s=0)−1

Here δ(a) is a Kronecker delta that returns 1 when a is true
and 0 otherwise. Effectively, Bayes’ rule increments the hy-
perparameter corresponding to the outcome by 1. To find ac-
curate values for θ in the entire space S, we would need to
observe a good number of outcomes for all the experiments.
However, if we know that the probabilities of different exper-
iments are correlated, experience could be shared between
experiments. For example, if the space X is a continuous set,
we might know that θ(x) is a smooth, continuous function
and have experiments close to each other according to some
metric share their experience.

2.1 Beta Process
The Bernoulli-beta process [Ghahramani et al., 2006] pro-
vides a framework to model a possibly infinite number of beta
distributions over a space of Bernoulli experiments. However,
the betas are assumed to be all independent and therefore
there is no mechanism to share experience. In fact, it is partic-
ularly difficult to define a correlated beta process. The main
issue is that the introduction of correlations does not seem
to preserve conjugacy. There is a large literature on corre-
lated multivariate beta distributions [Gupta and Wong, 1985;
Olkin and Liu, 2003], however Bayesian updates are com-
plicated and lead to approximative posteriors to keep the
marginals of each Bernoulli in the class of beta distributions.

2.2 Logistic Gaussian Process (LGP)
Alternatively, one can leverage Gaussian Processes (GPs) to
define a distribution over θ(x) since we can view θ as an
unknown function over the space X that indexes the exper-
iments. However, the range of θ is [0, 1], while GPs assign
non-zero probabilities to functions with a larger ranges. A
common approach to restrict the range to [0, 1] is to assume
that the functions are “squashed” by a logistic sigmoid. In

other words, it is possible to use a logistic Gaussian process
that defines a GP over function outputs that may be anywhere
in the reals but are re-mapped in [0, 1] by the logistic sigmoid.

If y ∼ N (µ, σ) is a normal-distributed variable, the
corresponding probability will be 1

1+e−y . After observ-
ing a successful outcome, the posterior for y will become

1√
2πσ2

e−
(y−µ)2

2σ2
1

1+e−y , which is not a pdf of a Gaussian-
distribution. It can, however, be approximated by a Gaussian-
distribution by using a Laplace approximation (a second-
order Taylor expansion of the logarithm of the posterior).

2.3 Gaussian Copula Process (GCP)
Another way of obtaining correlated beta-distributions from
a Gaussian process is by the use of a copula [Nelsen, 2006],
resulting in a so-called copula process [Wilson and Ghahra-
mani, 2010]. A copula is a way of constructing a multi-variate
distribution with arbitrary marginal distributions. This can
be done by correlating the cumulative distributions through
a copula function. For example, one could have a Gaussian
process, and for one specific point (one Gaussian distribu-
tion) take a point generated according to this distribution,
transform it through the cumulative distribution function to
get a value between 0 and 1, and then transform this through
the inverse of the cumulative distribution for a beta distribu-
tion. The result would be that a GP would be transformed
into multi-variate correlated beta distribution. However, the
posterior distribution after observing evidence would not be a
proper multi-variate Gaussian distribution, but would have to
be approximated by a Laplace approximation.

3 Continuous Correlated Beta Process
We propose a simple mechanism to share experience between
a continuum of beta distributions. The idea is to use a kernel
function K(x, x′) to indicate to what extent the experience
for experiment Sx should be shared with Sx′ . Recall that for
each outcome of an experiment Sx, the corresponding hyper-
parameter (α(x) or β(x)) is incremented by one. Intuitively,
if Sx′ is correlated with Sx, it would make sense to use Sx’s
outcomes to also increment the hyperparameters of Sx′ , but
perhaps by a fraction instead of 1. Hence, let K : X × X →
[0, 1] be a kernel function that indicates the magnitude of the
fractional updates for Sx′ based on the outcomes of Sx. In
particular, K(x, x′) = 0 when Sx and Sx′ are independent,
K(x, x′) = 1 when Sx and Sx′ are governed by the same
Bernoulli distribution andK(x, x′) ∈ (0, 1) when Sx and Sx′
are correlated. Suppose that we observe an outcome for n dif-
ferent experiments (e.g. Sx1

= s1, Sx2
= s2, . . . , Sxn = sn),

then the posterior beta for the Bernoulli distribution of some
experiment Sx becomes:

Pr(θ(x)|Sx1 = s1, Sx2 = s2, . . . , Sxn = sn)

∝ θ(x)α(x)−1+
∑n
i=1 δ(si=1)K(xi,x)

×(1− θ(x))β(x)−1+
∑n
i=1 δ(si=0)K(xi,x)

This update can be done in time that is linear with respect
to the amount of data. Note also that the approach generalizes
immediately to multi-class problems if we replace betas by
Dirichlets.
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Figure 1: Naive Bayes model to learn a beta distribution.
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Figure 2: HMM model to learn a beta distribution.

3.1 Graphical Model
While the proposed approach is simple and efficient, it is not
clear how it relates to Bayes’ rule. In this section, we show
how our update technique can viewed as inference in a graph-
ical model that generalizes Bayes’ rule.

Simple Beta Distribution
Consider a single experiment S governed by a Bernoulli dis-
tribution with parameter θ = Pr(S = 1). Suppose that the
prior over θ is a beta distribution with hyperparameters α
and β and suppose that we observe n samples S1, . . . , Sn

of the Bernoulli distribution.2 We can represent the joint dis-
tribution over θ and S1, . . . , Sn by the graphical model in
Figure 1. Throughout the paper we use the convention that
shaded nodes are observed while blank nodes are unobserved.

If the observations S1, . . . , Sn are obtained sequentially,
we can model the learning process by the HMM in Fig-
ure 2. The transition distribution is set to a Dirac distribution
Pr(θt+1|θt) = δ(θt+1 = θt), which ensures that all the θ’s
are identical. As a result, the graphical models in Figures 1
and 2 are equivalent.

To derive the correlated beta process, it will be useful to
model the hyperparameters α and β as variables. Adding
them to the graphical model yields the dynamic Bayesian
network in Figure 3. Here, we use A to denote the random
variable corresponding to α andB to denote the random vari-
able corresponding to β. Since the prior over θ is a beta with
known hyperparameters α and β, we set the prior overA1 and
B1 to be the following Dirac distributions:

Pr(A1) = δ(A1 = α)

Pr(B1) = δ(B1 = β)

After observing St, one of the hyperparameters is incre-
mented, so we set the transition distributions for At+1 and
Bt+t as follows:

Pr(At+1|At, St) =
{
δ(At+1 = At + 1) if St = 1
δ(At+1 = At) otherwise

Pr(Bt+1|Bt, St) =
{
δ(Bt+1 = Bt + 1) if St = 0
δ(Bt+1 = Bt) otherwise

The graphical models in Figures 2 and 3 are equivalent in
the sense that Pr(θt|S1:t) is the same in both for all t’s.

2We use superscripts to index variables corresponding to differ-
ent samples of the same experiment and subscripts to index variables
corresponding to different experiments.
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Figure 3: DBN model to learn a beta distribution.
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Figure 4: DBN model to learn multivariate beta distributions.

Correlated Beta Process

We are now ready to specify a simple bivariate beta distri-
bution. Let θt = 〈θt1, θt2〉 be a vector parameterizing two
Bernoulli distributions for experiments S1 and S2. We first
consider the case where the Bernoulli variables have indepen-
dent beta distributions with hyperparameters αt = 〈αt1, αt2〉
and βt = 〈βt1, βt2〉. Figure 4 describes an extended DBN
where at every step t one of the experiments is sampled. We
denote by St the observed outcome and by Xt the index (1
or 2) of the experiment. The conditional distributions for St,
At+1 and Bt+1 are adjusted as follows:

Pr(St|θt, Xt) = θtXt

Pr(At+1|At, St, Xt)

=

 δ(At+1 = At) if St = 0
δ(〈At+1

1 , At+1
2 〉 = 〈At

1 + 1, At
2〉) if St = 1, Xt = 1

δ(〈At+1
1 , At+1

2 〉 = 〈At
1, A

t
2 + 1〉) if St = 1, Xt = 2

Pr(Bt+1|Bt, St, Xt)

=

 δ(Bt+1 = Bt) if St = 1
δ(〈Bt+1

1 , Bt+1
2 〉 = 〈Bt

1 + 1, Bt
2〉) if St = 0, Xt = 1

δ(〈Bt+1
1 , Bt+1

2 〉 = 〈Bt
1, B

t
2 + 1〉) if St = 0, Xt = 2

Now, suppose that the Bernoulli variables are correlated in
such a way that an observation of one Bernoulli variable leads
us to believe that the hyperparameters of the other Bernoulli
variable should also be updated with a fractional increment
K. Then we can simply revise the conditional distributions



for At+1 and Bt+1 as follows:

Pr(At+1|At, St, Xt)

=

 δ(At+1 = At) if St = 0
δ(〈At+1

1 , At+1
2 〉 = 〈At

1 + 1, At
2 +K〉) if St = 1, Xt = 1

δ(〈At+1
1 , At+1

2 〉 = 〈At
1 +K,At

2 + 1〉) if St = 1, Xt = 2

Pr(Bt+1|Bt, St, Xt)

=

 δ(Bt+1 = Bt) if St = 1
δ(〈Bt+1

1 , Bt+1
2 〉 = 〈Bt

1 + 1, Bt
2 +K〉) if St = 0, Xt = 1

δ(〈Bt+1
1 , Bt+1

2 〉 = 〈Bt
1 +K,Bt

2 + 1〉) if St = 0, Xt = 2

We can generalize the above construction to multivariate
betas and in the limit to correlated beta processes. It is useful
to think of A, B and θ as functions of X such that θ(X) is a
Bernoulli variable indexed byX . Similarly, A(X) andB(X)
are the hyperparameters of θ(X). Then we can generalize
the conditional distributions for At+1 and Bt+1 by using a
kernel update K(Xt, x) that returns a value between 0 and 1
depending on how correlated SXt and Sx are.

Pr(At+1|At, St, Xt)

=

{
δ(At+1(x) = At(x) ∀x) if St = 0
δ(At+1(x) = At(x) +K(Xt, x) ∀x) otherwise

Pr(Bt+1|Bt, St, Xt)

=

{
δ(Bt+1(x) = Bt(x) ∀x) if St = 1
δ(Bt+1(x) = Bt(x) +K(Xt, x) ∀x) otherwise

3.2 Discussion
Although our technique to update betas can be viewed as in-
ference in a graphical model, it does not correspond to Bayes’
rule. While it would be desirable to use Bayes’ rule, re-
call from Section 2 that all existing techniques that attempt
to use Bayes’ rule to update a joint distribution over corre-
lated Bernoulli variables end up making an approximation to
force the posterior into a convenient class of distributions and
therefore do not use Bayes’ rule either. This includes logistic
Gaussian processes (LGPs) and Gaussian copula processes
(GCPs). Our approach has the advantage that it is fairly easy
to understand how the kernel function will induce sharing
of experience among betas and computation is linear in the
amount of data. In contrast, LGPs and GCPs need to invert
the kernel function which takes cubic time with respect to the
amount of data. Also, it is less obvious how the correlations
encoded by the kernel function induce sharing of experience
since a logistic sigmoid or copula is used to transform the out-
put of the GPs. As a result, choosing a good kernel that will
induce the right amount of experience sharing is more tricky
with LGPs and GCPs.

The CCBP approach can be easily adapted to multiple out-
puts, giving a continuously correlated Dirichlet process. This
will be demonstrated in a multi-class classification experi-
ment in Section 4.2.

4 Experiments
4.1 One-dimensional Illustration
A first simple experiment uses a one-dimensional space
X = [−2, 2], and actual Bernoulli probability given by
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Figure 5: Estimated probability after 1000 observations.
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Figure 6: Mean squared error for varying size of training
dataset.

(1 + e−x
2

cos(10 1−e−x
1+e−x ))/2. The kernel used for both LGP

and CCBP is a squared exponential kernel K(x1, x2) =

e
−(x1−x2)2

10 . Training data was obtained using a uniform dis-
tribution over [−2, 2]. Figure 5 shows the actual probabilities
as well as the mean predictions as learned by the LGP and
the CCBP after observing 1000 examples. The CCBP has
less smooth behavior and might have benefitted from using a
kernel with wider length scale.

In Figure 6 the mean squared error of the prediction of
the probability is plotted for LGP and CCBP. The differences
between the two approaches are small. However, the time
needed to run the experiments was hugely different. This can
be clearly seen in Figure 7, a log-log scale plot of the CPU
time of CCBP and GP approach for varying amounts of data.

4.2 USPS Hand-written Digit dataset: Multi-class
Classification

A second experiment shows the behaviour of CCBPs when
used for multi-class classification. We use the well-known
USPS dataset, with the modifications in training and test sets
as explained in [Rasmussen and Williams, 2006]. The kernel
used is the same as used in the description of multi-class clas-
sification at page 70 of this book, being an isometric squared

exponential kernel, K(x1, x2) = σfe
||x1−x2||

2
2

2l2 . As was done
with the LGPs, we varied the length-scale l of the kernel. We
did not vary the value of σf , as in CCBPs a value of σf 6= 1
would imply attributing too much or too little importance to
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Figure 7: CPU time for varying size of training dataset. Note
the log-log scale.
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Figure 8: Log likelihood of training data for various length
scales of the kernel.

empirical data, the correct value is σf = 1.
In Figure 8 the log likelihood of the training data is plotted

for different values of the length scale. The highest likeli-
hood occurs at log(l) = 1.0. In Figure 9 the misclassification
rates on the test data set are shown. The best result occurs at
log(l) = 0.0, where an error of 3% was obtained - similar to
the error reported for LGPs. At the point with highest likeli-
hood, an error of 11% is obtained. This shows that the use of a
validation set (e.g. using cross-validation) to find good values
for the kernel parameters is advisable. The best predictions of
CCBPs are on par with those of LGPs, and cross-validation
could be used to find good parameter settings.

5 A Case Study: Stroke Rehabilitation
Stroke is a leading cause of physical disability and death
around the world [Heart and Stroke Foundation of Canada,
2011; American Heart Association, 2011]. Research has
shown that post-stroke impairments can be reduced by repet-
itive and goal-directed rehabilitation, which improves motor
function and cortical reorganization in stroke patients [Fasoli
et al., 2004]. The recovery process, however, is typically slow
and labor-intensive, involving extensive interaction between a
therapist and a patient. One of the main motivations for devel-
oping rehabilitation robotic devices is to automate repetitive
interventions, which can alleviate strain on therapists.

The design of a successful robotic stroke rehabilitation de-
vice relies on an sufficient model of the rehabilitation sched-
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Figure 9: Misclassification rate for various length scales.

ule of the patient. This schedule describes the patient’s abil-
ities as a function of the parameters of the rehabilitation de-
vice, and describes the way in which these abilities change
over time. Thus, the schedule can be used to plan a program
(a series of exercises over along period of time) that will most
effectively rehabilitate the patient.

In this case study, we consider a device with a single pa-
rameter, e.g., the resistance of a haptic handle, where the
rehabilitation exercise is to push the handle to a set target
distance. For such a device, the rehabilitation schedule will
include a function P (success) ∝ f(resistance), where
f(resistance) is a continuous function that relates the per-
son’s abilities (e.g. success, or whether they can reach the
target) to the resistance level. One might expect this function
to be monotonically decreasing with increasing resistance.
However, stroke is a neurological condition, and this function
may not always be strictly monotonic nor extremely smooth,
since different pathways in the nervous system may be used
for different stimuli (including the resistance level).

In this case study, we model the stroke rehabilitation sched-
ule P = f(x) using continuous correlated beta processes. We
keep two such processes, one for when the person is fatigued,
one for not fatigued. As the fatigue status is not directly ob-
servable, the belief state will be a mixture of the two CCBP
models. Evidence is counted for both components, but only
counts for a fraction (proportional to the current belief in the
fatigue status). A few simulation results are shown. Figure 10
shows curves representing the priors for fatigue = no (blue)
and fatigue = yes (red). The green lines represent the actual
Bernoulli distributions the simulator uses, with the top one
the distribution for non-fatigued. The horizontal axis repre-
sents the difficulty of the exercise. Note that, when fatigued,
the success rate is estimated to be lower than when not fa-
tigued, and success rate is believed, on average, to decrease
with increasing difficulty. Figure 11 shows the posteriors af-
ter 5 sessions of 20 exercises, where the resistance level was
chosen from a uniform distribution. At the start of a 20 exer-
cise session, the belief in fatigue=yes is equal to 0, at each ex-
ercise there is a 10% probability of becoming fatigued, once
fatigued the person remains fatigued until the end of the ses-
sion. Many different models for fatigue rate, improvement
rate and priors can be modelled with this approach. Once in-
tegrated into a planning system, this kind of approach would
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Figure 10: Means of priors for success rate for non-fatigued
(blue) or fatigued (red) state. Green lines represent actual
probabilities for the simulated person, the bottom line for fa-
tigued.
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Figure 11: Means of posteriors for success rate for non-
fatigued (blue) or fatigued (red) state after 100 exercises. Out-
comes of the exercises are indicated by dots: red for success-
ful, blue for unsuccessful.

require using the schedule model extensively, but time com-
plexity of the predictions of the model are essential, and ide-
ally should be done in a matter of seconds or less. This makes
CCBPs a valid approach for use in such an automated system.

6 Conclusion
In this paper we introduced a novel approach for modelling
correlated probabilities for a continuous space of Bernoulli
experiments. In comparison to current state-of-the-art, we
obtain results which are on par with logistic Gaussian Pro-
cesses, but at a much better time complexity. GPs have cubic
time complexity in the general case while continuous corre-
lated beta processes have linear time complexity. We have
illustrated how such continuous correlated beta processes can
be viewed as inference in a graphical model. The approach is
easily extended to Dirichlet distributions, allowing the learn-
ing of a correlated continuum of multinomial distributions.

In a number of experiments we have shown that the predic-
tions made by CCBPs are as good as those of logistic GPs, but
much faster. This increase in speed makes the approach valu-
able for a system such as an automated stroke rehabilitation
device, where predictions have to be made fast so they can be
used in a planning approach. There are several interesting di-
rections for future work. For one, using the CCBP method in
a POMDP planning system, such as the stroke rehabilitation
case study, would be interesting. For this one would need an
efficient way to do planning with continuous actions. This
would also involve modeling multiple independent variables
(e.g. resistance and target distance). Other possible routes
for future work would exploit the fact that having beta dis-
tributions means that we have estimates of the variance of
the estimate as well as the expected probability. This could
be used to obtain abstaining classifiers, classifiers which can
choose to refuse to classify an example if too uncertain, del-
egating the problematic example to another system, instead
of giving a probably erroneous classification label. It would
also allow for active learning where the system actively asks
for the correct classification of examples in those parts of the
space with highest uncertainty.
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