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Abstract

In this paper, we consider the safe learning scenario
where we need to restrict the exploratory behav-
ior of a reinforcement learning agent. Specifically,
we treat the problem as a form of Bayesian rein-
forcement learning in an environment that is mod-
eled as a constrained MDP (CMDP) where the cost
function penalizes undesirable situations. We pro-
pose a model-based Bayesian reinforcement learn-
ing (BRL) algorithm for such an environment, elic-
iting risk-sensitive exploration in a principled way.
Our algorithm efficiently solves the constrained
BRL problem by approximate linear programming,
and generates a finite state controller in an off-
line manner. We provide theoretical guarantees and
demonstrate empirically that our approach outper-
forms the state of the art.

1 Introduction

In reinforcement learning (RL), the agent interacts with the
unknown environment to maximize the long-term return de-
fined by real-valued reward signals [Sutton and Barto, 1998].
Due to the uncertain nature of the environment, the agent
faces an exploration-exploitation trade-off, a fundamental
challenge in RL: the agent has to weigh between the action
that yields the best return based on past experience and other
actions that facilitate new experiences towards discovering
better actions. This paper considers model-based Bayesian
reinforcement learning (BRL) [Dearden et al., 1999; Dulff,
2002; Poupart et al., 2006], which provides a principled way
of optimally balancing between exploration and exploita-
tion in the Bayesian perspective, with the goal of obtaining
sample-efficient learning behaviours.

Still, in many situations, the notion of safety or risk avoid-
ance is crucial and should be considered as another prime
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objective to the RL agent [Mihatsch and Neuneier, 2002;
Hans et al., 2008; Garcia and Ferndndez, 2012]. For example,
a Mars rover has to reach a target position as fast as possible,
but at the same time, it should avoid navigating into danger-
ous ditches, which can potentially render it irrecoverable.

This safe behavior requirement has been captured in var-
ious forms, mostly considering the risk of performing very
poorly due to the inherent stochasticity of the environment.
In this formulation, the classic objective of maximizing ex-
pected return may be modified to minimize the variance of
returns [Howard and Matheson, 1972], or to maximize the
return in the worst case [Iyengar, 2005; Nilim and El Ghaoui,
2005].

In this paper, we consider the constrained MDP
(CMDP) [Altman, 1999] as the framework for modeling the
safe exploration requirement. CMDP assumes that actions
incur costs as well as rewards, where the goal is to obtain a
behaviour policy that maximizes the expected cumulative re-
wards while the expected cumulative costs are bounded. Un-
der these circumstances we can naturally encode the risks of
specific behaviours as cost functions and the degree of risk
taking as cost constraints respectively. Here, we assume that
the reward functions and the cost functions are known to the
RL agent and only the transition probabilities are unknown,
as in many model-based BRL studies [Poupart ez al., 2006;
Asmuth et al., 2009; Kolter and Ng, 2009; Araya-Lopez et al.,
2012; Kim er al., 2012]. Specifically, following [Kim et al.,
2012], we model BRL as a planning problem with the hyper-
state constrained partially observable MDP (CPOMDP) [Kim
et al., 2011] and adopt constrained approximate linear pro-
gramming (CALP) [Poupart et al., 2015] to compute Bayes-
optimal policies in an off-line manner.

Most of the successful approximate planning algorithms
for (constrained) POMDPs confine the whole set of infinitely
many beliefs to a finite set. This technique was also adopted
in CALP [Poupart et al., 2015] to treat other beliefs as con-
vex combinations of finite samples of beliefs. However, do-
ing so for model-based BRL can be problematic as it is not
straightforward to represent a distribution over the transition
probabilities as a finite convex combination. As will be de-
scribed in the later part of the paper, one of our contributions
is in introducing the notion of ‘slip to e-close beliefs’, which
enables a theoretical analysis and provides empirical support.



2 Background

We model the environment as a constrained Markov deci-
sion process (CMDP), defined by a tuple (S, A, T, R,C =
{Cr}1.k,¢={ex}1..x,7, So) where S is the set of states s,
A is the set of actions a, T'(s'|s,a) = Pr(s’|s, a) is the tran-
sition probability, R(s,a) € R is the reward function which
denotes immediate reward incurred by taking action a in state
s, Cr(s,a) € R is the k*" cost function upper bounded by
cr € R of k' cost constraint, € [0, 1) is the discount fac-
tor, and s is the initial state. The goal is to compute an op-
timal policy 7* that maximizes expected cumulative rewards
while expected cumulative costs are bounded.
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The optimal policy of a CMDP is generally stochastic and
can be obtained by solving the following linear program (LP)
[Altman, 1999].

max
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where y(s,a) can be interpreted as a discounted occupancy
measure of (s,a), and d(x,y) is a Dirac delta function that
has a value of 1 if z = y and O otherwise. Once the opti-
mal solution y(s,a) is obtained, an optimal stochastic pol-
icy and the corresponding optimal value are computed as
7 (als) = Pr(als) = y(s,a)/ ¥, y(s.a’) and Vii(so) =
> s.a B(s,a)y(s, a) respectively.

The constrained partially observable Markov decision
process (CPOMDP) generalizes the CMDP by allow-
ing partial observability and is defined by the tuple
(S,A,0,T,Z,R,C,c,~v,bp). Additional components are
O, Z, and by, where O is the set of observations o and
Z(ols',a) = Pr(o|s’, a) is the observation probability of ob-
serving o when taking action a and moving to state s’, and
bo(s) = Pr(sg = s) is the initial belief at time step 0, respec-
tively. Since the current Markovian state is not directly ob-
servable, the agent infers a belief b;(s) = Pr(s; = s) (which
is a sufficient statistic for decision making) at every time step
using the Bayes rule: upon executing a in b and observing o,
the updated belief b*° is

b°°(s') o Z(ols',a) > _T(s'|s,a)b(s) Vs’  (2)
Consequently, decision making in CPOMDPs can be under-

stood as a process of repeating: 1) choose an action based
on the current belief, 2) update the current belief distribution

based on the last action and observation using Eq. (2). A
CPOMDP is equivalent to a constrained belief state CMDP
(S, A, T,R,C,c,v,50). Here 50 = by and S = B is the
set of reachable beliefs starting from bg. Transition probabil-
ity T'(t'|b, a) is constructed from components of the original
CPOMDP and is expressed in terms of beliefs.

T(V'|b,a) = > Pr(o|b,a) Pr(t|b, a,0) 3)
= Z Zz ols’,a)T(s']s, a)b(s)] lé(b’,b‘“’)]
Pr(o\b,a) Pr(b,lbwavo)

Similarly, the reward and cost functions are represented as

= b(s)R(s,a) @)
= b(s)Ch(s,a) (5)

Although the resulting constrained belief MDP can be solved
by LP (1) in principle, the cardinality of B is usually very
large or even infinite, which makes the problem computation-
ally intractable. To tackle the intractability, several approxi-
mate algorithms have been proposed, such as CPBVI, which
is based on dynamic programming [Kim ez al., 2011], and
CALP, which is based on linear programming [Poupart ef al.,
2015]. CALP has been shown to perform much better than
CPBVL

3 Constrained BRL via Approximate Linear
Programming

In many practical situations, too much exploration can
severely impact an RL agent and therefore exploration should
be restricted. Restrictions can naturally be encoded as con-
straints on cost functions that quantify the impact of cer-
tain behaviours. In this section, we propose a model-based
BRL algorithm for the CMDP environment, leading to cost-
sensitive exploration in a principled way. To this end, we
will take the following approach: we first convert the con-
strained BRL problem into a hyper-state CPOMDP planning
problem. The CPOMDP planning problem is then cast into
an equivalent belief-state CMDP planning problem. Finally,
we use constrained approximate linear programming (CALP)
to efficiently compute the Bayes-optimal policy in an offline
manner. These steps are explained in subsequent subsections.

3.1 Constrained BRL as CPOMDP Planning

Model-based BRL computes a full posterior distribution
over the transition models and use it to make decisions.
We can formulate model-based BRL in a CMDP envi-
ronment (S, A,T,R,C,c,v, so) as a hyper-state CPOMDP
planning problem [Duff, 2002; Poupart et al., 2006; Kim
et al., 2012], which is formally defined by the tuple
(St A, 01, T+, Z+ RT,C* c,v,b). Assuming finite
state and action spaces, each component is specifically ST =
S x {655}, 0F = S, T+((s',0")|(s,0),a) = 0°°°'5(6,0"),



ZT(o|{s',0"),a) = &(o,8"), RT({s,0),a) =
Ci((s,0),a) = Cy(s,a), and b = (so, bo).

A belief distribution over S in a hyper-state CPOMDP is
a pair (s,b) consisting of a Markovian state s of the original
CMDP and the posterior distribution b(#) over unknown pa-
rameters . Here b(6) is commonly chosen to be a product of
Dirichlet distributions since Dirichlets are conjugate priors of
the multinomial transition probabilities:

— H Dir(esa* |nsa*>

s,a

R(s,a),

When the agent in belief (5, b) takes an action @ and observes
the successor state ', the belief is updated to (5',0’), where
b’ is defined as:

b (0) = b (6) = 1b(6)6°*
= HDir(Gsa*msa* +6((5,a,5),(s,a,8"))) (6
where 77 is a normalizing constant. The hyper-state CPOMDP
can also be easily understood as an equivalent belief-state
CMDP (ST, A, T+, R*,CT c,v,55). Here ST = S x B
and 5; = (so,bo) where B is the set of possible posterior
distributions over 65" from initial prior bgy. Transition prob-
abilities among belief states (s, b) are defined as
T (s, 0)|(s,b),a) = Pr(s'|s,b,a) Pr(b'|s,b,a,s)
=By [0 | (v, b @
Similarly, the reward function and the cost functions are
R*((s,b),a) = R(s, )
C‘;“Sa b>7 a) = Ck(sa CL)
In theory, this belief-state CMDP can be solved using

the following LP, which is an extension of (1) and the one
in [Poupart er al., 2015] to treat hyper belief states:

max

{y(sba}vsaZRsa y(s,b,a) 8)

s.t. Zy (s',0,a")
w
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3.2 Approximate Linear Programming

The main challenge in solving the linear program (8) lies in
the fact that the number of beliefs |S x Bl is infinite, yielding
infinitely many variables and constraints in the LP. We thus
approximate (8) using finitely sampled beliefs. In order to
facilitate a formal analysis, we assume a finite set of beliefs
B C B that covers the entire belief space fairly well. More
formally, we assume that there exists a constant e such that

Vbe B, s,s' €S, ac A, min|b — bsas,||1 e
bveB

beas'

(1-norm) e-close bounddry of

WO, by =0.7  W(bLb*) = 0.3

Flgure 1: Constructing the approximate transmon function
T. White circles represent the bellefs in B and the gray
circle denotes the successor belief bs‘lS which is not in B.
Here Pr(b'|s,b,a,s') = 6(b,b°*") in Eq (9) is relaxed to
W (b'[b**s") € [0,1] with non-zero probabilities only for e-
close beliefs in the neighborhood of beas’

where ||-||; denotes total variance distance
||b/ bsas ||1 /|b/ bsae )|d9

Since B does not completely cover B for e > 0, we need to
re-define the transition function T'(s’, ¥’|s, b, a) among (s, b)

and (s',b') € S x B. From the original, exact transition
probability T'(s’,¥'|s, b, a) defined over (s,b) € S x B:
T(s',b'|s,b,a) = Pr(s'|s,b,a) Pr(V|s,b,a,s")

_E, {ea} S, b5, 9)

we relax 0(b, b°") to W (b'|b***") that has non-zero proba-
bility only for e-close beliefs:

T(s',V|s,b,a) = Pr(s|s,b,a)Pr(V|s, b, a, s)
=&, [0 | wp/|p), (10)

where W is defined as a probability distribution over B.

, K(b/ bsas/) if ||b/ _ bsas/Hl <e¢
b/ bSaS — R ) -
Wl ) {O otherwise

where  is the normalizing constant ), 5 Wb |bses") = 1
and K (b,b") > 0 is a similarity measure between two beliefs
b(#) and b'(f). This relaxation can be interpreted as “slip-
ping” to one of the e-close successor beliefs with probability
W. Figure 1 depicts the construction process of W. Thus, we
approximate the original LP (8) by using a finite set of beliefs
B and replacing T by T'. Algorithm 1 describes the overall
process of computing the approximate Bayes-optimal policy.

The policy (7, W) obtained from Algorithm 1 constitutes a
finite state controller with |S||B| nodes and is executed in the
real environment as follows: the initial node of the controller
is set to (sg,bp). At every time step, sample an action a ~
7(als, b) based on the current node (s, b) for execution. Then,
observe the next state s’ from the environment and sample
Y ~ W(V|b**s"). Finally, the new node of the controller is
set to (s’,b’) and repeat.

(1)



Algorithm 1 Constrained BRL via Approximate LP

Imput: S, A R,C,c,, so, E, bo.
foreachs,s’ € S, b e E, and a € A do
Compute W (b'[b*") Vb’ by Eq (11)
end for )
T(s',V|s,b,a) Eb[ﬂsas ] W(b’|bsas ) Vs,b,a,b, b
y < solve LP (8) with B and T(s',1/|s, b, a)
foreachs € S, b € B, and a € A do

7T(a|57 b) « y(sv ba a)/ Za/ y(37 b, a/)
end for

V§(507 bo) — Zs,b@ y(S, b7 a)R(S7 a)
VE, (50, b0) < Z&b?a y(s,b,a)Ck(s,a) Yk

Output: (7, W): finite state controller, \71;(30, bg): approxi-
mate Bayes-optimal value

We remark that Poupart et al. [2015] take a similar ap-
proach to solving CPOMDPs by considering finitely sam-
pled beliefs. Specifically, they approximate the transitions by
relaxing (', b*°) in (3) as interpolation weights w(b’, b*°)
such that >, g w(b/,b%)b" = b%°, 37, _gw(V/,b%) = 1
and w(b’,b*°) > 0. This approach cannot be directly adopted
in the Bayesian learning setting since a belief is no longer a
finite-dimensional probability vector but rather a probability
density function. There is no straightforward way to approx-
imate an arbitrary Dirichlet using a convex combination of
finitely many Dirichlets.

4 Theoretical Analysis

In this section, we provide a formal analysis of the error
bound incurred by taking a finite set of beliefs and using the
‘slip to e-close belief” approximation scheme to re-define the
transition probabilities. In order to facilitate our analysis, we
first show the result on the single objective case, i.e. reward-
only POMDPs.

Lemma 1. Suppose that the reward function is bounded in
[~ Rimax; Rmax)- Forany b, b € B such that |6 — le < ¢, the
following inequality holds.

Rmax def

Vi(s.b) < T ~eFa

VR (s,0) -

Proof. 1t is well known that the optimal value of POMDP is
piecewise linear and convex function, and can be expressed
as an inner product between a belief distribution b and a set
of alpha functions I'* = {a,- -+, ap}.

~

Vi(s.0)=Vi(s. D) = | max (a1, — s (0. )
< _
< max|[{e, b B)]ls
< mz%XHaHOOHb — ng (Holder’s inequality)
ael}

<
=14

Rmax def
€=c¢€ (

. o=, <€)

Note that this lemma is same as lemma 1 in [Hsu et al.,
2007] with a simpler proof.
Lemma 2. Suppose that for all b € B, there exists beB
such that ||b — bl|y < e. Let H be an exact value-function

mapping, and H be a value-function mapping of approximate
POMDP with ‘slip to e-close belief’ approximation. Suppose
that V* is an unique fixed point solution of HV = V. Then,
the following inequality holds:

|HV* — HV*|| < ~ve;

where €, is defined in Lemma 1.

Proof. Forany s € S,b € B,ac A ands €8S,
> T(s, V5,0, a)V*(s', 1)
b'eB

-, [esas’] Z

b €B:||b —bsas’ ||, <e

sEee] Y

b eB:||b —bsas’ ||, <e

W(b,|bsa8/)v*(5,7b/)
W(bl|bsa8/)[v*(8/,bsa5/) _ 61]

(Lemma 1)

_ ]Eb[esas'] [V*(S/, bsas') _ 61} ( Z W(b/|bsas/) _ 1)
b’

Therefore, for any s € S and b € E,

(HV*)(s,b)

R(s,a)—i—’yz Z T(

s' beB
> max [R(&a) + VZEZ,[HS“S/] [V*(s’, b*s) — 61} ]

= (HV*)(s,b) — ver

= max [ s, b|s, b, a)V*(s’,b’)}

Similarly, we can obtain:
(HV*)(s,b)

< max
a

R(s,a) +7 Y E, {95‘”'] [v* (s, 6% + 61}

= (HV™)(s,b) + ve1

As a consequence, we get the result [|HV* — HV*|| < ve,.
0

Theorem 1. Suppose that the reward function is bounded
in [—Rmax, Rmax), and for all b € B, there exists b € B
such that ||b — bl|y < €. Let V* be the fixed point solution

V* = HV™* (optimal value Junction of original POMDP),

and V* be the fixed point solution V*=HV* (optimal value
function of approximate POMDP with ‘slip to e-close belief’
approximation). Then, the following inequality holds.

* Rmax
[V*(s0,b0) — i

. < Fmax
14 (So,bo)‘ S (1 7’)/)26



Proof.
[V* =V = |HV* = HV|
< |HV* — HV*||+ ||[HV* — HV*|

< vye + ||[HV* — HV| (Lemma 2)
< e AV -V
i Rmax
Hv* _ V*” < Y€1 _ Y 26 0
-y (1-9)

In the above, H denotes the approximate Bellman backup
that arises from finitely sampled beliefs B and ‘slip to e-close
belief’ transition approximation scheme.

Unfortunately, this result cannot be naively extended to
constrained POMDPs. To make the connection between sin-
gle objective POMDPs and constrained POMDPs, we should
look at the dual form of the LP in (8) given by:

{V(s,b)}Vs,b
{AgIVE  s,b

s.t. V(s,b) > R(s,a) — Z Cr(s,a) A
k

min 25((807 bo), (s,0))V(s,b) + ch)\k (12)
K

+ Z T(s',V|s,b,a)V(s',b) Vs, b,a
S',b/
A >0 Vk

If we fix A in the above formulation, the problem be-
comes the single objective POMDP with new reward function
R(s,a) — A" C(s,a). The solution can be obtained through
the dynamic programming with the backup operator H de-
fined as:

H»\V(s,b) = max [R(s,a) ~X"C(s,a)

a

+ Z T(s',V|s,0,a)V(s", V)],
57,0

which is a contraction mapping and has an unique fixed point
solution V5. Then, the LP dual problem can be reduced to
miny {V}\(so, bo) + )\Tc] Moreover, if there is an optimal
solution y* to primal LP, there must exist the corresponding
dual optimal solution V* and A*, and duality gap is zero (i.e.
Vi(s0,b0,€) = Vi (50,b0) + A" c) by the strong duality
theorem. We can now apply the result in Theorem 1 with
a fixed X since V3 is a value function of single objective
POMDP.

Lemma 3. Suppose that reward function and cost functions
of the CMDP environment are bounded in [0, Ryax] and
[0, Cimax] respectively. Let V§ be the optimal value function
of the POMDP with reward function of R(s,a) — X" C(s, a)
and ]7; be the optimal value of the approximate POMDP with

the same reward function and ‘slip to e-close belief’ approx-
imation. Then, the following inequality holds for all A > 0:

V(Rmax + ”Achmax) e

[V (50, b0) — Vx(s0,bo)| < (1—7)2

Proof. For all b,a and A > 0,
R(s,a) — AT C(s,a)| < |Rmax| + |ATC(s,a)|

S Rmax + ||A||1Cmax

Therefore, by simply applying Theorem 1 with the reward
range of [—Rpmax — || A1 Cmax; Rmax + || Al]1Cmax), we get
the result. O

Lemma 3 indicates that the approximation error can de-
pend on the magnitude of A, and the following Lemma 4
shows that [|A][; can be bounded.

Lemma 4. Suppose that reward function is bounded in
[0, Rinax] and there exists T > 0 and policy 7 such that
V& (s0,b0) + 71 < c. Then, the following inequality holds:

Rmax

A < ——
Xl < s

Proof. LetC = {c | there exists a policy 7 such that V (s¢, by) <
c}. Forany c,c¢’ € C,

Vi(s,b,c") — Vi(s,b,c)
= Vin(s,b) + X"/ = Vi(s,0) — A" c
(Dual variables of LP)
<V (5,0) + A7 Te/ = Vi (5,0) — A Te
(.- A™ is optimal solution to min. problem)
=X"(c —¢)
where \* = argminy, [V}, (s0,bo) + X' ¢/], and X* =

arg min, [V (s0,00) + A'c]. For any 7 > 0 such that
c—71l1¢c(C,letc’ =c—71. Then,

Vi(s,b,c — 1) — Vi(s,b,¢) < AT (=711) = —7[| A",

Vi(s,b,¢) — Vi(s,b,c — 71)

SN
Xl !

IN

Rmax
— (=)
O

Remark. Intuitively, 7 represents how much we can reduce
the cost constraint without making the problem infeasible.
For example, when the cost constraint c is set to 100, while
the minimum cost value of the given CMDP environment is
30 (i.e. min, V& (s0,bo) = 30), 7 = 100 — 30 = 70.

We can now show the main result that bounds the error in
the value function due to approximate LP:

Theorem 2. Suppose that reward function and cost func-
tions of CMDP environment are bounded in [0, Ryax| and
[0, Cinax| respectively.  Let V}(so,bo,c) be an optimal
value of the original CPOMDP with cost constraint c, and
Vi (s0,bo,€) be an optimal value function of approximate
CPOMDP with cost constraint ¢ and ‘slip to e-close beliefs’
approximation. Then, the following inequality holds:

Y (T — T + Cmax) Rmax

[V (50, b0, €) — Vi (0, bo, €)| < A=)
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Figure 2: Domains

Proof.
\Vﬁ(so,bo,c) - ‘713(807b()7c)|
= ‘ (V;* (S(), b()) + A*TC) - (]7;/* (S(), b()) + )\/*TC> ‘
V(50 b0) = Vi (s0: b))
S max (V(Rmax + ||)\H10max) E)
Ae{A* A} (1-7)2
< vy (T — 7Y + Cmax) Rmax
B T(1—7)3
arg miny V5 (s0,b0) + A'c], and A
arg miny, [V, (s0, bo) + ). O

A

< max
A{A* A}

(Lemma 3)

(Lemma 4)

where A" =

S Experiments

We conducted experiments on 3 discrete state domains and 1
continuous state domain depicted in Figure 2. The chain do-
main [Dearden et al., 1998] has 5 states and 2 actions. The
agent receives large reward of 10 by executing action 1 at
the fifth state, and small of 2 by executing action 2 at any
state. With probability 0.2 agent slips, which means that the
opposite transition occurs. We prepared a constrained ver-
sion of this domain by allocating cost 1 for action 1 and
cost 0 for action 2, which makes the excessively taking ac-
tion 1 may violate the cost constraint, following [Kim et al.,
2012]. The maze domain [Strens, 2000] has 33 rooms and
three flags. There are 5 actions {left, right, up, down, stay}
that allow moving to neighboring rooms. Every action ex-
cept for stay fails with probability 0.1. If an action fails, the
agent randomly slips into one of the directions orthogonal to

the intended one. The reward is given by the number of cap-
tured flags when the agent arrives at the goal. Since there
are 33 rooms and 8 possible status of captured flags, there
are 264 states in total. We defined the cost 1 to every action
except staying at the starting cell. The cliff domain [Sutton
and Barto, 1998] has 24 states and 4 actions {left, right, up,
down}. Every action fails with probability 0.1. If an action
fails, the agent randomly slips into one of the not intended di-
rections. The agent receives large reward of 20 once reaching
the goal state, and reward of -10 when it falls into cliff. We
assign cost of 2 to the cliff and the locations one unit away
from the cliff (high-risk area) and cost of 1 to the locations
two units away from the cliff (medium-risk area) and cost of
0 elsewhere (low-risk area). The cart pole [Sutton and Barto,
1998] domain is the classical control problem to keep the pole
upright. The state is encoded s = [, Z, 0, 8], where « is the

position, & is the velocity, 6 is the angle, and 6 is the angular
velocity. There are two actions {left, right} that apply a force
of —1 or +1 to the cart. A reward of -1 is received if the cart
or pole is out of the range: |z| > 2.4 or [#] > 12°. Cost
function is defined by C(s,a) = |z| to encourage the agent
to stay in the middle.

5.1 Experimental Setup

Finite State Domains

For all the finite state domains, we used two kinds of struc-
tural priors, “tied” and “semi”. In both tied and semi, it is
assumed that the transition dynamics are known except for
the slip probabilities. The tied prior assumes that the slip
probability is independent of state and action, so there is
only one unknown parameter. The semi prior assumes action-
dependent slip probabilities, so the number of unknown pa-
rameters is 2 for chain, 5 for maze, and 4 for cliff, respec-
tively. We used uninformative Dirichlet priors. Approximate
transitions in (10) were constructed by

/ SG/S/
W (b |6°25") o exp (—d(bQ’bQ)> and (13)
ag
1
d(b1,b2) = 3 (KL(by || b2) + KL(b2 || b1)),

where o is set to 0.5. B were collected by uniformly random
policy executed in the environment for 50 time steps.

In the chain and cliff domains, we report the results of 200
trials of the first 2000 times steps with discount factor v =
0.99. In the maze domain, we report the results of 100 tirals
of the first 1000 time steps with discount factor v = 0.95.

Continuous State Domain
In cart pole, the environment dynamics are modeled as a lin-
ear dynamical system, as in [Tziortziotis et al., 2013].

St+1 = Aq, (5t) + €q,
€a, ~N(0,Va,)
St1|se, ar ~ N(Aa, f(5t), Va,)
Here ¢(s) = [s,1]" and the transition model is parame-

terized by {(A4, Va)}ve. We use matrix-normal prior for
A and inverse-Wishart prior for V. Given the samples



domain c algorithm avg discounted avg discounted time
total reward total cost (min)

100 CBEETLE 355.85+14.55 99.6410.08 12

CBRL-ALP 339.77+8.01 91.26+2.44 0.1

. CBEETLE 305.02E£3.82 74.96£0.04 21

chain.tied CBRL-ALP 315.2247.14 71.46+1.75 0.1
P CBEETLE 243.54%3.29 50.03£0.10 97

CBRL-ALP 289.8646.25 48.3741.10 0.1

2 CBEETLE 218.54F1.94 25.03£0.04 | 348

CBRL-ALP 235.0646.03 23.7241.12 0.1

100 CBEETLE 355.12+14.16 08.4210.14 19

CBRL-ALP 327.1048.91 83.51+3.39 0.2

. CBEETLE 298.03£4.09 75.00£0.05 38

chain-semi i CBRL-ALP 307.2247.87 66.19-+2.42 0.2
P CBEETLE 237.71£3.49 50.10£0.10 | 167

CBRL-ALP 276.0147.65 44.3641.89 0.2

e CBEETLE 214.08%2.14 24.94F0.06 | 89.9

CBRL-ALP 226.7446.32 22.07+1.73 0.2

20 CBEETLE(*) 1.02+0.02 19.04+0.02 | 2425

azetied CBRL-ALP 1.0340.02 19.0940.03 | 393
s CBEETLE(*) 0.93+0.04 17.9640.46 | 733.1

CBRL-ALP 0.96+0.02 17.9240.22 | 41.0

100 CBEETLE 121.21£4.94 91.88+0.54 | 1738

CBRL-ALP 166.20+2.32 64.75+3.57 1.5

diftted | 30 CBEETLE 52.98E3.77 44.41£0.50 | 1800
CBRL-ALP 160.89+1.57 44.7240.90 15

0 CBEETLE —104.5214.58 54.6410.97 | 206.8

CBRL-ALP 150.19+1.41 25.9940.83 15

100 CBEETLE 51.5515.57 91.2510.63 | 485.0

CBRL-ALP 161.05+1.88 51.65+2.81 7.9

cliffsemi | 30 CBEETLE —78.80%5.89 63.03£0.73 | 594.7
CBRL-ALP 158.44+1.59 42.28+1.00 7.9

0 CBEETLE —117.80£9.29 13.09F1.28 | 6574

CBRL-ALP 146.91+1.39 22.4440.86 7.9

Table 1: Experimental result of chain, maze and cliff do-
mains. The results with (¥) are from [Kim et al., 2012].

8 oo

(a) ¢ = 100

Cliff (r= —10) Cliff (r= — 10)

(b) ¢ =50 (©)ec=30
Figure 3: Visualizing behaviours under different c in cliff/tied
domain. Darkness represent the visitation frequency.

{(st,as, S¢+1) }+=1..n, the posteriors can be obtained in a
closed form [Minka, 1998]. o

To construct finite set of beliefs S x B, we collected 10000
states by taking random actions and quantized them into 256
representative states via K-means clustering, which consti-
tutes S. Then, B was constructed by gathering beliefs dur-
ing the first 100 steps at every 10 step-interval. Pr(s’|s, b, a)
in (10) was replaced by

15;(3'|s,b7 a) o</

AV

which is proportional to the posterior predictive distribution.
W (b'|b*s") was defined by (13) with o = 1. The results are
averaged over 100 trials of the first 10000 steps with discount
factor v = 0.99.

5.2 Results

Table 1 summarizes the experimental results for discrete do-
mains, comparing our algorithm CBRL-ALP to the previ-
ous state-of-the-art approach CBEETLE [Kim et al., 2012].
Overall, our method outperforms in computation speed by an
order of magnitude, while yielding good policies. In addi-
tion, CBEETLE generally slowed down as ¢ became tighter,

Pr(s'|s, A, Va)b(Aa, Va)dAdV Vs’ € §

c=50 c=40 c=30

1.0

0.6 1 F .

0.4 1 F E
0.21 1 F E

0.0
0.0 0.6 1.2 1.8 2.4 0.0 0.6 1.2 1.8 2.4 0.0 0.6 1.2 1.8 2.4

avg discounted  avg discounted

total reward total cost Vi (50, bo)
50 —0.51 £0.11 30.18 + 3.01 49.48 + 0.26
40 —1.12+0.28 15.99 + 2.05 40.00 + 0.00
30 —3.1940.48 7.03 £ 0.68 30.00 £ 0.00

Figure 4: Results of the cart pole domain. Above: histogram
of deviations from the origin, where the the horizontal axis
denotes |z| and the vertical axis denotes the visitation rate.

but CBRL-ALP was barely affected by the cost constraint.
Note that our algorithm (and CBEETLE) generally achieves
lower average total reward in the semi prior compared to the
tied prior. This is a natural result since the agent has more un-
certainty (more unknown parameters) regarding the dynamics
and as such, it has to act more conservatively to meet the cost
constraint.

Figure 3 depicts the risk-sensitive behaviour in the cliff do-
main, where the darkness mark the visitation frequency of
each state. When ¢ = 100 (weakly constrained), agent tries
to reach the goal as fast as possible to maximize rewards. As
we lower ¢, it starts to trade-off between reward and cost,
making the agent take a detour to be safer.

Figure 4 summarizes the experimental result of the cart
pole domain. As we lower c, the agent start to trade-off re-
ward for cost, which makes the agent be more forced to stay
in the middle by tolerating the fall downs. We can also see
from the table that the total cost estimated by the algorithm
mathces c. As for the computation time, it took 105 minutes

to construct 7(s’, /| s, b, a) and 0.3 minute to solve the LP on
a single CPU machine. We remark that most of the compu-
tation time is spent on computing the transition probabilies,
which should be easily parallelizable using GPUs.

6 Conclusion and Future work

In this paper, we presented CBRL-ALP, a model-based BRL
algorithm in CMDP environment to deal with the safe explo-
ration in a principled way. We showed that the constrained
BRL problem can be solved efficiently via approximate lin-
ear programming. Our theoretical analysis shows that the
algorithm computes approximate Bayes-optimal value func-
tions and the approximation error can be bounded by the
coverage of sampled beliefs. Experimental results show the
cost-sensitive behaviours and effectiveness of our algorithms
empirically, outperforming the previous state-of-the-art ap-
proach, CBEETLE by orders of magnitude in computation
time.

As for the future work, we plan to focus on developing
scalable algorithm that can be applied to more challenging
domains. Extension to online version of the algorithm or ap-
plication of function approximation would be promising.
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