
Piecewise Linear Value Function Approximation for Factored MDPs

Pascal Poupart and Craig Boutilier
Dept. of Computer Science

University of Toronto

Toronto, ON, M5S 3H5

ppoupart,cebly@cs.toronto.edu

Relu Patrascu and Dale Schuurmans
Department of Computer Science

University of Waterloo

Waterloo, ON, N2L 3G1

rpatrasc,dale@cs.uwaterloo.ca

Abstract

A number of proposals have been put forth in recent years
for the solution of Markov decision processes (MDPs)
whose state (and sometimes action) spaces are factored.
One recent class of methods involves linear value func-
tion approximation, where the optimal value function is
assumed to be a linear combination of some set of ba-
sis functions, with the aim of finding suitable weights.
While sophisticated techniques have been developed for
finding the best approximation within this constrained
space, few methods have been proposed for choosing a
suitable basis set, or modifying it if solution quality is
found wanting. We propose a general framework, and
specific proposals, that address both of these questions.
In particular, we examine weakly coupled MDPs where a
number of subtasks can be viewed independently modulo
resource constraints. We then describe methods for con-
structing a piecewise linear combination of the subtask
value functions, using greedy decision tree techniques.
We argue that this architecture is suitable for many types
of MDPs whose combinatorics are determined largely by
the existence of multiple conflicting objectives.

1 Introduction
Markov decision processes (MDPs) form the foundations of
most recent work in decision-theoretic planning and rein-
forcement learning. Classical solution techniques for MDPs,
however, generally rely on explicit state and action space enu-
meration, and thus suffer from the “curse of dimensionality.”
Specifically, since realistic domains are often factored—that
is, the state space consists of assignments of values to a set
of variables—they have states spaces that grow exponentially
with the number of relevant variables.

Fortunately, the factored nature of an MDP often admits
compact representation [7; 3]. For example, dynamic Bayes
nets (DBNs) can be used to represent the dynamics of the
MDP, taking advantage of the fact that actions tend to have
independent effects on state variables, and that these effects
depend only on the status of a small set of other variables [6;
3]. Additive reward functions can also be used to great effect

Copyright c
�

2002, American Association for Artificial Intelligence
(www.aaai.org). All rights reserved.

[2; 12]. Methods exist for exploiting these forms of struc-
ture when solving an MDP, obviating the need for state space
enumeration, and producing compact representations of value
functions (VFs) and policies. These include exact and ap-
proximate methods for piecewise constant representations [7;
3; 10; 5] and feature-based approaches [1; 18].

Among feature-based models, linear approximations have
proven popular. In linear approximations, a small set of ba-
sis functions (over state space) is assumed, and the VF is
taken to be a linear combination of these functions. Re-
cently, several clever proposals have shown how to find
the best linear approximation, given a fixed basis set, in a
way that exploits the factored nature of an MDP [8; 16;
9]. These models use basis functions over a small set of vari-
ables and DBN action representations to ensure computation
is effective. These approaches have the potential to scale well
for certain classes of problems.

The main drawback of linear models is the need for a good
basis set. While these approaches may scale, the quality of
the approximation depends critically on the underlying basis.
If no decent approximate VF lies in the subspace spanned
by the basis, it is impossible to obtain good solutions using
such techniques. Unfortunately, in the recent work on linear
approximations for factored MDPs, no proposals exist for ei-
ther: (a) the choice of a good basis; or (b) the modification of
an existing basis to improve decision quality. Studies to date
have used simple characteristic functions over (very small)
subsets of state variables.

We address both of these problems in this paper. We first
describe one technique for the generation of a suitable ba-
sis set, based on the notion of subtask value functions: these
arise naturally in weakly coupled MDPs (WCMDPs) [12], a
general class of large, factored MDPs. A WCMDP is one in
which a process can be decomposed into a number of subpro-
cesses corresponding to distinct objectives, with each of these
subprocesses coupled in a weak sense. The weakly coupled
nature of an MDP can be discovered through analysis of its
DBN representation. Our first technique for basis function
generation exploits weak coupling and can be thought of as
relying on domain-specific properties. We then describe a
general framework for the incremental construction of a suit-
able basis for linear approximation of a factored MDP. This
approach relies on no special domain properties, and can be
instantiated in a number of concrete ways [14]. We focus in

this paper on a particular instantiation of our framework that
allows for the construction of a piecewise linear (PWL) com-
bination of basis functions. We argue that this model is espe-
cially suited to the solution of WCMDPs, a fact supported by
our empirical results.

We begin in Section 2 with a brief overview of factored and
weakly coupled MDPs and existing methods for linear ap-
proximation for factored MDPs. In Section 3, we describe our
general framework for incremental basis function construc-
tion, and discuss a decision-tree approach for the construction
of PWL combinations of basis functions in Section 4. We of-
fer some preliminary experimental results in Section 5 and
conclude in Section 6.

2 Linear Approximations of MDPs
We begin with an overview of MDPs, a discussion of factored
and weakly-coupled MDPs, and recent techniques for linear
function approximation.

2.1 Markov Decision Processes
We assume a fully-observable MDP with finite sets of states�

and actions � , transition function �������
	��
	���� , reward func-
tion �����
	���� , and a discounted infinite-horizon optimality cri-
terion with discount factor � . �������
	���	���� denotes the probabil-
ity with which the system transitions to state � when action �
is taken at state � , while �����
	���� denotes the immediate utility
of taking action � at state � . A stationary policy ��� ��� �
determines a particular course of action. The value of a policy� at state � , "!#���$� , is the expected sum of future discounted
rewards over an infinite horizon:% ! &�'() *#+-,

)
�
) . / +10 �32�4

The function "! can be computed as the solution to the fol-
lowing linear system: ! ���$� 0 �����5	������$���768� ():9<;>=@? ���
	������$�A	�����B� ! �C��� (1)

The operator on the r.h.s. of Eq. 1 is referred to as the backup
operator for policy � , denoted D�! ; "! is thus a fixed point
of D"! . We denote by D�E the backup operator for the policy
that applies action � at each state.

Our aim is to find a policy �GF that maximizes value at each
state. The optimal VF, denoted �F , is unique and is the fixed
point of the following Bellman backup operator [11]: F ���$� 0IH�J<KE

95L �����
	��M�N6O� ():9<; =@? ���
	��
	�����B� F �C��� (2)

A number of algorithms exist to construct the optimal VF, in-
cluding dynamic programming algorithms such as value and
policy iteration. We focus here on a simple linear program
(LP), whose solution is F :

Min: PRQTSVUXWZY Subj. to: S[UXWZYG\]UC^>_�S1Y�UXWZY�`Xa�b�`�W (3)

Here each c����� is a variable, and the value �XDdE< "�3���$� is
a linear function of these variables, as seen in Eq. 1. For
many classes of MDPs, exact solution using LP methods is
not as effective as using dynamic programming algorithms
[15]. The value of the LP formulation, however, becomes
apparent when we consider linear approximation [16; 9].

2.2 Factored and Weakly Coupled MDPs
One weakness of the classical MDP formulation is its reliance
on explicit transition and reward functions. When the state
space of the MDP is factored—i.e., when states correspond
to the instantiation of state variables—an MDP can often be
specified more compactly by exploiting regularities in the re-
ward function and the dynamics [3]. We assume a set of
(for simplicity, boolean) state variables e 0gf�hji 	34�4343	 hdk
l .
Each state is thus a vector m assigning a value to each vari-
able.

Reward often depends only on the status of a few state vari-
ables, or additively on “local” reward functions. We assume

���Cmn	��M� 0po(q * i � q �XmNrq 	����
where each � q is a function that depends on a small subsete rqds e , and m rq denotes the restriction of m to the variables
in e rq . Similarly, dynamics can often be specified compactly.
We assume the effect of each action � can be decomposed into
independent effects on each variable

hut
, and that its effect onhdt

depends on a small subset evEt s e of variables. A local
function ����� h t . �
	�ewEt � denotes the distribution over

h t
given

any assignment to ejEt . We then have�����Cmn	��
	�mNxC� 0zy t �����X{�xt . �
	�m Et �A4
We refer to the local function ����� hct . �
	�ewEt � as the conditional
probability table or table for

hct
under action � . This forms

the basis of DBN action representations.
This representation allows MDPs to be encoded concisely,

requiring space linear in the number of variables if each table� q or ����� h t � refers to a bounded number of variables. The
size of the representation can be reduced even further by us-
ing specialized representations for these tables, such as deci-
sion trees [3] or ADDs [10]. Furthermore, several techniques
can take advantage of this structure to avoid state space enu-
meration when solving the MDP. If a candidate VF depends
on only a few variables, the fact that each variable depends on
only a small number of parents ensures that applying a Bell-
man backup results in a new VF that depends only on a few
variables [3].

Finally, this type of representation allows us to identify
weakly coupled MDPs (WCMDPs). A WCMDP is one in
which the reward function is decomposable as above, and the
set of variables relevant to each � q is small. The variables rel-
evant to each � q are determined as follows [2]: the variablese rq are relevant to � q ; and if

hdt
is relevant to � q , then so are

the variables ejEt for all � .1 WCMDPs arise in many guises,
but most often when the combinatorics of a given problem
are largely due to the existence of many competing subob-
jectives [2; 12]. When determining the variables relevant to
one objective, other objective variables do not play a role;
thus, the objectives are coupled only through the existence
of a common core of relevant variables. Problems that ex-
hibit such structure include resource allocation problems, and
scheduling of tasks in multi-user domains. We elaborate on
WCMDPs in Section 3.1.

1Note the recursive nature of this definition.

2.3 Linear Approximations
A common way to approximate VFs is with linear approx-
imators [18; 8; 16]. Given a small set of basis functions� 0 f�� i 	�B3B�B#	 � o l over the state space, a linear value func-
tion is defined as c����� 0�� t�� t��Rt ���$� , or 0	��

, for
some set of coefficients (or weights)

 0
� � i 	34�434�	 � o � .Here
�

denotes a matrix whose columns are the functions� t
. Unless

�
spans a subspace that includes �F , any linear

VF will be, at best, an approximation of �F . The aim is then
to find the best linear approximation of the true VF, using a
suitable error metric.

An important challenge, the construction of good linear ap-
proximators for factored MDPs, has recently been tackled in
[8; 16], resulting in techniques that can find approximately
optimal linear approximators in a way that exploits the struc-
ture of the MDP without enumerating state space. We as-
sume that each basis function

� q is compact, referring only to
a small set of variables e��q . Linear value and policy iteration
are described in [8], while a factored LP solution technique is
presented in [16; 9]. We discuss the method proposed in [16].

The LP formulation of a factored MDP above can be en-
coded compactly when an MDP is factored. First, notice that
the objective function Eq. 3 can be encoded compactly:(

� d�Xm-� 0 (
�
(q � q � q �Cm-� 0 (q � q��$q (4)

where �Rq 0�� k���� ���� � � ���� � q �Cm �q � . Intuitively, each �Rq is the

sum of the values assigned by function
� q , multiplied by the

number of states at which they apply, and can be precom-
puted. Observe that the variables are the weights

, which

determine the values c�Xm-� . Second, the set of constraints in
Eq. 3 can be encoded compactly by observing that this set is
equivalent to2 HdJRK� d�Cm-������D E "�Z�Cm-� �"! 	$# � (5)

Since is compactly representable as the sum of compact
functions, �XD�E< � is similarly representable. Specifically, the
construction of �XD�E � q � for basis function

� q can exploit the
fact that it refers only to a small subset of variables; the re-
gression of

� q through � produces a function that includes
only those variables evEt for each

h t&% e'�q , and variables ine r ([3]. The maximization over m is nonlinear, but can be en-
coded using the clever trick of [8]. For a fixed set of weights,
a cost network can be solved using variable elimination to de-
termine this max without state space enumeration. While this
technique scales exponentially with the maximum number of
variables in any function (i.e, the functions

� q , �XD E � q � , or
intermediate factors constructed during variable elimination),
this “local exponential” blow up can often be avoided if more
sophisticated representations like ADDs are used [10].

An approach that offers even greater computational savings
is the incremental constraint generation technique proposed
in [16]. The LP above can be rewritten as minimizing Eq. 4,

2When approximation is used, this LP can be viewed as approx-
imately minimizing)�* -error.

s.t. (q � q,+�q �Cmn	��M�&� ���Cmn	��M�Z	$# mn	�� (6)

where + q ��B 	���� is a function that refers only to variables e��q
and ejEt for each

hct % e-�q . More precisely, we have

+ q �Cmn	���� 0.� q �Cm/�q ��� � (0� �� �����21m/�q
. m/�q43 E 	���� � q �21m/�q �

where m/�q43 E refers to the set instantiation of variables evEt
for each

h t5% e-�q . This LP is solved without con-
straints, then using the cost network technique to computeH7698 � H76:8 E � q � q + q �Cmn	��M� , the state-action pair that maxi-
mally violates the constraints in Eq. 3 is determined. This
constraint is added to the LP, which is then resolved.

In matrix form, we can rewrite this LP asH76:8;=<?>
 subject to @
 �"A (7)

where @ is a matrix whose B columns correspond to the
functions + q �Cmn	���� . Thus @ has

. e . . � . rows. The advantage
of constraint generation is that the rows of @ are added incre-
mentally, and the LPs being solved are dramatically smaller
than those described above: the number of constraints ulti-
mately added is C��DBv� (i.e., the number of basis functions),
considerably smaller than the number of constraints required
by the LP generated by the cost network. Once all constraints
are generated, the LP constraints are @cF
 �EA5F , where @�F
and A5F are restricted to the C��FB � active constraints.

We observe that this LP attempts to minimize G i -error, not
Bellman or G ' -error, as is usual when solving MDPs. Fur-
thermore, this LP model imposes a one-sided constraint onG i -error, so it cannot strictly be viewed as minimizing G i -
error. G ' -error can be tackled directly using algorithms like
policy and value iteration [8], but at higher computational
cost. The difficulties associated with minimizing different er-
ror metrics in the LP context are discussed in [14].

3 Basis Function Selection
While linear approximations scale well, determining a pri-
ori the solution quality one can obtain using a given basis
set is difficult. Ideally, �F would be an element of the sub-
space spanned by

�
, in which case an exact solution could be

found. If this is not the case, the quality of the best approxi-
mation could be gauged by considering the projection of dF
on this subspace. However, since we do not have access to F , choosing a suitable basis set is problematic. Indeed, no
serious proposals for this problem exist in the recent litera-
ture on factored linear approximations. Since solution qual-
ity depends critically on the choice of basis, we must consider
methods that allow selection of a good initial basis set, or in-
telligent revision of a basis if solution quality is unacceptable.
We consider both of these problems.

3.1 Subtask Value Functions
In a variety of MDPs, the combinatorial explosion in state
space (and often action space) size is caused by the presence

S1

Sk

Tn

T1

S1

Sk

Tn

T1

Action

Figure 1: DBN for a generic resource allocation problem.

of multiple, conflicting objectives. For instance, in a man-
ufacturing setting we might need to allocate resources (e.g.,
machines) to different orders placed by clients. If the process
plan for a specific order is more or less fixed, then the prob-
lem is one of resource allocation. In an office environment,
a robot might be charged with performing tasks of differing
priorities for many users.

In problems like these, the underlying MDP is often weakly
coupled: given a choice of action (e.g., an assignment of re-
sources to each order) each subtask (e.g., order) has a certain
small set of state variables that are relevant to determining
how best to achieve it, and this subset has little or no over-
lap with that of other objectives. Thus, each subtask can be
viewed as an independent MDP, defined over a much smaller
set of variables, that can be meaningfully solved. The sub-
task MDPs are weakly coupled because their state and ac-
tion spaces (e.g., feasible resource assignments) are linked:
performing a specific action in one subtask MDP influences
which actions can be concurrently executed in another (e.g.,
because it consumes resources).

To illustrate, consider a resource allocation problem with� potential tasks,
�-i 	34�4343	 �#k , each of which may be active or

inactive, and can change status stochastically (e.g., this might
reflect the placement or retraction of orders). We have � re-
sources, each of which can be applied at any point in time
to the achievement of any active task. The status of resource�
, denoted by variable

/ q determines how effective that re-
source is in the completion of its assigned task. The status of
a resource evolves stochastically, depending on its use at each
time step (e.g., consider machines requiring maintenance or
workers needing breaks). Multiple resources can be applied
to a task, thus the size of the action space is C���� k��Gi � . A DBN
illustrating the dependencies for such a problem is illustrated
in Figure 1. Finally, we assume that a reward

? t
is associated

with the successful completion of an active task
� t

.
This MDP can be decomposed readily into distinct subtask

MDPs for each
� t

. Since variables
� q (

���0
	
) have no in-

fluence on
�#t

or the reward associated with
�Nt

, the subtask
MDP for

�#t
has as its only variables

/ i 	34�434�	 / (and
�#t

. For
small numbers of resources, this subtask MDP can be solved
optimally. Of course, the optimal solutions for the different
subtask MDPs may not be compatible. The policies for differ-
ent subtasks are coupled by the resources—in particular, by

constraints on the feasible actions one can apply to jointly to
each task. Notice that the action spaces are also considerably
reduced in the subtask MDPs.

WCMDPs have been examined recently and several tech-
niques proposed to take advantage of their structure [2; 12;
17]. Given a factored MDP with an additive reward function
reflecting subtask structure, constructing a (factored) subtask
MDP for each objective is straightforward (see the discus-
sion of relevant variables in Section 2.2) [2]. In the example
above, backchaining through the DBN allows us to construct
the subtask MDPs for each task, starting only with the vari-
ables

�#t
(which are the only “reward variables”).

If a subtask MDP is of manageable size, it can be solved
to produce the optimal subtask value function, defined on
the set of variables relevant to that MDP. All the techniques
described in [2; 12; 17] use subtask VFs to great effect to
approximate the solution of the full WCMDP. For instance,
using heuristic techniques to piece together a global pol-
icy using subtask VFs, problems involving several thousand
boolean variables (and similarly sized action spaces) can be
solved [12].

Subtask VFs are ideal candidates for a basis set. If, for
example, we have � subtasks of widely differing priorities
(or having different deadlines) the optimal policy might have
the form: complete the highest priority subtask (using all re-
sources); then complete the next subtask; and so on. In this
case, the optimal VF is: c�Xm-� 0 i �Cm i � 6��

)
�
�
�Cm��$� 6�

)
� �
)
� ��
�Xm�����6w4�434 , where t is the VF for subtask

	
, defined

over variables e t , and � t is the expected time to completion
of task

	
under the optimal policy. Thus a linear combination

of subtask VFs may provide a good approximation.
Unfortunately, a linear combination of subtask VFs may

not always be suitable. For instance, if subtasks become ac-
tive stochastically, the allocation of resources will often de-
pend on the status of each task. One should then focus on a
high priority task

	
(and get value t) only if that task is ac-

tive and suitable resources are available; otherwise one might
focus on a lower priority task. Thus the optimal VF might
best be approximated by a piecewise linear combination of
subtask VFs, where different linear approximators are “used”
in different regions of state space. For example, a VF might
take the form: If � , c�Cm-� 0 i �Xm i � 6 �

)
�
�5�Xm���� ; if � , c�Xm-� 0
�
�Xm�����6z�

)
� �� �Cm��R� . Here tasks 1 and 2 should

be tackled when condition � holds (say these two high prior-
ity tasks are active), and tasks 3 and 4 handled otherwise. We
elaborate on such PWL approximators in Section 4.

3.2 Basis Function Addition
The use of subtask VFs requires that the underlying MDP ex-
hibit a certain structure. As such, it can be viewed as a domain
dependent method for boosting the performance of linear ap-
proximators. If domain dependent structure, or other heuris-
tic information, is unavailable, domain independent methods
are needed to construct a suitable basis set. For this reason,
a more general framework is needed for constructing and re-
vising basis sets. We present such a framework now. This
approach is described in much more detail in [14]; but we
overview the approach here, since it is relevant to our devel-
opment of piecewise linear approximators in Section 4.

We assume some set of candidate basis functions � and
an initial basis set

� + . At each iteration � , we compute the
best linear approximation w.r.t.

� (, and estimate its error. If
the error is unacceptable, and sufficient computation time is
available, we then use some scoring metric to estimate the
improvement offered by each element of � w.r.t.

� (, and add
the best

� % � to obtain
� (�7i .

This generic framework can be instantiated in many ways.
First, we must define the set � suitably. We might assume a
fixed dictionary of candidate basis functions, and score each
explicitly. We will adopt this approach below. However, one
might also define � implicitly, and use methods that construct
a suitable candidate [14].3

We also require a scoring metric. An obvious, and com-
putationally demanding, approach would involve adding each
candidate function

�
to
� (and resolving, in turn, each result-

ing LP. This gives an exact measure of the value of adding
�

.
Other less demanding approaches are possible. One we con-
sider here is the dual constraint violation heuristic.

When we solve the LP Eq. 7, we obtain the corresponding
values of the dual variables � q , one per contraint: because
we use constraint generation, all constraints generally will be
active, and all � q�� ! . If we add

�
to our current basis set

(with corresponding column � in the LP, and sum of values�), this imposes a new constraint in the dual LP: � > ��� � .
If this constraint is satisfied given the current value of � , we
will make no progress (since the current solution remains op-
timal). The degree to which this dual constraint is violated—
i.e., the magnitude of � > � � � , provided it is greater than
0—is a good heuristic measure of the value of adding

�
. Note

again that the set of dual variables is C��FB � due to incremental
constraint generation. The dual constraint violation heuristic
scores each basis function in the dictionary using this mea-
sure and adds that function to the basis with maximal score.

This framework is inherently greedy: it considers the im-
mediate impact of adding a candidate

�
to the current basis.

4 Piecewise Linear Value Functions
As suggested above, subtask VFs can often best approximate
the optimal VF when combined in a piecewise linear fashion.
We now describe an algorithm for constructing PWL approx-
imations using subtask VFs as the underlying basis set. Our
model uses greedy decision tree construction to determine ap-
propriate regions of state space in which to use different com-
binations of basis functions. This framework can be seen as
a way of incorpating both a domain dependent technique for
basis function selection, and a domain independent technique
for basis function addition. Indeed, nothing in this approach
requires that the underlying basis set comprise the subtask
VFs; but we expect WCMDPs to benefit greatly from this
model.

The use of decision trees in value function approximation,
both in solving MDPs and in reinforcement learning, is rather
common. Examples include generalization techniques in re-
inforcement learning [4], dynamic discretization of continu-

3We explore a variety of such domain independent basis function
construction techniques, and scoring metrics, in [14].

ous state spaces [13], and their use in constructing piecewise
constant value function representation for MDPs [3].

4.1 Evaluating Local Splits
We assume a small set of B basis functions

�
has been

provided a priori, with each
� q defined over a small subsete'�q s e of our state variables. These might be, say, the opti-

mal subtask VFs for a WCMDP, or a basis constructed using
some domain-independent method. The model we adopt is
one in which the linear approximation can vary in different
parts of state space. These regions are determined by build-
ing a decision tree that splits on the variables e .

Before providing details, we illustrate the intuitions by
considering a single split of the VF on a fixed variable. Rather
than determining the best linear approximator, suppose we al-
low the weight vector to take on different values,

��
and

 �
,

when variable
h

is true and false, respectively. So we have:

 u�Cm-� 0 (t � �t �<t �Cm-� for any m % & { 2
 c�Xm-� 0 (t � �t � t �Xm-� for any m % & { 2:4

Letting 	 �
be a “mask” matrix that selects those states whereh

is true—i.e., a diagonal matrix with 1 at each { -state and 0
at each { -state—and defining 	 �

similarly, our approxima-
tion is 0 	 � ��
 � 6
	 � ��
 �

(8)

Our goal is to find the optimal pair of weight vectors:

Min: �
�������� � � P����� ��� P���� � U! Y#" �$&% P����� �'� P(��� � U! Y#" ��
s.t.: ^>_ U*) �,+.-/� %) �0+1- � Y32 U*) �,+.-/� %) �,+.- � Y54765`�aMb
Note that unless the MDP completely decouples along vari-

able
h

, we must optimize the weights

8� 	
 � jointly.

This optimization can be performed in exactly the same
manner as described in Section 2.3. We observe that for
each function

� q , the “masked” version of this depends on
the same variables as originally, with the possible addition
of
h

. Furthermore, the dependence on
h

is trivial: in the
positive case, the function takes the constant value 0 if

h
is

false, and takes the value indicated by the original if
h

is
true. An ADD representation of the masked function thus has
only one more node than the original (i.e., it does not double
the size of the function representation). Since these functions
are themselves “small,” the same cost network and constraint
generation methods can be applied directly.

The approximation above is a piecewise linear function
over the original basis set, but can also be viewed as linear
approximator over a new basis set. We have replaced the orig-
inal basis set with the masked copies: the new basis set isf 	 � � � � %'� l&9 f 	 � � � � %'� l
4.2 Decision Tree Construction
The intuitions above suggest an obvious greedy technique for
constructing a PWL approximator. We build a decision tree,

where each interior node splits the state space on some vari-
able

h
, and each leaf is labeled with a suitable weight vec-

tor denoting the linear approximation to be used in that part
of the state space.4 The algorithm is initialized by comput-
ing the optimal linear weight vector. The initial tree consists
of a single leaf (the root). At each iteration, we extend the
current tree as follows: (a) we evaluate the improvement of-
fered by splitting each leaf using each variable, using some
scoring metric; (b) the best split is applied, and the optimal
PWL VF (or some approximation) for the new tree is com-
puted. The algorithm terminates when no split offers decent
improvement, or the tree reaches some size limit.

A key component of the algorithm is the choice of scoring
metric. We consider three metrics in this paper:

Full LP: The full LP (FLP) metric evaluates a split of the de-
cision tree by computing the optimal PLW approximator
for the extended tree. For a tree with � leaves, evaluating
a split requires solving an LP involving B �C� 6���� weight
variables: we have � ��� weight vectors for the unsplit
leaves, and two new weight vectors for the split leaves.

Fixed Weight LP: The fixed weight LP (FWLP) metric
evaluates a split of the decision tree by computing the
optimal weight vector for the two new regions created,
but holds the weights for each other region fixed (to their
values in the preceding solution). Evaluating a split thus
requires solving an LP involving

� B variables.
Max Dual Constraint Violation: This metric uses the LP

solution for the current tree to evaluate the degree of
dual constraint violation associated with the new basis
functions. A split on

h
at the end of a branch labeled

< is equivalent to adding the basis functions 	 ��� � q (for
each

� q %.�) to the current basis. Each of these new
functions is scored using the dual constraint violation
heuristic, and the maximum of these scores (over each�
) is taken as the score of the split.5

These evaluation techniques are listed from most to least
expensive. The full LP method finds the myopically optimal
split. It requires solving an LP (using the usual cost network
method for constraint generation) for each candidate split.
These LPs are larger than those for the linear approximator:
since we have a larger weight set, we generally need to add
more constraints, each requiring a cost network evaluation.
The fixed weight LP method is similar, but since we hold all
nonsplit weights fixed, there are fewer variables, fewer con-
straints, and fewer cost networks evaluated (at most twice the
number as with the original linear method). The fixed weight
technique does not necessarily find the optimal split: since
values in other parts of state space are fixed, they are uninflu-
enced by the change in value at the split states. We can view
this as analogous to asynchronous (block) dynamic program-
ming [1]. Once a split is chosen, we can then reoptimize all
weights; or if we believe the MDP is strongly decoupled, we

4We proceed as if all variables are binary. Binary (aggregate) and
multiway splits of multivalued variables are straightforward.

5Other ways (e.g., conic combinations) can be used to com-
bine the scores of these basis functions. We note that we only
have to consider the scores of one masked set (e.g., � true), since) ��� � � `) � � � jointly span) ��� � � .

might use the weights computed during evaluation to label
the split leaves, but not reassess other weights.

The dual constraint violation method is by far the cheapest.
Each candidate split can be evaluated using just a handful of
inner product computations. No optimization is required.

Finally, with each of these scoring metrics, one heuristi-
cally chooses a split by not re-evaluating the scores of previ-
ously unsplit nodes. That is, when the leaves of a tree have
been scored at one iteration, they are not rescored at a sub-
sequent tree unless they are split. This method is heuristic
since the score of a split at a leaf is not local: it depends on
the current basis set (viewing the union of basis functions at
each leaf as the basis). However, the true score of a leaf can
only go down when other leaves are split; its contribution to
an extended basis set can be no greater than its contribution to
a smaller set. Thus this fixed score method always associates
with each leaf an upper bound on the true score.

There is a “hidden” cost associated with decision tree con-
struction, since the masked basis functions 	 � � q at leaf < re-
fer to all variables along that branch. As the trees get deeper,
table-based representations of the functions become much
larger. However, as noted above, the ADD representation
of these functions (nor their regressions D E 	 � � q) needn’t
grow exponentially with the number of variables (i.e., the
depth of the tree). Furthermore, the anticipated expense of
cost network evaluation can be computed and combined with
the scoring metric when considering a split, in an effort to
induce a preference for shallower trees.

5 Empirical Results
We describe in this section some very preliminary empiri-
cal results. We demonstrate the decision quality of the tree
growing technique as a function of the number of splits, us-
ing the three scoring metrics described above. We compare
this to the optimal linear approximator obtained using subtask
value functions, and to that obtained using bases comprising
only indicator functions over one or two variables (the only
method used in the literature). Naturally, since the best lin-
ear approximators are special cases of PWL approximators,
decision quality can only improve as we split. What we aim
to demonstrate is that quality improves significantly, and that
this technique offers a useful way to improve a linear approx-
imation. We use the value of the LP objective as a surrogate
for quality of the resulting policy in most cases, but report on
Bellman error in one example for illustration.

We consider a generic weakly coupled resource allocation
problem of the type described in Section 3.1, with � periodic
tasks and � indistinguishable resources. When

�
of the � re-

sources are applied to an active task
�Nt

, there is probability
�&�T�	� t � q of successfully completing that task (�

t
is the prob-

ability that one unit of resource would fail to complete the
task, a standard noisy-or model). A completed task becomes
inactive. An inactive task

	
becomes active with probability
 occt and an active task becomes inactive (if not completed)

with probability
 lvt . A reward
? t

is obtained if task
	

is com-
pleted. A resource

�
can be usable or depleted, indicated by

status variable
/ q . If usable resource

�
is applied to a task, it

depletes with probability
 dq , and at each stage a depleted re-

1 2 3 4 5 6 7 8 9
4900

5000

5100

5200

5300

5400

5500

5600

5700

5800

LP
 o

bj
ec

tiv
e

Tree Size (number of leaves)

SING

FLP

FWLP

DUAL

PAIR

PAIR + Subtask

Figure 2: Resource allocation task with no dominant tasks.

1 2 3 4 5 6 7 8 9
1.3

1.35

1.4

1.45

1.5

1.55

1.6

1.65
x 10

5

LP
 O

bj
ec

tiv
e

V
al

ue

Tree Size (number of leaves)

Dual

FWLP

SING

FLP

PAIR

Figure 3: Resource allocation task with two dominant tasks.

source has probability
 rq of becoming usable again. assigned
resources. Since this problem is weakly coupled, we use the
subtask value functions for each

�Nt
as an initial basis set.

To illustrate the benefits of PWL approximators, we first
consider two small versions of this problem, with � 0��
tasks, and � 0.� resources. In the first, all tasks have roughly
the same level of priority (i.e., similar rewards and probabili-
ties). Figure 2 illustrates the value of the LP objective (which
roughly minimizes G i error) as a function of the number of
regions (i.e. number of decision tree leaves) used in the PWL
approximator constructed using each of the scoring metrics
described above. As we see, in all cases, decision quality im-
proves with additional splits, which is hardly surprising. We
also see that the more expensive scoring metrics are produc-
ing much better splits. FLP, since it produces optimal myopic
splits, clearly dominates the other methods. FWLP, while
much cheaper computationally, also finds improving splits
identical to FLP except in one instance. The dual metric, un-
fortunately, does not fare as well. Note that each curve starts
at the same spot: the value of the best linear approximator
over the subtask VFs. For comparison, we include the objec-
tive value obtained by the best linear approximator over indi-
cator functions on all single variables (SING) and all pairs of
variables (PAIR). Note that after very few splits, the PWL ap-
proximators provide better VFs than these linear functions.6

6The results for FLP are shown only up to five leaves in this and
the subsequent graph.

1 2 3 4 5 6 7 8 9
0

2

4

6

8

10

12

B
el

lm
an

 E
rr

or

Leaves in Tree

SING

PAIR

DUAL
FLP

FWLP

Figure 4: Bellman error for 2 resources, 5 tasks.

We also include the linear approximator over the basis with
PAIR indicators and the � subtasks VFs. Adding the sub-
tasks VFs induces substantial improvement over PAIR, indi-
cating their suitability as basis functions. Note that subtask
VFs alone do not do as well as pairs, simply because the size
of the pairs basis set is substantially larger and spans a larger
subspace.

We show the same results in Figure 3 for a variant of the
problem in which two of the four tasks have much higher
priority than the others. In this case, the values of the low pri-
ority tasks have little influence on the optimal value function,
since resources are often held in reserve in case a high priority
task should pop up. Again we see that the same relative or-
der emerge among the PWL approximators, and that decision
quality is better than that of the linear approximators.

We also note that the PWL model can be used to produce
piecewise constant VFs using a single constant basis function.
In general, if the VF of an MDP has a small decision tree
representation, this method will find it quickly.

We also consider some slightly larger problems. Figure 4
shows similar results for a 2-resource, 5-task problem; but
Bellman error is plotted rather than LP-objective value. No-
tice that in this example, subtask VFs provide a better basis
than either SING or PAIR even before splitting. Computation
times for each iteration of the decision tree algorithm vary
with the scoring metric. Averaged over the first 6 splits (7
leaves), we have (in CPU seconds) the following times: FLP
– 691s; FWLP – 388s; Dual – 935s.7 We note that the dual
times are based on an unoptimized implementation and can-
not be meaningfully compared to the others (but we include
it for completeness).

Figure 5 shows LP-objective value for a 1-resource, 20-
task problem for both DUAL and PAIR. The error for SING
is not plotted as it is about 5 times as high as for PAIR. Fi-
nally, a similar plot is shown in Figure 6 for a 2-resource,
10-task problem (again SING is not shown). In the former,
the dual metric offers an improved solution after only two
splits, while in the latter, the subtask VFs themselves provide

7The implementation is in Matlab; calls to optimized C++ rou-
tines are used for FLP and FWLP, but not for dual. We project the
same optimization applied to dual would yield 10-fold speed up. Ex-
periments were run on a 700MHz PCs running Linux.

1 2 3 4 5 6
1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8
x 10

8

LP
 o

bj
ec

tiv
e

Leaves in Tree

PAIRS

DUAL

Figure 5: LP-objective value for 1 resource, 20 tasks.

1 2 3 4 5 6
7.5

8

8.5

9

9.5

10

10.5

11
x 10

5

LP
 o

bj
ec

tiv
e

Leaves in Tree

PAIRS

DUAL

Figure 6: LP-objective value for 2 resources, 10 tasks.

a better solution than the pairs. In the latter case, an improved
solution is found after 3 splits. Computation times for the 20-
task splits average 1784s, whereas the 10-task splits average
1801s. Again we emphasize that the dual running times are
based on an unoptimized implementation.

While these results should be viewed as preliminary, they
are encouraging. The evidence suggests that subtask VFs
provide very good basis sets for factored linear approxima-
tors. Furthermore, we see that with very few splits, the PWL
approach can offer further improvement over a purely linear
approximator.

6 Concluding Remarks
While linear approximators have proven to be valuable tool in
the solution of factored MDPs, to date, no concrete proposals
have been put forth for basis function selection and revision
in the factored setting. We a described a concrete means for
basis function selection using subtask VFs, and suggested a
family of techniques for basis function revision. We inves-
tigated in some depth the use of decision tree techniques to
produce PWL approximators. Our empirical results show that
even with few splits, decision quality can be greatly improved
relative to standard linear approximators.

Future research directions include the development of hy-
brid basis revision techniques, where new functions can be
added directly to the basis, along with splitting of state space.
Further experimentation is also needed to determine the range
of problems on which this approach works well. Finally,

we plan to investigate splitting criteria that tradeoff compu-
tational cost for projected improvement in decision quality.

Acknowledgements
Thanks to the referees for their comments. This research was
supported by the Natural Sciences and Engineering Research
Council and the Institute for Robotics and Intelligent Sys-
tems.

References
[1] D. P. Bertsekas and J.. N. Tsitsiklis. Neuro-dynamic Program-

ming. Athena, Belmont, MA, 1996.
[2] C. Boutilier, R. I. Brafman, and C. Geib. Prioritized goal de-

composition of Markov decision processes: Toward a synthe-
sis of classical and decision theoretic planning. In Proc. Fif-
teenth International Joint Conf. on AI, pp.1156–1162, Nagoya,
1997.

[3] C. Boutilier, R. Dearden, and M. Goldszmidt. Exploiting struc-
ture in policy construction. In Proc. Fourteenth International
Joint Conf. on AI, pp.1104–1111, Montreal, 1995.

[4] D. Chapman and L. P. Kaelbling. Input generalization in de-
layed reinforcement learning: An algorithm and performance
comparisons. In Proc. Twelfth International Joint Conf. on AI,
pp.726–731, Sydney, 1991.

[5] T. Dean, R. Givan, and S. Leach. Model reduction techniques
for computing approximately optimal solutions for Markov de-
cision processes. In Proc. Thirteenth Conf. on Uncertainty in
AI, pp.124–131, Providence, RI, 1997.

[6] T. Dean and K. Kanazawa. A model for reasoning about per-
sistence and causation. Comput. Intel., 5(3):142–150, 1989.

[7] R. Dearden and C. Boutilier. Abstraction and approximate de-
cision theoretic planning. Artif. Intel., 89:219–283, 1997.

[8] C. Guestrin, D. Koller, and R. Parr. Max-norm projections for
factored MDPs. In Proc. Seventeenth International Joint Conf.
on AI, pp.673–680, Seattle, 2001.

[9] C. Guestrin, D. Koller, and R. Parr. Multiagent planning with
factored MDPs. In Advances in Neural Info. Processing Sys.
14 (NIPS-2001), Vancouver, 2001.

[10] J. Hoey, R. St-Aubin, A. Hu, and C. Boutilier. SPUDD:
Stochastic planning using decision diagrams. In Proc. Fif-
teenth Conf. on Uncertainty in AI, pp.279–288, Stockholm,
1999.

[11] R. A. Howard. Dynamic Programming and Markov Processes.
MIT Press, Cambridge, 1960.

[12] N. Meuleau, M. Hauskrecht, K. Kim, L. Peshkin, L. P. Kael-
bling, T. Dean, and C. Boutilier. Solving very large weakly
coupled Markov decision processes. In Proc. Fifteenth Na-
tional Conf. on AI, pp.165–172, Madison, WI, 1998.

[13] A. W. Moore and C. G. Atkeson. The parti-game algorithm for
variable resolution reinforcement learning in multidimensional
state spaces. Mach. Learn., 21:199–234, 1995.

[14] R. Patrascu, P. Poupart, D. Schuurmans, C. Boutilier and
C. Guestrin. Greedy linear value-approximation for factored
Markov decision processes. In Proc. Eighteenth National
Conf. on AI, Edmonton, 2002. to appear.

[15] M. L. Puterman. Markov Decision Processes: Discrete
Stochastic Dynamic Programming. Wiley, New York, 1994.

[16] D. Schuurmans and R. Patrascu. Direct value approximation
for factored MDPs. In Advances in Neural Info. Processing
Sys. 14 (NIPS-2001), Vancouver, 2001.

[17] S. P. Singh and D. Cohn. How to dynamically merge Markov
decision processes. In Advances in Neural Info. Processing
Sys. 10, pp.1057–1063. MIT Press, Cambridge, 1998.

[18] J. Tsitsiklis and B. Van Roy. Feature-based methods for large
scale dynamic programming. Mach. Learn., 22:59–94, 1996.

