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Abstract

We present Smart Walkers, a comprehensive approach to enhancing independent
and safe mobility of elderly people. The idea of the Smart Walkers project is
to equip rolling walker mobility aids with sensors and actuators. The goal is to
assist users, caregivers and clinicians, e.g., by monitoring the physical and mental
conditions of the user, detecting risks of falling, assessing the effectiveness of
therapeutic interventions, and providing active navigation assistance.
The key problem in building the Smart Walkers technology is the ability to recog-
nize the user activity from the stream of sensor measurements. In this paper we
present supervised and unsupervised machine learning algorithms for this purpose
and discuss their performance on real user data. We find that the best results are
obtained for Conditional Random Fields with feature functions based on thresh-
olding, achieving an accuracy of 85-90%.

1 Introduction

Safe and independent mobility is a key factor in the quality of life of elderly people. Independent
mobility sustains social interaction and thereby physical and mental activity; on the other hand,
injuries caused by falls constitute a major health risk. Mobility aids, such as canes, rolling walkers
and wheel chairs, encourage independent mobility, however, improper use can induce additional
risks of falling, particularly as the individual motoric capabilities deteriorate.

To improve the utility of mobility aids, we are developing a mixed-initiative system, called Smart
Walker, which is a customary four-wheel rolling walker equipped with a set of sensors. A pro-
totype is shown in Fig. 1. The sensors measure the load on the four wheels, the walked distance
and the acceleration in the three spatial dimensions. In our future work, we plan to use the sensor
measurements to monitor the user’s physical and mental conditions, and to detect moments of insta-
bility. Furthermore, we plan to instrument the Smart Walker with actuators which can immobilize
the walker, e.g., while the user is standing, or provide navigation assistance.

The key problem in building the Smart Walker technology is to extract high-level information about
the user’s activities from the stream of sensor measurements. In [1], we compared supervised and
unsupervised machine learning algorithms for this purpose. We found that Conditional Random
Fields (CRFs) yielded better results than Hidden Markov Models (HMMs), presumably due to the
less restrictive assumptions on the distribution of the observation sequence. The CRFs that we used
were based on feature functions which, in order to discriminate between activities, compared the
sensor measurements to fixed threshold values. While in [1] we suggested to choose the threshold
values manually, in this paper we consider an automatic approach based on Linear Regression mod-
els. We also generalize some of the ideas by considering “smooth” thresholding based on sigmoid
functions, and using the raw observations to discriminate between activities.
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The paper is structured as follows: Sec. 2 provides some background on the Smart Walker project
and our previous research. In Sec. 3, we describe the problem of activity recognition and present
algorithms based on Conditional Random Fields. In Sec. 4, we evaluate the algorithms in two
experimental studies. An outlook on our future work in Sec. 5 concludes the paper.

Figure 1: A prototype of the Smart Walker.

2 The Smart Walker Project

The Smart Walker prototype has been developed at the Toronto Rehabilitation Institute (see [2]). It is
a four-wheel rolling walker equipped with four load sensors (one in each leg) to measure the ground
reaction forces, a wheel encoder to measure the walked distance, a 3D-accelerometer to measure
the instantaneous acceleration, and two video cameras (facing forward and backward, respectively)
to record the environment and the position of the lower limbs relative to the walker. As a standard
feature of rolling walkers, the Smart Walker prototype is instrumented with brakes that can slow
down the walker and lock the wheels, and a seat on which the user can rest when desired.

2.1 Project Goals

The goal of the Smart Walker project is to integrate knowledge from system design engineering,
computer science and kinesiology to build an intelligent mobility aid which assists users, caregivers
and clinicians in the following ways:

As a user companion, the Smart Walker can continuously monitor the user’s physical and mental
conditions. The key step in assessing these high-level states is the ability to recognize the activity
of the user from the stream of sensor measurements. Based on this context information, quantitive
measures such as the variation of the Center of Pressure (COP, see Sec. 3.1) or Walker User Risk
Index curves (see [3]) can be considered in order to assess the condition of the user.

As acaregivers’ support, the Smart Walker can take charge of monitoring the user’s motoric capa-
bilities and supervising the execution of daily excercises. Typically, it is impossible for caregivers
to continuously attend their patients. On the other hand, self-assessments of patients are often un-
reliable, either due to poor memory or in order to avoid therapeutic interventions. Thus, the Smart
Walker can help caregivers to obtain a complete and valid assessment of the user’s condition. Again,
a key step in providing this functionality is the agent’s ability to recognize the user activity from the
sensor data.

As aclinical assistant, the Smart Walker can provide clinicians and kinesiologists with longitudinal
data of the physical and mental conditions of walker users. In contrast to tests performed in a clinical
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setting, this data is collected in the users’ everyday-life environment and over continuous periods
of time. The data can be used for diagnosis, e.g., whether a non-walker user should be presribed a
walker or a walker user should be prescribed a wheel chair; further applications are the evaluation
of therapeutic interventions, and the development of future rolling walker designs.

The key problem in implementing these roles is to develop algorithms for the recognition of user
activities from the stream of sensor measurements. We discuss different approaches to this problem
in Sec. 3. In our future work, we plan to equip the Smart Walker with actuators and an audio system
to provide active assistance. For example, actuating the brakes can be used to immobilize the walker
when the user is sitting on the walker; furthermore, it allows the Smart Walker to influence the
steering by inducing more resistance on one side, which eases turns in that direction. The audio
system can be used for giving acoustic prompts and alerts, e.g., in case of emergency. Of course, a
precondition for implementing such active roles is that the algorithms for activity recognition are as
accurate and robust as possible.

2.2 Related Work

The idea to instrument rolling walkers with intelligent computer technology has attracted consider-
able attention in the past decade. Various research groups have instrumented walkers with sensors
and actuators to support users and caregivers. The walker in [4] provides navigation assistance via
a display for providing directions to the user, and an (optional) active drive mechanism. The walker
uses pre-defined environment maps and learns a hierarchical model of the user’s daily walking rou-
tines, hence it is unable to provide assistance in an unknown environment or when the user’s walking
routines change with time. The walker in [5] is instrumented with laser range finders to measure the
distance between the walker and the user, and with wheel encoders to measure the velocity. It offers
navigation assistance via servo brakes mounted at the rear wheels, however, it can distinguish only
three different user states (walking, stopping, state of emergency). The walker in [6] is equipped
with load sensors at the handles which allows to detect heel strikes, toe-off events and left/right sin-
gle support phases. In contrast to our work, this walker is unable to recognize higher-level activities,
such as turning left/right or walking up/down a ramp.

3 Activity Recognition

As we have seen in the previous section, a key step in building the Smart Walker is to develop
algorithms for recognizing user activities from the sensor measurements. In this section, we first
give a description of the sensor measurements and certain statistics derived therefrom, and then
review algorithms for activity recognition based on Hidden Markov Models. In Sec. 3.3 we explain
algorithms based on Conditional Random Fields; in particular, we present our idea to discriminate
between activities using feature functions based on thresholding. For examples of activities that we
wish to recognize, see the description of our experiments in Sec. 4.

3.1 Sensor Measurements and Derived Statistics

The raw sensor data of the Smart Walker consists of8 measurements at each time point:xdist.
t ,

the walked distancemeasured by a wheel encoder;xfr.le.
t , xfr.ri.

t , xre.le.
t , xre.ri.

t , the load on the four
wheels (front/rear and left/right); xx-acc.

t , xy-acc.
t , xz-acc.

t , the accelerationin x-, y-, z-direction. The
measurements are digitalized with 16-bit resolution and 50-Hz sampling, so we obtain 50 data points
per second and sensor, where the measurements range between0 and216 − 1. In particular,xdist.

t is
the walked distance modulo216, where walking backwards results in a decrease ofxdist.

t .

From the raw sensor data we compute the following measures: thespeedof the walkerxspeed
t =

xdist.
t − xdist.

t−1 where we add (substract)216 if an overflow (underflow) ofxdist.
t is detected; thetotal

load on the four wheelsxtot. load
t = xfr.le.

t + xfr.ri.
t + xre.le.

t + xre.ri.
t ; the frontal plane center of pressure

(FCOP), measuring the relative difference between the load on the left and the right wheels:

xFCOP
t =

df (xfr.le.
t − xfr.ri.

t ) + dr(xre.le.
t − xre.ri.

t )
xfr.le.

t + xfr.ri.
t + xre.le.

t + xre.ri.
t

where the constantsdf = 22.25 anddr = 26.6 are the distances of the front/rear load cells to the
midline of the walker (in centimeters); thesagittal plane center of pressure(SCOP), measuring the
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relative difference between the load on the rear and the front wheels:

xSCOP
t =

(xfr.le.
t − xre.le.

t ) + (xfr.ri.
t − xre.ri.

t )
xfr.le.

t + xfr.ri.
t + xre.le.

t + xre.ri.
t

.

For the recognition of the user activity we use the measurementsxspeed
t , xtot.load

t , xFCOP
t , xSCOP

t , xx-acc.
t ,

xy-acc.
t , xz-acc.

t . The advantage of using the measures FCOP and SCOP instead of the raw load sensor
recordings is that they take into account therelative difference between the load on the left/right
and rear/front wheels, so they do not depend on the body weight of the user. In order to include
information on past measurements, we compute the mean and the variance over the previousw time
points, for instance,

µspeed
t (w) =

1
w

w−1∑
k=0

xspeed
t−k and σspeed

t (w) =
1
w

w−1∑
k=0

(
xspeed

t−k − µspeed
t (w)

)2
.

In our experiments, we chose the time horizonsw = 1, 5, 25, that is, besides the actual measure-
ments we consider past information up to half a second. Of course, the variances forw = 1 are equal
to 0. After computing the means and variances, we obtain a 35-dimensional vector of observations
at each time pointt, namely, the means and variances ofxspeed

t , xtot.load
t , xFCOP

t , xSCOP
t , xx-acc.

t , xy-acc.
t ,

xz-acc.
t for the time horizonsw = 1, 5, 25 (excluding the zero variances obtained forw = 1).

3.2 Hidden Markov Models

In [1] we compared the performance of various probabilistic models for activity recognition. While
we found that Hidden Markov Models (HMMs) were outperformed by Conditional Random Fields,
HMMs are still interesting because they allow for unsupervised learning. In an HMM, the sensor
measurements are represented by a sequence of observationsX = (X1, . . . , Xn) with values in
some setX , and the user activities by a sequence of hidden statesY = (Y1, . . . , Yn) with values in
some finite setY. In [1] we discretized the sensor measurements so thatX was finite. The HMM is
parameterized by theinitial distribution π(y), thetransition probabilitiesθ(y′, y), and theemission
probabilitiesφ(x, y). The joint probability of the observationsx = (x1, . . . , xn) and the hidden
statesy = (x1, . . . , xn) in this model is given by

P (X = x, Y = y) = π(y1)
( n∏

t=2

θ(yt−1, yt)
)( n∏

t=1

φ(xt, yt)
)
.

If labeled training data(x,y) with x = (x1, . . . , xn) andy = (y1, . . . , yn) is available, then the
HMM parameters can be learned using Maximum Likelihood estimation. If the training data is
unlabeled, i.e.,y is unavailable, then a common approach is to use the EM algorithm. In [1] we
also considered an alternative method based on Bayesian learning, where we put Dirichlet priors on
the multinomial distributionsπ(y), θ(y′, y) andφ(x, y) and used Gibbs sampling to estimate the
posterior over the hidden states and the parameters.

3.3 Conditional Random Fields

In contrast to HMMs, Conditional Random Fields (CRFs) are discriminative and model thecondi-
tional distribution ofY givenX (see [7]). An advantage of CRFs is that they do not make condi-
tional independence assumptions on the observations. CRFs are parameterized by vectors of real-
valuedfeature functionsf andmodel weightsλ. For anyx = (x1, . . . , xn) andy = (y1, . . . , yn),
the probability ofY = y conditional onX = x is given by

P (Y = y |X = x) ∝ exp
(
λT f(x,y)

)
. (1)

A particularly important class of CRFs arelinear-chain models where the feature functions are
allowed to depend on at most two consecutive labels. In that case, the inner product of model
weights and feature functions in (1) can be written as the sum of weighted state and transition
feature functions, namely,

λT f(x,y) =
n∑

t=1

µT f state(xt, yt) +
n∑

t=2

νT f trans(xt, yt−1, yt), (2)
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where we suppose that the transition feature functions are non-constant both inyt−1 andyt, so there
is no overlap with the state features. The assumption that the feature functions only depend on the
current observationxt is without loss of generality: if they depended on, say,xt−l, . . . , xt+l, then
simply consider the modified observationsx̃t = (xt−l, . . . , xt+l) instead ofxt.

The feature functions can be used to incorporate domain-specific knowledge. A typical choice are
binary feature functions; depending on whether the associated model weight is positive or negative,
the co-occurrence of certain observations and labels then increases or decreases the conditional
probability of a particular label sequence. Given a fixed set of feature functions, the model weights
are usually learned from labeled training data by maximizing the conditional log-likelihood function.
An efficient dynamic programming algorithm is available to compute the marginal distributions of
Y givenX. See [8] for more details.

3.4 Feature Functions Based on Discriminant Rules

A crucial step in applying CRFs is the selection of the state and transition feature functions in (2).
In [1] we used feature functions based on thresholding in order to discriminate between activities,
where we suggested to choose the threshold values manually by a visual inspection of the data. In
the present paper we consider more generallydiscriminant ruleswhich, besides thresholds, may
also take into account the raw observations, or “smooth” thresholds based on sigmoid functions. In
the following, suppose that the set of labels is given byY = {1, . . . , k}.

Let us explain the idea of discriminant rules for the state feature functions in (2). Suppose we
want to computeµT f state(xt, yt) for yt = i. Intuitively, the larger this quantity, the higher is the
compatibility of the eventsXt = xt andYt = i. The idea of discriminant rules is to consider any
potential alternative,Yt = j with j ∈ Y \ {i}, and to evaluate whetherXt = xt is more compatible
with Yt = i or Yt = j. Mathematically, this procedure can be written as

µT f state(xt, i) =
∑

j∈Y\{i}

µT
ijdij(xt) (3)

wheredij(·) is a vector of functions discriminating betweeni andj, which is associated with the
model weightsµij . Examples will be considered in the sections that follow. Similarly, discriminant
rules can be introduced for the transition feature functions in (2). In our experiments in Sec. 4,
however, we consider a very simple transition model where

νT f trans(xt, h, i) = ν 1(h = i) (4)

for h, i ∈ Y. Note thatν is a scalar weight and the transition feature function simply reflects whether
or not an activity persists. The reason for using this simplistic model is that we want to avoid a bias
towards certain transitions due to the design of the experimental courses.

3.4.1 Binary Threshold Functions

A simple type of discriminant rules, which we have first considered in [1], is obtained by comparing
the observations to fixed threshold values. Suppose that the observations are one-dimensional and
real-valued; in the case of multi-dimensional observations, we consider thresholds separately for
each component ofxt. Let 1(·) denote the function which evaluates to1 if the statement in the
brackets is true, and to0, otherwise. For each pair of labelsi, j ∈ Y with i 6= j, introduce a
thresholdτij and consider the weighted discriminant rules

µT
ijdij(xt) = µ

(g)
ij 1(xt ≥ τij) + µ

(l)
ij 1(xt < τij). (5)

In [1] we suggested to choose the thresholds manually by a visual inspection of the observations.
Although the results that we obtained were encouraging, this approach has the disadvantages of
being time-consuming (wherefore our observations in [1] did not include the means and variances
over past measurements) and subjective. In this paper, we propose to select the tresholds using
Linear Regression (LR) models.

For the rest of this section, suppose we are given training data(x,y) wherex = (x1, . . . , xn) and
y = (y1, . . . , yn). Using a LR model, a standard way for selectingτij is to regress the valuesxt for
which yt = i on 1, and the valuesxt for which yt = j on−1. Then the resulting LR coefficients
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αij andβij are used to compute the thresholdτij = −αij/βij (see, e.g., Chapter 4 in [9]). Note
that this threshold implicitly models the a priori probabilities ofYt = i andYt = j. In the present
paper, we consider thresholds based on normalized numbers to avoid a bias towards labels with a
high frequency in the training data set. Based on the normalized numbers, the threshold is simply
given by

τij =
1
2

(
1
ni

n∑
t=1

1(yt = i) xt +
1
nj

n∑
t=1

1(yt = j)xt

)
whereni, nj denote the number of points in the training data set for whichyt = i andyt = j,
respectively.

3.4.2 Sigmoid Threshold Functions

While a major advantage of binary threshold functions is their computational simplicity, they do
not reflect whetherxt exceedsτij only slightly or by a wide margin. A natural way to incorporate
this information is using the sigmoid function sigm(x) = 1/(1 + e−x) which can be regarded as a
continuous analogue of the binary-valued function1(x ≥ 0). The weighted discriminant rules in
(3) are then given by

µT
ijdij(xt) = µ

(g)
ij sigm(γij(xt − τij)) + µ

(l)
ij sigm(γij(τij − xt))

whereγij is an additional scaling parameter. We propose to determineγij by maximizing

L(γij) =
n∑

t=1

1(yt = i) γij(xt − τij)−
n∑

t=1

1(yt = i or yt = j) log
(
1 + exp(γij(xt − τij)

)
.

Note thatL(γij) is concave, so it has a unique maximum which can be found using Newton’s
method. In a logistic regression model,L(γij) is the log-likelihood of the intercept−γijτij and
the slopeγij (see, e.g., Chapter 4 in [9]). Thus, maximizingL(γij) is equivalent to finding the
maximum likelihood estimates of a logistic regression model where not the whole parameter space
is explored but only a linear subspace.

3.4.3 Using Raw Observations

Finally, let us consider discriminant rules which take the raw observations into account. Byµ and
σ we denote the sample mean and standard deviation ofxt. Again, we first suppose thatX is
one-dimensional and consider discriminant rules separately for each component ofxt in the multi-
dimensional case. Using raw observations, the weighted discriminant rules in (3) become

µT
ijdij(xt) = µ

(ic)
ij + µ

(sl)
ij

(
σ−1(xt − µ)

)
.

Note that the standardization ofxt is necessary to avoid large values ofµ
(ic)
ij andµ

(sl)
ij to be penalized

during the training of the CRF.

3.5 Feature Functions Using Data Binning

As an alternative to feature functions based on discriminant rules, we considerdata binning. Sup-
pose the domain of observationsX is one-dimensional. Data binning means to partitionX into a
finite number of subsetsA1, . . . ,Am. We use the indicators of these subsets as feature functions, so
that

µT f state(xt, i) =
m∑

j=1

µij 1(xt ∈ Aj)

for i ∈ Y. WhenX is multi-dimensional, we partition each subdomain separately and sum up the
corresponding weighted features. For our experiments in Sec. 4, we chosem proportional tok, the
number of different labels. We consider two strategies for selecting the setsA1, . . . , Am: Writing
xmin andxmax for the minimum and the maximum value ofxt in the training data set, the first strategy
is to divide[xmin, xmax] into k intervals of equal size; the second strategy is to divide[xmin, xmax] into
k intervals such that each interval contains the same number of points in the training data set.
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Table 1: Accuracy for Experiment 1 (in %)
NT ST FW LE RI BW TF Total S.E.

CRF+ManTh 63.9 32.7 91.5 55.9 52.9 88.5 18.3 77.1 8.6
CRF+BinTh 80.9 70.2 95.2 74.4 64.7 91.2 60.9 87.0 3.4
CRF+SigmTh 88.3 71.0 95.9 77.0 70.5 92.3 56.2 88.7 3.5
CRF+Raw 91.4 56.9 96.0 70.5 60.3 88.2 42.4 86.2 3.1
CRF+EqBin 75.4 72.7 94.9 74.2 66.7 92.3 53.0 86.3 3.9
CRF+PrBin 89.0 67.4 92.4 71.8 66.4 87.3 52.8 85.2 6.0

Table 2: Accuracy for Experiment 2 (in %)
ST FW LE RI SI UR DR UC DC Total S.E.

CRF+ManTh 90.5 82.7 53.3 30.8 99.1 35.1 30.1 43.9 25.7 77.5 5.5
CRF+BinTh 89.2 82.0 56.2 51.8 98.0 65.4 54.1 60.4 55.1 82.5 3.9
CRF+SigmTh 89.9 85.1 63.0 51.1 99.0 79.2 57.9 60.6 54.1 84.9 4.1
CRF+Raw 89.4 84.7 58.1 46.0 99.1 67.4 62.8 55.2 47.3 83.4 4.7
CRF+EqBin 88.7 84.8 57.5 53.4 98.7 72.3 52.0 55.9 57.8 83.9 3.6
CRF+PrBin 85.3 76.7 52.0 52.1 88.4 67.1 56.7 48.7 55.1 77.3 8.3

4 Experimental Results

In this section, we evaluate the proposed algorithms on real user data. The data was collected in two
different experimental settings which we describe in Sec. 4.1. The results are discussed in Sec. 4.2.

4.1 Experimental settings

In the first experiment, 12 healthy young subjects (19-53 years old) were asked to walk twice
through a predefined course. At the beginning, the participants were sitting on a chair and not
touching the walker (NT); then they were standing and holding the walker (ST); they had to walk
forward/backwards (FW/BW) and execute left/right turns (LE /RI ) to navigate through the course;
finally, they were asked to release the walker and sit back on the chair. The behavior of getting
up/down and taking/releasing the walker is subsumed under Transferring (TF). In total, the data set
consists of 98,259 time points, corresponding to a duration of approx. 33 minutes.

The participants of the second experiment were 15 older adults (80-97 years old), 8 of which were
residents of a long term health care facility and regularly using a walker. The participants were
asked to walk through two different courses. In the first course, the participants had to walk forward
(FW) and perform left/right turns (LE /RI ); meanwhile, they were asked to execute real-life tasks
like picking up objects from the ground, turning in a confined space, or walking fast as if they were
trying to catch a bus. In the second course, the participants had to go up/down a ramp (UR/DR) and a
curb (UC/DC). We also recorded some spontaneous activity between the two courses; for example,
the participants sat on the walker (SI) after performing the first course and then navigated to the
second course. In total, the data set consists of 130,195 time points, corresponding to a duration of
approx. 44 minutes.

The training data collected in the two experiments was labeled manually using the recordings of
a video camera mounted on the walker. We compare six different methods for activity recog-
nition: CRF+ManTh uses binary threshold functions as described in Sec. 3.4.1. Same as in
[1], we chose the threshold values manually by a visual inspection of the data. As this proce-
dure is time-consuming, the model does not include the means and variances over past measure-
ments. CRF+BinTh uses binary threshold functions with the thresholds obtained by LR models.
CRF+SigmTh uses the sigmoid threshold functions.CRF+Raw uses discriminant rules based on
raw observations.CRF+EqBin uses feature functions based on data binning with bins of equal size.
CRF+PrBin uses data binning with the bins all containing the same number of observations.

We use leave-one-out cross-validation to evaluate the performance of the methods. The labels are
predicted by maximizing the conditional marginal distributions. Table 1 and 2 show the percentage
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of time points for which an activity is predicted correctly; the last two columns display the total
accuracy and the standard error.

4.2 Discussion

As can be seen, CRF+SigmTh achieves the best performance among all six methods with an overall
accuracy of 88.7% in Experiment 1, and 84.9% in Experiment 2. Except for the CRF+EqBin method
in Experiment 2, these differences in the performance are all statistically significant (one-tailed
Wilcoxon signed-rank test, significance levelα = 0.05). The second-best methods are CRF+BinTh
in Experiment 1, and CRF+EqBin in Experiment 2. In both experiments, the CRFs with automati-
cally chosen thresholds perform significantly better than the CRFs with manually chosen ones.

In Experiment 1, all methods have problems to correctly identify transfers (TF), which is not sur-
prising as this is an intermediate activity between not touching the walker (NT) and standing (ST).
Turning left and right (LE/RI) is sometimes confused with walking forward (WF), however, even
for a human observer it is often hard to tell when a turn exactly starts or ends. Overall, the results
for Experiment 1 are better than for Experiment 2. A possible explanation is that the participants in
Experiment 1 performed the course twice, so the training data set always includes one recording of
the person for which the activity is currently predicted. Furthermore, some of the activities exhibited
during Experiment 2 are highly individual; for example, the participants used very different strate-
gies to move the walker up and down the curb. Even for simple activities there is a higher variability
in Experiment 2, as the participants were instructed to walk at different speeds or pick up objects
from the ground.

5 Conclusions

In this paper we presented the Smart Walker, a four-wheel rolling walker equipped with sensors
to provide assistance to users, caregivers and clinicians. A key problem in implementing assistive
functionalities is the recognition of user activities from the sensor measurements. For this purpose,
we presented and evaluated different methods based on Conditional Random Fields. Experiments
with real user data showed that these methods can achieve a good accuracy; the best results were
obtained by “smooth” thresholding based on sigmoid functions.

Fundamental questions for our future research are how the accuracy achieved by the algorithms
compares to the agreement among different human labelers. In cooperation with kinesiologists we
will evaluate how much accuracy is actually needed for providing robust measures, e.g., of the user’s
stability, and develop strategies to cope with the basic uncertainty about the “true” user activity.
Finally, we will consider individualized user models which can incorporate prior information, e.g.,
about the user’s body weight, his physical and mental conditions, or whether he is left- or right-
handed.
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