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Abstract

While supervised learning is widely used for percep-

tion modules in conventional autonomous driving solutions,

scalability is hindered by the huge amount of data label-

ing needed. In contrast, while end-to-end architectures do

not require labeled data and are potentially more scalable,

interpretability is sacrificed. We introduce a novel archi-

tecture that is trained in a fully self-supervised fashion for

simultaneous multi-step prediction of space-time cost map

and road dynamics. Our solution replaces the manually

designed cost function for motion planning with a learned

high dimensional cost map that is naturally interpretable

and allows diverse contextual information to be integrated

without manual data labeling. Experiments on real world

driving data show that our solution leads to lower number

of collisions and road violations in long planning horizons

in comparison to baselines, demonstrating the feasibility of

fully self-supervised prediction without sacrificing scalabil-

ity.

1. Introduction

Conventional autonomous driving (AD) stacks consist of

various modules [30]. A perception component is responsi-

ble for detecting objects in the scene and a prediction mod-

ule for projecting their positions in the future. Based on

their outputs a motion planner generates a desired trajectory

according to a manually specified cost function [6], which

is in turn executed by a controller. A key advantage of this

approach is the interpretability of the final decision. For

example, in case of accident, each component can be inves-

tigated individually. However, with different parts designed

and tuned separately, each module is not aware of the errors

made by the other parts. In many cases, there is no clear

way for estimating the model uncertainty and propagating

*The authors contributed equally.
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Figure 1. High Dimensional Cost Map Estimation.

it to the system. In addition to massive amount of human-

labelled data required to train the perception components,

the manual design and tuning of the cost function for mo-

tion planning tends to limit the system’s ability for dealing

with complex driving scenarios .

As an alternative, several works [2, 7, 34, 5] proposed

driving systems that use raw sensory input to directly pro-

duce control commands (i.e., acceleration and steering).

This approach allows full backpropagation and eliminates

the need for a cost function. Since a large quantity of data

can be collected from cars equipped with appropriate sen-

sors and directly used for training without human labelling,

this approach is potentially highly scalable with data and

compute. However, such a monolithic approach lacks in-

ternally interpretable components, offers little insight as to

how system faults may arise, and is thus ill-suited for safety-

critical real-world deployment.

In this paper, we propose a new approach that allows

meaningful interpretation and avoids manual data label-

ing and design of cost function. Our approach is cen-

tered around a novel architecture for learning-based space-

time Cost Map Estimation (CME). The proposed method is

highly scalable as it can be trained in a fully self-supervised

fashion. Moreover, the space-time cost map has both a

natural interface with motion planner and an interpretable

domain-specific semantics.

Specifically, our architecture encodes high dimensional

Occupancy Grid Maps (OGM)s as well as other contextual

information (e.g., drivable area and intersections) and si-
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multaneously predicts the OGMs and estimate the cost map

for multiple steps into the future. This leads to interpretable

intermediate representations in the form of OGMs. A cost

map (CM) is a grid map where the value of each cell repre-

sents the cost of driving into that cell location. By extending

the predicted CM multiple steps into the future, we arrive

at a sequence of space-time CMs. These CMs can then be

used by a motion planner to rank possible future trajectories

through integrating the cost over the cells these trajectories

occupy.

Importantly, while it is obvious that OGM prediction

training can be made self-supervised using sequences of

driving data (e.g., [16]) so long as occupancy estimation

is accurate, labels for self-supervised training of CM esti-

mation are much harder to synthesize. To solve this prob-

lem, we decompose the CME objective into two parts. The

first one injects the prior knowledge about the environment

where it is available (e.g., occupied cells are high cost).

However, there is no explicit information about the cost of

most of the cells. Hence, we propose using an auxiliary task

to guide the training. Using auxiliary objectives for improv-

ing the performance of a model in a primary task has been

proven to be effective in different fields [13, 29, 3]. Simi-

larly, in this work we define an auxiliary imitation task that

forces the model to predict the expert’s intention and tra-

jectory based on the estimated CMs. For this task a data-

driven set of intentions capturing different modes of driving

is used. This objective term pushes the model to fill in the

blanks and arrive at complete and systematically accurate

predictions of the CM.

The main contributions of this paper are as follows:

• An architecture for estimating CMs simultaneously

with OGM prediction from human driving data that is

fully self-supervised and requires no extra data label-

ing,

• A set of specific training objectives that combines en-

vironment constraints, expert’s behavior, map infor-

mation as well as solving auxiliary imitation tasks

leading to estimating space-time cost maps,

• An empirical demonstration of the effectiveness of this

design in the overall performance of an AD system

through multiple experiments and generalization tests.

2. Related Work

Unlike the monolithic end-to-end approach, our proposal

replaces modules of a conventional AD stack to enable do-

ing a fully self-supervised learning of cost maps. Our main

goal is balancing scalability and interpretability. From this

perspective, we discuss how our work compares and con-

trasts with existing works.

2.1. Cost Design and State Prediction

Conventional motion planners typically optimize trajec-

tories according to a predefined cost function [32, 25, 11].

However, manually defining and tuning a cost is extremely

hard for highly dynamic environments such as driving. This

has led to trade-offs where AD solutions largely avoid dif-

ficult interactions. More recently learning based received

significant attention in planning [17]. Similarly, we aim

at replacing the manual cost function with learning-based

space-time CMs that predict into the future. However, it

is important to note that our proposal is compatible with

both classical and learning-based planning methods insofar

as they can use the predicted CMs to rank candidate trajec-

tories.

Prediction is a crucial part of any AD stack. Learning-

based prediction is increasingly popular in AD research. In

[14], detection, tracking and motion forecasting are done

using a single network. [24] uses a bird’s eye view image

of navigation and the motion history of agent to predict its

future path. [28, 21, 20] combine high dimensional and low

dimensional data to predict multi-modal trajectories. Both

video prediction [34] and OGM prediction [10, 16] have

been done in AD research. In contrast to such work, our

approach aims to simultaneously predict states and estimate

CMs. In many cases, there is no clear way to compute the

uncertainty of the isolated prediction models and propagate

it to the motion planner. Furthermore, although we evalu-

ate the quality of estimated CMs with a specific trajectory

sampler, in our design any set of trajectories can be ranked

using the estimated CMs. Predicting trajectories directly

makes both generalization and adaption to a new or tempo-

rary constraint harder.

2.2. RL and IRL

As a powerful framework for sequential decision mak-

ing, reinforcement learning (RL) makes an attractive choice

for AD research. [19] proposed a hierarchical RL scheme

that divides tasks into high-level decisions and low-level

control. [26] introduced a two-phase approach for cruis-

ing and merging tasks in autonomous driving, where fu-

ture states are first predicted from the current ones and then

an RL planner uses these predictions to output accelera-

tion. These proposals utilize low-dimensional states de-

rived from perceptual processing of high dimensional sen-

sory data. However, by implicitly conflating the processed

low dimensional state estimations as the actual states, error

and uncertainty do not get propagated through to improve

the whole system. Moreover, similar to the case of manual

design of the cost function, defining reward for RL solutions

remains an open research challenge.

Inverse reinforcement learning (IRL) focuses on learn-

ing a reward function from the expert’s behavior, with max-

imum entropy [36] being a popular method. However, stan-
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dard IRL algorithms can not deal with high dimensional

data and continuous space. Some works such as [23] ex-

tended these algorithms to use high dimensional data. But

linear estimation of reward function can adversely limit

generalization of the system. Similar to our work, [33] es-

timates a high dimensional cost map using a maximum en-

tropy deep IRL framework. There are two main differences

between this work and ours. First, the system is not mod-

ular which challenges the interpretability in case of failure.

Second, in such IRL frameworks training the policy and es-

timating the reward is done together. Empirically training

the new policy with the learned reward does not lead to sim-

ilar performance. Hence, if the set of actions or the policy

model needs to be changed, the learned reward may not lead

to similar performance.

2.3. Imitation Learning

Imitation learning (IL) is a standard approach to learning

from expert demonstration. It has the advantage of not re-

quiring costly online exploration typically necessary for RL

methods. [2, 7] follow a monolithic, end-to-end approach

where the network receives images and generates control

commands. While this approach avoids costly data labeling,

direct behavior cloning suffers from cascading errors when

dealing with out-of-distribution inputs. To alleviate this is-

sue, [12] adopted Generative Adversarial Imitation Learn-

ing (GAIL) [9]. But the interpretability challenges remain.

Since highly mature control solutions are widely used in

AD systems, learning to do level control is often unneces-

sary and learning based trajectory planners are more practi-

cal. [1] uses a modular network to generate driving trajecto-

ries. They propose novel data augmentation approaches to

generate scenarios such as collisions which most real-world

datasets lack and give the network a better opportunity to

learn to handle such situations. [35] also has a modular de-

sign where the perception module does 3D object detection

and motion forecasting. A cost volume generation is done

by another component of the overall network. They use

the cost volume to choose a trajectory with the lowest cost.

However, in contrast to our proposal, both of these works

heavily rely on labeled data for the perception components.

3. Technical Approach

We address the problem of predicting a high dimensional

cost map by proposing a modular architecture that can be

trained end-to-end in a self-supervised fashion. We then

use this prediction to evaluate and score different trajecto-

ries. The model takes a sequence of LiDAR point clouds

and other contextual information (e.g. map) as input. It

predicts the future OGMs representing road dynamics and

estimate the space-time cost of driving in each cell of the

OGM simultaneously. The proposed architecture has two

components: (1) an OGM predictor and (2) a CM estimator.

Note that this design adds interpretability because the pre-

dicted OGMs over the planning horizon are independently

semantically meaningful.

3.1. Input Encoding and Network Architecture

On the input side, frames of LiDAR point clouds from

the immediate past are first converted into a sequence of

OGMs. These OGMs are then transformed to a reference

frame attached to the vehicle’s current position. Both pre-

diction and cost estimation are done with respect to this

coordinate system to avoid unnecessary complexity due to

motion of the ego vehicle. Moreover, similar to [1], we en-

coded semantic information from the HD map such as driv-

able area and intersection structure in separate channels. We

then concatenated the map encodings with OGMs to form

the input to the network.

Predicted OGMs are represented by a binary random

variable ok(i, j) ∈ {0, 1} where ok(i, j) is the occupancy

state of the cell at the ith row and the jth column at the kth

time step, with 1 for occupied and 0 for empty. po is the

probability of occupancy associated with each cell. Cost

value at each cell ck(i, j) is coded similarly where 1 and 0

are assigned to high and low cost cells respectively.

We study two alternative architectures. For the Recurrent

Cost Map Estimator (RCME), we assume the CMs in each

time step are conditionally dependent on the information in

previous time steps. For the Multi-Step Cost Map Estima-

tor (MSCME), we omit this assumption. In Section 4 we

show that these two architectures have similar performance

for shorter prediction horizons. The recurrent architecture

performs better for longer planning horizons.
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Figure 2. Recurrent Cost Map Estimator

3.1.1 Recurrent Cost Map Estimator

The RCME incorporates the difference learning method in

[16] for OGM prediction and extends it with our cost es-

timator module to simultaneously predict CMs (Figure 2).

Formally, the output of the network at time step k can be

represented as a two-channel tensor:
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where B1
k and B2

k are the first and second output channels

respectively. ok(i, j) is taken to be independent of the val-

ues of other cells at time step k, but conditioned on values

of all cells in previous time steps. And the same assumption

is made for ck(i, j):

po
(

ok(i, j)|Ok−1,Ok−2, ...
)

(3)

pc
(

ck(i, j)|Ck−1, Ck−2, ...
)

(4)

where

Ok =
{

ok(m,n)|m = 1, ..., H;n = 1, ...,W
}

(5)

Ck =
{

ck(m,n)|m = 1, ..., H;n = 1, ...,W
}

(6)

and m and n are indices ranging over the entire OGM. The

conditional probabilities in Equation 3 and 4 may be cap-

tured using the recurrent architecture proposed. In practice,

a short history suffices. The network observes OGMs for

the past τ time steps and predicts the OGMs for the next T
time steps while estimating a CM at every step.

In reality not every cell in the OGM changes between

two time steps. The Difference Learning module implic-

itly distinguishes between dynamic and static objects. By

adding the features extracted by this module to the previous

observed OGMs B1∗
k or predicted OGMs B̂1

k and stacking

them with the encoded map, the OGM Classifier can be

trained to effectively and efficiently predict if a cell is occu-

pied or not. We did not use the same architecture for esti-

mating CMs as they are not directly observable and impos-

ing such a feedback loop can amplify error in CM estima-

tion. Hence, the stacked OGM features are separately fed

along with the encoded map to the Cost Estimator mod-

ule that consists of an encoder and a decoder. The encoder

has {32, 64} 3 × 3 convolution filters with stride 2. The

decoder has two deconvolution layers with {64, 32} 3 × 3
filters with stride 2 each deconvolution layer is followed by

a convolution layer with the same size and stride 1.

3.1.2 Multi-Step Cost Map Estimator

The MSCME architecture is illustrated in Figure 3. Similar

to RCME, the OGMs and the encoded maps are fed to the

predictor network. The predicted and observed OGMs are

then stacked with the encoded map and passed through an

encoder and then a decoder to estimate a CM for T time

steps. To avoid computationally expensive 3D convolutions

we concatenate time steps along the last dimension. In order

to get similar performance as the previous architecture we

used {32, 64, 128} filters in the encoder and {128, 64, 32,

T} filters in the decoder where T is the number of time steps

we predict the CM for.

CM EstimatorOGM Predictor CMτ :τ+T

OGM

map info.

Figure 3. Multi-Step Cost Map Estimator

3.2. Training Loss

The designed architecture is a multi-task network. The

objective function is accordingly defined to direct the net-

work to learn each task:

Ltotal = w1LPred + w2LCME (7)

where w1 and w2 are hyperparameters. We define each

term in detail below.

3.2.1 Prediction Loss

We follow [16] to formulate OGM prediction as a classi-

fication problem where each cell can be occupied or not.

Hence, the objective function includes a pixel-wise Cross-

Entropy between the predicted OGMs, B̂1, and the target

OGMs, B1∗, multiplied by a visibility matrix, V , described

in [8] to handle occlusion. Due to unbalanced number of

occupied and free cells, we normalize the loss by the ra-

tio of occupied/free cells, η. Finally, to push the predicted

OGMs toward the target OGMs we use Structural Similar-

ity Index Metrics (SSIM) [31]. The OGM prediction loss is

then defined as:

LPred = η
WH

∑

x

∑

y V ⊙H(B̂1, B1∗) + γ(1− SSIM(B̂1, B1
∗

))

(8)

where H and W are the OGM dimensions, ⊙ denotes

the element-wise product, H(a, b) is the pixel-wise cross-

entropy and γ is a hyperparameter.

3.2.2 CM Estimation Loss:

Since there is no ground truth for the CM, defining an objec-

tive function which pushes the network to learn meaningful

CM is challenging. Relying only on the expert’s trajectory

makes it difficult for the network to generalize. The ex-

pert’s trajectory only occupies a few cells and it does not

give information about the most of the surrounding area. To
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Figure 4. Different modes of driving driven from data. Dashed

lines show the mean of each cluster.

address these issues we define an objective function consist-

ing of two terms:

LCME = αLp + βLaux (9)

where α and β are hyperparameters.

Lp is defined to inject the prior knowledge about cell cost

such as the high cost associated with non-drivable areas.

Specifically, Lp is a classification loss comparing the gen-

erated CM and a target Ctarget, which at each time step is 0

for the cells occupied by the expert and 1 for non-drivable

areas and the occupied cells in drivable areas. Since there

is no information about the other cells we do not want to

push the network to assign any values to them. Moreover,

the number of cells belonging to the expert’s trajectory (low

cost cells) are far less in number than the high cost ones. In

order to address both of these issues, we calculate the loss

on a subset of cells selected by a mask, M with 0 and 1 ele-

ments. The total number of 1s is set to a predefined number,

N . M elements are 1 for the pixels occupied by the expert.

The rest of 1s are sampled from the high cost cells, i.e. cells

occupied by objects or in non-drivable area, with the high

cost cells that are occupied having 2 times more chance to

be selected. This ratio empirically speeds up training. The

Lp loss function is then:

Lp =
1

WH

∑

x

∑

y

M⊙H(B2
k, Ctarget) (10)

We added an Imitation Network to the architecture and

defined an auxiliary task in overall objective function, Laux,

in order to indirectly push the CMs to be a representation of

the underlying reason for the expert’s behavior. For this

purpose, a sequence of estimated CMs from time τ to the

prediction horizon τ + T are fed to an encoder. These fea-

tures are then utilized by an intention prediction head and a

a regressor head to predict the expert’s trajectory.

A predefined set of ”intentions” is used to represent dif-

ferent semantic modes made by the expert (e.g. chang-

ing lane, speed up, slow down), I = {ik}Kk=1
where

ik = {sk1 , ...s
k
T } defines a trajectory for T timesteps. These

intentions are derived by clustering the expert’s trajecto-

ries in the dataset (Figure 4). Specifically, we used the

DBSCAN clustering algorithm and Hausdorff distance to

cluster trajectories. Given the CMs, for each intention ik,

the intention predictor head predicts a Bernoulli distribu-

tion p(ik|CMτ :T+τ ) to determine whether the expert chose

that driving mode or not. Hence, each trajectory can be-

long to multiple clusters at the same time. In this way we

do not penalize the network for choosing the modes that

are close to each other. One can also use the soft labels in

a cross-entropy setting where the labels are the normalized

distances to clusters. However, empirically our problem for-

mulation worked better for this architecture. The regressor

head then outputs K offsets, sok, between the mean of each

cluster µk and the expert’s trajectory s∗. We then used a

weighted MSE to optimize the networks.

Laux =
1

K

∑

k

Lcls(pk, p
∗

k) + λ
∑

k

ωkMSE(µk + sok, s
∗)

(11)

where pk is the probability of an intention to be the expert’s

intention, ωk is the normalized distance of the groundtruth

trajectory to each mode and λ is a hyperparameter.

3.3. Motion Planning

To evaluate the quality of the CMs, we use them for mo-

tion planning. We follow [35] to use clothoids [27] as well

as circular and straight lines to define the shape of candidate

trajectories. The velocity profile of a candidate trajectory is

determined by sampling acceleration in the range of [−5, 5]
m/s2 and velocity between 0 and the speed limit. Since

computing the cost of each candidate trajectory using the

estimated CMs is a cheap operation, our motion planning

module is computationally very efficient.

Note that the output of the regressor head for the imita-

tion auxiliary task could in principle be used for trajectory

planning. However, we opt for a simple sampling method

that uses the CMs. This is partly to demonstrate the versa-

tility of the CMs when working with motion planning meth-

ods and partly because the CM estimations are presumably

much more reliable since they integrate by design broader

concerns beyond imitating the expert.

4. Experiments

We applied our approach to the Argoverse [4] dataset.

The LiDAR point clouds are converted to 256 × 256 BEV

with the ground removal described in [15]. Moreover, to

increase the ability of our model in handling occlusions, we

applied a visibility mask as in [8]. We also encoded the

information from the map into 8 different channels.

We report performance on 3 different settings for the
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Figure 5. Low cost trajectories selected by the proposed method. In these experiments the algorithm is forced to pick the trajectories from

different driving modes as described in Section 4.3.1. Each row, is a different scenario where the first column shows the planned trajectory.

In next columns the car is moved according to that trajectory.

Algorithms τ = 1 sec T = 1 sec τ = 2 sec T = 2 sec τ = 1 sec T = 3 sec

Alg. Arch. minADE CR(%) RV(%) minADE CR(%) RV(%) minADE CR(%) RV(%)

BC-MLP 0.05 0.00 0.07 0.79 2.36 2.61 3.18 7.11 5.73
BC

BC-LSTM 0.08 0.00 0.09 0.84 2.57 1.87 3.01 6.19 5.03

RuleCM 1.03 0.34 0.00 2.21 3.18 0.00 3.24 4.93 0.09

MFP.1 0.21 0.00 0.00 1.92 1.18 0.86 3.78 4.33 2.98
MFPK=6 MFP.3 0.21 0.09 0.05 1.92 2.07 0.97 3.78 5.96 3.59

ESP.1 0.41 0.21 0.00 2.07 2.84 1.15 3.97 3.87 4.62
ESPK=6 ESP.3 0.41 0.94 0.36 2.07 2.92 1.42 3.97 5.46 4.93

MSCME.a.1 0.15 0.01 0.00 1.94 0.92 0.01 3.52 1.68 0.05

MSCME.b.1 0.11 0.00 0.00 1.67 0.85 0.00 3.28 1.57 0.01

MSCME.b.3 0.11 0.01 0.00 1.67 0.91 0.00 3.28 1.62 0.01

RCME.a.1 0.18 0.00 0.00 2.74 0.67 0.01 2.92 0.84 0.01

RCME.b.1 0.17 0.00 0.00 2.81 0.59 0.01 2.93 0.78 0.01

CME (ours)

RCME.b.3 0.17 0.00 0.00 2.81 0.64 0.01 2.93 0.82 0.03

Table 1. Argoverse dataset planning evaluation. Note that the .1 and .3 variations using the same models/samples. In .1 we selected the

trajectory with highest probability/lowest cost. In .3 we chose 3. Therefore, the minADE is the same for these variations. Variants of our

method (gray) outperformed other algorithm in term of CR in all of the scenarios.

input sequence length τ and the prediction horizon T .

In all cases, the data is partitioned into 20 sequences of

frames. Thus, the time gap between two consecutive

frames for (τ = 1, T = 1), (τ = 2, T = 2), (τ = 1, T = 3)
are 0.1, 0.2 and 0.2 respectively.

We first evaluate the effectiveness of our approach in tra-

jectory planning using a variety of metrics and compare our

approach to multiple baselines. We quantitatively evaluate

the performance of all these solutions in different planning

horizons. In Section 4.3 we provide multiple ablation stud-

ies to show the effects of different modules and objective

terms in the overall performance of the system.

4.1. Cost Map Estimation

Direct evaluation of predicted CMs is not straightfor-

ward as there is no groundtruth for them. We thus evaluate

their quality by using them with the planning approach de-

scribed in Section 3.3 and compare planning quality under

the following metrics.

• minADE: We used the minimum average displace-

ment error (minADE) min 1

T

∑τ+T

τ ‖ŝ− s∗‖
2

to

measure the minimum drift of the trajectories gener-

ated by each model from the groundtruth. This met-

ric is especially suitable for baselines producing mul-

tiple trajectories as well as the proposed method be-

cause it does not penalize the trajectories that are valid,

but far from the groundtruth. For algorithms that only

produce a single trajectory, minADE reduces to ADE.

Since our solution aims at capturing the underlying

reasons for the expert’s behavior rather than merely

generating trajectories, just minADE with respect to

expert’s trajectories is inadequate.

• Potential Collision Rate (CR): Each selected trajec-
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Algorithms τ = 1 sec T = 1 sec τ = 2 sec T = 2 sec τ = 1 sec T = 3 sec

Alg. Aux minADE CR(%) RV(%) minADE CR(%) RV(%) minADE CR(%) RV(%)

RCME.1 X 0.18 0.00 0.00 2.45 0.67 0.01 2.92 0.84 0.01

RCME.1 0.22 0.00 0.00 2.76 0.89 0.01 3.18 4.02 0.01

RCME.3 X 0.18 0.00 0.00 2.45 0.93 0.01 2.92 1.00 0.01

RCME.3 0.22 0.11 0.06 2.76 2.68 0.03 3.18 7.32 0.12

Table 2. CME with and without the auxiliary task

τ = 1 sec T = 1 sec τ = 2 sec T = 2 sec τ = 1 sec T = 3 sec
CME Methods

minADE CR(%) RV(%) minADE CR(%) RV(%) minADE CR(%) RV(%)

RCME, with pred 0.15 0.01 0.00 1.94 0.92 0.01 3.52 1.68 0.05

RCME, without pred 0.34 0.79 0.00 3.13 7.18 0.00 3.99 11.14 0.00

Table 3. CME with and without the OGM prediction

tory is mapped to the future frames to check if it col-

lides with any object in the scene. While the ego ve-

hicle’s behavior affects other cars’ trajectories in the

real world, for short horizons considered here we may

ignore such interaction.

• Road Violation (RV): The selected trajectory is

mapped to a drivable area to check for possible vio-

lations of traffic rules.

We compare our solution with the following baselines:

• Behavior Cloning(BC): We implemented a BC

learner that receives a sequence of OGMs and the past

trajectory for τ timesteps and generates trajectories

close to those of the human driver. For fair compar-

ison we use the same OGM predictor in our model.

Trajectories are generated with one of two architec-

tures, where BC-MLP uses four CNN layers with [32,

64, 64, 128] filters followed by three mlp layers with

[64, 32, 2T] units and BC-LSTM uses a CNN encoder

with [16, 32] filters to encode map and predicted (Ô)

or observed (O∗) OGMs and predict S for T timesteps.

• Rule-Based Cost Map (RuleCM): Instead of predict-

ing CMs we use hard rules to shape a CM. We assign

high cost to non-drivable areas and the occupied cells

at the present time. The same trajectory generator as in

Section 3.3 is used and driving trajectory with lowest

cost is selected. This baseline highlights the impor-

tance of the predicted cost for motion planning.

• Estimating Social-forecast Probability (ESP): We

compare our results to ESP [21] for the single agent,

using the code published at https://github.

com/nrhine1/precog. We did not do hyper-

parameter tuning, but we used both forward KL and

symmetric cross entropy for the objective function and

reported the best results. We sample 6 trajectories

(K = 6) for evaluation. For CR and RV we chose

top-1 and top-3 trajectories according to the model-

assigned probability and reported the results for both.

These variations are referred to as ESP.1 and ESP.3.

Note that because we use the same samples from the

same model to study if all of the generated trajectories

are useful for planning, the minADE is the same for

these variations.

• Multiple Future Prediction (MFP): MFP [28] is a

multi-modal trajectory prediction solution. We use

code from https://github.com/apple/ml-

multiple-futures-prediction with adapta-

tions to make it work for a single agent. We acknowl-

edge that this adaptation affects the performance of

MFP as the other agents’ trajectories are the key in-

puts to this algorithm. In a complete AD system, such

data may come from perception modules that detect

and track other agents. Since we are studying the per-

formance of prediction in the absence of such mod-

ules, we choose to test MFP in a limit case. We used 3

modes for MFP. Similar to ESP, we use two variations

of sampled trajectories, where MFP.1 and MFP.3 refer

to top-1 and top-3 trajectory selections respectively.

For our solution, we study the performance of both the

RCME and the MSCME architectures. In one setting (vari-

ation .a) we use the trajectories generated according to Sec-

tion 3.3, and in another setting (variation .b) we add the tra-

jectories generated by the imitation network to the samples.

Similar to ESP and MFP, we use top-1 and top-3 trajectories

to evaluate the quality of the trajectories.

4.2. Planning Results

As shown in Table 1, all solutions have low collision rate

(CR) for shorter horizons. As horizon gets longer, history

shorter, and frequency lower, CR increases markedly for all

the algorithms except for ours.

Both BC baselines have low ADE for shorter horizons

(T = 1, 2). This is expected as they explicitly minimize the

difference between predicted and expert’s trajectories. But

for the more challenging settings where they plan trajecto-

ries for 3 seconds based on 1 second of history, the gener-

ated trajectories have higher ADE, CR and RV. In contrast,

even though our solution uses a trajectory sampler to pro-

pose trajectories it has low ADE, CR and RV in all settings.

Adding the predicted trajectory by the imitation network to

the samples helps with the performance in some scenarios.
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τ = 1 sec T = 1 sec τ = 2 sec T = 2 sec τ = 1 sec T = 3 sec
Algorithms

TP TN S100 TP TN S100 TP TN S100

Diff. Learn 81.92 98.32 96.32 80.07 99.08 96.52 78.64 99.26 97.33

RCME 82.13 98.31 97.48 81.96 97.08 93.84 81.38 98.19 95.39

Table 4. OGM prediction with and without CME

RuleCM has a low RV percentage as we manually as-

sign high values to the non-drivable grids. However, its

high CR shows that it cannot handle dynamic objects well.

This highlights the importance of the predictive nature of

our proposed solution.

As mentioned above, we did not tune the hyperparam-

eters for MFP and ESP on Argoverse. [18] reports better

performance for these algorithms but we could not replicate

those results. Multiple factors including the difference in

hyperparameters, preprocessing of the data, prediction hori-

zon and number of samples may have contributed to this

performance gap. We also use the single-agent variant for

both, which forces these algorithms to capture interactions

using high dimensional inputs only. This can potentially

lead to a decline in performance. The high CR of ESP sug-

gests that its architecture may not be effective in capturing

dynamics of the environment and interactions from the high

dimensional features. Moreover, the increase in CR and RV

for top-3 trajectories over top-1 trajectories and also higher

CR and RV even when the performance of these algorithms

are close to the proposed method in terms of minADE show

that the multi-modality of these algorithms may not be di-

rectly suitable for planning. In other words, a small mi-

nADE is not an indication of the admissibility of all the

samples. The authors of ESP used a similar architecture

in [20] and [22] for planning; the authors of MFP also did

a brief study on using MFP for planning [28]. Given the

success of these algorithms in multi-modal trajectory pre-

diction, our experiments suggest that in order to assess their

potential in motion planning they should also be evaluated

with planning metrics such as CR on real-world data.

4.3. Ablation Study

4.3.1 Objective Function

To study the contribution of the proposed auxiliary task we

trained two models with or without it and summarized the

results from the RCME.a setting in Table 2. The results

show that for the more challenging scenario (τ = 3, T = 1)

CR is lower when the auxiliary objective is used. Intuitively,

the auxiliary task does not affect RV as much because Lp

takes the static environment into account. But as the dy-

namics of the environment gets more complex, the role of

the auxiliary objective gets more clear.

For the settings with top-3 trajectories, we explicitly

chose trajectories from different clusters so as to examine

the ability of the system to reason about different scenar-

ios. This leads to a larger effect of the auxiliary objective

(RCME.3 rows in Table 2) even in the easier scenarios, sug-

gesting that the auxiliary task contributes to better general-

ization.

Discussion: We tried to employ the planning objective

introduced in [35] to compare the results. However, the net-

work failed to estimate CMs. We believe due to the highly

sparse nature of that objective, the perception modules in

the architecture are crucial to lead the training.

4.3.2 Network Architecture

We also conducted ablation studies on different modules in

our architecture. First, we replace the OGM predictor in the

MSCME architecture with a CNN encoder so that the model

directly estimates the CM without the help from OGM pre-

dictions. We do this only to MSCME, because in RCME

the CM estimation is embedded inside the OGM prediction

system. The results are summarized in Table 4. This change

leads to a large performance gap in terms of CR, suggesting

that simultaneous OGM prediction extracts better mid-level

features suitable for reasoning about environment dynam-

ics.

While the quality of OGM prediction is not the focus of

this paper, studying it offers more insight into the overall

performance of the system. Thus, we compared the OGM

predictions of RCME with the Difference Learning Ar-

chitecture in [16]. The metrics we use are percentage of

True Positive (TP), True Negative (TN). We also multiply

SSIM by 100 (S100) to make it the same scale as the other

metrics. The results are summarized in Table 3. It is not sur-

prising that RCME has higher TP rate compared to Differ-

ence Learning, because the additional CM estimation task

brings more information to the system, leading to more ac-

curate predictions.

5. Conclusion

The definition of driving cost is highly ambiguous and

should encode human’s driving behavior as well as the envi-

ronment characteristic such as road structure. In this work,

we proposed a novel fully self-supervised approach for es-

timating high dimensional CMs. Due to the importance of

the prediction in CME, part of the network is dedicated for

predicting high-dimensional OGMs. Input and predicted

OGMs, contextual information as well as the human driv-

ing behavior are then utilized to extract features required

to encode expert’s demonstration. We applied the proposed

method to Argoverse dataset and illustrated the effective-

ness of our approach in different planning horizons.
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