Asymptotic Theory for Linear-Chain Conditional Random Fields
- Supplementary Material -

PROOF OF THEOREM 1

The existence of the asymptotic ratios r;; is well-
known (Lemma 3.4, Seneta, 2006). Let us establish
the geometric rate. For any ¢ x f-matrix A = (a;;),
define
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Note that ¢(A) < 1. Using the concept of Birkhoff’s
contraction coefficient, one can show that
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(Chapter 3, Seneta, 2006). With 12 defined in Lemma

1 and using the fact that /(M) < 1, we obtain
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After a few elementary algebraic manipulations and
applying Bernoulli’s inequality, we obtain
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Now, note that the quantities
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are non-increasing and non-decreasing with n, respec-
tively (Lemma 3.1, Seneta, 2006). Moreover, by the

definition of ¢(-), the ratio of the minimum to the max-
imum is greater than ¢(M ). O

PROOF OF THEOREM 2

We show that ¢ and x satisfy
[P (G = g Yerk = yin | X = @)
—PA(Yi=yt,.  Yigr =ypsr | X =) | < cr”

for all n € N such that —n < t and n > t+k. Introduce
the vectors 7;(n) and 7;(n) with the kth components

given by
min g"(k,:’l) ,
1€y (4,1)
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In the same way, we define vectors s;(n) and 5;(n)

with respect to H,,. It is easy to see that
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Furthermore, according to Theorem 1,
L—(n)TF%-(n) < rlI'Fs; < 7(n)TFs;(n).
Hence,
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According to Theorem 1, we obtain
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where || F|| stands for the sum of all components of F'.
Putting all together, we have

T
—r; Fs;

| P (Y = gy Yk = Yesk | X = )
—PA(Y;‘/ :yta"wYVt‘H‘? :yt+k‘X:w)|
< wolel (2=) (5050
- Minf (1 + SD)(]' +1’/})
k

< [T ma(@ei, verio1, vera),
i=1

and now the value for the constant is ¢ obtained by
noting that
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The proof is complete. |
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PROOF OF LEMMA 2

Let fT = XtEZ At- Note that 7?_114' = XtEZ At—17
and hence (77t A) = 7(A) for all A € A implies

#(FIA) = ﬂ'(ﬂT*tAt_l)
teZ
_ -1 —(t-1) 4,
7r<T tDZT A 1)
_ —(t-1) 4,
ﬂ'(tOZT Ay 1)
= 7(A).

Now suppose 1A =A A necessary condition for

this is A, = A for all t € Z. Setting A = (,c, 74 (A),
we obtain 7(A) = 7(A). Now note that 7714 = A.
Thus, if 7 is T-ergodic, we have 7(4) =0 or w(A) =1,

-, -,

and hence 7(A) =0 or W(A) = 1. O

PROOF OF LEMMA 3

The proof that the invariant measure py is unique
requires an alternative representation of Markov pro-
cesses. Write Q(\, @1 ... &,,1, ) to denote the (7, j)-th
component of the product Q(A,x1) ... Q(\, x,). For
k > 1 consider the kth iterate of Qx:

Qk(=.0) = /Z Qa(+/,C) Q5 (2, ).
Note that

QX (@, v, 1), A x {yo} x {n})
Q(Aa Lo...Tr—2, yi7 yO) Q(Aa Tr—1,Y0, yl) R
= if 7z e A,
0 otherwise.

Now let Ly = Li(ux) denote the space of measurable
functions u : Z — R satisfying [, |u(z)| pa(dz) < oo.
For k € N let Q% be the operator on L; defined by

Qku(z) = /Z u(2)QK (2. d2').

Note that, if & > 1,

Z u(P* &, yo,y1)

Y0,y1€Y
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Qku(&, yo, 1)

For the proof that the invariant measure p is unique,
let ug € Ly with ug > 0 and consider the conservative
set C* C Z given by

o* = {zEZ: nler;QZQ’;uo(z):OO}.

k=1

Note that the set C* is independent of the choice of
ug. Furthermore, let C; denote the class of invariant
sets,

C; = {C €C: Qalc = 1¢ pa-almost everywhere}.

We say that C; is trivial if ux(C) =0 or px(C) =1 for
every C' € C;. A sufficient condition for the existence
of at most one invariant probability measure on (Z,C)
is that C* = Z (up to a ux-null set) and C; is trivial
(Theorem VI.A, Foguel, 1969). We first show that
C* = Z. According to Corollary 1 (i), we have

inf {QA\, @1 ...@y,4,5): nEN,i,j €V}
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for every & = (@¢)tez. Hence, for k > 1,
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Furthermore, since Px is 7-ergodic on (X, A),
1 n
lim — k=
o ZUO(T &, Y0, Y1)
k=1
= /ﬁ uo(f/,yo,yl) ﬁx(dfl)
x

for Px-almost every & € X. Now, under the assump-
tion ug > 0, the integral on the right hand side is
strictly greater than 0, hence the unnormalized series
on the left hand side would tend to co. This argument
shows that the series in the definition of C* diverges
for px-almost every z € Z, and hence C* = Z up to a
px-null set.

To show that C; is trivial, let C € C; be such that
ux(C) > 0 and Qalc(z) = 1¢(z) for pa-almost every
z € Z. Note that Qxa1c(z) = Qa(z,C). If (A1) holds,
then all entries of the transition matrix @ are strictly
greater than 0, and hence a necessary condition for
Qxa(z,C) = 1 is that C = A x Y x )Y for some set
A € A, which implies that Qx(z,C) = 1 ;(7%) and
1o(2) = 14(Z) for px-almost every z = (Z,yo,y1) €
Z. Now note that 1 (7€) = 14(€) is equivalent to
A = 7714, and if (A2) holds, then Px(A) = 0 or

— -,

Px (A) =1 for each set A satisfying this condition. [

PROOF OF LEMMA 5

We wish to establish that

1 « .
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1 n
~ EZEA[f(Xtvyt—laYt) | X].
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Let i,j € Y. Similar to the proof of Theorem 2, we
obtain that P;\OZ”)(Yt_l =1i,Y; = j| X = x) converges
to some limit P\ (Y, y = 4,Y; = j| X = a) as n
tends to infinity, and there exist constants ¢ > 0 and
0 < k < 1 not depending on « such that

PO (Y, =i, Yy = | X = @) —
POV =i, Y =j| X =a)| < ex" "

Consequently,
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POV, =i, Y= X =2)] =0

which shows that

1 n n
~ B [F(X0 Y V)| X]
t=1
1< 0
~ Y BV YY) | X,
t=1

where E;O:OO) stands for the conditional expectation

with respect to P;\O:OO). Now, noting that
B [f(X0, Yo, Vi) | X] ~ Ex[£(X0, Yier, Vi) | X,

we obtain the statement. O

PROOF OF LEMMA 7

Let @ = (2¢)1ez be fixed. Using Corollary 1 (44) and ar-
guments similar to the proof of Theorem 2, it is not dif-
ficult to show that the difference between the probabil-
ities Pa(Yio1 = 4,Y; = j, Veyh1 = 1, Yo = m| X =
x) and Py(Yi—1 = 4,Y; = j| X = ) x PAx(Yiqp-1 =
LYiyr, = m|X = x) decays at a geometric rate.
Since f is bounded, it follows that the covariance of
f( X, Vi1, V) and f(Xiik, Yegn—1, Yetr) conditional
on X = x decays component-wise at a geometric
rate, and integrating with respect to Px shows that
va(k) decays to 0 at a geometric rate. Consequently,
> or_1 (k) < oco. Similar to the proof of Lemma 5,
we obtain that
lim 457 (k) = (k)

n—oo

and
VILL(A) ~ = (%(0) + 22737)\(@)

P»,-almost surely. The proof is complete. O



