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Abstract

Simulations are powerful techniques for quantifying risk exposures. This paper
presents a methodology for simulating the performance of hedging strategies for fi-
nancial contracts with embedded optimization features. As a case study, we provide
simulations of mutual fund guarantees offering a reset provision. In Canada, these
types of contracts are known as segregated funds. The optimization component of
these contracts is that the holder can choose when to lock in market gains, typically up
to two or four times per calendar year. Recently, Canadian regulators have imposed
new capital requirements for firms selling these contracts. However, these requirements
can be reduced if hedging strategies are put in place. The techniques presented here
would allow companies to evaluate their proposed hedging strategies and to quantify
their remaining risk exposures. We study the effect of non-optimal investor behaviour
on the hedging of these contracts. In particular, we present results for the heuristic
use of the reset feature; for example, locking in whenever the underlying asset value
has risen by 15% as recently suggested by a Canadian Institute of Actuaries task force
on segregated funds.
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1 Introduction and Motivation

Monte Carlo simulations are commonly used for quantifying risk exposures to derivative
security contracts. The basic approach involves generating many possible paths for the
underlying state variables, thereby obtaining a distribution of values of the contract, with
one realized value for each path. There are several reasons why simulations are so popular
in modern computational finance. First, the premise is very intuitive and the results can
often be readily interpreted. Second, it is relatively easy to model the behaviour of complex
contracts (e.g. path-dependent contracts such as Asian or lookback options) in a simulation
model. Finally, these methods scale well to high dimensional problems.

One of the major limitations of current simulation methods is that it can be very dif-
ficult to incorporate optimization components which are included in many contracts. For
individual realizations of the stock price path, as we march forward in time, we are unable to
determine how one should utilize optimization features. There has been some recent progress
in this area (see Broadie and Glasserman (1998); Boyle et al. (1999) and references therein),
but such approaches assume that the contract holder’s decisions occur only at discrete points
in time rather than continuously (i.e. they approximate an American option by a Bermudan
option). In this paper we utilize a previously computed solution to provide us with this
information. We can then use Monte Carlo techniques to simulate the behaviour of these
contracts under various scenarios.

As a case study to demonstrate these techniques, we provide simulations of a mutual fund
guarantee which offers a reset feature. These contracts are known in Canada as segregated
funds. They have been very popular in recent years, reaching a market size of about $31
billion CDN at the end of 1999.1 Recently, variable annuities offering many similar features
have become increasingly popular in the U.S., with an estimated market size of $1 trillion
USD (Milevsky and Posner (2000)). Essentially, segregated funds consist of a mutual fund
combined with a ten year maturity guarantee with complex features.2 The reset feature
allows the investor to lock in market gains as the value of the underlying mutual fund
increases. When the investor resets, he exchanges his existing guarantee for a new ten year
maturity guarantee set at the current value of the mutual fund. Typically, the investor is
able to reset the contract up to a maximum of two to four times per calendar year. This
introduces an optimization component to these contracts, where the investor must decide
when he or she should reset and lock in at the higher guarantee level.

The complex optionality embedded in segregated funds and their long term nature mean
that they provide a very interesting case study for simulation and hedging techniques. More-
over, this is a topic of considerable practical importance. Recently Windcliff et al. (2000,
2001), Falloon (1999) and others have raised concerns that some of these contracts have
been under-priced by companies offering these products. Further, the Canadian regulatory
board OSFI (Office of the Superintendent of Financial Institutions) has imposed new capital

1Source: Canadian Life and Health Insurance Facts (2000 Edition), published by the Canadian Life and
Health Insurance Association, Inc. Note that although not all segregated funds include reset provisions, the
vast majority of them do.

2Some of the available features and variations of these contracts are discussed in Windcliff et al. (2000,
2001).
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requirements for these contracts. These capital requirements can be reduced if suitable hedg-
ing strategies have been implemented. The techniques presented here would allow companies
to evaluate their proposed hedging strategies and to quantify their remaining risk exposure.

2 Contract Description: Segregated Fund Guarantees

More than one thousand Canadian mutual funds can be purchased with an accompanying
maturity guarantee. Typically, after ten years the investor is entitled to receive the greater
of either the current value of their account, or their initial deposit amount. As the value
of their account rises, the guarantee becomes less valuable to the investor and they become
more likely to lapse out of the contract, i.e. withdraw their funds. In part to avoid this,
and for other reasons, many financial institutions offer more sophisticated guarantees, with
optionality such as the reset feature. The reset feature allows the investor to lock in market
gains. When the investor chooses to reset their guarantee, the investor is given a new
guarantee which matures at ten years past the reset date with the guarantee level set to
the current level of the underlying asset. The investor usually has a limited number of
reset opportunities per year; typically up to two or four resets per year. These contracts
are attractive to investors since they give the investor the benefits of the higher anticipated
returns in equity markets while providing downside protection should markets fall.

In this paper, we study the effectiveness of a proposed hedging strategy for a prototypical
segregated fund guarantee. A summary of the important structure of the contract is given in
Table 1. The hedging strategy was derived from the solution of a partial differential equation
model described in Windcliff et al. (2000). This model assumes continuous rehedging and
optimal investor behaviour. Both of these assumptions are unrealistic and we would like to
study their effect on the performance of the hedging strategy.

We will assume an initial investment of $100. The investor initially receives a guarantee
at this level which matures in 10 years. The guarantee level can be reset by the investor up
to two times per calendar year, simply by notifying the insurer. Upon reset, the guarantee
level is set to the value of the fund at reset, and the maturity date is extended to be 10 years
from the reset date.

No initial fee is charged to enter into the contract. Instead, proportional fees are deducted
over time to pay for the cost of providing the guarantee. In the simulations provided in this
paper, a proportional fee of rm = 2% (per annum) is paid for the management of the
underlying mutual fund. In addition, a proportional fee of re is used to cover the cost
of providing the guarantee. The total proportional fee of rm + re can be thought of as a
standard management expense ratio (M.E.R.) on a mutual fund, except that some part of it
is being used to fund the guarantee. A deferred sales charge (D.S.C.) is applied upon early
redemption. In this work, we use a sliding scale from 5% in the first year to 0% in the sixth
and further years. It is assumed that the D.S.C. is charged by the underlying mutual fund
and that none of this fee is allocated to funding the guarantee portion of these contracts.

A standard mortality feature is provided. If the investor dies, the greater of the current
fund value or its guaranteed level is provided immediately (at the time of death). In this
work, we use mortality data for a Canadian female aged 50 years. In Windcliff et al. (2000),
we show that the contribution of the mortality feature to the value of these contracts is
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Investor profile 50 year old female.

Deterministic lapse rate 5% p.a.

Optimal lapsing Yes.

Initial investment $100

Maturity term 10 years, maximum expiry on investor’s 80th birthday.

Resets Two resets per year permitted until the investors 70th

birthday. Upon reset:
Guarantee level = Asset level,
Maturity extended by 10 years.

Mortality benefits Guarantee paid out immediately upon the death of
the investor.

M.E.R. A proportional fee of rm = 2% is allocated to fund
manager of underlying fund. We will also charge ad-
ditional proportional fees at a rate of re to cover the
cost of providing the maturity guarantee. The total
proportional fees are thus charged at a rate of rm+re.

D.S.C. A deferred sales charge is paid on early redemption
using a sliding scale from 5% in first year to 0% after
5 years in fund.

Volatility σ = 20%

Interest rate r = 6%

Drift rate (before fees) µ = 13%

Table 1: Specification of the segregated fund guarantee contract and market information
used during subsequent simulations.
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minimal for this demographic type.3 The contract expires after the investor’s 80th birthday;
i.e. the maximum duration of the contract is 30 years. The investor is not allowed to reset
the guarantee level after her 70th birthday.

The value of the guarantee will also depend upon market conditions. Here we assume
that the guarantee is provided on a fund with a volatility of σ = 20%. We also assume a
spot interest rate of r = 6%. Although we will not pursue this in the current paper, it would
also be interesting to investigate the effect of deviations from these assumptions.

Finally, the level of investor optimality, i.e. how efficiently they use the reset feature, will
affect the cost of providing the guarantee portion of these contracts. We begin by assuming
optimal investor behaviour, which is clearly unrealistic.4 We also study the effectiveness of
using a heuristic rule for utilizing the reset feature. For example, in a report on segregated
funds produced by a task force established by the Canadian Institute of Actuaries, it is sug-
gested that issuers of these contracts should assume that investors will reset their guarantee
whenever the value of the underlying mutual fund has increased by 15% over the investor’s
current guarantee level.

Investors can also lapse out of the contract. This can occur in one of two ways. First,
for liquidity or other exogenous reasons, investors may simply choose to close their accounts.
We assume that 5% of accounts are lapsed each year in this deterministic manner, i.e.
independently of the value of the fund. Second, lapsing may in some cases be an optimal
strategy for investors. As mentioned above, a D.S.C. is applied to the account during the
first five years of the contract. Although this will tend to discourage lapsing, it is no longer
relevant after this initial period, and if a high M.E.R. is being charged, the investors can
lapse to avoid paying the remaining proportional fees. The investor should optimally choose
to lapse out of the segregated fund contract if the value of the guarantee is less than the
value of the proportional payments required to stay in the guarantee. This is particularly
relevant during the closing decade where the investor has no more reset opportunities. If the
asset value becomes much larger than the guarantee level, the investor should lapse out of
the contract to avoid paying the remaining fees since the guarantee that they hold is unlikely
to have any value at maturity.

3 A Mathematical Description of the Hedging Strat-

egy

The guarantee embedded in a segregated fund can be thought of as a standard put option
with additional optionality. In order to develop a hedging strategy for a segregated fund
guarantee we follow a standard partial differential equation (PDE) approach as described
in Merton (1973). For simplicity, suppose that we are modelling the value of a guarantee
provided on a segregated fund which tracks an index which can be traded in a liquid market.

3This is consistent with work by Milevsky and Posner (2000) in the context of variable annuities in the
U.S.

4Although the assumption of optimal investor behaviour is presently unrealistic due to a combination
of lack of knowledge on the part of investors and the complex optionality embedded in the contracts, it is
conceivable that in the future financial advisors could assist their clients in making more optimal decisions.
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In general, we will not be able to hedge with such a perfectly correlated asset and it will be
necessary to establish a minimum variance cross hedge.

We model the value of the index, SI , as following the stochastic differential equation
(SDE)

dSI = µSIdt+ σSIdz, (1)

where µ is the drift rate of the index, σ is the volatility and dz is an increment from a Wiener
process. This expressions can be integrated to obtain

SI(t) = SI(0)e(r− 1
2
σ)t+σ

√
tφ, (2)

where SI(0) is the initial value of the index and φ ∼ N(0, 1).
If S represents the value of the underlying segregated fund, then S follows the stochastic

differential equation

dS = (µ− (rm + re))Sdt+ σSdz, (3)

where rm is the management fee of the underlying index tracking mutual fund and re is
the proportional fee charged to cover the cost of providing the guarantee. Again, we can
integrate this SDE to obtain

S(t) = S(0)e−(rm+re)te(r− 1
2
σ)t+σ

√
tφ (4)

= e−(rm+re)tSI(t). (5)

To hedge the segregated fund guarantee which has value V , we can create the following
hedging portfolio Π as

Π = V −∆SI (6)

where ∆ represents the number of shares of the index held. Note that in general, it is not
possible for the insurer to hedge by directly trading in the underlying mutual fund. After
standard analysis such as that found in Wilmott et al. (1993), one finds that the appropriate
position in the index which eliminates risk over infinitesimal intervals is given by

∆ = e−(rm+re)t
∂V

∂S
. (7)

The value of the segregated fund guarantee, V = V (S,K,U, T, t) depends upon the value
of the underlying segregated fund S, the current guarantee level K, the number of reset
opportunities used during the current calendar year U , the current maturity date of the
guarantee T and the current time t. In Windcliff et al. (2000), the value is shown to satisfy
a recurrence of linear complementarity problems,

∂V

∂t
+ (r − re − rm)S

∂V

∂S
+

1

2
σ2S2∂

2V

∂S2
− rV −R(t)reS +M(t) max(K − S, 0) ≤ 0 (8)

V ∗ ≤ V (9)
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where one of (8,9) holds with equality. In these equations, V ∗ is the value of the contract
which investors receive if they choose to reset, R(t) represents the fraction of the investors
remaining in the contract (i.e. those who have neither lapsed nor died) at time t and M(t)
is the rate of mortality at time t. In equation (8), the term R(t)reS represents the incoming
proportional payments made by investors remaining in the contract towards the guarantee.
The term M(t) max(K − S, 0) represents payments made to the estates of investors who
pass away during the infinitesimal interval dt.

The mathematical complexity of this problem arises due to the minimum value constraint
V ∗ ≤ V . There are no known solutions to the linear complementarity problem (8,9) even
in the highly simplified case where rm = re = M(t) = 0 and V ∗ = max(K − S, 0), which
is the standard American put option problem. In our situation, V ∗ represents the value of
the contract the investor receives upon using the reset feature. If the investor has remaining
reset opportunities left at time t, then

V ∗(S,K,U, T, t) = V (S, S, U + 1, t+ 10, t). (10)

The solution to this linear complementarity problem is approximated using a penalty method
as described in Windcliff et al. (2000); Zvan et al. (1998).

4 Simulating Contracts With Optimization Features

Standard Monte Carlo techniques are not well suited to simulate the behaviour of contracts
which contain optimization features such as those contained in American put options and
segregated fund guarantees with the reset feature. The reason is that we are unable to deter-
mine how the investor should utilize these features if we only use information available from
the simulation. In this paper, we utilize a precomputed solution to the linear complementar-
ity problem (8,9) to provide us with this information. Effectively, we solve backward from
the terminal time to the present using our penalty method approach, storing information
along the way regarding states at which it is optimal for investors to reset their guarantees
or lapse out of the contract. We then simulate the performance of hedging strategies forward
in time from the present, using the previously stored information to track actions taken by
investors.

Other current research in applications of Monte Carlo techniques to optimization prob-
lems in finance has a significantly different focus. For example, Boyle et al. (1999) develop
an application of the stochastic mesh method described in Broadie and Glasserman (1998)
to value complex reset options. This method requires that the continuous early exercise
feature of the contract can be well-approximated by exercise decisions at a set of specified
discrete points in time. Further, the Green’s function of the PDE must be easily computable.
Essentially, in this application, Monte Carlo methods are used to stochastically integrate the
Green’s function.

It should be emphasized that we are interested in simulating the real world behaviour
of these contracts. This is in contrast with Monte Carlo applications where simulation
techniques are used to determine the no-arbitrage value of a contract. In other words, we
are interested in simulations under the actual probability P-measure (as in “value at risk”
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type calculations), rather than the risk-neutral Q-measure used for pricing purposes. In our
situation, we have already computed the no-arbitrage value by solving a recurrence of linear
complementarity problems. The purpose of the simulations made here is to study the effects
of some of the assumptions made during the development of our dynamic hedging strategy.
Specifically, in this paper we address the rehedging interval and the degree of optimality
displayed in investors’ use of the reset feature. Of these, the second is novel as far as we are
aware. The issue of discrete rehedging has been studied before (see e.g. Boyle and Emanuel
(1980); Boyle and Hardy (1997)), but not in as complex a setting as here.

Since we do not adjust our hedge position continuously, and we do not always assume
that investors will behave in an optimal fashion, the outcomes from our simulations will
not be deterministic, and our hedged position is not going to be completely risk free. To
assess tradeoffs between risk and return, we want to calculate quantities such as the present
value of the expected profit, its standard deviation, and its value at risk.5 As pointed out
by Wirch and Hardy (1999), this latter risk measure can be quite misleading in our context.
This is because a lot of the risk exposure can be in the extreme tail of the distribution (i.e.
a small probability of a very large loss). Following Wirch and Hardy (1999), we will also
compute a conditional tail expectation as an alternative to value at risk. All of this will
give us quantitative information which will assist us in determining the necessary capital
requirements for these contracts.

In Figure 1 we present a class diagram demonstrating a framework which can be used to
simulate the performance of various hedging strategies for contracts which may involve op-
timization components such as segregated fund guarantees and American put options. This
framework allows us to compare the performance of a standard actuarial reserve, where pro-
portional fees are merely collected in a risk free account, with the performance of a dynamic
delta hedging strategy which uses a standard finance no-arbitrage approach to replicating
market outcomes. Further, we can study the effect of the assumption of optimal investor
behaviour on the cost of providing the guarantee. Using the optimal exercise boundary
computed during the solution of the linear complementarity problem (8,9), we can model
the cost of providing the guarantee when the investor acts optimally. On the other hand,
we can also impose a heuristic rule for utilizing the reset feature. In this work, we use the
heuristic rule that the investor should reset the guarantee if the stock price rises 15% above
the current guarantee level, as suggested by a task force on segregated funds established by
the Canadian Institute of Actuaries.

4.1 Some Computational Details

The solution to the linear complementarity problem (8,9) was computed using techniques
described in Windcliff et al. (2000). See Table 4.1 for details concerning the numerical PDE
methods used to obtain the precomputed solution.

During the stochastic simulation, it was necessary to extract the hedging parameter
∆ = ∆(S,K,U, T, t) from our precomputed solution. In general, the value of the under-

5Note that we are using the term value at risk in the sense of a quantile reserve requirement. However,
as is typical in insurance, this is over a much longer horizon (in our case up to 30 years) than is usually the
case in finance, where the focus is on potential losses over a short time (e.g. over a 10 day period).
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Base Hedge
 b: Amount in bank
 get_value(): $
 restart_hedge()
 update_hedge()
 collect_fees(fees:$)
 pay_mortality(payout:$)

stockprice
 S_index: $
 S_segfund: $

Reserve

Hedge Data
 delta: hedging parameter

PDE Hedge
 a: Position in underlying

Contract

Seg Fund
 strike: $
 resets_used: #
 maturity: time

American put
 strike: $
 maturity: time

Optimal Behaviour Data
 exercise_boundary: $

Base Investor

 decide_if_reset()
 decide_if_lapse()

Optimal InvestorHeuristic Investor

Figure 1: A class diagram demonstrating a framework which can be used to simulate the
performance of various hedging strategies for segregated fund guarantee. In this model, the
investor can impose several different rules in order to decide when she should utilize the
reset feature.

Variable Number of nodes Notes

S 100 Irregular mesh, refined at strike.
K 1 Similarity transformation used

(Windcliff et al. (1999)).
U 3 Discrete variable.
T 201 Number of active nodes at any instant (ex-

cept during closing decade).
t 601 Timesteps

Table 2: Details about the numerical PDE method used to obtain the precomputed solution.
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lying segregated fund S was not contained in the S-grid from the precomputed solution,
necessitating in linear interpolation in the S-direction. The guarantee level was computed
using a similarity transformation described in Windcliff et al. (1999) and as a result, no
interpolation was necessary in the K-direction. All necessary values of the discrete variable
0 ≤ U ≤ Umax were available in the precomputed solution, so no interpolation was neces-
sary in the U -direction. Finally, the data in the precomputed solution was constructed so
that there was no interpolation in the T -grid (for the expiry times) or in the t-grid (for the
timesteps). This approach was chosen to avoid the extrapolation in these dimensions due
to the dynamic nature of these grids; see Windcliff et al. (2000) for details about problems
arising due to the dynamic discretization. It should be noted that we also ran simulations
using a precomputed solution which used twice as many nodes for each variable. The ef-
fects of discrete rehedging were orders of magnitude larger than the errors introduced by the
interpolation methods used.

When performing the Monte Carlo simulations, the integrated solution of the SDE (4)
was used. Note that we did not employ any variance reduction techniques. This is because
we wanted to assess both the mean and the variance of our hedging strategy: adopting a
strategy to improve the precision of our estimate of the mean would have meant that our
assessment of the risk of a strategy was biased downwards.

5 Results

In this section we compare the distribution of outcomes which are realized when a hedging
strategy is implemented versus a reserve where fees are collected in a risk free account. We
have noted elsewhere (Windcliff et al. (2000, 2001)) that in practice many of these contracts
are under-priced from a no-arbitrage point of view. In other words, with the proportional
fees which are being charged, it is not possible for institutions offering these products to
hedge their risk exposure. Many firms have decided to not hedge these products and simply
collect the fees without explicitly allocating any resources in the event of a market downturn.

Since there is no initial charge for entering into a segregated fund guarantee, the relevant
task when pricing these contracts is to determine the proportional fee re which must be
charged in order to make the initial value of the guarantee zero. As described in Windcliff
et al. (2000), the valuation is performed for various values of re until the initial value of the
contract is smaller than some given tolerance. For the contract described in Section 2 the
appropriate fee is re ≈ 1.52%. For this proportional fee the initial value is less than ±$0.05.

In Table 3 we can assess the effects of incorporating a dynamic hedging strategy to manage
the risk associated with selling a segregated fund guarantee. The standard deviation has been
reduced by a factor of approximately six in exchange for the expected profit in the unhedged
case which is approximately $8.6 The convergence of these simulations is shown in Figure 2.
Note that the y-axes in the two panels have radically different scales. Of course, given the

6Note that the numbers reported in Table 3 are standard deviations, not standard errors. The latter are
usually reported in Monte Carlo studies to provide evidence regarding the precision of the estimate of the
mean. In this case we are interested in the tradeoff between risk (as measured by standard deviation) and
return, and so we report standard deviations. Of course, the standard errors can easily be computed from
the standard deviations by dividing by the square root of the number of simulation runs.
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Hedging strategy Mean ($) Standard Deviation

PDE hedge 0.41 1.55
No hedge 8.08 9.51

Table 3: Statistics on the distribution of the present value of the returns realized when
using a hedge computed from the solution of a PDE model and when using a standard
actuarial reserve after 2048000 simulations when a fee of re = 1.52% is charged to pay for
the guarantee. The PDE model was rehedged 20 times per year.
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Figure 2: Convergence of the expected present value of the outcomes as a function of the
number of simulations performed. Note that different scales are used for the y-axes.

reduced variance for the hedged position, much greater computational effort is required to
reach a specific confidence level for the mean of the unhedged position.

The distribution of the present values of outcomes is shown in Figure 3 as well as the
time at which the outcome is actually realized. Each outcome represents the maturity of an
aggregate contract.7 We emphasize that for these contracts the maturity date, T , is unknown
in advance since it depends upon the investor’s exercise strategy. Reported present values
are computed by discounting payouts from T back to t = 0 at the risk free rate r. Therefore,
present values should be interpreted as the amount which should be set aside at t = 0 in a
risk free account in order to cover expected payouts on the contract.8 Since the proportional

7The contracts have been aggregated over a population type during our modelling of mortality benefits
(see Windcliff et al. (2000) for a complete discussion). The contract maturity dates plotted in figures such as
Figure 3 are for the termination of an individual simulation, which occurs either when the guarantee matures
or when it becomes optimal for investors to lapse. The plotted values in these figures are the difference
between the present values of the hedge position and the value of the payout to the investors remaining
when the simulation ends. At that time, the aggregate hedge position has already had payments deducted
from it in the form of mortality benefits to investors who died earlier. Similarly, the values of the payout
to investors remaining at the end of the simulation do not incorporate investors who lapse deterministically
out of the contract before then.

8For valuation purposes, the use of the risk free rate can be at least approximately justified for the
dynamic PDE hedge. One might reasonably argue that payoffs to unhedged positions should be discounted
at a somewhat higher rate. As our focus here is on hedging, as opposed to valuation, we will not investigate
this issue further here, except to note that discounting at a higher rate would clearly reduce the computed
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Figure 3: Present values of realized net positions Vnet = Vhedge − Vpayout for the segre-
gated fund guarantee described in Section 2 when the correct proportional fee re = 1.52%
is charged. See accompanying text for a description of the behaviour illustrated in these
figures. These plots are based on a sample of 10,000 simulations.

fee being charged represents the fair value for the contract, the mean value of the position is
approximately zero when the hedging strategy from the PDE model is implemented as seen
in Figure 3(a). Ideally the value of the hedged position should always be identically zero.
The variance arises due to the fact that the hedge is re-computed twenty times per year
discretely rather than in a continuous fashion. An interesting point to note is that despite
the fact that these contracts have very long maturities, the performance of the dynamic
hedge does not degrade nearly as much as might have been expected.

Figure 3(b) shows the case where the insurer does not establish a dynamic hedge but
rather simply collects the proportional fees in a reserve. We can see several distinct features:

• During the first five years there are no terminations of the aggregated contract. Due to
the deferred sales charge (D.S.C.), during these years it is not optimal to lapse out of
the contract. However, during years six through ten, it may be optimal for investors to
lapse and leave the contract to avoid paying the proportional fees. In particular, this
is the case if investors have already used their reset opportunities. The vertical bands
which can be noticed in the figure correspond to the beginning of each year, where the
investor receives two new reset opportunities. As a result, at these times the investors
will not lapse out of the contract. It should be noted that if no hedging plan has been
established, outcomes where the investor lapses result in a profit for the insurer since
fees have been collected and no payments are made out of the fund. Of course, by not
having a hedging plan the insurer is exposed to much more downside risk later on.

• After the tenth year, the maturity guarantees begin to expire. In Figure 3(b) we see
that if the insurer has not hedged their position the outcomes display a great deal
of variance with an expected loss. In fact, one can infer that quite large additional
reserves would be required to cover a 95% value at risk measure.

mean and standard deviation of the unhedged strategy.
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• During the closing decade (after the twentieth year), the investors have no more re-
set opportunities. Again, if the stock price rises above the current guarantee level it
becomes optimal for the investors to lapse out of the contract to avoid paying the
remaining proportional fees. In this situation, the unhedged position realizes an ex-
pected profit since fees have been collected and no payments are made to the investor
upon lapsing.

We reiterate that the results shown here demonstrate that it is possible to considerably
reduce the variance of the realized profits or losses by establishing a dynamic hedge. In the
case that the fair value is charged for the contract, this reduction in uncertainty is achieved
at the expense of the expected profit of the insurer. In fact, the fees charged for these
contracts in the market are frequently lower than the fair value for these contracts. We
believe that these prices reflect the view by insurers that most investors act with varying
degrees of non-optimality. This issue will be dealt with in Section 5.2. Despite the reduction
in the expected profit, it may be desirable to establish some hedging strategy in order to
lessen the impact of new capital requirements which are being imposed due to regulatory
concerns regarding these contracts.

It has been observed in Windcliff et al. (2000), Windcliff et al. (2001) and Falloon (1999)
that the fees being charged for these contracts are often insufficient to cover the required
hedging costs to eliminate risk when optimal investor behaviour is assumed. If a proportional
fee of re = 1% is charged to fund the guarantee, then from the viewpoint of the insurer, the
initial cost of creating a hedge for this guarantee which is not covered by incoming payments
is $3.58. For the remainder of the simulations in this paper we assume that the proportional
fee allocated to fund the guarantee is re = 1%. The majority of segregated fund guarantees
which are currently available are offered at fees which are less than this.

5.1 Discrete Rehedging Interval

The theory used to derive the PDE hedging model assumes that the hedging position is up-
dated continuously. This is clearly not possible in practice. Even high frequency (e.g. daily)
hedging may not be possible, for two reasons. First, if rehedging is performed frequently,
there will be substantial accumulated losses involved due to transaction costs. Second, for
institutions offering many of these contracts to investors, it will not be possible to re-evaluate
the positions required in a timely fashion.

In this section we use simulations to study the performance of the hedge if the hedging
position is updated at a periodic interval. In the limit as the interval between rehedging
times becomes small the variance of the outcomes should reduce to zero. Existing PDE
methods do not give us a way to get a tight bound on the effect of varying the rehedging
interval. It is our goal to quantify what we mean by a small rehedging interval so that we can
understand the tradeoffs between frequent rehedging and reducing variance in the outcomes.

In Figure 4 we demonstrate the reduction in variance as the rehedging interval is de-
creased. Based on these results, it appears as though rehedging should performed approxi-
mately monthly. Notice that, in contrast with Figure 3, since the fees being charged are too
low, it is not optimal to lapse during the first ten years of the contract (thus the x-axes of
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(a) No hedging plan.
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(b) Rehedge once per year.
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(c) Rehedge twice per year.
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(d) Rehedge five times per year.
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(e) Rehedge ten times per year.
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(f) Rehedge twenty times per year.

Figure 4: The effect of the discrete rehedging interval on the distribution of outcomes.
Points represent outcomes of individual price path simulations indicating the time at which
the contract is terminated and the present value of the net position Vnet of the insurer;
Vnet = Vhedge − Vpayout where Vpayout is the value paid out the investor at contract maturity
and Vhedge is the value of the hedging plan used by the insurer. These plots are based on a
sample of 10,000 simulations.
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Rehedges per year Expected value ($) Standard deviation ($)

20 -3.12 1.83
10 -3.11 2.62
5 -3.16 3.55
2 -3.28 5.26
1 -3.33 7.01
No hedging 4.38 9.86

Table 4: The expected present value and standard deviation of the returns on the sale of
a segregated fund guarantee when a proportional fee of re = 1% is charged. This data was
generated using 2048000 simulations.
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(b) Rehedge twenty times per year.

Figure 5: Histogram of the distribution for the present value of the returns from the view
of the provider of a segregated fund guarantee. A proportional fee of re = 1% is charged.
These plots are based on 2048000 simulations.

the figures start at the tenth year). Table 4 demonstrates the reduction in variance as the in-
terval between updates to the hedging position is decreased. Histograms of the distributions
of returns for the unhedged and twenty rehedges per year cases can be seen in Figure 5.

5.2 Heuristic Investor Behaviour

One of the most important applications of the simulation techniques described in this paper
is the study of the effect of various heuristic investor behaviours on the distribution of returns
on these contracts. The value and hedging strategy computed using the PDE model assumes
optimal behaviour by the investors. By optimal behaviour, we mean that the investors’ use of
the reset feature results in the most expensive possible hedging strategy from the viewpoint
of the insurer. Clearly this is not the way that most investors will utilize the reset feature.

One heuristic rule which has been suggested by a Canadian Institute of Actuaries task
force on segregated funds is that investors should reset their guarantee if the asset price rises
to be 15% greater than the current guarantee level. If there were no volatility, given a drift
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Figure 6: The optimal exercise boundary, S∗, for the initial guarantee sold to the investor.
The investor should optimally reset if S > S∗K where S is the current asset value and K
is the current guarantee level. Note that this is for the first use of the reset provision only
(i.e. U = 0, T = 10). Upon resetting, U and T change and a different optimal exercise
boundary applies.

rate of µ = 13%, one would expect to use the reset feature approximately once per year.
In Figure 6 we see that using 15% as a heuristic rule may be a reasonable approximation
for the optimal exercise boundary of the initial guarantee during the first few years of the
contract (i.e. when the time to maturity is near ten years), at least for the first use of the
reset provision.

Figure 7 shows the distribution of returns realized when investors use a heuristic rule to
determine their use of the reset feature. When compared with the results obtained when
investors act optimally as in Figure 5, the mean value has increased and there is more positive
skew in the case where the heuristic rule is applied.

A summary of the statistics of these distributions is given in Table 5. It is important to
notice that the impact of heuristic investor behaviour is more favorable to the expected value
of the PDE hedge than it is to the expected value when no hedging strategy is implemented.
As a result, it may be possible to properly hedge the downside risk and still maintain an
expected profit based on the assumption that investors will act non-optimally.

Another point to note is that although the standard deviation of the hedged position is
larger in the case of heuristic investor behaviour, this is a result of the positive skew in the
distribution. This can be observed in Figure 7(b), where the downside risk has been mostly
removed using the dynamic hedge from the PDE model. As investors use the reset feature
non-optimally, more positive skew is introduced. This is because the hedge from the PDE
model always has enough resources to cover the most expensive sequence of actions that
can be performed by the investor (at least in theory, if the hedged position is continuously
adjusted). If the investor chooses to use the reset feature in some different fashion, the PDE
hedge will still have sufficient resources and some of the excess that has been charged to the
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(a) No hedging plan.
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(b) Rehedge twenty times per year.

Figure 7: Histogram of the distribution for the present value of the returns from the view
of the provider of a segregated fund guarantee when the investor utilizes a heuristic rule
for using the reset feature. The investor heuristically resets the guarantee if S ≥ 1.15K,
where S is the value of the segregated fund and K is the current guarantee level. During the
final 10 years when the investor has no more reset opportunities, the investor heuristically
lapses if S ≥ 1.25K. A proportional fee of re = 1% is charged. These plots are based on
2048000 simulations.

investor can be recovered.
This has very important financial implications regarding the hedging of these contracts.

It may make sense for the insurer to hedge the most expensive possible outcome assuming
optimal investor behaviour rather than assuming a degree of investor non-optimality as in
Windcliff et al. (2001). In the event that the investor does not act optimally, the insurer will
realize some additional profit. In this way, the insurer will always have sufficient resources
to cover the guarantees which have been offered, at least under the idealized conditions of
the model.

Investor behaviour
Optimal Heuristic

Hedging strategy Expected Standard Expected Standard
value ($) deviation ($) value ($) deviation ($)

PDE hedge -3.12 1.83 -1.68 2.35
No hedge 4.38 9.86 4.82 9.66

Table 5: The comparison of mean and standard deviation of the returns on the sale of a
segregated fund guarantee when a proportional fee of re = 1% is charged when heuristic and
optimal investor behaviours are applied. The PDE hedging strategy used involved rehedging
twenty times per year. This data was generated using 2048000 simulations.
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Hedging strategy 95% VaR 95% CTE 99% VaR 99% CTE
($) ($) ($) ($)

No hedge 13.90 21.55 28.87 36.15
PDE hedge 5.76 7.12 7.80 9.69

Table 6: Comparison of VaR measures and conditional tail expectations (CTE) for our
prototypical segregated fund contract when re = 1% when no hedging is performed and when
using a dynamic delta hedging strategy which is updated twenty times per year.

5.3 Effect of Hedging on Reserve Requirements

As mentioned in the introduction, new capital requirements have recently been imposed for
providers of segregated fund guarantees. By implementing a hedging strategy, it may be
possible for these regulatory requirements to be reduced significantly.

One standard measure which can be used to determine an appropriate reserve of capital
is the standard value at risk (VaR) measure. Briefly, a 95% VaR measure is the amount of
capital that is required to ensure that there are sufficient resources to cover all but the worst
5% of the possible outcomes.9

We can use the simulation techniques described in this paper to find the 95th percentile
for our prototypical segregated fund contract. In Table 6 we see that when a proportional
fee of re = 1% is charged to cover the cost of providing the guarantee we find that a reserve
of $13.90 is required if the contract is unhedged. By using a dynamic delta hedging strategy
which is updated twenty times per year, the required reserve can be reduced to $5.76. These
amounts represent the capital that is required per $100 notional value to ensure that the
insurer has sufficient resources to back up the guarantee 95% of the time. For a 99% VaR,
the unhedged strategy requires a reserve more than twice as high (compared to the 95%
VaR). By contrast, the increase for the hedged strategy from the 95% to the 99% VaR is
about 35%.

Recently, Wirch and Hardy (1999) have demonstrated that additional measures should
be considered when managing certain types of risk. This is particularly relevant to the case
of segregated funds, since much of the risk exposure comes from large losses which occur
with small probability. As one alternative, Wirch and Hardy (1999) propose the conditional
tail expectation (CTE). The 95% CTE is simply the mean value of the outcomes conditional
on being in the worst 5% from the viewpoint of the insurer. The CTE helps to quantify the
remaining risk which has not been considered during the VaR calculation. For the segregated
fund guarantee studied in this paper, when a proportional fee of re = 1% is charged, the 95%
CTE is $21.55 if the position is unhedged, but is $7.12 when the dynamic hedging strategy
is implemented (and updated twenty times per year). The differences are similar for the
99% CTE. These results indicate that the dynamic hedge performs very well at reducing
downside risk for the providers of these contracts.

9See Duffie and Pan (1997) for a comprehensive review. In addition, a vast amount of information is
available at http://www.gloriamundi.org.
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6 Conclusions and Future Work

In this paper we describe techniques which allow us to perform stochastic simulations on
problems in finance which involve optimal decisions by the investor. During the Monte
Carlo simulation, we use a previously computed solution to determine the timing of optimal
decisions.

As a case study, we demonstrate these techniques by simulating the performance of a
hedging strategy for segregated fund guarantees. In particular, we look at how frequently
the hedges for these contracts should be updated and find that when the hedge is updated
twenty times per year the standard deviation of the outcomes is approximately reduced by
a factor of six when compared with an unhedged contract.

Another important aspect of this work is that it allows us to study the effect of non-
optimal investor behaviour on the cost of providing the guarantee. In this work we study
a heuristic rule where the investor resets the guarantee if the asset level is larger than the
current guarantee level by a factor of 1.15. It is possible that for sufficiently sub-optimal
investor behaviour, the downside risk of these contracts can be hedged with the current fees
being charged.

Recently, new capital requirements have been imposed on companies providing these
contracts. By implementing a hedging strategy, it may be possible for these companies to
reduce their capital requirements substantially. In this paper we find that the 95% VaR
requirements are reduced from $13.90 to $5.76 per $100 notional value for the prototypi-
cal contract studied. The 95% CTE was also substantially improved by implementing the
hedging strategy. Similar results were obtained for the 99% VaR and CTE cases.

There are numerous avenues for future research in this area. Since these contracts are very
long term, the assumption of constant volatility and interest rates is questionable. It would
be informative to study the effects of stochastic volatility and interest rates on the hedging
strategies produced. Moreover, we have ignored transactions costs. It would be interesting
to investigate the tradeoff between these costs and the required frequency of rehedging.
Additionally, it would be desirable to investigate alternative dynamic hedging plans. One
example would be a “move-based” strategy, in which the hedge position is rebalanced if the
value of the underlying instrument has changed by a specified amount.10 It would also be
interesting to explore delta-gamma strategies, rather than just delta-hedging.

Another important financial modelling issue is that as mentioned, it is often not possible
for the insurer to establish a hedge by trading directly in the underlying asset. In this paper
we assume that we are insuring a segregated fund guarantee which is offered on an index
tracking fund. If we do not have a perfectly correlated asset with which to establish a hedge,
it will be necessary to set up a minimum variance cross hedge.

Moreover, if investors act sub-optimally, it may be possible to establish a hedge which
removes downside risk while still having positive expected present value even though the
correct no-arbitrage fee is not being charged. In this paper we study one simple heuristic

10Note that Boyle and Hardy (1997) investigate these types of issues (i.e. transactions costs, alternative
hedging strategies) in the much simpler context of a maturity guarantee with no embedded optionality. They
find that the move-based strategy outperforms the type of strategy we have considered here, where the hedge
is rebalanced at fixed points in time.
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rule to model investor behaviour. It would be interesting to collect data on the behaviour of
actual investors in order to better model their actual behaviour.

Finally, it may be worthwhile to investigate the impact of alternative simulation meth-
ods, especially with regard to variance reduction. This would appear to require separate
simulations to assess expected values and various risk measures, rather than the all-in-one
approach taken here. In particular, recent developments in low discrepancy sequences and
quasi-Monte Carlo simulation (see e.g. Joy et al. (1996)) are a promising avenue for future
research.
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