
Regret-based Reward Elicitation for Markov Decision Processes

Kevin Regan and Craig Boutilier
Department of Computer Science

University of Toronto
{kmregan, cebly}@cs.toronto.edu

Abstract

Traditional methods for finding optimal policies in
stochastic, multi-step decision environments require a
precise model of both the environment dynamics and
the rewards associated with taking actions and the ef-
fects of those actions. While dynamics are often eas-
ily learnable through observation—and in many do-
mains are stable across different users—reward func-
tions are more problematic. In practice, it is often cog-
nitively complex and time-consuming for users to pre-
cisely specify rewards. This work casts the problem of
specifying rewards as one of preference elicitation. We
will first discuss how robust policies can be computed
for Markov Decision Processes given partial reward in-
formation using the minimax regret criterion. We will
then show how regret can be reduced by efficiently elic-
iting rewards information using bound queries. Regret-
based elicitation of reward offers an efficient way to
produce desirable policies without resorting to the pre-
cise specification of the entire reward function, and as
such, opens up a new avenue for the design of stochastic
controllers.

1 Introduction
Markov decision processes (MDPs) have proven to be
an extremely useful formalism for decision making in
stochastic environments. However, the specification of
an MDP by a user or domain expert is difficult (e.g.,
cognitively demanding) and time consuming. Much
work has been devoted to learning the dynamics of
stochastic systems from transition data, both in offline
and online (i.e., reinforcement learning) settings (e.g.,
(Sutton & Barto 1998)); and even when specified man-
ually by, say a domain expert, in many AI applications
dynamics are stable across entire user populations.

The specification of reward functions for MDPs is
much more problematic. Unless intelligent agents are
designed for single users, it is impossible to specify a re-
ward function a priori at design time: the reward func-
tion must reflect the preferences of the user on whose
behalf the agent is acting. Even online RL methods
require the specification of a user’s reward function in

Copyright c© 2008, American Association for Artificial In-
telligence (www.aaai.org). All rights reserved.

some form (unlike state variables, it is impossible to
directly observe a reward function, a convenient fiction
almost always assumed in the RL literature).

Reward specification is difficult for two key reasons.
First it requires the translation of user preferences—
general views of what states are “good” and “bad”—
into a precise numerical reward for states and actions of
an MDP. As has been well-recognized in decision anal-
ysis for decades, people find it extremely difficult to
quantify their strength of preferences precisely using
utility functions (and, by extension, reward functions)
(French 1986). The problem is further exacerbated
by the potential conflation of immediate reward (i.e.,
r(s, a)) with long-term value (either Q(s, a) or V (s)):
states can be viewed as good or bad based on their
ability to make other good states reachable.

It has been recognized in the literature on prefer-
ence elicition that full specification of a utility func-
tion is not usually needed to make optimal or near-
optimal decisions (Chajewska, Koller, & Parr 2000;
Boutilier et al. 2006). Interactive elicitation and op-
timization techniques take advantage of the outcome
dynamics and any previous utility information gleaned
to direct further elicitation effort to those parts of a
utility function that will be most useful in guiding a
decision. Similarly, in an MDP setting, a near-optimal
policy can be often found with a very partial specifica-
tion of the reward function. For instance, bounds on the
reward function in conjunction with the transition dy-
namics of the MDP can render certain regions of state
space provably dominated by others (w.r.t. value).

In this paper, we adopt a preference elicitation per-
spective on specification of MDP reward functions. Our
approach can be viewed as one of interactive optimiza-
tion. Our work is divided into two main components.
Given specific bounds on the space of feasible reward
functions, we first develop the minimax regret decision
criterion (Boutilier et al. 2006) for MDPs: intuitively,
this determines the policy that has minimum regret,
or loss w.r.t. the optimal policy, over all possible re-
ward function realizations. Unlike other work on ro-
bust optimization for MDPs, which focuses on the max-
imin decision criterion (Bagnell, Ng, & Schneider 2001;
Nilim & Ghaoui 2004; Iyengar 2005; McMahan, Gor-



don, & Blum 2003), we will see that minimax regret
determines policies that with superior performance in
the presence of reward function uncertainty. We then
develop a simple elicition procedure that exploits the in-
formation provided by the minimax-regret solution to
guide the querying process. We focus on simple schemes
that refine the upper and lower bounds of specific re-
ward values. We show that good or optimal policies
can be determined with very imprecise reward func-
tions when elicitation effort is focused in this way. Our
work thus tackles the problem of reward function pre-
cision directly. While we do not address the issue of
reward-value conflation in this model, we will discuss it
further below.

We focus on settings in which elicitation occurs offline
and queries can be posed regarding any aspect of the
reward function. This stands in contrast to the typical
online RL formalisms, in which the RL agent is situ-
ated in state-space and gathers local information about
reward (and transition dynamics) for the current state
and action only. As such, no exploration-exploitation
tradeoff arises in our model.

We proceed by first reviewing some basic notation for
MDPs and define minimax regret for imprecise-reward
MDPs in Section 2. We then describe an iterative con-
straint generation procedure used to compute minimax
regret in Section 3. Section 4 discusses how queries
are used to reduce regret and Section 5 analyses the
efficiency of the regret computation and elicitation pro-
cedure. We show that minimax regret provides better
policies for imprecise-reward MDPs than alternative ro-
bust optimization criteria like maximin, and suggests
better queries as well. Section 6 discusses related work
in detail. We offer some conclusions and directions for
future work in Section 7.

2 Notation and Problem Formulation
In this section we review some notation and properties
of Markov Decision Properties and the minimax regret
criterion.

2.1 Markov Decision Processes
We restrict our discussion to the infinite horizon MDP
definite by the tuple 〈S,A, {Psa}, γ, α, r〉 , where

S is a finite set of N states.
A is a finite set of k actions.
Psa(·) are the state transition probabilities upon
taking action a in state s.
γ is the discount factor

α(·) is the initial state distribution.
r : S ×A→ R is the reward function.

For convenience we express functions with matrix-
vector notation using a bold font: e.g., r is a vector
of length N × k whose entries are rewards r(s, a); P
is the N × k × N transition matrix. Let ra denote
the N -vector obtained by restricting r to action a, and

similarly define N×N matrix Pa. We define the matrix
E follows: E has one row for each state-action pair and
one column per state. The entry for row sa and column
s′ contains Psa(s′) when s′ 6= s, and Psa(s′) − 1 when
s′ = s.1

A deterministic policy is a mapping π : S → A and
the value function for π is given by

V π(s0) = E

[ ∞∑
i=0

γir(si, π(si))

∣∣∣∣∣ π
]

where the policy π, starting in state s0, induces a distri-
bution over the sequence {s0, s1, . . . } of visited states.
The value function satifies:

V π(s) = r(s, π(s)) + γ
∑
s′

Psπ(s)(s′)V π(s′)

or equivalently in vector notation (and a slight abuse of
subscript):

Vπ = raπ
+ γPaπ

Vπ (1)

We also define the Q-function Q : S ×A→ R as:

Qπ
a = ra + γPaVπ,

i.e., the value of executing π forward after taking action
a.

A policy can also be naturally represented using the
visitation frequency function f : S × A → R which
expresses the total discounted joint probability of being
in a state and taking an action. A visitation frequency
f lies in the valid set of visitation frequencies F (with
respect to the transition dynamics) if obeys the follow-
ing relationship (Puterman 1994)

γEf + α = 0. (2)

This simply requires that the sum of the frequencies
into a state to be equal to the sum of the frequencies
out. Policy π induces a unique visitation frequency
vector fπ, satisfying the constraint that π(s, a) =
fπsa/(

∑
a′fπsa′) in the solution of Eq. 2. (For determinis-

tic policies, this is equivalent to requiring that fπsa = 0
for all a other than π(s).)

The optimal value function V ∗ is supπ αVπ. It
must satisfy the condition that

αV∗ = r>f∗ (3)

where f∗ = supf r>f (Puterman 1994). Thus, an de-
termining an optimal policy is equivalent to finding the
optimal visitation frequencies f∗.

2.2 Minimax Regret
The difficulty of specifying reward functions means that
we will often be faced with computing policies with im-
precisely specified rewards. Formally we assume only
that r ∈ R, where R denotes the set of feasible reward

1This allows for PaV −V + ra = 0 to be replaced with
the simpler EV + r = 0.



functions. This could be dictated by a set of bounds on
plausible reward values specified a priori by a user or
domain expert; it could constraints that emerge from
the result of an elicitation process (as discussed below);
or could arise from observations of behavior (as in in-
verse RL (Ng & Russell 2000)). Even in the latter situ-
ations, we are unlikely to gave full reward information.
Thus we require a criterion by which to compare poli-
cies with an imprecise-reward MDP.

We adopt the minimax regret criterion, one that has
been used with some success in nonsequential deci-
sion problems (Boutilier, Sandholm, & Shields 2004;
Boutilier et al. 2006). Let R be the set of feasible
reward functions. Minimax regret can be defined in
three stages (and can be viewed as a game between a
decision maker and an adversary). Let r be some re-
ward function and f ∈ F be a vector of valid visitation
frequenices (corresponding to a policy chosen by the
decision maker). The regret of f w.r.t. r is:

Regret(f,r) = max
g∈F

r · g − r · f

This reflects the loss associated with f relative to acting
optimally should the true reward function be r. Since
the true reward is unknown, we allow an adversary to
choose any reward r ∈ R to maximize the regret of the
decision maker. Define max regret of f w.r.t. feasible
reward set R to be:

MaxRegret(f ,R) = max
r∈R

Regret(f , r)

Finally, we wish to minimize the maximum regret that
can be dictated by the adversary. Define the minimax
regret of feasible reward set R to be:

MinimaxRegret(R) = min
f∈F

MaxRegret(f ,R)

The minimax regret criterion has a variety of desir-
able properties relative to other robust decision criteria.
Compared to Bayesian methods that compute expected
value using a prior over R (Chajewska, Koller, & Parr
2000; Boutilier 2002), minimax regret provides worst-
case bounds on loss Specifically, let f be the minimax
regret optimal visitation frequencies and let δ be the
max regret achieved by f ; then, given any instantia-
tion of r, no policy has expected value greater than δ
more than that of f . Regret can often be much easier
to compute to expected value given a prior density over
R.

Other work on robust optimization (Bagnell, Ng,
& Schneider 2001; McMahan, Gordon, & Blum 2003;
Nilim & Ghaoui 2004; Iyengar 2005) uses the maximin
criterion which is defined for reward as follows:

Maximin(R) = max
f∈F

min
r∈R

r · f (4)

The maximin criterion leads to conservative policies
by optimizing against the worst possible instantiation
of r (as we will see).

We argue that the minimax regret criterion provides
a less conservative and more intuitive measure by as-
sessing the policy ex post and making comparisons with

respect to a realized reward. Thus, the policy π would
only be penalized on reward r if there existed a policy π′
that did better with respect to that reward. McMahan,
Gordon, and Blum (2003) developed a linear program-
ming approach to efficiently computing the maximin
value of an MDP. We will compare this approach to
our minimax regret model empirically below.

3 Minimax Regret Computation
A variety of methods have been developed for com-
puting robust policies with respect to uncertainty
over transition and reward functions. Specifically, for
the maximin criterion, several (related) dynamic pro-
gramming approaches, which decomposed the prob-
lem across time, have been proposed (Bagnell, Ng, &
Schneider 2001; Nilim & Ghaoui 2004; Iyengar 2005).
Such a dynamic programming decomposition does not
appear tenable for minimax regret since it grants the
adversary too much power by allowing the rewards to
be set independently at each time step. Following the
formulations for nonsequential problems developed in
(Boutilier, Sandholm, & Shields 2004; Boutilier et al.
2006), we instead formulate the optimization using a
series of linear and mixed integer programs that enforce
a consistent choice of reward function across time.

Assume a feasible reward set R given by a convex
polytope Cr ≤ d. The constraints on r arise as dis-
cussed above (prior bounds, elicitation, or behavioral
observation). Minimax regret can then be expressed as
following optimization:

min
f

max
g

max
r

r · g − r · f

subject to: γE>f + α = 0

γE>g + α = 0
Cr ≤ d

This is equivalent to the simple minimization:

minimize
f ,δ

δ (5)

subject to: r · g − r · f ≤ δ ∀ g ∈ F , r ∈ R
γEf + α = 0

Rather than enumerate what is essentially an infinite
number of constraints 2, we use Benders Decomposition
(Benders 1962) to iterative generate constraints.

Benders Decomposition employs a convergent series
of approximations to program (5). At each iteration
two optimizations are solved: The master problem
initially takes the form of the original formulation with-
out constraints. The subproblem takes the current
solution to the master problem and generates the max-
imally violated constraint in the master problem. The
maximally violated constraint is then added to the mas-
ter problem and this process iterates until the solution
to the master problem and subproblem converge. In the
context of our game, the choice of policy by the decision

2Since both r and g take on values from the reals.



maker maps to the solution to the master problem, and
the max regret choice of policy and reward function by
the adversary maps to the solution to the subproblem at
each time step. At a high level the iterative constraint
generation procedure can be thought of as executing
the following algorithm:

while ∆ > ε :
minimax regret, f := master()
max regret, 〈g, r〉 := subproblem(f)
add constraint for 〈g, r〉 to master
∆ = max regret−minimax regret

Formally, the master problem is formulated as:

min
f ,δ

δ

subject to: ri · g − ri · f ∀ 〈gi, ri〉 ∈ GEN
γEf + α = 0

Each iteration i of constraint generation solves the sub-
problem and adds the pair 〈gi, ri〉 to GEN, the set of
generated constraints.

To compute the maximally violated constraint, the
subproblem uses the current solution f and computes
the policy and reward function that maximizes regret
of f . The maximization is specified as a mixed integer
program, using value and Q-functions:3

maximize
Q,V,I,r

α ·V − r · f (6)

subject to: Qa = ra + γPaV ∀ a ∈ A
V ≥ Qa ∀ a ∈ A (7)
V ≤ (1− Ia)Ma + Qa ∀ a ∈ A (8)
Cr ≤ d∑
a

Ia = 1

Ia ∈ {0,1}
Ma = M>

a −M⊥
a

where the constraints (7) and (8) use the Big-M trick
to ensure that the optimal value V (s) = Q(s, a) for a
single action a. We ensure a tight M by setting M>

a to
be the Q-value Q>a of the optimal policy with respect
to best setting of rewards and M⊥

a to be the Q-value
Q⊥a of the optimal policy with respect to best worst of
rewards.

The subproblem does not directly produce a pair
〈gi, ri〉 to be added to the master constraint set; in-
stead it provides ri and Vi. However, we do not need
access to gi directly; the constraint can be posted us-
ing the reward function ri and the value α · Vi, since
α · Vi = ri · gi (and gi is required to determine this
adversarial value in the posted contraint).

In practice we have found that the iterative constraint
generation procedure converges extremely quickly. Fig-
ure 3 shows each step of the procedure for an MDP

3Specifying max regret in terms of visitation frequencies
results in a non-convex quadratic program).

with 10 states and 5 actions. Section 5 provides further
analysis of the efficiency of the minimax regret compu-
tation.

0 10 20 30 40 50 60
Iteration

150

200

250

300

350
Regret vs. Iterative Constraint Generation Iteration

Minimax Regret (Master)
Max Regret (Subproblem)

Figure 1: Convergence of Iterative Constraint Genera-
tion Procedure

4 Reward Elicitation
Reward elicitation and assessment can proceed in a va-
riety of ways. Many different query forms can be used
for user interaction, including questions that ask for
comparisons of immediate reward or value or states or
state-action pairs; comparisons of trajectories through
state space; or full or partial policy comparisons. Sim-
ilarly, observed user behavior can be used to induce
constraints on the reward function under assumptions
of user “optimality” (Ng & Russell 2000). In this work,
we focus on simple bound queries, though our strategies
can be adapted to more general query types.

We assume that R is given by a set of upper and
lower bounds, one pair of bounds on r(s, a) for each
state state-action pair. A bound query takes the form
“Is r(s, a) ≥ b?” where b lies between the upper and
lower bound on r(s, a). While this query appears to re-
quire a quantitative assessment on direct value/reward
on the part of a user, it can be rephrased in terms of
a standard gamble (Keeney & Raiffa 1976), a standard
device used in decision analysis to reduce this to prefer-
ence query over two outcomes (on of which is stochas-
tic). For simplicity, we simply write it in this bound
form. Bound queries offer a natural starting point since
require a minimal amount of cognitive effort to answer.
However, other queries are likely to prove equally, if not
more, effective.

As with the types of possible queries, there are many
ways to select the point (s, a) at which to ask the query.
We explore some simple myopic heuristic criteria that
are very easy to compute (these are based on criteria
suggested in (Boutilier et al. 2006)). We note that
a myopically optimal query strategy, one that asks the
query with the potential to maximally reduce regret, re-



quires the solution of multiple minimax optimizations,
one each answer to each possible query. This motivates
the need for simple heuristics.

The first selection heuristic is called halve largest
gap (HLG), which selects the point (s, a) with the
largest gap between the upper and lower bound. For-
mally, we define the gap ∆(s, a) by:

∆(s, a) = max
r′∈R

r′(s, a)−min
r∈R

r(s, a)

and the point (s∗, a∗) with the largest gap as:

argmax
a∗∈A,s∗∈S

∆(s∗, a∗)

The second selection heuristic called current solu-
tion uses the minimax optimal visitation frequencies f
to weight each gap. Formally it selects the point (s∗, a∗)

argmax
a∗∈A

argmax
s∗∈S

f(s∗, a∗)∆(s∗, a∗)

The intuition here is that the reward function at state-
action points that are frequently visited has a high im-
pact on the minimax regret. Once the point (s∗, a∗)
is selected, the midpoint of the interval r(s∗, a∗). is
chosen as the bound b, thus either response will reduce
the size of the interval by half.4 It is easy to apply
the current solution heuristic to the maximin criterion
as well, using the visitation frequencies associated with
the maximim policy.

Note that should we start with upper and lower
bounds on each r(s, a), the initial polytope R is hy-
perrectangular. Bound queries preserve this hyperrect-
angular form. With these upper and lower bounds, the
minimax regret IP formulation can be considerably sim-
plified using techniques described in (Boutilier et al.
2006), which can lead to considerable computational
speed up. However, we rely on the more general formu-
lation here.

5 Experiments
We evaluate the performance of our minimax regret ap-
proach in two ways. First we assess the scalability of our
computational formulation. Second, we examine the ef-
fectiveness of minimax regret as a driver of elicitation.
Specifically, we are interested in how close to optimal
the policies generated are as a function of the number
of queries used to reduce reward function uncertainty.

We used a set of random generated MDPs to evaluate
our approach. We used a hyper-rectangle to represent
the set of feasible reward functions for each MDP, where
the reward for each s, a-pair is bounded independently.
The upper and lower bounds for the interval are drawn
from uniform distribution U [0, 10], and the true reward

4We can also use the visitation frequencies g in the ad-
versarial policy, and choose the maximal weighted gap using
both f and g. This too can help reduce regret by limiting
the adversary’s ability to improve on policy f . However,
since maximin has no such notion of adversary (see below),
we limit attention to f to allow a fairer comparison.

was then uniformly drawn to lie between those bounds.
(True reward is used to simulate the response to queries
and measure the quality of the robust policies suggested
by minimax regret and maximin.)

We imposed some structure on the MDP by creating
a semi-sparse transition function. From any state s we
restrict transitions to only reach dlogNe other states.
For each state s and action a we drawn the possible
reachable states from a uniform distribution and place
a Gaussian distribution over the transition function to
these states. We used a uniform initial state distribu-
tion α and a discount factor γ = 0.95.

CPLEX 11 was used as the solver for all of the mixed
integer and linear programs all code was run on a Dell
PowerEdge 2950 server with dual quad-core Intel E5355
CPUs. In each experiment 20 MDPs were randomly
generated and the results were averaged.

5.1 Computational Efficiency

-1000 0 1000 2000 3000 4000 5000 6000 7000 8000
Time (ms)

-20

0

20

40

60

80

100

120

140

R
e
w

a
rd

 G
a
p

Reward Gap vs. Time - Rect

Figure 2: Drop in Regret Gap over during ICG

To measure the performance of minimax regret com-
putation, we first examined the iterative constraint gen-
eration procedure on. For each step in the procedure,
Figure 2 plots the gap between the master problem and
the subproblem at each iteration against the time (in
msec) to reach that iteration. Results are shown for 20
randomly generated MDPs with ten states and five ac-
tions (scatterplot shows each iteration for each MDP).

Figure 3 shows how the time to compute minimax re-
gret increases with the size of the MDP. Here we fixed
the number of actions at 5 and varied the number of
states. It is clear that the iterative generation approach
developed in Section 3 scales superlinearly and com-
puting exact minimax regret is only feasible for small
MDPs using this formulation.5 On the other hand, min-

5Of note, the computations shown here are using the ini-
tial reward uncertainty. As queries refine the reward poly-
tope, regret computation becomes faster in general. This
has positive implications for anytime computation.



4 5 6 7 8 9 10 11
Number of states

10

100

1000

10000

100000

T
im

e
 (

m
s)

 -
 l
o
g
 s

ca
le

Number of states vs. Time

Figure 3: Scaling of ICG algorithm: number of states
vs time

imax regret computation has very favorable anytime be-
haviour, as exhibited in Figure 2. During the iterative
constraint generation procedure the regret gap shrinks
extremely quickly at the beginning and slow progress
is made near the end. If one does not need an exact
measure of minimax regret, this anytime property may
allow for fast approximations. This is especially true
given that we want to use minimax regret to suggest
queries (especially early on); robust decisions are made
only at the end of the elicitation process. Detailed ex-
amination of anytime schemes is an important next step
in this work.

5.2 Elicitation Effectiveness
We analyzed the effectiveness of our regret-based elici-
tation procedure by comparing it with the maximin cri-
terion. We implemented a variation of the Double Ora-
cle maximin algorithm developed by McMahan, Gordon
& Blum (2003). The computation time for maximin
is significantly less the that of minimax regret—this is
expected since maximin requires only the solution of a
pair of linear programs.

We used both maximin and minimax regret to as-
sess each step of the preference elicitation procedure
and paired each with the current solution and halve
the largest gap query strategies. Thus we essentially
have four algorithms: MMR-HLG, where policies are
computed using regret and queries by HLG; MMR-CS,
regret-based policies and queries using current solution;
and MM-HLG and MM-CS, in which policies are com-
puted using maximin and queries using HLG and cur-
rent solution, respectively. We compare each of these
strategies using three criteria, and show their perfor-
mance after each elicitation query to see how effective
the queries are. We measure the performance of each
policy using: (a) its maximin value given the current
(remaining) uncertainty in the reward function (b) its
max regret value given the current (remaining) uncer-
tainty in the reward function; (c) its true regret (i.e.,

loss relative to the optimal policy for the underlying
true reward function r, where r is used to generate
query responses). The minimax regret measure is the
most critical since it provides the strongest guarantees;
but we compare to maximin value as well, since max-
imin policies are optimizing against a very different ro-
bustness measure. True regret is not available in re-
alistic settings; but this gives us an indication of how
good the resulting policies actually are (as opposed to
a worst-case bound).

0 50 100 150 200 250 300
Query Number

70

75

80

85

90

95

100

M
a
x
im

in
 V

a
lu

e

Maximin Value vs. Number of Queries

Maximin - HLG
Minimax - HLG
Maximin - CS
Minimax - CS

Figure 4: Preference Elicitation Comparison: Maximin
Value

0 50 100 150 200 250 300
Query Number

0

5

10

15

20

25

30

35

M
a
x
 R

e
g
re

t

Max Regret vs. Number of Queries

Maximin - HLG
Minimax - HLG
Maximin - CS
Minimax - CS

Figure 5: Preference Elicitation Comparison: Minimax
Regret

Figures 4, 5 and 6 show the results of the compar-
ison on each measure. The minimax regret criterion
with the current solution selection heuristic performs
extremely well on all measures. Somewhat surprisingly,
it even outperforms the maximin criterion with respect
to maximin value (except at the very early stages).
Even though maximim is optimizing maximin value,



0 50 100 150 200 250 300
Query Number

0

2

4

6

8

10

12
T
ru

e
 R

e
g
re

t
True Regret vs. Number of Queries

Maximin - HLG
Minimax - HLG
Maximin - CS
Minimax - CS

Figure 6: Preference Elicitation Comparison: True Re-
gret

the current solution strategy when paired with minimax
policies is clearly asking much more informative queries,
allowing for a larger reduction in the reward intervals
at “highly relevant” state-action pairs. While the min-
imax policy does not optimize for maximin value, and
hence cannot do as well before asking any queries, it
provides better maximin value after only a few queries.
This is clear when we examine how much reduction
there is in the reward intervals over the course of the
elicitation. Let χ measure the sum of the length of the
reward intervals. At the end of the elicitation MMR-
HLG has reduced χ to 15.6% of its original value (aver-
aged over the 20 MDPs), while MMR-CS only reduces
χ to 67.8 % of its original value. MMR-CS is effectively
eliminating regret while leaving a large amount of un-
certainty. Figure 7 illustrates this using a histogram of
the number of queries asked by MMR-CS about each
of the 1000 possible state-action pairs6. We can see
that MMR-CS asks no queries about the majority of
state-action pairs, and asks quite a few queries (up to
eight) about a small number of “high impact” state-
action pairs.

Figure 5 shows that MMR-CS is able to reduce re-
gret to zero (i.e., find an optimal policy) after less than
100 queries on average. Recall that the MDP has 50
reward parameters (state-action pairs), so on average,
less than two queries per parameter are required to find
a provably optimal policy.

The minimax regret policies also outperform the
maximin policies by a wide margin with respect to true
regret (Figure 6). With the current solution heuristic, a
near-optimal policy is found after fewer than 50 queries
(less than on query per parameter), though to prove
that the policy is near-optimal requires further queries
(to reduce minimax regret).

It is worth noting that during the preference elici-

61000 = 20 randomly generated MDPs with 10 states *
5 actions each.

0 1 2 3 4 5 6 7 8
Number of queries

0

50

100

150

200

250

300

350

N
u
m

b
e
r 

o
f 

re
w

a
rd

 p
o
in

ts

Histogram - Queries per reward point

Figure 7: Histogram of the number of queries about
each point in the reward space using MMR-CS.

tation procedure, the HLG strategy does not require
that the minimax regret actually be computed. Mini-
max regret is only necessary to assess when to stop the
elicitation process (i.e., to determine in minimax regret
has dropped to an acceptable level). the current level
of regret). One possible modification to speed up the
time required between queries, is to only compute the
minimax regret after every k queries. Of course, using
the HLG strategy will lead to a slower reduction in true
regret and minimax regret as shown in Figures 5 and 6.

6 Related Work

There has been a significant amount of work on robust
MDPs which tackles the first step of our elicitation pro-
cess, namely computing robust policies in the presence
of uncertainty in the MDP model. Most of this work has
centered around mitigating uncertainty over the tran-
sition function.

Iyengar (2005) shows how robust policies can be com-
puted for uncertain transition functions using the max-
imin criterion by decomposing the problem across time-
steps and using dynamic programming and an efficient
suboptimization to find the worst case transition func-
tion. Bagnell, Ng & Schneider (2001) and Nilim &
Ghaoui (2004) also use the maximin criterion with re-
spect to different characterizations of uncertainty over
transition functions with similar results. The topic of
further eliciting information about transition functions
is not addressed.

Delage and Mannor (2007) address the problem of
uncertainty over reward functions (and transition func-
tions) in the presence of prior information. They use the
following percentile criterion which is less pessimistic
than the maximin criterion for η < 1



maximize
x,π

x

Subject to: Pr

[
E

( ∞∑
t=0

γtr̃(st)

∣∣∣∣∣ π
)
≥ x

]
≥ η

For a given policy π, the percentile criterion results
in an η guarantee that policy π will perform better than
x∗ , the optimal value of under the inuence of r̃ and P̃ ,
where r̃ and P̃ are drawn from prior distributions. For
values of η = 1 the above formulation reduces to the
maximin criterion.

Delage and Mannor also contribute a method for elic-
iting rewards in their framework using monte carlo sam-
pling to approximate the EVOI of gathering noisy in-
formation about a point in the space of rewards. The
percentile approach is neither fully bayesian nor does it
offer a real guarantee.

Zhang and Parkes (2008) present a setting that builds
on inverse reinforcement learning which they call policy
teaching. A teacher observes a student who is acting
optimally with respect to an unknown reward function
and provides an incentive which alter the behaviour of
the student. The overall goal is to incent the student to
execute the teacher’s policy, however, the approach is
essentially a form of reward elicitation which the queries
are changes to the students incentives and the informa-
tion gained is the change in the students behaviour.

7 Conclusions & Future Work

This work proposed an approach to specifying reward
functions through regret-based elicitation. We showed
how robust policies can be computed for Markov De-
cision Processes given partial reward information using
the minimax regret criterion. We then showed how re-
gret can be reduced by efficiently eliciting rewards infor-
mation using bound queries. While the minimax regret
criterion involves considerably more complex computa-
tion compared to similar criteria such as maximin, it
offers an intuitive measure for driving elicitation and
leads to a significant drop in true regret.

This work is preliminary and there are many direc-
tions in which to proceed. Perhaps the most inter-
esting is the development of informative and intuitive
queries that capture the sequential nature of the elicita-
tion problem. Contingent policies can be conceptually
taxing for a person to reason about, however, visitation
frequencies offer a possible alternative way to refine re-
ward with respect to the policy across time-steps. If the
visitation frequencies that are rounded to integral val-
ues yield something like a count of the number of times
a state and action are encountered. Queries could be
constructed that ask a domain expert to trade-offs be-
tween event counts for significant parts of the reward
space.

Another direction for improving quality of the elicita-
tion is to incorporate implicit information in a manner

similar to that of Zhang and Parkes (2008). The in-
verse reinforcement learning constraints developed by
Ng and Russell (2000) can be used to translate observed
behaviour into constraints on reward.

It will also be necessary to improve the efficiency of
the minimax regret computation by exploiting struc-
ture using linear programming approaches to MDPs
(Guestrin et al. 2003). Also, a tight upper bound on
the minimax regret will still yield a guarantee and will
likely offer a significant speedup.

Acknowledgements
The authors gratefully acknowledge the financial sup-
port of Canada’s Natural Science and Engineering Re-
search Council (NSERC).

References
Bagnell, J.; Ng, A.; and Schneider, J. 2001. Solving un-
certain markov decision problems. Tech Report.
Benders, J. 1962. Partitioning procedures for solv-
ing mixed-variables programming problems. Numerische
Mathematik.
Boutilier, C.; Patrascu, R.; Poupart, P.; and Schuurmans,
D. 2006. Constraint-based optimization and utility elici-
tation using the minimax decision criterion. Artifical In-
telligence 170(8–9):686–713.
Boutilier, C.; Sandholm, T.; and Shields, R. 2004. Eliciting
bid taker non-price preferences in (combinatorial) auctions.
204–211.
Boutilier, C. 2002. A POMDP formulation of preference
elicitation problems. 239–246.
Chajewska, U.; Koller, D.; and Parr, R. 2000. Making
rational decisions using adaptive utility elicitation. 363–
369.
Delage, E., and Mannor, S. 2007. Percentile optimization
in uncertain markov decision processes with application to
efficient exploration. ICML.
French, S. 1986. Decision theory: an introduction to the
mathematics of rationality. Halsted Press.
Guestrin, C.; Koller, D.; Parr, R.; and Venkataraman, S.
2003. Efficient solution algorithms for factored mdps. Jour-
nal of Artificial Intelligence Research.
Iyengar, G. 2005. Robust dynamic programming. Mathe-
matics of Operations Research.
Keeney, R. L., and Raiffa, H. 1976. Decisions with Multiple
Objectives: Preferences and Value Trade-offs. New York:
Wiley.
McMahan, H.; Gordon, G.; and Blum, A. 2003. Planning
in the presence of cost functions controlled by an adversary.
ICML.
Ng, A., and Russell, S. 2000. Algorithms for inverse rein-
forcement learning. ICML.
Nilim, A., and Ghaoui, L. E. 2004. Robustness in
markov decision problems with uncertain transition ma-
trices. NIPS.
Puterman, M. 1994. Markov decision processes: Discrete
stochastic dynamic programming.
Sutton, R. S., and Barto, A. G. 1998. Reinforcement Learn-
ing: An Introduction. Cambridge, MA: MIT Press.
Zhang, H., and Parkes, D. 2008. Value-based policy teach-
ing with active indirect elicitation. AAAI.


