
Prediction by Anticipation: An Action-Conditional Prediction Method based on
Interaction Learning

Ershad Banijamali1, Mohsen Rohani1, Elmira Amirloo1, Jun Luo1, Pascal Poupart2
1Noah’s Ark Laboratory, Huawei, Markham, Canada

2School of Computer Science, University of Waterloo, Waterloo, Canada
{ershad.banijamali1,mohsen.rohani,elmira.amirloo,jun.luo1}@huawei.com, ppoupart@uwaterloo.ca

Abstract

In autonomous driving (AD), accurately predicting
changes in the environment can effectively improve safety
and comfort. Due to complex interactions among traffic
participants, however, it is very hard to achieve accurate
prediction for a long horizon. To address this challenge, we
propose prediction by anticipation, which views interaction
in terms of a latent probabilistic generative process wherein
some vehicles move partly in response to the anticipated
motion of other vehicles. Under this view, consecutive data
frames can be factorized into sequential samples from an
action-conditional distribution that effectively generalizes
to a wider range of actions and driving situations. Our pro-
posed prediction model, variational Bayesian in nature, is
trained to maximize the evidence lower bound (ELBO) of the
log-likelihood of this conditional distribution. Evaluations
of our approach with prominent AD datasets NGSIM I-80
and Argoverse show significant improvement over current
state-of-the-art in both accuracy and generalization.

1. Introduction
Predicting the future state of a scene with moving objects

is a task that humans handle with ease. This is due to our
understanding about the dynamics of the objects in the scene
and the way they interact. Despite recent advancements
in machine learning and especially deep learning, teaching
machines such understanding remains challenging.

In this paper, we are interested in predicting the high-
dimensional observations, e.g. in pixel space, of a scene
with multiple interacting agents, where the observations are
ego-centric, i.e. the scene is observed from the standpoint
of one of the agents (ego-agent). Formally, we consider an
action-conditional prediction task, which is defined as find-
ing the next observation from the scene given a sequence of
the past and current observations, o1:t, and the ego-agent’s
action (ego-action) at, i.e. optimizing p(ot+1|o1:t,at). In
particular we consider the prediction task in the challenging

framework of autonomous driving (AD), where there is a
large number of agents in the scene and they have compli-
cated interactions with each other. The common approach in
the literature to tackle this problem is to optimize this con-
ditional probability directly, e.g. [12]. However, since the
observations are heavily affected by the ego-actions, these
models often fail to generalize to larger set of actions than
the training set or to adapt to broader range of environments.
Nevertheless, in many applications, specially AD, such gen-
eralization is of great importance as handling many critical
scenarios require taking actions that are rarely seen in the
data collected from real-world driving.

In order to harness the effect of the action, we propose
a novel approach based on splitting the original problem
into two subproblems where this effect can be learned much
easier. In fact, we break the observation into two sets of
features: 1) ego-features, oegot , which contains the features
related to the ego agent (e.g. its position). 2) environment-
features, oenvt , which contains all other features than the
ego-features including other agents. The action has an effect
on both of these feature sets. Our approach is based on the
idea that sequences of data that include heavy interactions
come from a probabilistic generative process wherein some
reacting agents move partly in response to the anticipated
motion of some acting agents. Therefore, we decompose
p(ot+1|o1:t,at) into two steps: learning p(oegot+1|o1:t,at)
and then learning p(oenvt+1|o1:t,o

ego
t+1), i.e. we first learn how

the action changes the ego-features and then learn how the
environment reacts to this change. However, the effect of the
action on the ego-features is much easier to model and often
does not need to be learned and can be fixed using the domain
knowledge. Then we can learn p(oenvt+1|o1:t,o

ego
t+1) from data,

which is much easier than learning p(ot+1|o1:t,at) since
we only have to learn to predict oenvt+1 based on the effect of
action at on the ego-features oegot+1. Conditioning on at or
oegot+1 is equivalent from an information theoretic perspec-
tive, but conditioning on oegot+1 allows the model to reason
about interactions more easily since the ego effect is already

15621

anticipated. Moreover, such conditioning is valid in prac-
tice as other agents observe the effect of ego-actions not the
actions themselves. Hence, the original action-conditional
prediction task to a great extent is reduced to learning the
interaction of the other agents given the anticipated move-
ment of the ego-agent. For such interaction learning we train
a conditional deep generative model, where we combine a
deterministic mapping that encodes the history of observa-
tions and movement of agents with a stochastic mapping that
reasons about the future interactions. By thus recovering the
latent generative process, our model is capable of achieving
a higher capacity for prediction, i.e. handling a wider range
of actions and driving situations.

We consider the observations in the form of occupancy
grid maps (OGMs), which minimizes the costly and time-
consuming preprocessing (e.g. object detection and track-
ing). The anticipation step is done through transformations
of the original OGM based on motion of the acting vehicle.
Since the observations are ego-centric, these transformations
fix the observation frame from input to target and therefore
the interaction learning can be represented by learning the
displacement of moving objects conditioned on the next posi-
tion of the ego-vehicle. This enables us to extend our model
to a difference learning variant, which works very well in
dense slow urban traffic. Our contributions include:

• A novel modular model for multi-step action-
conditional prediction for AD is proposed, which fac-
torizes historical sequence data into samples drawn
according to an underlying action-conditional distribu-
tion that covers a wider range of actions for predictions
better than current state-of-the-art models. The method
requires no labeling and is scalable with data.

• An extension of the model for difference learning that
outperforms the state-of-the-art in dense traffic.

• Experiment results on two prominent AD datasets
(NGSIM I-80 and Argoverse) with different interac-
tions among vehicles, i.e. highway and urban area,
demonstrating effective coverage of a wide variety of
actions and driving situations. An extensive ablative
study is conducted to investigate the role of each novel
component of our model.

2. Related Work
A large body of literature on prediction tasks in AD is ded-

icated to prediction in low-dimensional space, i.e. position
of the cars in the xy coordinates [15, 6, 18, 2, 5, 1, 33, 28, 13,
25, 26, 27, 3, 34, 17]. In most of these works the prediction
task is done by finding the most probable paths for the ob-
jects in the environment using generative models. Interaction
learning has also been studied in the low-dimensional space
using feature-pooling, attention, and graph-based models
[14, 16, 22]. However, all of these methods need object

detection and tracking (at least at training time), which is
computationally expensive and requires labeled data. More-
over, any error in the object detection and tracking can affect
the whole system and result in catastrophic failure.

Unsupervised prediction of OGMs [8, 31] has also been
studied recently. These methods do not model the effect of
action in prediction and thus fail to capture the interactions.
In [19] and its extension [7] recurrent neural network (RNN)-
based models were employed for OGM prediction. But, both
models need data labeling and object detection. Authors in
[21] proposed a model for multi-step prediction of OGMs
that produces state-of-the-art results on the KITTI dataset[9].
By removing the ego-motion from the whole sequence, all
the frames are mapped to a reference frame in which the
ego-vehicle is frozen, i.e. the global location of the car is
fixed. This way, only moving objects in the scene change
their locations. There are two major differences between
this work and ours. First of all, their predictions are not
action-conditional. Secondly, since we compensate the ego-
motion step-by-step the global location of the ego car is not
fixed. Therefore, in contrast to [21], our model can predict
for much longer horizons.

In [23, 24, 10] OGM prediction is used for path planning.
However, in [23, 24] only one object type (human) is con-
sidered. [10] relies on object detection and the OGMs are
updated using object models. Model-predictive policy with
uncertainty regularization (MPUR) [12], is a state-of-the-art
prediction and planning approach in this area. Although
the model is successful in predicting the effect of existing
actions in the training data, in the case of extreme actions it
fails to predict a valid OGM. Alternatively, in [1] synthetic
extreme actions are added to the training data in order to han-
dle rare scenarios. However, since this is not a theoretically
principled way for generalization, the performance of the
algorithm is still limited by actions directly observed in the
data. Moreover, addition of random actions not grounded in
real interaction contexts can result in invalid scenarios that
do not happen in real life, as the other cars do not react to the
augmented actions. Finally, the method is an object tracking
method with the aforementioned problems.

3. Prediction by Anticipation
The prediction task is described as follows. Given a set

of t observations from the scene, denoted by o1:t, and a
set of k actions denoted by at:t+k−1, predict the future k
observations, ot+1:t+k. Actions are two-dimensional, which
include acceleration, α, and rotation of the steering wheel,
τ , at = [αt, τt]. We try to solve this task by maximizing
the conditional likelihood p(ot+1:t+k|o1:t,at:t+k−1). The
observations include (a) A bird’s-eye view (BEV) image,
denoted by it for time step t, in the form of an OGM with
fixed position, e.g. in the middle of the image, for the ego-
vehicle. (b) Position and velocity of the ego-vehicle in each

15622

direction, which are denoted by pt and vt, respectively, and
are referred to as measurements. These two parts of the
observation are both sensory data from the vehicle. How-
ever, we focus on predicting the images, as the position and
velocity can be deterministically computed given the actions,
as described in the next sections.

3.1. Base model
Let’s assume ot = {oegot ,oenvt }, where oegot includes the

features related to the ego-agent (ego-vehicle), i.e. pt, vt,
and parts of the OGM related to the ego-vehicle, denoted
by iegot . Therefore oegot = {pt,vt, i

ego
t }. The environment-

features, oenvt , include all other features in the observation
than the ego-features. In our application this includes parts of
the OGM that represent other objects in the scene, e.g. other
agents, maps, static objects, etc. Therefore, oenvt = {ienvt }.
The actions of the ego-vehicle (ego-actions) affect both ego-
and environment-features. The first-order effect of the action
is on the ego-features, which can be determined using our
prior knowledge about the dynamics of the ego-vehicle. The
second-order effect is on the environment-feature that should
be learned from data. Thus, to maximize the conditional log-
likehihood of log p(ot+1:t+k|o1:t,at:t+k−1), we first split
it into k autoregressive steps where at each time step the
previous prediction is fed-back to the model. Then for each
time step we factorize the log-likelihood into two terms:

log p(ot+1|o1:t,at) = log p(oegot+1|ot,at)
+ log p(oenvt+1|o1:t,o

ego
t+1). (1)

Note that to determine the next ego-features, we only need
the current observation and action. For the second term, we
assume p(oenvt+1|o1:t,o

ego
t+1,at) = p(oenvt+1|o1:t,o

ego
t+1). This

assumption is based on the fact that the environment does
not observe at directly, rather the other agents only observe
the effect of the ego-action. The actions that we use for
training are extracted from the real data and reflect expert’s
behaviour given the environment’s evolution. Therefore we
can only focus on learning the effect of ego-actions on the
environment and not the opposite. It is also worth men-
tioning that learning p(oenvt+1|o1:t,o

ego
t+1) does not mean that

we assume causality between oenvt+1 and oegot+1. We simply
learn a distribution where there is a non-causal correlation
between oenvt+1 and oegot+1. The idea is that other agents antici-
pate oegot+1 and act accordingly. The conditional distribution
p(oenvt+1|o1:t,o

ego
t+1) models the noise in this anticipation. But

⌧t ⇥ |vt| ⇥�t

�pt = vt�t

pt+1 = pt + �pt

|vt+1| = ↵t�t + |vt|
�✓t = arctan(⌧t|vt|�t)

Figure 2: Computing the effect of actions on the future position,
velocity and change in the direction of the car.

since there is a strong correlation between oenvt+1 and oegot+1,
then conditioning on oegot+1 will be very informative.

To implement this idea, we propose a model that consists
of two sets of modules (Fig. 3a): 1) Rule-based modules
implement the deterministic part of Eq. 1, based on the prior
knowledge. 2) Learning-based (prediction) module learns
the interactions among the agents.

3.1.1 Rule-based modules
These modules are responsible for factorization according to
the presumed underlying generative process. Deterministic
functions and transformations are applied on measurements
and OGMs, respectively, to account for the effect of actions.
Measurements estimator module: Given the actions and
measurements at each time step, computes the next measure-
ments as well as translation and rotation matrices, denoted
by δt = [∆pt,∆θt], for the OGM processing modules:

pt+1,vt+1, δt = fm(pt,vt,at), (2)
An example of fm(.) that has been used in literature [12]
can be seen in Fig. 2. Input OGM transformation
modules (IOTs): In order to apply the first-order effect
of the action in the OGM, we change the position of the
ego-vehicle in the current OGM, it. This transformation
takes the ego-vehicle to its anticipated position at time t+ 1
based on the action. We denote the module that performs
this transformation by IOT1, and the output is denoted by
jegot+1: jegot+1 = IOT1(it, δt).

Moreover, at each time step of training the target OGM,
it+1, is transformed to account for the effect of the action
by reversing the ego-vehicle motion at that point. That is,
we transform the whole target OGM in a way that the ego-
vehicle has the same position as in jegot+1 . We denote the
module for this transformation and its output by IOT2 and
jenvt+1, accordingly: jenvt+1 = IOT2(it+1, δt).

Fig. 1 shows the output of these two modules for a se-
quence of current and target OGMs. Note that after these

Real state of the world

Anticipation
(Output of IOT1)

(Output of IOT2)

Figure 1: Applying the effect of action on the OGMs: Left image: State of the world in OGM it and corresponding action at time t. Middle
image: Anticipated position of the ego-vehicle as the output of IOT1, jegot+1. Right image: Output of IOT2: transformed target OGM (it+1)
that shows the displacement of other agents given the position of ego-vehicle in jegot+1.

15623

Action-conditional prediction model

Fed-back to the model for the next step prediction

Measurements
estimator

IOT2

IOT1 OOT
Prediction module

(a) (b)
Figure 3: (a) The prediction model with all of its components. The measurement estimation module updates the position and velocity of the
ego-vehicle and provides transformation parameters for OGM transformer modules. IOT1 and IOT2 provide information about the first and
second-order effect of action on the OGM, respectively. Prediction module is trained to minimize the cost in Eq. 4. (b) Graphical model at
time t: Left: Generative links, p(.). Right: Variational links, q(.). Observable variables are gray.

two transformations, only the position of the moving objects
will be different in jegot+1 and jenvt+1, while map information
and structure of the fixed objects in the OGM, e.g. buildings,
tree, parked cars, etc., will be the same. Both jegot+1 and jenvt+1

are fed to the prediction module during training.
Note that we use j notation to denote the OGMs af-

ter the applying IOTs, while i denotes the ego-centric
OGMs. So, the original goal of optimizing for the stochastic
mapping p(ienvt+1|o1:t, i

ego
t+1) is equivalent to optimizing for

p(jenvt+1|o1:t, j
ego
t+1), up to some deterministic transformations.

Output OGM transformation module (OOT): This mod-
ule takes the predicted frame and transforms the whole frame
using δt such that the ego-vehicle goes back to its fixed po-
sition in i OGMs and environment-features change accord-
ingly. The output, which ideally should be it+1, is fed back
to the model for the next step prediction. This module is
necessary to close the loop for multi-step prediction.

3.1.2 Learning-based module: Prediction module
The prediction module is the core of our model that predicts
how the environment partially reacts to the ego-action, i.e.
learns p(jenvt+1|o1:t, j

ego
t+1). Using the IOT1 and IOT2 modules

the geometry of the target frame, jenvt+1, remains the same as
the input frame, jegot+1, at each time step, regardless of the ego-
action. Therefore p(jenvt+1|o1:t, j

ego
t+1) is a smoother function

than the original objective function, p(ot+1|o1:t,at). Thus,
p(jenvt+1|o1:t, j

ego
t+1) is intuitively easier to learn. Despite this

simplification, the two objectives have the same optimum
point, i.e. maximizing one leads to maximizing the other.
The first term in Eq. 1 is deterministic and can be removed
from the optimization. Also, jenvt+1 is uniquely determined by
the action at (given it+1). Consequently, we can re-write
the second term of Eq. 1 as log p(jenvt+1|o1:t, j

ego
t+1) .

Bottleneck conditional density estimation: We maximize
the conditional log-likelihood log p(jenvt+1|o1:t, j

ego
t+1) in the

framework of variational Bayes. We build our model upon
a Bottleneck Conditional Density Estimation (BCDE) [29]
model, a special variant of the conditional variational au-
toencoders (CVAEs) [30]. The latent code in BCDE acts as
bottleneck of information and not just a source of random-
ness. The prior on the latent variable in BCDE is conditioned

on the input. Such conditioning makes the model less prone
to overfitting as it allows learning the distribution of the la-
tent code conditioned on input, which is especially helpful
for prediction with large horizon. We consider the graphical
model in Fig. 3b at each time step for this prediction task.
According to our definition of the approximating variational
distribution in the graphical model, and also considering zt
as an information bottleneck between the input, o1:t and
jegot+1, and the target, jenvt+1, the ELBO to be maximized will
have the following form:

log p(jenvt+1|o1:t, j
ego
t+1) ≥ Eq∗(zt)[log p(jenvt+1|zt)]
− KL

(
q∗(zt)||p(zt|o1:t, j

ego
t+1)

)
, (3)

where q∗(zt) = q(zt|o1:t, j
ego
t+1, j

env
t+1). We implement each

of the conditional probability distributions in Eq. 3 using a
neural network and denote the parameters of pψ(.) and qφ(.)
by ψ and φ, respectively.
Reconstruction loss and structural similarity: The first
term in the ELBO in Eq. 3, can be interpreted as a recon-
struction loss in the pixel space that measures the difference
between the target OGM, jenvt+1, and predicted OGM, ĵenvt+1,
and we denote it byD(jenvt+1, ĵ

env
t+1). Depending on the type of

values in the OGM being continuous or binary we consider
Gaussian (with identity covariance matrix) or Bernoulli dis-
tributions for the output and replace D(jenvt+1, ĵ

env
t+1) with the

mean squared error (MSE) or the cross entropy (CE), respec-
tively. We also add an auxiliary term to our reconstruction
loss that computes the Structural Similarity Index (SSIM)
[32] loss between prediction and target. The experiments
show the effectiveness of adding this term in improving the
quality of the predicted frames. The weight of the SSIM
term, λ, is set using the validation set. The final training
objective to be minimized is:

Lt = D(jenvt+1, ĵ
env
t+1)+λ

(
1− SSIM(jenvt+1, ĵ

env
t+1)

)︸ ︷︷ ︸
Lrec.

t

+KL
(
qφ(zt|o1:t, j

ego
t+1, j

env
t+1)||pψ(zt|o1:t, j

ego
t+1)

)︸ ︷︷ ︸
LKL

t

. (4)

15624

OGM
transformations

Shared encoders between and

Unshared encoders

Decoder network
Motion encoder

Deterministic encoder

Combine
codes

Figure 4: The prediction module at the training time. The measurements are encoded using fully-connected networks, while we use
convolutional neural networks to encode and decode OGMs. Reparametrization trick is used for the sampling steps.

For a multi-step prediction with horizon k a summation over
Lt is minimized: min

ψ,φ

∑k−1
j=0 Lt+j .

Code splitting and sampling from prior: The second
term, is a KL divergence regularization that minimizes the
distance between the output distributions of pψ(.) and qφ(.)
encoders. Since the observations are highly dynamic with
many objects in the scene, merely minimizing the KL di-
vergence does not provide a proper training for the pψ(.)
encoder. Therefore we employ two ideas to better match
these two distributions.

1) We split the latent code zt into two parts with two
different sets of encoders. For the first part we do not use the
target frame as the input of the qφ(.) encoder and therefore
its parameters can be shared with the pψ(.) encoder, which
guarantees the minimization of KL divergence. We call this
part, shared code and since it only encodes the previous and
current observations we assume it is partly deterministic. For
the second part, called unshared code, we assume Gaussian
distributions for both the conditional prior pψ(zt|o1:t, j

ego
t+1)

and the variational posterior qφ(zt|o1:t, j
ego
t+1, j

env
t+1) and min-

imize their KL divergence. This part of zt encodes informa-
tion about the target, jenvt+1, and its stochasticity represents
the uncertainty about the future. By combining this splitting
idea with the BCDE model we introduce another important
difference with the vanilla CVAE model, i.e. instead of con-
catenating the stochastic code with our high-dimensional
input, we concatenate it with an encoded version of the input
that keeps only useful information. This makes the struc-
ture of the decoder simpler with far fewer parameters, and
therefore easier to train.

2) To make sure that the encoder of pψ(.) for the unshared
code is trained properly, we randomly switch between the
stochastic samples of the pψ(.) and qφ(.) encoders, i.e. η%
of the time the samples are drawn from pψ(zt|o1:t, j

ego
t+1) in-

stead of qφ(zt|o1:t, j
ego
t+1, j

env
t+1). This way the pψ(.) encoder

is trained by backpropagating both errors of the KL term and

the reconstruction term. In our experiments we set η = 10.

3.2. Difference Learning (DL)

After the OGM transformations, the difference between
jegot+1 and jenvt+1 is only in the position of the moving objects.
Therefore we also propose a variant of our model that explic-
itly learns the difference between the two OGMs, denoted
by jdiff

t+1 = jenvt+1 − jegot+1. In fact, jdiff
t+1 represents the motion

of other agents in the pixel space. Fig. 5 shows the differ-
ence learning module. One issue with this model is that,
for incorrect predictions during training, adding ĵdiff

t+1 to the
input frame jegot+1 causes ĵenvt+1 to go out of the range of the
input. This is especially problematic for multi-step predic-
tion when this error is accumulated. A similar structure has
been suggested in [21] for predicting binary OGMs, where a
classifier layer is used after the summation to take the result
within the input range. Although this can potentially resolve
the issue, adding such classifier makes the learning process
very slow. This is because the classifier ideally acts as a
(sigmoid-shaped) clipper and the derivative of the clipper for
the out of range values, caused by the actual error, is very
small. Instead, in our model we keep the first term of our
reconstruction loss the same as before and for the SSIM part
we clip the prediction ĵenvt+1 and then compute the SSIM:

Lrec.
t = D(jenvt+1, ĵ

env
t+1)+λ

(
1−SSIM(jenvt+1, clip(̂jenvt+1))

)
. (5)

This enables us to backpropagate the incorrect difference
predictions through the D(jenvt+1, ĵ

env
t+1) term and also to make

use of the SSIM term. For future time-steps the clipped
output is fed back to the network.

Prediction module

Figure 5: Difference learning module

15625

Motion Encoding: To further enhance the predictive power
of our model we capture the past motion of other agents in
the scene by encoding the difference between consecutive
OGMs in the input sequence. In fact, we built a sequence
of jdiff

1:t from the input observations and encode it as a part
of the shared code. While i1:t contain information about
motion of other agents, jdiff

1:t highlight such motion relative to
the ego-vehicle and therefore encoding jdiff

1:t allows reasoning
about higher level motion features such as intention of other
agents. We model these features by a Gaussian distribution
N (µ(jdiff

1:t), εI), where µ(jdiff
1:t) is a neural network and ε is a

constant (ε = 0.5 in the experiments). Motion encoding is
used in both the base model and the DL variant.

Fig. 4 provides a high level architecture of the model.
The implementation details of the prediction module are
provided in the supplementary material.

4. Experiments
In this section, we evaluate the performance of our model,

i.e. prediction by anticipation and its difference learning
extension, referred to as PA and PA-DL, respectively.

Baselines: The proposed model is an OGM-in OGM-
out model and therefore we compare its performance with
two similar prediction models, which are, to the best of
our knowledge, the state-of-the-art for this unsupervised
prediction task:

• Forward Model in Model-Predictive Policy Learn-
ing with Uncertainty Regularization (FM-MPUR)
[12]: FM-MPUR is a CVAE-based model, which
aims to directly maximize the log-likelihood
log p(ot+1:t+k|o1:t,at:t+k−1). Moreover, latent
code of the FM-MPUR model has an unconditioned
prior. Therefore, latent samples are independent
of the input frames. This can potentially hurt
the prediction accuracy for longer horizons. The
code for this model is publicly available: https:
//github.com/Atcold/pytorch-PPUU.

• RNN-based model with Difference Learning com-
ponent (RNN-Diff) [21]: RNN-Diff is an encoder-
decoder structure that uses an RNN in the code space.
Encoding and decoding are done using convolutional
layers. The main idea in RNN-Diff is removing the
ego-actions for a whole sequence of frames as if the
ego-vehicle does not move and the scene is observed by
a fixed observer for the whole sequence. Therefore they
can just focus on predicting the movement of dynamic
objects in a fixed scene by learning the difference be-
tween consecutive frames. We use the best architecture
of their model, named RNN-Diff2.1, for comparison.
We received the code for this model from the authors.

FM-MPUR takes 20 frames as its input. However, we
found 10 input frames to be as rich as 20 in terms of in-

formation about the past, i.e. the Markov property of the
sequence is preserved by 10 frames. Therefore a sum over
the conditional log-likelihood can result in a log-likelihood
of the whole training set. The RNN-Diff2.1 model also uses
10 input frames. We use sliding window method for training
the models.

Metrics: For real-valued OGMs we report MSE. For bi-
nary OGMs we assign class 1 (positive) to occupied pixel
and class 0 (negative) to free pixels and report the results in
terms of classification scores, i.e. true positive rate (TPR)
and true negative rate (TNR). This enable us to distinguish
between the accuracy of predicting occupied and free pixels.
TPR is the more important metric for safe driving as it shows
how well a model predicts the obstacles in the environment.
We also report the results in terms of average log-likelihood
(ALL). In fact, we use kernel density estimation (KDE) by
approximating the pdf of the training data using 10K training
samples and then evaluating the approximated pdf on the pre-
dicted frames of the test sequences with different prediction
horizons. We use Gaussian kernel with σ = 0.1.

4.1. Prediction under different driving situations

We ran our experiments on two complimentary datasets,
one high-speed highway traffic and the other low-speed
dense urban traffic. These two datasets cover a large set
of real-life driving scenarios.
NGSIM I-80 dataset: The Next Generation Simulation pro-
gram’s Interstate 80 (NGSIM I-80) [11] dataset consists of
3 batches of 15-minute of recordings from traffic cameras
mounted over a stretch of a highway in the US. Driving
behaviours are complex with complicated interactions be-
tween vehicles moving at high speed. This makes the future
state difficult to predict. We follow the same preprocessing
proposed in [12] to make the datasets. The images are real-
valued RGB with size 117 × 24. The ego-vehicle is in the
center of the blue channel. Other (social) vehicles are in the
green channel, which can also be interpreted as the OGM.
The red channel has the map information, e.g. lanes.

We train each model using two batches of the 15-minute
recording and test it on the third batch and repeat this process
three times to cover all combinations. For both PA and PA-
DL, we put λ = 0.05 in the reconstruction cost. Results
are shown in Tables 1 and 2. Since the speed of the ego-
vehicle is high in this dataset, removing the ego-motion for
the whole sequence to train the RNN-Diff2.1, significantly
reduces the size of meaningful pixels in the input and target
frames and make them practically unusable for training a
multi-step model. Therefore the reported results are from
a model trained for single-step prediction. This is why its
performance dramatically drops for larger values of k. As
we can see, PA and PA-DL outperform FM-MPUR. Due to
high-speed driving of agents, their positions have dramatic
changes from one frame to the next one, in many cases.

15626

Car ahead of ego-vehicle getting farther
(driving in the same direction as the
ego-vehicle but with higher speed)

Car turning right at the intersection

0.1s 0.2s 0.3s 0.4s 0.5s 0.6s 0.7s 0.8s 0.9s 1.0s

Ta
rg

et

se
q

u
en

ce

Se
q

u
en

ce
 o

f
P

re
d

ic
te

d

d
if

fe
re

n
ce

s

0.1s 0.2s 0.3s 0.4s 0.5s 0.6s 0.7s 0.8s 0.9s 1.0s

OIT

P
re

d
ic

te
d

se
q

u
en

ce
b

y
PA

-D
if

f.

Figure 6: Left: OGM prediction of PA-DL for the Argoverse dataset. Top row shows the target sequence. Middle row shows the sequence
of predicted differences, learned by the model, where red areas (negative values) are erased from the frame and green areas (positive values)
are added to build the next frame. Bottom row shows the final predicted frame. We demonstrate the mechanism to build the predictions for
the first time step. Right: Zoomed-in first predicted difference. Difference learning allows reasoning about the motion of other agents.

Dataset→ NGSIM I-80 Argoverse

Method MSE TPR TNR TPR TNR TPR TNR TPR TNR
k = 1 k = 5 k = 10 k = 20 k = 1 k = 5 k = 10 k = 20

FM-MPUR 3.4± 0.1 4.7± 0.2 5.2± 0.2 7.8± 0.1 96.24 99.68 88.44 97.12 74.62 94.21 65.60 85.31
RNN-Diff2.1 4.2± 0.2 14.5± 0.3 36.6± 1.1 80.2± 2.0 99.21 99.91 93.19 99.85 87.23 99.27 80.55 93.92
PA 2.9± 0.2 4.1± 0.1 4.7± 0.1 6.2± 0.2 99.18 99.89 94.12 99.76 90.14 99.48 83.17 96.87
PA-DL 3.3± 0.1 4.6± 0.1 5.1± 0.2 6.7± 0.3 99.40 99.91 97.13 99.83 92.55 99.71 87.98 98.02

Table 1: Comparison of different models in terms of MSE for NGSIM I-80 and TPR/TNR for Argoverse. For this table predictions for all
methods except RNN-Diff2.1 are generated using the mean value for the latent code.

Dataset→ NGSIM I-80 Argoverse
Method k = 1 k = 5 k = 10 k = 20 k = 1 k = 5 k = 10 k = 20

FM-MPUR 212.6± 5.3 207.1± 6.9 201.4± 5.1 187.3± 7.5 624.3± 8.1 609.5± 5.6 538.4± 6.2 461.7± 4.5
RNN-Diff2.1 194.2± 7.1 141.3± 3.6 71.1± 3.4 26.6± 1.1 656.2± 2.9 631.0± 3.0 603.1± 5.6 545.6± 5.8
PA 236.9± 2.7 232.66± 3.9 225.4± 2.4 211.2± 5.2 661.1± 6.7 657.1± 7.9 635.2± 5.3 590.7± 4.2
PA-DL 221.7± 1.7 217.5± 3.1 210.2± 4.8 202.9± 5.1 674.6± 2.2 660.2± 2.2 642.2± 3.9 603.4± 3.7

Table 2: Comparison of different models in terms of ALL.

Consequently, PA performs slightly better than PA-DL.
Argoverse dataset: For the urban area driving, the OGM
sequences are obtained from the Argoverse raw dataset [4].
The dataset contains many different actions and maneuvers,
e.g. stops and turns, in slow pace. The LiDAR point-clouds,
collected at 10Hz, are converted to BEV 256× 256 binary
OGMs using ground removal proposed in [20]. We compare
the performance of the models in terms of TPR/TNR and
ALL in Tables 1 and 2, respectively. Argoverse dataset has
more complicated OGM structures and, unlike NGSIM I-80,
the ego-motion is usually small and consecutive frames have
slight differences. Therefore, PA-DL outperforms PA, and
both PA and PA-DL outperform FM-MPUR significantly.

PA-DL and RNN-Diff2.1 perform closely for short-
horizon predictions. Again, since in RNN-Diff2.1 the envi-
ronment is observed from a fixed point, when k is large the
dynamic objects eventually leave the scene and the predic-
tions deviate from the actual ground truth. In PA-DL, the
difference learning is done step-by-step. As we can see, the
performance gap between RNN-Diff2.1 and PA-DL enlarges
as k grows. Fig. 6 shows a sample sequence of the Argoverse
dataset as well as the outputs of the PA-DL model.

The results of Tables 1 and 2 show that the proposed
models outperform the two baselines with a significant mar-

gin. Moreover, each of the baselines fails in one of the two
datasets, while PA and PA-DL perform the prediction task
successfully for both datsets, i.e. both driving situations.

4.2. Prediction for rare actions

In this section we study the performance of the PA and PA-
DL algorithms in the presence of rare actions and investigate
the effectiveness of employing prior knowledge in providing
robustness against the actions that are rare in the training
data. Specifically we consider the NGSIM I-80 dataset.

We use the trained models with each of the batches of
15-minute recordings and apply actions that are rarely seen
in the training set but are still in the maneuverability range of
vehicles. We use the distributions shown in Fig. 7a to sample
these actions and apply them to randomly selected sequences
of the test set and predict for different prediction horizons.
For comparison, we use the FM-MPUR algorithm. Since
there is no ground truth, we only report the ALL results.

Table 3 summarizes the evaluation results. It shows that
our models significantly outperform FM-MPUR for this task,
especially for longer prediction horizons. This suggests that
learning environment-features based on the anticipated ego-
features makes the prediction task easier to learn for our
model, which supports our initial intuition. In fact, by apply-

15627

RotationAcceleration

D
en

si
ty

D
en

si
ty

1e-2

(a)

FM
-M

P
U

R
PA

0.1s 0.2s 0.3s 0.4s 0.5s 0.6s 0.7s 0.8s 0.9s 1.0s 1.1s 1.2s 1.3s 1.4s 1.5s 1.6s 1.7s 1.8s 1.9s 2s

(b)
Figure 7: (a) Distribution of actions. (b) Effect of constantly applying rare actions on the prediction of PA and FM-MPUR models.

Method ALL
k = 1 k = 5 k = 10 k = 20

FM-MPUR 197.3± 6.2 175.7± 5.1 112.1± 7.7 76.4± 4.1
PA 226.1± 2.3 218.6± 4.1 202.2± 3.8 180.4± 6.6
PA-DL 213.4± 6.8 200.4± 4.9 192.9± 3.5 174.8± 7.9

Table 3: comparison of predictions of PA, PA-DL, and FM-MPUR using rare actions.
Dataset→ NGSIM I-80 Argoverse

Method MSE TPR TNR TPR TNR TPR TNR TPR TNR
k = 1 k = 5 k = 10 k = 20 k = 1 k = 5 k = 10 k = 20

PA (no RBM) 3.2± 0.2 4.5± 0.2 5.0± 0.1 7.2± 0.4 97.03 99.74 90.15 97.98 80.12 95.23 72.12 88.63
PA (no BCDE) 3.1± 0.3 4.2± 0.4 4.7± 0.2 6.9± 0.3 99.01 99.84 93.20 99.64 88.18 99.22 80.14 92.20
PA (no ME) 3.1± 0.2 4.3± 0.4 4.8± 0.3 6.7± 0.2 98.65 99.75 92.51 98.50 86.19 98.98 81.35 92.71
PA-DL (no RBM) 4.1± 0.4 6.9± 0.3 7.3± 0.1 10.8± 0.2 95.51 99.83 91.94 97.72 81.25 95.74 70.55 86.30
PA-DL (no BCDE) 3.4± 0.2 4.7± 0.1 5.6± 0.2 8.4± 0.2 99.20 99.88 96.95 99.70 90.62 99.51 83.24 91.95
PA-DL (no ME) 3.6± 0.2 4.7± 0.1 5.4± 0.2 8.1± 0.3 99.05 99.80 96.54 99.71 91.14 99.59 84.64 94.34

Table 4: Results of ablative study on the contributing factors to the performance of our models. no RBM: a model without rule-based
modules. no BCDE: a CVAE-based model with unconditioned prior for the latent code. no ME: a model without motion encoding.

ing the extreme actions, the OGMs change dramatically from
one time step to the next one. However, we can compensate
this change by applying the anticipated modifications to the
target OGM. Fig. 7b shows the result of applying rare ac-
tions, a = [−25, 0], for 20 consecutive steps, which can be
identified as a very low-probable action sequence according
to the distributions in Fig. 7a. This is equivalent to a hard
brake in the middle of the road. As we can see our model
can predict almost perfectly, while the FM-MPUR model
fails after a few predictions. Location of the nearby social
vehicles show that the model has learned the dynamics of the
traffic: as the ego-vehicle brakes hard, other vehicles con-
tinue to move normally except for the one behind it, which
is forced to slow down significantly.

4.3. Ablation study
There are three main factors contributing to the better

performance of our model compared to the baselines: 1)
Employing prior knowledge using rule-based modules to
set up the anticipation-interaction training. 2) Employing
the bottleneck model that conditions the prior of the latent
code on input. 3) Encoding absolute motion of other agents.
We conduct an ablative study on each of these factors for
both PA and PA-DL models and provide the results in Table
4 based on MSE and TPR/TNR. Comparing the results of
this table with Table 1, we can see that while all factors
are contributing, the rule-based modules contribute more.
Since the difference learning is a byproduct of our main idea
of, removing the rule-based modules degrades the perfor-

mance of PA-DL significantly. Also motion encoding plays
a slightly more important role than the BCDE (conditioned
prior) model. The effect of using conditioned prior becomes
more apparent for larger values of k. ALL results for both
regular and low-probable action settings are provided in the
supplementary materials, which show similar behaviors. We
also present an ablation study on the effect of the SSIM term
on the reconstruction loss in the supplementary materials.

5. Conclusion
We proposed that an observed interaction sequence can

be explained by an underlying generative process wherein
some agents act partly in response to the anticipated action
of other agents. Based on this view, we factorized the in-
teraction sequence into anticipated action and anticipated
partial reaction, thereby setting up an action-conditional
distribution. We designed a bottleneck conditional density
estimation model to learn the distribution. In comparison
to the baselines, our model achieves a higher capacity for
prediction: it reaches higher accuracy, it handles rare actions
much better, it is able to perform well under different driv-
ing situations, including high-speed highway driving and
complicated urban navigation. While our experiments are
limited to vehicle-vehicle interaction, insofar as the under-
standing generative process is pertinent, our method may
also generalize well to other tasks, such as prediction of
pedestrian-vehicle interaction, or to other multi-agent do-
mains. Finally, because our model is action conditional, it
can serve as a world-model for many downstream tasks.

15628

References
[1] Mayank Bansal, Alex Krizhevsky, and Abhijit Ogale. Chauf-

feurnet: Learning to drive by imitating the best and synthe-
sizing the worst. arXiv preprint arXiv:1812.03079, 2018.
2

[2] Sergio Casas, Wenjie Luo, and Raquel Urtasun. Intentnet:
Learning to predict intention from raw sensor data. In Con-
ference on Robot Learning, pages 947–956, 2018. 2

[3] Yuning Chai, Benjamin Sapp, Mayank Bansal, and Dragomir
Anguelov. Multipath: Multiple probabilistic anchor tra-
jectory hypotheses for behavior prediction. arXiv preprint
arXiv:1910.05449, 2019. 2

[4] Ming-Fang Chang, John Lambert, Patsorn Sangkloy, Jagjeet
Singh, Slawomir Bak, Andrew Hartnett, De Wang, Peter Carr,
Simon Lucey, Deva Ramanan, et al. Argoverse: 3d tracking
and forecasting with rich maps. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pages 8748–8757, 2019. 7

[5] Henggang Cui, Vladan Radosavljevic, Fang-Chieh Chou,
Tsung-Han Lin, Thi Nguyen, Tzu-Kuo Huang, Jeff Schneider,
and Nemanja Djuric. Multimodal trajectory predictions for
autonomous driving using deep convolutional networks. In
2019 International Conference on Robotics and Automation
(ICRA), pages 2090–2096. IEEE, 2019. 2

[6] Nachiket Deo and Mohan M Trivedi. Convolutional social
pooling for vehicle trajectory prediction. In Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition Workshops, pages 1468–1476, 2018. 2

[7] Julie Dequaire, Peter Ondrúška, Dushyant Rao, Dominic
Wang, and Ingmar Posner. Deep tracking in the wild: End-
to-end tracking using recurrent neural networks. The Interna-
tional Journal of Robotics Research, 37(4-5):492–512, 2018.
2

[8] Alberto Elfes. Occupancy grids: A stochastic spatial rep-
resentation for active robot perception. arXiv preprint
arXiv:1304.1098, 2013. 2

[9] Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel
Urtasun. Vision meets robotics: The kitti dataset. Interna-
tional Journal of Robotics Research (IJRR), 2013. 2

[10] Om K Gupta and Ray A Jarvis. Optimal global path plan-
ning in time varying environments based on a cost evaluation
function. In Australasian Joint Conference on Artificial Intel-
ligence, pages 150–156. Springer, 2008. 2

[11] John Halkias and James Colyar. Ngsim interstate 80 freeway
dataset. US Federal Highway Administration, FHWA-HRT-
06-137, Washington, DC, USA, 2006. 6

[12] Mikael Henaff, Alfredo Canziani, and Yann LeCun. Model-
predictive policy learning with uncertainty regularization for
driving in dense traffic. arXiv preprint arXiv:1901.02705,
2019. 1, 2, 3, 6

[13] Yingfan Huang, Huikun Bi, Zhaoxin Li, Tianlu Mao, and
Zhaoqi Wang. Stgat: Modeling spatial-temporal interactions
for human trajectory prediction. In Proceedings of the IEEE
International Conference on Computer Vision, pages 6272–
6281, 2019. 2

[14] Thomas Kipf, Ethan Fetaya, Kuan-Chieh Wang, Max Welling,
and Richard Zemel. Neural relational inference for interacting

systems. In International Conference on Machine Learning,
pages 2688–2697. PMLR, 2018. 2

[15] Namhoon Lee, Wongun Choi, Paul Vernaza, Christopher B
Choy, Philip HS Torr, and Manmohan Chandraker. Desire:
Distant future prediction in dynamic scenes with interacting
agents. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 336–345, 2017. 2

[16] Jiachen Li, Fan Yang, Masayoshi Tomizuka, and Chiho Choi.
Evolvegraph: Multi-agent trajectory prediction with dynamic
relational reasoning. Advances in Neural Information Pro-
cessing Systems, 33, 2020. 2

[17] Ming Liang, Bin Yang, Wenyuan Zeng, Yun Chen, Rui Hu,
Sergio Casas, and Raquel Urtasun. Pnpnet: End-to-end per-
ception and prediction with tracking in the loop. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 11553–11562, 2020. 2

[18] Yuexin Ma, Xinge Zhu, Sibo Zhang, Ruigang Yang, Wenping
Wang, and Dinesh Manocha. Trafficpredict: Trajectory pre-
diction for heterogeneous traffic-agents. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 33,
pages 6120–6127, 2019. 2

[19] Anton Milan, S Hamid Rezatofighi, Anthony Dick, Ian Reid,
and Konrad Schindler. Online multi-target tracking using
recurrent neural networks. In Thirty-First AAAI Conference
on Artificial Intelligence, 2017. 2

[20] Isaac Miller and Mark Campbell. A mixture-model based
algorithm for real-time terrain estimation. Journal of Field
Robotics, 23(9):755–775, 2006. 7

[21] Nima Mohajerin and Mohsen Rohani. Multi-step prediction
of occupancy grid maps with recurrent neural networks. In
Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 10600–10608, 2019. 2, 5, 6

[22] Abduallah Mohamed, Kun Qian, Mohamed Elhoseiny, and
Christian Claudel. Social-stgcnn: A social spatio-temporal
graph convolutional neural network for human trajectory pre-
diction. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 14424–14432,
2020. 2

[23] Hiroshi Noguchi, Takaki Yamada, Taketoshi Mori, and To-
momasa Sato. Mobile robot path planning using human pre-
diction model based on massive trajectories. In Networked
Sensing Systems (INSS), 2012 Ninth International Conference
on, pages 1–7. IEEE, 2012. 2

[24] Takeshi Ohki, Keiji Nagatani, and Kazuya Yoshida. Collision
avoidance method for mobile robot considering motion and
personal spaces of evacuees. In Intelligent Robots and Systems
(IROS), 2010 IEEE/RSJ International Conference on, pages
1819–1824. IEEE, 2010. 2

[25] Seong Hyeon Park, ByeongDo Kim, Chang Mook Kang,
Chung Choo Chung, and Jun Won Choi. Sequence-to-
sequence prediction of vehicle trajectory via lstm encoder-
decoder architecture. In 2018 IEEE Intelligent Vehicles Sym-
posium (IV), pages 1672–1678. IEEE, 2018. 2

[26] Nicholas Rhinehart, Kris M Kitani, and Paul Vernaza. R2p2:
A reparameterized pushforward policy for diverse, precise
generative path forecasting. In Proceedings of the European
Conference on Computer Vision (ECCV), pages 772–788,
2018. 2

15629

[27] Nicholas Rhinehart, Rowan McAllister, Kris Kitani, and
Sergey Levine. Precog: Prediction conditioned on goals in
visual multi-agent settings. In Proceedings of the IEEE Inter-
national Conference on Computer Vision, pages 2821–2830,
2019. 2

[28] Tim Salzmann, Boris Ivanovic, Punarjay Chakravarty, and
Marco Pavone. Trajectron++: Multi-agent generative trajec-
tory forecasting with heterogeneous data for control. arXiv
preprint arXiv:2001.03093, 2020. 2

[29] Rui Shu, Hung H Bui, and Mohammad Ghavamzadeh. Bot-
tleneck conditional density estimation. In Proceedings of the
34th International Conference on Machine Learning-Volume
70, pages 3164–3172. JMLR. org, 2017. 4

[30] Kihyuk Sohn, Honglak Lee, and Xinchen Yan. Learning
structured output representation using deep conditional gener-
ative models. In Advances in neural information processing
systems, pages 3483–3491, 2015. 4

[31] EG Tsardoulias, A Iliakopoulou, Andreas Kargakos, and
Loukas Petrou. A review of global path planning methods for
occupancy grid maps regardless of obstacle density. Journal
of Intelligent & Robotic Systems, 84(1-4):829–858, 2016. 2

[32] Zhou Wang, Alan C Bovik, Hamid R Sheikh, Eero P Simon-
celli, et al. Image quality assessment: from error visibility to
structural similarity. IEEE transactions on image processing,
13(4):600–612, 2004. 4

[33] Ruslan Salakhutdinov Yichuan Charlie Tang. Multiple futures
prediction. arXiv preprint arXiv:1911.00997, 2015. 2

[34] Wenyuan Zeng, Wenjie Luo, Simon Suo, Abbas Sadat, Bin
Yang, Sergio Casas, and Raquel Urtasun. End-to-end inter-
pretable neural motion planner. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pages 8660–8669, 2019. 2

15630

