
Negative Coefficients in Two Factor Option Pricing Models∗

R. Zvan†

Financial Analytics and Structured Transactions
Bear Stearns

245 Park Avenue
New York, NY
U.S.A. 10167

P.A. Forsyth‡

Department of Computer Science
University of Waterloo

Waterloo, ON
Canada N2L 3G1

K.R. Vetzal§

Centre for Advanced Studies in Finance
University of Waterloo

Waterloo, ON
Canada N2L 3G1

February 16, 2001

Abstract

The importance of positive coefficients in numerical schemes is frequently emphasized in
the finance literature. This topic is explored in detail in this paper, in the particular context
of two factor models. First, several two factor lattice type methods are derived using a finite
difference/finite element methodology. Some of these methods have negative coefficients, but
are nevertheless stable and consistent. Second, we outline the conditions under which finite vol-
ume/element methods applied to two factor option pricing partial differential equations give rise
to discretizations with positive coefficients. Numerical experiments indicate that constructing
a mesh which satisfies positive coefficient conditions may not only be unnecessary, but in some
cases even detrimental. As well, it is shown that schemes with negative coefficients due to the
discretization of the diffusion term satisfy approximate local maximum and minimum conditions
as the mesh spacing approaches zero. This finding is of significance since, for arbitrary diffusion
tensors, it may not be possible to construct a positive coefficient discretization for a given set
of nodes.
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1 Introduction

The connection between the existence of an equivalent martingale measure and the absence of
arbitrage is one of the cornerstones of modern financial asset pricing theory. Basically, this means
that the value of an asset can be found by calculating its expected future payoff under a particular
probability measure (determining, in effect, the certainty equivalent of the payoff) and discounting
at the risk free rate of interest. In other words, prices can always be determined, at least in principle,
by taking some positively-weighted combination of possible future payoffs and discounting.

When dealing with continuous time models, asset values may also be expressed in terms of
partial differential equations (PDEs). It is often necessary to use numerical techniques to solve
these PDEs, as analytic solutions are not generally available. This naturally leads to some form of
discretization. It is frequently emphasized in the finance literature that the coefficients in the dis-
crete equations should be nonnegative if an explicit type of method is used (Brennan and Schwartz,
1978; Hull and White, 1990; Boyle and Tian, 1998). A vastly longer list of papers could be cited
here, if one recognizes that binomial and trinomial trees are simply versions of explicit finite differ-
ence schemes.1 Indeed, the coefficients in these schemes are generally viewed as being equivalent
martingale probabilities.

The nonnegativity of coefficients is a sufficient condition for the stability of a consistent explicit
scheme (Forsythe and Wasow, 1967). For the one-dimensional diffusion equation (with linear basis
functions), nonnegativity is also necessary for stability. Although nonnegative coefficients are only
sufficient conditions for the stability of explicit schemes in two dimensions, they are also sufficient
conditions for schemes of arbitrary temporal weighting to possess discrete local maximum and min-
imum principles (see Rafferty et al., 1985; Forsyth, 1991; Putti and Cordes, 1998; Zvan et al., 1998,
2000)). This implies that the numerical solution will not be contaminated by spurious oscillations.
It is also worth noting that there exist two-dimensional and higher dimensional explicit schemes
that do not satisfy the positive coefficient condition, but which are nonetheless stable (Brandt,
1973) (though possibly oscillatory).

This article analyses negative contributions to discrete coefficients arising from diffusive terms.
This issue is important in the context of pricing problems in more than one dimension. Due to
the presence of cross-partial derivatives, it may not be possible to construct a finite difference or
finite element scheme with nonnegative coefficients. One important case where it is possible is
geometric Brownian motion, since transformations can be applied to eliminate the cross-partial
terms.2 However, applying these transformations may result in numerical solutions of poor quality
due to grid nodes being placed in sub-optimal locations. Moreover, there are other important cases
such as stochastic volatility models (e.g. Heston, 1993) where such transformations do not appear
to be possible. Consequently, it is of interest to explore the effects of negative contributions to
discrete coefficients arising from diffusive terms. Specifically, this paper investigates whether such
contributions deteriorate the quality of solutions for two-dimensional pricing problems, relative to
solutions computed when the discretization of diffusion ensures that the coefficients will be positive.

1The equivalence of trinomial trees and explicit finite difference methods is generally recognized (Hull, 2000).
However, the fact that binomial trees are also forms of standard explicit methods seems to be much less widely known.
A demonstration of this is provided in Heston and Zhou (2000) for the Black-Scholes PDE after a transformation to
the heat equation.

2Much of the finance literature on option pricing in more than one dimension attempts to generalize one-
dimensional trees using such transformations to ensure that coefficients are positive (Boyle, 1988; Amin, 1991; Hull
and White, 1994; Gao, 1997; Imai, 1997). Note that it can be shown (see Zvan, 2000) that certain positive probability
multidimensional lattice schemes such as those in Gao (1997); Imai (1997) are in fact explicit finite element schemes
using skewed or nonorthogonal quadrilateral meshes.
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Option pricing PDEs are typically convection-diffusion type equations.3 It is important to
observe that convection and diffusion have very different effects. Roughly speaking, in a physical
context convection is movement or flow in a particular direction, whereas diffusion causes spreading
out or scattering. This distinction is obscured by viewing the discrete coefficients as martingale
probabilities because the probabilities reflect the contributions of both of these phenomena.

Even if a numerical scheme is stable, it can be prone to spurious oscillations if negative co-
efficients are present. This can lead to inaccuracy (especially with respect to the derivatives of
the numerical solution) and slow convergence. We can isolate three distinct sources of spurious
oscillations in numerical computation of option prices:

• Convection dominance (large drift terms compared to the diffusion terms). Various techniques
exist to handle problems arising from negative contributions to discrete coefficients due to
convective terms. Examples include upstream weighting and flux limiters (see Zvan et al.,
1998, 2000, for further details).

• Crank-Nicolson timestepping, if the timesteps are larger than double the maximum stable
explicit timestep size, can generate oscillations if the payoff is non-smooth. The methods in
Rannacher (1984) can be used to alleviate this source of oscillations.4

• Negative coefficients arising from the discretization of the diffusion terms. This source of
problem is not easily remedied.

In the following we focus on negative coefficients arising from the discretization of the diffusion
terms. We show that:

• A variety of lattice type schemes can be derived using explicit finite difference/finite element
methods, all relying on a consistent methodology, without appealing to probabilistic argu-
ments. Several of these lattice methods are equivalent (locally to O

[
(∆t)2

]
where ∆t is the

timestep size) to known schemes. Some of these lattice schemes have negative coefficients,
but are stable and convergent.

• Schemes with negative coefficients due to the discretization of the diffusion term satisfy ap-
proximate local maximum and minimum principles as the mesh spacing approaches zero.

• Constructing meshes to ensure that coefficients (of the discretized diffusion operator) are pos-
itive does not appear to produce solutions of better quality, compared to solutions obtained
without forcing the positive coefficient condition. Tests carried out using an implicit finite
volume method (FVM) show that, under certain criteria, the solutions obtained with a posi-
tive coefficient discretization may be of poor quality. Placing nodes according to features of
the problem appears to be more important than obtaining positive coefficients.

Note that implicit finite difference methods have occasionally been used for multidimensional prob-
lems in finance (Brennan and Schwartz, 1980; Wilmott et al., 1993; Dempster and Hutton, 1997),
but it has recently been demonstrated in Zvan et al. (2000) that the FVM has several advantages
over finite difference schemes in this context.

3Readers unfamiliar with this terminology should think of the convective term involving first order derivatives and
the diffusive term involving second order derivatives.

4Alternatively, a second order BDF type timestepping method (which is strongly A-stable) can also be used
(Tavella and Randall, 2000), though this can be a poor choice for some types of American options (Windcliff et al.,
1999).
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2 Lattice Methods

Two factor lattice methods are typically derived using probabilistic arguments. In this section,
we will explore the use of a finite difference/finite element approach to derive two factor lattice
methods. We will show that some methods previously described in the literature can be derived (to
O
[
(∆t)2

]
) using our approach. We will also derive some new methods. All of the methods which

we will describe have the same discrete form.
Assume that we have two factors S1, S2 which follow processes

dS1 = µS1S1dt+ σS1S1dWS1

dS2 = µS2S2dt+ σS2S2dWS2 ,

where µS1 and µS2 are expected returns, σS1 and σS2 are volatilities, and WS1 and WS2 are Wiener
processes with correlation ρ. Then the underlying PDE for the price of a contingent claim U written
on S1, S2 has the form

−Ut + V · ∇U = (D∇) · ∇U − rU, (2.1)

where V is the velocity tensor, ∇ is the gradient operator, D is the diffusion tensor, and r is the
risk free interest rate. Equation (2.1) is a convection-diffusion equation, where −V · ∇U is the
convection term and (D∇) · ∇U is the diffusion term.

Defining the gradient operator as ∇ = (∂/∂S1, ∂/∂S2)′, the price of an option based on two
underlying assets in the original variables (S1, S2) has the form of equation (2.1) with

V = −
(
rS1

rS2

)
and D =

1
2

(
σ2
S1
S2

1 ρσS1σS2S1S2

ρσS1σS2S1S2 σ2
S2
S2

2

)
. (2.2)

Alternatively, let x = log(S1), y = log(S2), and define the gradient operator as ∇ = (∂/∂x, ∂/∂y)′.
Then the PDE in terms of the (x, y) variables has the same form as equation (2.1) with

V = −
(
r − σ2

S1
/2

r − σ2
S2
/2

)
and D =

1
2

(
σ2
S1

ρσS1σS2

ρσS1σS2 σ2
S2

)
. (2.3)

2.1 Hull and White Method

Hull and White (1990) suggest that a further transformation be carried out to diagonalize the
tensor D in (2.3). With x, y defined as above, let ψ1 = σS2x + σS1y and ψ2 = σS2x − σS1y.
This corresponds to a stretching and rotation of the coordinate system. After carrying out this
transformation, and defining ∇ = (∂/∂ψ1, ∂/∂ψ2)′, the PDE again has the same form as equation
(2.1) with

V = −
(

(r − σ2
S1
/2)σS2 + (r − σ2

S2
/2)σS1

(r − σ2
S1
/2)σS2 − (r − σ2

S2
/2)σS1

)
and D =

(
(1 + ρ)σ2

S1
σ2
S2

0
0 (1− ρ)σ2

S1
σ2
S2

)
. (2.4)

Letting Unij = U(i∆ψ1, j∆ψ2, n∆t), we discretize equation (2.1) using an explicit method

−

(
Un+1
ij − Unij

∆t

)
= (−V · ∇U + (D∇) · ∇U)n+1

ij − rUnij . (2.5)
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Equation (2.5) with diffusion and convection tensors (2.4) can be easily discretized in the (ψ1, ψ2)
plane since there is no cross derivative term. For example,

(Uψ1,ψ1)nij =
Uni+1,j − 2Uni,j + Uni−1,j

(∆ψ1)2
+O

[
(∆ψ1)2

]
(Uψ1)nij =

Uni+1,j − Uni−1,j

2∆ψ1
+O

[
(∆ψ1)2

]
, (2.6)

with similar expressions for the ψ2 derivatives. Let

µψ1 = (r −
σ2
S1

2
)σS2 + (r −

σ2
S2

2
)σS1 σψ1 = σS1σS2

√
2(1 + ρ)

µψ2 = (r −
σ2
S1

2
)σS2 − (r −

σ2
S2

2
)σS1 σψ2 = σS1σS2

√
2(1− ρ). (2.7)

Then, choosing ∆ψ1 = σψ1

√
2∆t and ∆ψ2 = σψ2

√
2∆t, and applying some algebraic manipulation,

we obtain the discrete equations (locally correct to O
[
(∆t)2

]
)

Uni,j = e−r∆t
α=+1∑
α=−1

β=+1∑
β=−1

WαβU
n+1
i+α,j+β (2.8)

where i = −n, . . . ,+n, j = −n, . . . ,+n and the weights Wαβ are given by

W+1,0 =
1
4

(
1 +

µψ12
√

∆t
σψ1

√
2

)
W0,+1 =

1
4

(
1 +

µψ22
√

∆t
σψ2

√
2

)

W−1,0 =
1
4

(
1−

µψ12
√

∆t
σψ1

√
2

)
W0,−1 =

1
4

(
1−

µψ22
√

∆t
σψ2

√
2

)
, (2.9)

with all other weights Wαβ = 0.5 To apply the payoff condition, we must be able to determine the
original asset values at each node. These can be determined by noting that

(ψ1)nij = σS2 log
(
(S1)0

0,0

)
+ σS1 log

(
(S2)0

0,0

)
+ iσψ1

√
2∆t

(ψ2)nij = σS2 log
(
(S1)0

0,0

)
− σS1 log

(
(S2)0

0,0

)
+ jσψ2

√
2∆t

(S1)nij = exp
((ψ1)nij + (ψ2)nij

2σS2

)
(S2)nij = exp

((ψ1)nij − (ψ2)nij
2σS1

)
. (2.10)

The weights (2.9) are all nonnegative and sum to one if∣∣∣∣∣µψ12
√

∆t
σψ1

√
2

∣∣∣∣∣ ≤ 1,

∣∣∣∣∣µψ22
√

∆t
σψ2

√
2

∣∣∣∣∣ ≤ 1. (2.11)

5Note that in equation (2.8) we have used the approximation 1/(1+r∆t) = e−r∆t+O
[
(∆t)2

]
. Also, we can avoid

some unnecessary work by specifying the additional requirement for the indicies that i + j be even if n is even and
i+ j be odd if n is odd.
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For typical parameter values, this is not very restrictive. Consequently, assuming (2.11) holds, it
is obvious that this discretization is stable. We can then interpret the weights as (risk neutral)
probabilities. In the following, any scheme which (with mild restrictions) has the form (2.8) with
nonnegative weights, will be termed a positive coefficient discretization.

Restriction (2.11) can be eliminated if the first order terms are discretized appropriately. Note
that

dU = Ut dt+ Ux dx+ Uy dy

= dt

(
Ut + Ux

dx

dt
+ Uy

dy

dt

)
= dt (Ut + q · ∇U) , (2.12)

where (q)x = dx
dt , (q)y = dy

dt . The term Ut + q · ∇U can then be discretized as(
dU

dt

)n
ij

= (Ut + q · ∇U)nij

=
Un+1
ij − Unij

∆t
, (2.13)

where Unij = U(xnij , y
n
ij , tn) and xn+1

ij = xnij + (q)x∆t, yn+1
ij = ynij + (q)y∆t. In our case, we can write

the term −Ut + V · ∇U as

−
(
dU

dt

)
ij

= − (Ut + q · ∇U)nij

= (−Ut − (−V) · ∇U)nij

= −

(
Un+1
ij − Unij

∆t

)
(2.14)

where xn+1
ij = xnij + (−V)x∆t, yn+1

ij = ynij + (−V)y∆t .
The discretization of the term−Ut+V·∇U using equation (2.14) is usually called a characteristic

approach, since this corresponds to following the solution back along the characteristic. Note that
if V is constant, then equation (2.14) is exact.

2.2 A Finite Difference Lattice Method

Given (2.1), with gradient operator ∇ = (∂/∂x, ∂/∂y)′ and diffusion and drift tensors as in equation
(2.3), we can derive a lattice type method which has the same form as equation (2.8), using a
characteristic method for the drift term, and a straightforward finite difference approximation of
the diffusion term. We will carry out this discretization in the x = log(S1), y = log(S2) plane,
without rotating the coordinates to remove the cross derivative terms.

Let

Unij = U(xnij , y
n
ij , n∆t)

xnij = x0
0,0 + nµx∆t+ iσ1

√
2∆t

ynij = y0
0,0 + nµy∆t+ jσ2

√
2∆t. (2.15)
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where

µx = r − σ2
1

2
, µy = r − σ2

2

2
. (2.16)

We can use equation (2.14) to discretize the term −Ut + V · ∇U (noting that Vx = −µx and
Vy = −µy) and centered finite differences for the diffusion terms. Using an explicit method in
time, we obtain

−

(
Un+1
ij − Unij

∆t

)
= ((D∇) · ∇U)n+1

ij − rUnij . (2.17)

At any given time level n, the finite difference grid (2.15) is equally spaced in the x and y
directions. Consequently, the usual centered finite difference approximations can be used for the
Uxx, Uyy terms. The cross derivative term is approximated by

(Uxy)nij =
Uni+1,j+1 − Uni−1,j+1 − Uni+1,j−1 + Uni−1,j−1

4∆x∆y
+O(∆t), (2.18)

where ∆x = σ1

√
2∆t, ∆y = σ2

√
2∆t. We then obtain a discrete equation of the form (2.8) (to

O
[
(∆t)2

]
) with

W−1,−1 = −ρ
8 W−1,0 = 1

4 W−1,1 = ρ
8

W0,−1 = 1
4 W0,0 = 0 W0,1 = 1

4

W1,−1 = ρ
8 W1,0 = 1

4 W1,1 = −ρ
8 .

(2.19)

Some of the coefficients in equation (2.19) are negative if ρ 6= 0. Consequently, the usual positive
coefficient argument cannot be used to demonstrate that the recursion (2.8) is stable. Following
the standard von Neumann analysis, we let

Unij = αN−n exp(
√
−1 iθx) exp(

√
−1 jθy), (2.20)

where N is the number of timesteps, in equation (2.8) with weights (2.19) to obtain

|α| ≤
∣∣∣∣cos(θx) + cos(θy)− ρ sin(θx) sin(θy)

2

∣∣∣∣ . (2.21)

After some tedious algebra, this implies

max
0≤θx≤π,0≤θy≤π

|α| ≤ 1; |ρ| ≤ 1 (2.22)

and hence the recursion is stable.

2.3 A Finite Element Lattice Method

The presence of negative weights in the finite difference approach described above is at first sight
somewhat disconcerting, appearing to violate discrete maximum properties. However, as will be
shown below in Section 4, a convergent technique can be expected to satisfy an approximate discrete
maximum principle as ∆t→ 0.

These negative weights can be avoided if we use a finite element technique with linear basis
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XiXi-1 Xi+1

Yj-1

Yj

Yj+1

ρ > 0 ρ < 0

Xi

Yj

Yj-1

Yj+1

Xi-1
Xi+1

Figure 1: Finite element triangulation for cases ρ > 0 and ρ < 0.

functions defined on triangles as shown in Figure 1. Note that the triangulation used changes
orientation depending on the sign of ρ. Again, we define Unij and xnij , y

n
ij as in equations (2.15)-

(2.16), and use a characteristic method for the −Ut + V · ∇U term. Our starting point is the same
as for the finite difference method

−

(
Un+1
ij − Unij

∆t

)
= ((D∇) · ∇U)n+1

ij − rUnij . (2.23)

Let Nij be the linear C0 Lagrange basis functions associated with node (i, j). These have the
properties that Nij = 1 at node (i, j), Nij = 0 at all other nodes, and

∑
ij Nij = 1 everywhere in

the solution domain. The diffusion term is discretized as

((D∇) · ∇U)n+1
ij =

β=+1∑
β=−1

α=+1∑
α=−1

γi+α,j+β

(
Un+1
i+α,j+β − U

n+1
ij

)
(2.24)

where

γi+α,j+β =
−1
Aij

∫
∇Nij ·D · ∇Ni+α,j+β dx dy, Aij =

∫
Nij dx dy. (2.25)

This gives a discretization of the form (2.8) with

ρ < 0


W−1,−1 = 0 W−1,0 = 1+ρ

4 W−1,1 = −ρ
4

W0,−1 = 1+ρ
4 W0,0 = −ρ

2 W0,1 = 1+ρ
4

W1,−1 = −ρ
4 W1,0 = 1+ρ

4 W1,1 = 0


ρ > 0


W−1,−1 = ρ

4 W−1,0 = 1−ρ
4 W−1,1 = 0

W0,−1 = 1−ρ
4 W0,0 = ρ

2 W0,1 = 1−ρ
4

W1,−1 = 0 W1,0 = 1−ρ
4 W1,1 = ρ

4

 . (2.26)

These weights are always nonnegative (for |ρ| ≤ 1) and sum to unity, and so this method is stable.

2.4 Gao Lattice Method

Gao (1997) develops a two dimensional lattice scheme. It is shown in Zvan (2000) that this method
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can be derived by a characteristic discretization of the −Ut + V · ∇U term and discretizing the
diffusion term using bilinear basis functions on skewed quadrilaterals. Again, we obtain a method
of the form (2.8), with

W−1,−1 = 1
36 W−1,0 = 1

9 W−1,1 = 1
36

W0,−1 = 1
9 W0,0 = 4

9 W0,1 = 1
9

W1,−1 = 1
36 W1,0 = 1

9 W1,1 = 1
36

(2.27)

where

Unij = U(xnij , y
n
ij , n∆t)

xnij = x0
0 + nµx∆t+ iσ1

√
3∆t

ynij = y0
0 + nµy∆t+ (iρ+ j

√
1− ρ2)σ2

√
3∆t (2.28)

with µx and µy being given in equation (2.16).

2.5 Comparison of Lattice Methods

From the above, it is clear that many lattice schemes can be derived using the following steps:

• The coordinates are transformed (usually x = log(S1), y = log(S2)), so that the PDE coeffi-
cients become constant in the (x, y) plane. Further rotations can be performed to eliminate
cross derivative terms.

• A finite difference or finite element method is used to discretize the diffusion term.

• A finite difference (in the time direction) or characteristic method is used to discretize the
convection term.

• Explicit timestepping is used.

There is no need to appeal to probabilistic arguments. Note that this procedure results in discrete
schemes which are identical (locally to O

[
(∆t)2

]
) to known lattice methods. As well, we can

produce several lattice type methods which have not been described previously, at least in the
finance literature. In particular, the finite difference lattice method results in some negative weights.

We now proceed to provide some numerical results for the various lattice schemes. We begin
with the simple case of a European call on the best of two assets. More precisely, the payoff is
U(S1, S2, t = T ) = max(max(S1, S2) −K, 0), where K is the strike. Table 1 presents the results.
It appears that the Hull and White rotated grid method converges more smoothly than the other
lattice methods.

A more difficult pricing problem is a two factor digital call, with payoff U(S1, S2, t = T ) = 1 if
S1 ≥ K and S2 ≥ K, and 0 otherwise. Convergence results for all four lattice methods are given in
Table 2. In this case, all methods show somewhat erratic convergence. This is probably due to the
fact that these methods will not, in general, have element faces and nodes which are aligned with
the non-smooth payoff. In order to obtain smooth convergence, some projection onto the space of
basis functions is generally required (Rannacher, 1984). However, as noted in Wahlbin (1980), it is
not easy to carry out the projection operation with sufficient accuracy to restore good convergence
if the payoff is not aligned with the mesh nodes.

Contours of constant prices are plotted in Figure 2 for all four lattice methods. We obtained the
contour values by setting T = .5, and then outputting the values at all nodes in the tree at t = .25.
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(a) Hull and White (2.9).
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(b) Finite Difference (2.19).
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(c) Finite Element (2.26).
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(d) Gao (2.27).

Figure 2: Level curves of values of a European digital call when r = 0.05, σS1 = 0.10, σS2 = 0.30,
T − t = 0.25, K = 40, ρ = .7.
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N H & W Finite Difference Finite Element Gao
40 2.89428 2.89276 2.88776 2.88931
80 2.89286 2.89321 2.89086 2.88946
160 2.89172 2.89092 2.89014 2.89075
320 2.89133 2.89114 2.89063 2.89068

Table 1: Value of European call option on the maximum of two assets when r = 0.05, σS1 = 0.10,
σS2 = 0.30, T − t = 0.25, S1 = S2 = 40, K = 40, ρ = .7. Exact solution is 2.89055 to six figures. N
is the number of timesteps. H & W refers to the method (2.9), Finite Difference refers to method
(2.19), Finite Element refers to method (2.26), and Gao refers to method (2.27).

N H & W Finite Difference Finite Element Gao
40 .407732 .450678 .454974 .405284
80 .410572 .427917 .430310 .429116
160 .411267 .431633 .431561 .411696
320 .411136 .413938 .413938 .416583

Table 2: Value of European digital call when r = 0.05, σS1 = 0.10, σS2 = 0.30, T − t = 0.25,
S1 = S2 = 40, K = 40, ρ = .7. Exact solution to six figures .410929. N is the number of timesteps.
H & W refers to method (2.9), Finite Difference refers to method (2.19), Finite Element refers to
method (2.26), and Gao refers to method (2.27).

160 steps were used. Note that the contours are cut off in some cases due to lack of data for those
points. For the finite difference method (2.19), there are no observable oscillations in the contours,
even though some of the weights are negative. This would appear to indicate that negative weights
are not a serious problem in practice.

Our last lattice test problem is a European call on the maximum of two assets, with discretely
observed knockout barriers. The barriers are observed at increments of .025 years. Denoting the
upper and lower barriers by Hu and Hl, the value of the option must satisfy the constraint

U(S1, S2, t−) =

{
U(S1, S2, t+) if Hl < S1 < Hu and Hl < S2 < Hu

0 otherwise,
(2.29)

where t+ and t− are the times just before and after the application (monitoring date) of a barrier,
respectively.

Table 3 gives the prices at S1 = S2 = 40 for a sequence of timesteps for all methods. The
convergence behavior is somewhat erratic. This is quite typical for discretely observed barrier
option pricing problems when standard lattice methods are used (Boyle and Lau, 1994).6

Figure 3 shows the contours of constant prices for the various lattice methods for this test
problem. Compared with previous tests, the contour plots for the different methods are observably
dissimilar. We can also see some slight ripples in the contours for the Hull and White method. At
first glance, this is puzzling because the Hull and White method is a positive coefficient method.
In fact, as we shall see later in Section 6, this is an artifact of the interpolation used in producing
the plot since the Hull and White nodes are placed on a skewed, rotated grid.

6It is possible to modify lattice type approaches to improve convergence (Ritchken, 1995; Cheuk and Vorst, 1996),
but this becomes very difficult when barriers are applied in more than one dimension.
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N H & W Finite Difference Finite Element Gao
40 1.75998 1.71568 1.70926 1.70869
80 1.73728 1.78735 1.78443 1.68015
160 1.73993 1.79313 1.79206 1.77838
320 1.74433 1.71764 1.71698 1.73214

Table 3: Values of European call options on the maximum of two assets when r = 0.05, σS1 = 0.10,
σS2 = 0.30, T − t = 0.25, S1 = S2 = 40, K = 40, ρ = .7. Discretely observed knockout barriers at
Hu = 50, Hl = 30. Barriers observed at increments of .025. N is the number of timesteps. H & W
refers to method (2.9), Finite Difference refers to method (2.19), Finite Element refers to method
(2.26), and Gao refers to method (2.27).
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(a) Hull and White (2.9).
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(b) Finite Difference (2.19).
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(c) Finite Element (2.26).
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(d) Gao (2.27).

Figure 3: Level curves of values of European call options on the maximum of two assets when
r = 0.05, σS1 = 0.10, σS2 = 0.30, T − t = 0.25, K = 40, ρ = .7. Discretely observed knockout
barriers at Hu = 50, Hl = 30. Barriers observed at increments of .025.
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At this point, it is worth summarizing our investigation of lattice methods. Essentially, these
are explicit discretizations of the PDE (2.1). The simple form of equation (2.8) can be obtained
if the log transformation eliminates the dependence of the equation coefficients on S1, S2. This
permits a constant grid spacing in the transformed coordinates. In other words, the weights dictate
the placement of the nodes. The node spacing is also of size

√
∆t so that stability conditions are

automatically satisfied.
The requirement that the weights in equation (2.8) be nonnegative is very restrictive. Never-

theless, nonnegativity is a desirable property since it guarantees that the numerical solution will
be oscillation-free. However, our initial tests with a lattice method with negative weights did not
result in observable oscillations.

Observe that the finite difference lattice and the finite element lattice use the same node lo-
cations and the same timestepping method. Convergence of these two methods is very similar, in
spite of the fact that the finite difference lattice has negative coefficients.

In general, it is desirable to use a method where the nodes can be placed according to the
characteristics of the payoff, or other features of the pricing problem (e.g. barriers), rather than
being dictated by the equation coefficients. We would also like to have the flexibility of using
unequally spaced nodes, or even unstructured grids. This flexibility would be very useful if we
were using the PDE solver inside an optimization method for calibration of volatility/correlation
surfaces. It would obviously be desirable, for example, if the grid is held fixed and the weights
changed to reflect updated volatility estimates.

In order to further investigate the effect of negative coefficients on the discretization, an implicit
finite volume method will be used in the following. We will use an implicit method because i) the
stability condition for an explicit method can only be determinined numerically for general grids
with negative coefficients; ii) we avoid any stability problems; and iii) we can easily use this method
in cases where the coefficients are not constant.

3 Finite Volume Discretization

We give a brief description of the finite volume method (FVM) in the following. For more details,
we refer the reader to Zvan et al. (2000). It is convenient to convert equation (2.1) into a forward
equation

Uτ = −V · ∇U + (D∇) · ∇U − rU (3.1)

where τ = T − t.
We now proceed to discretize equation (3.1) using a FVM. Consider a discrete two dimensional

computational domain Ω which is tiled by triangles. Define a control volume or finite volume
around each node, as shown in Figure 4. The finite volume is constructed by joining the midpoints
of each triangle edge to the triangle centroid (or alternatively to the intersecion of the perpendicular
bisector of each triange edge). Integrating equation (3.1) over the finite/control volume FVi gives∫

FVi

UτdΩ = −
∫
FVi

V · ∇UdΩ +
∫
FVi

(D∇) · ∇UdΩ−
∫
FVi

rUdΩ. (3.2)

As in section 2.3, let Ni be the standard C0 Lagrange basis functions defined on triangles, and
let Un+1 =

∑
j U

n+1
j Nj where Un+1

j = U(xj , yj , τn+1) is the value of U at (xj , yj , tn).
Using fully implicit time stepping for ease of exposition, the following approximations are used

12



node i

node j

U

Control Volume

e

f ij+1/2

Figure 4: Centroid control volume on a triangulated domain. Points e and f are the centroids
of their respective triangles. The face (line segments from e to f) passes through the middle of the
edge connecting nodes i and j.

for the terms in equation (3.2):∫
FVi

UτdΩ ≈ Ai
(
Un+1
i − Uni

∆τ

)
,

−
(∫

FVi

V · ∇UdΩ
)n+1

≈ −Vi ·
∮
∂FVi

Un+1~ndΓ ≈ Vi ·
∑
j∈Ωi

~LijU
n+1
ij+ 1

2

, (3.3)

(∫
FVi

(D∇) · ∇UdΩ
)n+1

≈
∮
∂FVi

(Di∇Un+1) · ~ndΓ (3.4)

≈
∑
j∈Ωi

−
∫

Ω
∇′NiDi∇NjdΩ(Un+1

j − Un+1
i ),

(∫
FVi

rUdΩ
)n+1

≈ AiriUn+1
i . (3.5)

where the symbol definitions are provided in Table 4.
Note that in equations (3.3)-(3.5) the integrals have been approximated by evaluating terms

which depend on the space-like variables at node i.
Putting together equations (3.2)-(3.5) gives the final form for the discretization of equation (3.1)

Ai

(
Un+1
i − Uni

∆τ

)
= θ

∑
j∈Ωi

ηij(Un+1
j − Un+1

i ) +
∑
j∈Ωi

~Lij ·ViU
n+1
ij+ 1

2

−AiriUn+1
i


+ (1− θ)

∑
j∈Ωi

ηij(Unj − Uni ) +
∑
j∈Ωi

~Lij ·ViU
n
ij+ 1

2

−AiriUni


+ θwn+1

i + (1− θ)wni , (3.6)

where the ηij term in (3.6) is defined as

ηij = −
∫

Ω
∇′NiDi∇NjdΩ. (3.7)
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Symbol Definition

Ai area of the control volume for node i
Un+1
i solution at node i at time step n+ 1

∆t time step size
θ temporal weighting factor (where θ = 1 is a fully implicit scheme,

θ = 1/2 is the Crank-Nicolson method and θ = 0 is a fully explicit scheme)
Ωi set of nodes that neighbor node i
~Lij

∫ f
e n̂ds where e and f are the endpoints of the face separating

nodes i and j (see Figure 4)
n̂ inward pointing unit normal to the face separating nodes i and j

Un+1
ij+ 1

2

value at the control volume face separating nodes i and j

ri interest rate at node i

Table 4: Symbol definitions for finite volume discretization.

The wn+1
i term in equation (3.6) is used to handle boundary conditions (see Zvan et al., 2000).

Note that when V and D are constant, (3.6) can be regarded as a Galerkin finite element method
with mass lumping (Selmin and Formaggia, 1996; Zienkiewicz, 1977).

4 Diffusion Operators

This section explores the conditions under which discretizations of the diffusion term (D∇) · ∇U
term in equation (3.1) are guaranteed to produce nonnegative coefficients, when using the FVM
with linear shape functions. In other words, we desire ηij ≥ 0 in equation (3.6). For clarity, we
will only examine the diffusion term, dropping time dependence and the convective term. In Zvan
et al. (2000) it was shown that the convective term can be discretized using arbitrary temporal
weighting such that the coefficients are positive. Note that for explicit and Crank-Nicolson schemes,
a condition on the timestep size must also be satisfied in order to obtain nonnegative coefficients.

4.1 Constant Coefficients

We begin with the simple case of constant coefficients. Consider applying the FVM used in dis-
cretization (3.6) to

(D∇) · ∇U = 0 (4.1)

when D is constant and symmetric positive definite. For each Ui we obtain∑
j∈Ωi

ηij(Uj − Ui) = 0 (4.2)

where

ηij = −
∫

Ω
∇′NiD∇NjdΩ. (4.3)
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Figure 5: Finite element/volume triangle.
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Figure 6: A regular triangular mesh.

Let ∆1 and ∆2 be two triangles which share the common edge k (see Figure 5). Let θk1 and
θk2 be the angles opposite the shared edge. For the special case where D is an identity matrix, it
is straightforward to show that ηij ≥ 0 if and only if θk1 + θk2 ≤ π (Forsyth, 1991).

In other words, the sum of the angles opposite each interior edge must be less than or equal to
π. The condition θk1 + θk2 ≤ π is satisfied if the mesh is a Delaunay triangulation (Barth, 1994).
A regular triangular mesh is a Delaunay triangulation. Note that we define a regular triangular
mesh in this work to be a triangulation where the triangles have one edge parallel to one axis and
another edge parallel to the other axis (see Figure 6). In general, for triangles with a boundary
edge we require that the angle opposite the boundary edge be non-obtuse in order to ensure that
the ηij ≥ 0 for boundary nodes. However, due to the nature of the usual boundary conditions in
finance, (either a Dirichlet condition is specified, or the normal diffusion is zero), this does not add
any additional constraints on the mesh in practice.

Now consider the more general case

D =
(
kx kxy
kxy ky

)
(4.4)

where kx, kxy and ky are constant, and D is positive definite. In this situation, there is a transfor-
mation to an (x′, y′) coordinate system such that D′ is an identity matrix. A Delaunay triangulation
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new edge
old edge

Figure 7: Edge-swapping.

in this coordinate system will produce ηij ≥ 0. Alternatively, we can bypass this coordinate trans-
formation by performing an edge-swapping procedure in the original coordinates (Forsyth, 1991).
This algorithm proceeds by examining each edge in turn. If ηij < 0, then the mesh is altered by
swapping the edge as shown in Figure 7. This affects adjacent edges, which must then be examined,
and so on.

In summary, for a constant diffusion tensor (4.4), meshes where the ηij for interior nodes are
nonnegative can always be constructed in the original coordinate system, but such meshes will
generally not be regular triangulations. Regular triangulations will be guaranteed to produce
nonnegative ηij only when kxy = 0. Similarly, standard finite difference schemes will not produce
positive coefficients for equation (4.1) unless kxy = 0. Finite element methods using bilinear
quadrilateral elements will in general require nonorthogonal meshes (unless kxy = 0) to ensure that
the ηij are nonnegative. The use of bilinear elements will also generally require that an aspect ratio
condition be satisfied in order to ensure nonnegative ηij .

4.2 Nonconstant Coefficients

In option pricing models the diffusion coefficients are typically nonconstant. In this case, the
discretization of equation (4.1) becomes∑

j∈Ωi

ηij(Uj − Ui) = 0,

where

ηij = −
∫

Ω
∇′NiDi∇NjdΩ.

If transformations can be performed that produce constant diffusion coefficients, then, as pointed
out in Section 4.1, a mesh where all the ηij in discretization (3.6) are nonnegative for interior
nodes can always be constructed for any node placement. However, if such transformations are not
available, this is no longer true: one cannot ensure, in general, that ηij ≥ 0 for interior nodes for a
given node placement when the diffusion tensor is nonconstant (see Zvan, 2000, for details).

This somewhat negative result is mitigated by the following fact, which is proven in Appendix A.
Let h be the mesh size parameter (i.e. radius of largest circumcircle of any triangle in the mesh),
and let

Umax
i = max(Uni , U

n+1
j∈Ωi

)

Umin
i = min(Uni , U

n+1
j∈Ωi

). (4.5)
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If the exact solution satisfies a Lipschitz condition, then

Umin
i −O(h) ≤ Un+1

i ≤ Umax
i +O(h).

In other words, an approximate discrete maximum principle holds. In the case of a discontinuous
payoff, the solution does not satisfy a Lipschitz condition at the terminal time. However, due to
the parabolic smoothing nature of the pricing PDE, we can expect that a Lipschitz condition will
be satisfied at any finite time prior to maturity.

5 Comparison of Finite Volume and Lattice Methods

Based on the results of the comparison of the lattice methods in Section 2.5, it appears that the
Hull and White method (Section 2.1) is the best technique, and so we will use it as a benchmark
lattice technique. For the FVM, tests were conducted using Crank-Nicolson timestepping with
the modification suggested in Rannacher (1984) for cases where the payoff was discontinuous (i.e.
digital options) or for discretely observed barriers. A regular Cartesian grid was used, and, since
a non-zero correlation was specified, the discretization of the diffusion term resulted in negative
coefficients. As well, negative coefficients are caused by the use of Crank-Nicolson timestepping
with timesteps larger than the explicit stability limit. We use the version of the PDE in the original
(S1, S2) variables for these tests. We use the same sample problems as in Section 2.5.

In Table 5, we compare the convergence of the Hull and White lattice method and the FVM
for the European call on the maximum of two assets. We also give the relative CPU times for
each method. Since the lattice algorithm (2.9) is very simple to code, the lattice times should
be regarded as close to optimal. The PDE algorithm was coded for maximum generality, (i.e.
nonconstant coefficients) and should not be regarded as the most efficient implementation for these
comparatively simple cases. It should also be recalled that the lattice methods return the value at
a single point, while the PDE technique produces values for the entire range of (S1, S2). Also, as
the tests were run on a Sun Ultra Sparc server with many simultaneous users, CPU times should be
regarded as only accurate to within ±5%. Table 5 shows that the FVM converges asymptotically at
a second order rate, while the lattice method converges more slowly. Nevertheless, for low accuracy
solutions, with constant coefficients and vanilla payoffs, the lattice method can be superior to the
FVM in terms of CPU cost.

Table 6 shows the results for the digital call on two assets. Again, we see that the PDE method
converges asymptotically at a second order rate, while the lattice method converges more slowly
and somewhat erratically.

A similar picture emerges for the results for the discretely observed barrier option for a call on
the maximum of two assets, which are provided in Table 7. The lattice technique converges slowly
and erratically, compared to the FVM.

In summary, we can see that in all cases, even for problems with discontinuous payoffs and
discretely observed barriers, we obtain quadratic convergence for the FVM. This occurs in spite of
the fact that the discretization has negative coefficients.

In contrast, the Hull and White lattice method, which has positive coefficients, converges more
slowly and, in the presence of discontinuities, erratically. We would expect that this lattice method
would converge at a first order rate. However, since the nodes in the lattice method are not aligned
with the payoff or the barrier locations, this reduces the rate of convergence (Wahlbin, 1980; Heston
and Zhou, 2000). It would appear that it is beneficial to use a grid which is aligned with important
features of the problem, even if this is at the expense of using a discretization which has negative
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H & W
N Normalized CPU Value
40 1.0 2.89428
80 7.75 2.89286
160 62 2.89172
320 560 2.89133
640 4462 2.89084

FVM
Grid/N Normalized CPU Value
2025/25 3.4 2.87944
7921/50 31 2.88775

31329/100 282 2.88985
124609/200 2331 2.89037

Table 5: Values of European call options on the maximum of two assets when r = 0.05, σS1 = 0.10,
σS2 = 0.30, T − t = 0.25, S1 = S2 = 40, K = 40, ρ = .7. The exact solution is 2.89055 to six
figures. N is the number of timesteps, grid is the number of nodes. H & W refers to the method
(2.9). CPU times are given relative to the time for the H & W method for 40 timesteps.

H & W
N Normalized CPU Value
40 1.0 0.407732
80 7.8 0.410572
160 60 0.411267
320 555 0.411136
640 4413 0.410925

FVM
Grid/N Normalized CPU Value
2025/25 3.3 0.410701
7921/50 31 0.410862

31329/100 276 0.410912
124609/200 2349 0.410925

Table 6: Values of European digital call when r = 0.05, σS1 = 0.10, σS2 = 0.30, T − t = 0.25,
S1 = S2 = 40, K = 40, ρ = .7. The exact solution is 0.410929 to six figures. N is the number of
timesteps, grid is the number of nodes. H & W refers to the method (2.9). CPU times are given
relative to the time for the H & W method for 40 timesteps.
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H & W
N Normalized CPU Value
40 1.0 1.75998
80 7.4 1.73728
160 56.6 1.73993
320 501 1.74433
640 3788 1.74477

FVM
Grid/N Normalized CPU Value
2304/20 10.6 1.73254
9025/40 97.4 1.74106
35721/80 556 1.74318
143641/160 3338 1.74369

Table 7: Values of European call options on the maximum of two assets when r = 0.05, σS1 = 0.10,
σS2 = 0.30, T − t = 0.25, S1 = S2 = 40, K = 40, ρ = .7. Discretely observed knockout barriers at
Hu = 50, Hl = 30. Barriers observed at increments of .025. N is the number of timesteps, grid is
the number of nodes. H & W refers to the method (2.9). CPU times are given relative to the time
for the H & W method for 40 timesteps.

coefficients.

6 Qualitative Results for the Finite Volume Method

In this section, we will explore the qualitative effect of negative coefficients on the behavior of the
solution. We have already seen (in Section 5) that we observe good convergence behavior (at single
points) with a FVM discretization which has negative coefficients.

In order to ensure that any negative coefficients were only caused by the discretization of the
diffusion term, a flux limiting scheme (Zvan et al., 1998, 2000) was used for convection and the
discretization was fully implicit. We emphasize that, in practice, one would be ill-advised in general
to use a fully implicit method because this reduces convergence to a first order rate. However, our
objective in this section is to examine the effect of the negative coefficients due to the discrete
diffusion operator. By using a fully implicit method and a flux limiter, we eliminate all other
causes of negative coefficients. We use the log transformed version of the PDE (equation (2.3))
so that it is possible to construct a positive coefficient method for a given node placement via
edge-swapping (see Figure 8). Note that the nodes are at the same positions for both the regular
mesh and the edge-swapped mesh.

As our focus here is on qualitative aspects, we will simply present contour plots of values and
deltas (∂U/∂S1 and ∂U/∂S2, calculated using the method described in Zienkiewicz and Wu (1994)).
These plots seem to suggest that the positive coefficient edge-swapped mesh produced solutions of
poor quality. The level curves of the values and deltas are relatively smooth when the regular mesh
is used (Figure 9), but they are jagged when the edge-swapped mesh is used (Figure 10). The
jaggedness in the contour levels persists even when the edge-swapped mesh is refined (Figure 11).
It should be noted that the jaggedness is not caused by convection—the effect occurs even if the

convection term is removed entirely from equation (3.1). Nor is the jaggedness in the level curves
of the deltas an artifact of the method used to compute the deltas, since it is clear that it is already
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Figure 8: A positive coefficient mesh constructed using edge-swapping when σS1 = 0.10, σS2 = 0.30
and ρ = 0.70.
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Figure 9: Level curves of values and deltas of a European call option on the maximum of two
assets when r = 0.05, σS1 = 0.10, σS2 = 0.30, ρ = 0.70, T − t = 0.25 and K = 40. The solutions
were computed with 50 timesteps and a regular mesh with 6724 nodes.
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Figure 10: Level curves of values and deltas of a European call option on the maximum of two
assets when r = 0.05, σS1 = 0.10, σS2 = 0.30, ρ = 0.70, T − t = 0.25 and K = 40. The solutions
were computed with 50 timesteps and a positive coefficient edge-swapped mesh with 6724 nodes.
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Figure 11: Level curves of values and deltas of a European call option on the maximum of two
assets when r = 0.05, σS1 = 0.10, σS2 = 0.30, ρ = 0.70, T − t = 0.25 and K = 40. The solutions
were computed with 100 timesteps and a positive coefficient edge-swapped mesh with 26569 nodes.

present in the level curves of the values.
A possible cause of the jaggedness is that the kinks in the payoff function occur within elements

for the edge-swapped meshes and not, as is the case for the regular meshes used in the numerical
examples, only at element edges. Accuracy may deteriorate when the second derivatives of the
initial (terminal) condition do not exist within elements (Wahlbin, 1980). To test this hypothesis
the initial condition was smoothed by projecting it onto the space spanned by the basis functions
using (∫

x

∫
y
NN

′
dydx

)
U0 =

∫
x

∫
y
g(x, y, T )Ndydx, (6.1)

where N are the basis functions, U0 are the smoothed initial data, and g(·) is the payoff function.
As pointed out by Wahlbin (1980), this should restore optimal convergence rates. However, we
found that smoothing the initial condition had little effect on the quality of the contour plots.

The jaggedness would seem to contradict the fact that the discretization with the edge-swapped
mesh is a positive coefficient scheme. Although discrete local maximum and minimum principles
hold for the discretization when positive coefficient meshes are used, it is interesting to note that
nodes are not connected to their nearest spatial neighbors in an edge-swapped mesh. Consequently,
the value at a node may not be bounded by the values at its spatially nearest neighboring nodes.

Figure 12 provides a close up view of the level curves of values for a European call option on
the maximum of two assets when the solution was computed using an edge-swapped mesh. In
this figure, the values at the nodes are indicated. Inspection of these values demonstrates that,
although the level curves seem to indicate an oscillatory solution, the computed values at the nodes
are actually well-behaved. Hence, the jaggedness is an artifact of calculating the level curves. More
specifically, linear interpolation on the edge-swapped meshes produced poor results.7

The poor quality of level curves computed on edge-swapped meshes is most likely due to the fact
that the elements are stretched (i.e. long and thin). Although stretched elements are optimal for
interpolation with respect to minimizing the error bound when there is a direction with dominant

7Recall that jagged contours were also observed in one case for the Hull and White lattice method, even though
the Hull and White lattice method is a positive coefficient scheme.
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Figure 12: Level curves of values and values at nodes for a European call option on the maximum
of two assets when r = 0.05, σS1 = 0.10, σS2 = 0.30, ρ = 0.70, T − t∗ = 0.25 and K = 40. The
solutions were computed with 50 timesteps using a positive coefficient edge-swapped mesh with 6724
nodes.

curvature, the placement of the elements must be data dependent (see D’Azevedo and Simpson,
1989; Rippa, 1992). In particular, the triangles should be short in directions where the curvature
of U is high, and long in directions where it is low. Edge swapping to ensure positive coefficients
ignores the curvature of U , so that elements may be placed with their long side in the direction of
high curvature. We note that poor interpolation results may be of concern when solving a model if
jump conditions are present. For example, in the presence of discrete dividends, interpolation will
generally be performed at ex-dividend dates.

An alternative to edge-swapping is to place nodes in such a manner as to ensure positive co-
efficients. Recall that a regular mesh will ensure positive coefficients when the coordinate system
has been rotated to eliminate the cross-partial terms. Rotating such a mesh back into the original
coordinate system will ensure that the coefficients are positive without generating stretched ele-
ments (see Figure 13). To remove the cross-partial terms from (2.3), the coordinate system must
be rotated by an angle of (1/2) tan−1

[
(2ρσS1σS2)/(σ2

S1
− σ2

S2
)
]
.

Figure 14 contains contour plots of values and deltas of a quarter year European call on the
maximum of two assets computed using a positive coefficient rotated mesh. The node positions in
the rotated mesh differ from those in the regular mesh, but the spacings are identical. The contours
calculated using the rotated mesh are better than the contours computed using the edge-swapped
mesh, but they are not as smooth as the contours calculated using regular meshes.

The contour plots computed using the rotated mesh suggest an oscillatory solution. Using
projection (6.1) to smooth the initial condition again had little effect on the quality of the contour
plots. As with the edge-swapped meshes, the computed solutions at the nodes were well behaved
(see Figure 15). Hence, the jagged contours were once again a result of poor interpolation.

The rotated mesh may have produced poor interpolation results because the element edges in
it were not aligned with the curvature of U . Like edge-swapping, ensuring positive coefficients as a
criterion for node placement ignores other aspects of the problem.
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Figure 13: A positive coefficient mesh which corresponds to a regular mesh when the coordinate
system is rotated by an angle of (1/2) tan−1
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when σS1 = 0.10, σS2 = 0.30,
and ρ = 0.70.
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Figure 14: Level curves of values and deltas of a European call option on the maximum of two
assets when r = 0.05, σS1 = 0.10, σS2 = 0.30, ρ = 0.70, T − t = 0.25 and K = 40. The solutions
were computed with 50 timesteps using a positive coefficient rotated mesh with 6614 nodes.
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Figure 15: Level curves of deltas with respect to S1 and deltas at nodes for a European call option
on the maximum of two assets when r = 0.05, σS1 = 0.10, σS2 = 0.30, ρ = 0.70, T − t = 0.25 and
K = 40. The solutions were computed with 50 timesteps using a positive coefficient rotated mesh
with 6614 nodes.

As a final example, we consider our earlier test problem of a quarter year European discrete
double barrier call option on the maximum of two assets. Contour plots of solutions computed using
regular, edge-swapped and rotated meshes are contained in Figures 16, 17 and 18, respectively.
Again we see that the regular mesh produced the smoothest contours, while the edge-swapped
mesh produced the worst contours. Note that when using a rotated mesh, one cannot generally
place nodes such that they line up with barriers. This again highlights the fact that if ensuring
positive coefficients is used as a criterion for constructing the mesh, other aspects of the problem
such as the curvature of U or constraints on the solution may have to be ignored.

6.1 Significance of the Results

Standard lattice methods essentially require that the coefficients in the discrete equations take on
positive values a priori. From a finite element/volume context, this amounts to forcing certain
node locations. Such an approach is exactly the opposite of that typically used in finite element
discretizations, where the mesh is constructed first and the discrete coefficients are a consequence
of the node locations. In fact, for a constant diffusion tensor, a positive coefficient discretization
can be obtained (via edge-swapping) for any placement of nodes.

Using nonnegative coefficients as a criterion for node placement ignores other aspects of the
pricing problem. In the numerical examples, we have observed that forcing the positive coefficient
condition does not appear to result in solutions of better quality. For example, the finite difference
and finite element lattice schemes in Section 2.5 give comparable results, in spite of the fact that
the finite difference lattice has negative coefficients, whereas the finite element lattice is a positive
coefficient scheme. In fact, if we are concerned with interpolation of the price and hedging param-
eters, the positive mesh discretizations seem to be of poor quality. The results suggest that it is
better to place nodes in such a way as to capture rapid changes in the solution (i.e. based on the
shape of the payoff function) rather than to force the positive coefficient condition, which ignores
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Figure 16: Level curves of values and deltas of a European discrete double barrier call option on
the maximum of two assets when r = 0.05, σS1 = 0.10, σS2 = 0.30, ρ = 0.70, T − t = 0.25 and
K = 40. The barrier is applied in time increments of 0.025, and Hl = 30 and Hu = 50. The
solutions were computed with 100 timesteps using a regular mesh with 26569 nodes.
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Figure 17: Level curves of values and deltas of a European discrete double barrier call option
on the maximum of two assets when r = 0.05, σS1 = 0.10, σS2 = 0.30, ρ = 0.70, T − t = 0.25
and K = 40. The barrier is applied in time increments of 0.025, and Hl = 30 and Hu = 50.
The solutions were computed with 100 timesteps using a positive coefficient edge-swapped mesh with
26569 nodes.
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Figure 18: Level curves of values and deltas of a European discrete double barrier call option
on the maximum of two assets when r = 0.05, σS1 = 0.10, σS2 = 0.30, ρ = 0.70, T − t = 0.25
and K = 40. The barrier is applied in time increments of 0.025, and Hl = 30 and Hu = 50. The
solutions were computed with 100 timesteps using a positive using a positive coefficient rotated mesh
with 26455 nodes.

the payoff condition.
Fortunately, it does not appear necessary in practice to ensure that discretizations of the diffu-

sion term result in positive coefficients. This is because for a given set of nodes it is not generally
possible to ensure that finite volume discretizations will produce nonnegative coefficients when a
nonconstant diffusion tensor cannot be transformed into a constant tensor. The results suggest that
finite volume methods can be used to obtain high quality solutions, without imposing additional
constraints on the mesh.

7 Conclusions

For any given set of nodes, a mesh can be constructed through edge-swapping that will ensure
that all coefficients in a finite element/volume discretization are nonnegative in the presence of
correlation when the diffusion tensor is constant. However, an edge-swapped mesh will often contain
stretched or skewed elements. In order to avoid such elements, or when using standard finite
differences, one needs to rotate the coordinate system, which may not be possible in some contexts.

For the pricing problems considered in this work, it was demonstrated that meshes which ensured
nonnegative coefficients produced poor interpolation results compared to regular meshes which did
not ensure nonnegative coefficients. This may be of concern when certain jump conditions are
present, for example, when there are discrete dividends. The poor interpolation results appear to
be due to the fact that ensuring positive coefficients ignores the curvature of the solution, as well
as other aspects of the pricing problem.

It was also shown that when meshes that allow negative coefficients are used, discretizations
can approximately satisfy discrete maximum and minimum principles as the mesh size parameter
approaches zero. Consequently, it would appear that meshes where the edges are aligned with
features of the payoff function (which may not result in positive coefficients) will produce solutions
of high quality. Fortunately, it does not appear necessary to enforce the positive coefficient condition
for option pricing problems, because it is generally not possible to produce a positive coefficient
discretization for a given set of nodes when the diffusion tensor is nonconstant.

This paper has also shown that a variety of lattice schemes can be constructed using explicit
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finite difference/element schemes. In some cases, these methods are equivalent (to O
[
(∆t)2

]
) to

known lattice methods. Explicit schemes can be constructed which have negative coefficients, but
are nonetheless stable. Generally, positive coefficient methods are constructed assuming that a
transformation exists which makes the diffusion coefficients constant.

It is worth remarking that these results highlight the fact that the pervasive focus on equivalent
martingale probabilities in much of the finance literature may not be very useful when constructing
numerical schemes for option pricing problems in more than one dimension. A better approach is
to consider the separate effects of convection and diffusion and to use discretizations which handle
each of these effects appropriately.

A Appendix - Approximate Discrete Local Maximum and Mini-
mum Principles

It cannot be shown that discrete local maximum and minimum principles hold for a scheme when
any of the ηij are negative. That is, it cannot be proved that minj∈Ωi Uj ≤ Ui ≤ maxj∈Ωi Uj .
However, we will now show that if U satisfies a Lipschitz condition, then minj∈Ωi Uj + O(h) ≤
Ui ≤ maxj∈Ωi Uj + O(h), (where h denotes the mesh spacing) for a finite volume discretization of
equation (4.1) when

D =
(
kx(x, y) kxy(x, y)
kxy(x, y) ky(x, y)

)
.

Assume that the computational domain is bounded. After discretizing (4.1), we have ∑
∆m∈∆i+

−ηmii +
∑

∆k∈∆i−

−ηkii

Ui(xi, yi) =
∑

∆m∈∆i+

∑
j∈Ωi

ηmijUj(xj , yj)

+
∑

∆k∈∆i−

∑
j∈Ωi

ηkijUj(xj , yj), (A.1)

where (xi,yi) are the coordinates at node i and ηmii is the value of ηii over triangle ∆m. In (A.1),
∆i+ ∪ ∆i− is the set of triangles that have node i as a vertex, where ∆i+ is the set of triangles
where each ηij is nonnegative and ∆i− is the set of triangles where an ηij is negative. Let j+k ∈ Ωi

be the set of nodes where ηij ≥ 0, and j−k ∈ Ωi be the set of nodes where ηij < 0. Also, let
xj−k = xj+k + αj−kh and yj−k = yj+k + βj−kh, where αj−k and βj−k are arbitrary constants. Then
equation (A.1) can be rewritten as ∑

∆m∈∆i+

−ηmii +
∑

∆k∈∆i−

−ηkii

Ui(xi, yi) =
∑

∆m∈∆i+

∑
j∈Ωi

ηmijUj(xj , yj)

+
∑

∆k∈∆i−

[ηkij+kUj+k (xj+k , yj+k )

+ ηkij−k
Uj−k (xj+k + αj−kh, yj+k + βj−kh)]. (A.2)
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If U is Lipschitz continuous, equation (A.2) becomes ∑
∆m∈∆i+

−ηmii +
∑

∆k∈∆i−

−ηkii

Ui(xi, yi) =
∑

∆m∈∆i+

∑
j∈Ωi

ηmijUj(xj , yj)

+
∑

∆k∈∆i−

[ηkij+kUj+k (xj+k , yj+k )

+ ηkij−k
(Uj+k (xj+k , yj+k ) +O(h))].

After noting that −ηkii = ηkij+k
+ ηkij−k

, this can be simplified to ∑
∆m∈∆i+

−ηmii +
∑

∆k∈∆i−

−ηkii

Ui =
∑

∆m∈∆i+

∑
j∈Ωi

ηmijUj

+
∑

∆k∈∆i−

−ηkiiUj+k +
∑

∆k∈∆i−

ηkij−k
O(h). (A.3)

Note that ηkij−k = ~nki ·Di~n
k
j−k

/(2 sin θkj+k ), where ~nki is the outward pointing unit normal to edge

i for ∆k (see Figure 5) and θkj+k
is θj+k for ∆k. Since the computational domain is bounded,∑

∆k∈∆i−
ηkij−k

is a finite quantity as long as the triangles are nondegenerate. Equation (A.3) can
be written as  ∑

∆m∈∆i+

−ηmii +
∑

∆k∈∆i−

−ηkii

Ui =
∑

∆m∈∆i+

∑
j∈Ωi

ηmijUj

+
∑

∆k∈∆i−

−ηkiiUj+k +O(h). (A.4)

Since it can be shown that −ηii > 0, and recalling that ηmij > 0 (∆m ∈ ∆i+), we can deduce an
approximate maximum principle. By defining Umax

i = maxj∈Ωi Uj , we can write equation (A.4) as ∑
∆m∈∆i+

−ηmii +
∑

∆k∈∆i−

−ηkii

Ui ≤

 ∑
∆m∈∆i+

−ηmii +
∑

∆k∈∆i−

−ηkii

Umax
i +O(h). (A.5)

This implies Ui ≤ Umax
i + O(h) (recall −ηii > 0). Similarly, if we define Umin

i = minj∈Ωi Uj , then
Ui ≥ Umin

i + O(h). Hence, minj∈Ωi Uj + O(h) ≤ Ui ≤ maxj∈Ωi Uj + O(h), so that discrete local
maximum and minimum principles are approximately satisfied as h → 0. Similar bounds were
derived in Brandt (1973) for finite difference operators.

The above result can be extended to incorporate time dependence with arbitrary temporal
weighting. For example, if we discretize the equation

Uτ = (D∇) · ∇U (A.6)
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using a fully implicit scheme, then equation (A.5) becomes1 +
∆t
Ai

 ∑
∆m∈∆i+

−ηmii +
∑

∆k∈∆i−

−ηkii

Un+1
i

≤

1 +
∆t
Ai

 ∑
∆m∈∆i+

−ηmii +
∑

∆k∈∆i−

−ηkii

Umax
i +O(h)

∆τ
Ai

, (A.7)

where Ai is the area of the control volume and Umax
i = max(Uni , U

n+1
j∈Ωi

). After noting that Ai =
O(h2), equation (A.7) can be written as

Un+1
i ≤ Umax

i +
O(h)

(h2/∆τ) + C
, (A.8)

where C is some positive constant. Since 1/
[
(h2/∆τ) + C

]
≤ 1/C, equation (A.8) becomes

Un+1
i ≤ Umax

i +O(h).
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