
How Close is Close Enough? Finding Optimal Policies

in PAC-style Reinforcement Learning

Emma Brunskill
Computer Science and Artificial Intelligence Laboratory

Massachusetts Institute of Technology
Cambridge, MA 02139

emma@csail.mit.edu

Abstract

There has been recent interest in providing formal guarantees on the finite-sample
performance of reinforcement learning algorithms. Existing approaches focus on
ensuring the algorithm selects actions whose values are ǫ-close to the optimal ac-
tions’ values. However, in robotics and many other domains, the primary objective
is to follow the optimal policy, rather than estimating the precise value of that pol-
icy. Here we present preliminary work on an iterative algorithm that dynamically
finds the number of samples needed to ensure the optimal policy is followed.

In reinforcement learning (RL) an agent must learn how to act in an unknown environment in order
to maximize some function of the reward it receives. To do this the agent must balance between
exploration actions that provide it with a better model of the world dynamics and rewards, and
exploitation actions to maximize the agent’s reward given its current knowledge of the world models.
The exploration-exploitation tradeoff is one of the central challenges in reinforcement learning.

In our work we are interested in RL algorithms that have some precise notion of optimality. For
example, in the limit of infinite training data, under appropriate conditions, Q-learning [7] is guar-
anteed to converge to the optimal policy; however no guarantees are made about performance with
finite training samples. In contrast, Bayesian RL approaches often set the problem as a partially
observable Markov decision process (POMDP) where the model parameters are part of the hidden
state (e.g. [6]). A compelling aspect of this approach is that if an optimal solution to the POMDP is
computed, such algorithms would yield a policy that optimally trades exploration and exploitation
at every step. However, this behavior is not typically achieved since generally only approximate
solutions to the POMDP are calculated, and there are usually no bounds given on the performance
of these approximate solutions. Instead, probably approximately correct (PAC) RL (e.g. [1]) takes
a middle ground approach. It guarantees that for a given ǫ and δ, with probability at least 1 − δ,
an algorithm will choose an action whose value is ǫ-close to the value of the optimal action, on all
but N steps, where N is a function of ǫ, δ, and the problem parameters. In doing so it makes no
statement on the optimality of actions taken during those N steps, but ensures that the long term
performance is close to optimal.

One challenge in using a PAC-style reinforcement learning algorithm, such as R-max [1], is how to
set ǫ. This choice of how close to the optimal value the algorithm’s chosen actions will be, has a
direct relation to the number of steps needed (N). But in many domains, such as robotics, the final
value of the actions performed is not important: instead the objective is to learn to choose the correct
action, that is to find the optimal policy. In such scenarios a more suitable goal is to determine the
number of samples required to guarantee the agent will follow the optimal policy with probability at
least 1-δ. Focusing on this objective may also require a smaller number of samples than is required
for highly accurate value estimates, as we will see shortly. In our domains of interest requiring fewer
samples is of particular importance, since it is hard and/or expensive to get real training examples,
and building a simulator of the domain is nontrivial.

As a step towards this objective, we created an iterative RL algorithm that dynamically sets the
number of samples N and stops iterating when the policy has converged to the optimal policy1. In the
experiment presented below the policy converges significantly before the value function, supporting
our hypothesis. As input the algorithm takes a user-specified δ. The number of samples per state-
action tuple, Nsa, is first set to a low value, and the agent acts using the R-max algorithm, breaking
ties randomly between actions with identical Q-values, until all state-action pairs have been tried
at least Nsa times. At this point we compute the error in the resulting Q-values, which are all now
computed using the estimated dynamics model. The maximum difference ∆Q between the Q-values
of two finite state and action MDPs is bounded above by a function of the discount factor γ and the
L1 distance between their dynamics models T1 and T2: ∆Q ≤ γL1(T1, T2)/(1 − γ)2. To compute
an upper bound on the L1 distance between the estimated and true dynamics models, we estimate
confidence bounds on the model parameters. Hoeffding’s inequality is distribution independent and
can be applied but since the dynamics models here are multinomials, we use the multinomial-specific
confidence intervals developed by Goodman [4]. We then use this computed potential error in the
Q-values (∆Q) to see if the optimal policy for the current estimated Q-values changes. If it doesn’t
change, then the policy is fixed and iteration stops, leaving the algorithm to continue taking only
exploitation actions. If the policy does change, that indicates the uncertainty in the model parameter
estimates is still sufficiently large that the optimal policy could be different than the current estimated
policy. In this case N = |S| · |A| ·Nsa is increased and the next iteration commences. The iterations
can also halt when ∆Q reaches a minimum threshold: this can be used if the user has an idea of
the minimal difference in values he/she cares about, and to prevent the algorithm from attempting to
distinguish between two actions with extremely close values.

We ran our algorithm on the 9-state, 2-action loop MDP (see [2] for a description) with γ set to
0.95 and δ set to 0.5. After the iteration where N was set to 105 samples for each state-action
pair, the change in Q-values ∆Q due to model estimation was sufficiently small that the policy was
unaffected, and so iteration halted. At this point ∆Q, or ǫ, was approximately 0.15. In contrast, if
ǫ has been chosen in advance to be 0.01, then the number of samples required according to PAC
bounds would be over 106, an order of magnitude more than needed in the iterative approach. In
advance it is often hard to know the accuracy needed to ensure the optimal policy will be followed,
and so this approach provides a way to slowly grow the number of samples until this is achieved.

Though this algorithm ensures with probability at least 1−δ that the optimal policy will be followed2

the number of samples required is still prohibitively large for many domains. In practice a far
smaller number of samples than predicted by PAC theory have been found to give good results on
real problems (e.g. [5]). In another experiment with the approach proposed in this paper we found
that though the difference between the true Q-values would predict that over 106 samples would be
required, the policy extracted from the estimated Q values stopped changing after N = 100. We
hope to draw from related work on percentile optimization [3] and robust decision making to better
understand this gulf between theory and practice, and develop reinforcement learning algorithms
that learn faster and still maintain finite-sample performance guarantees.

References

[1] R. Brafman and M. Tennenholtz. R-MAX—a general polynomial time algorithm for near-optimal rein-
forcement learning. Journal of Machine Learning Research, 3:213–231, 2002.

[2] R. Dearden, N. Friedman, and S. Russell. Bayesian Q-learning. In AAAI, 1998.

[3] E. Delage and S. Mannor. Percentile optimization in uncertain Markov decision processes with application
to efficient exploration. In ICML, 2007.

[4] L. Goodman. On simultaneous confidence intervals for multinomial proportions. Technometrics, 7:247–
254, 1965.

[5] B. Leffler, M. Littman, and T. Edmunds. Efficient reinforcement learning with relocatable action models.
In AAAI, 2007.

[6] P. Poupart, N. Vlassis, J. Hoey, and K. Regan. An analytic solution to discrete Bayesian reinforcement
learning. In ICML, 2006.

[7] C. Watkins and P. Dayan. Q-learning. Machine Learning, 8(3):279–292, 1992.

1We assume that rewards R are bounded, and given that, w.l.o.g. that all R ∈ [0, 1].
2Or if the algorithm halts because a minimum ∆Q is reached, that the policy followed will be ∆Q-optimal.

