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Abstract

Motivated by the current global high inflation scenario, we aim to discover a dynamic multi-period
allocation strategy to optimally outperform a passive benchmark while adhering to a bounded lever-
age limit. To this end, we formulate an optimal control problem to outperform a benchmark portfolio
throughout the investment horizon. Assuming the asset prices follow the jump-diffusion model during
high inflation periods, we first establish a closed-form solution for the optimal strategy that outperforms a
passive strategy under the cumulative quadratic tracking difference (CD) objective, assuming continuous
trading and no bankruptcy. To obtain strategies under the bounded leverage constraint among other re-
alistic constraints, we then propose a novel leverage-feasible neural network (LFNN) to represent control,
which converts the original constrained optimization problem into an unconstrained optimization prob-
lem that is computationally feasible with standard optimization methods. We establish mathematically
that the LFNN approximation can yield a solution that is arbitrarily close to the solution of the original
optimal control problem with bounded leverage. We further apply the LFNN approach to a four-asset
investment scenario with bootstrap resampled asset returns from the filtered high inflation regime data.
The LFNN strategy is shown to consistently outperform the passive benchmark strategy by about 200
bps (median annualized return), with a greater than 90% probability of outperforming the benchmark
at the end of the investment horizon.

Keywords: cumulative tracking difference, leveraged portfolio, benchmark outperformance, asset allo-
cation, machine learning
JEL codes: G11, G22
AMS codes: 91G, 35Q93, 68T07

1 Introduction

Since the global outbreak of COVID-19 in March 2020, there has been a significant increase in worldwide
inflation. Specifically, from May 2021 to February 2023, the 12-month change in the CPI index in the U.S.
has not dropped below 5% (Bureau of Labor Statistics, 2023). Prior to the pandemic, the U.S. economy
experienced nearly four decades of low inflation. The abrupt shift from a long-term low-inflation environment
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to a high-inflation environment has created substantial uncertainty and volatility in the financial markets.
In 2022, the technology-heavy NASDAQ stock index recorded a yearly return of -33.10% (NASDAQ, 2023).

Equally concerning is the uncertainty around the duration of this round of high inflation. Some believe
that the geopolitical tensions and the COVID-19 pandemic will overturn the trend of globalization and lead
to global supply chain restructuring (Javorcik, 2020) which may result in a higher cost of production in the
foreseeable future. Moreover, Ball et al. (2022) suggests that the future inflation rate may remain high if
the unemployment rate remains low.

In this article, we aim to answer the following question: with the goal of outperforming a passive bench-
mark, how should an active investor optimize the portfolio during high inflation? It is important to note that
we do not attempt to make predictions about future inflation conditions. Instead, we approach the problem
by formulating a multi-period optimal control problem that considers bounded leverage constraints and spe-
cific investment criteria. This optimal control problem requires the specification of an appropriate objective
function, realistic constraints, as well as stochastic models for returns of traded assets during high inflation
regimes. Given the complexities and challenges associated, it is crucial to develop an efficient method capable
of computing optimal solutions, accommodating flexible data sources, handling high-dimensional cases, and
dealing with complex constraints. In this paper, we propose a framework to address these challenges.

In Section 2, we assume that the real (inflation-adjusted) asset returns during a high-inflation regime
follow stochastic processes and treat allocation decisions as the control of a dynamic system. Specifically, we
formulate an optimal control problem to outperform a fixed-mix benchmark portfolio consistently throughout
the investment horizon by minimizing a cumulative quadratic tracking difference (CD) objective. There is a
large amount of extant literature on closed-form solutions for beating a stochastic benchmark under synthetic
market assumptions (Browne, 1999, 2000; Tepla, 2001; Basak et al., 2006; Davis and Lleo, 2008; Lim and
Wong, 2010a; Oderda, 2015; Alekseev and Sokolov, 2016; Al-Aradi and Jaimungal, 2018a). In these articles,
the common objective function involves a log-utility function, e.g. the log wealth ratio. Under the log wealth
ratio formulation, it is often hard to accommodate a fixed stream of cash injections, which is a common
characteristic of open-ended funds. Forsyth et al. (2022) consider a scenario where a fixed amount of cash
injections is allowed and provides a closed-form solution under a cumulative quadratic tracking difference
(CD) objective given the assumption that the stock price follows a double exponential jump-diffusion model
and the bond price is deterministic. Since the assumption that the bond index price is stochastic and has
jumps is more reasonable under a high-inflation scenario, we develop a closed-form solution under the case
that both the stock index and the bond index follow jump-diffusion models.

The closed-form solution is derived, unfortunately, under unrealistic assumptions such as continuous
rebalancing, infinite leverage, and continued trading when insolvent. A discrete-time multi-period asset
allocation problem is generally solved using a dynamic programming (DP) based approach, which converts a
multi-step optimization problem into multiple single-step optimization problems. However, van Staden et al.
(2023) point out that dynamic programming-based approaches require the evaluation of a high-dimensional
performance criterion to obtain the optimal control which is comparatively low-dimensional. This means that
solving the discrete-time problem numerically using dynamic programming-based techniques (for example
numerical solutions to the corresponding PIDE (Wang and Forsyth, 2010), or reinforcement learning (RL)
techniques (Dixon et al., 2020; Park et al., 2020; Lucarelli and Borrotti, 2020; Gao et al., 2020)) are inefficient
and are computationally prone to known issues such as error amplification over recursions (Wang et al., 2020).

Acknowledging these limitations, in Section 2.7, we propose to use a single neural network model to
approximate the optimal control and solve the original optimal control problem directly via a single standard
finite-dimensional optimization. This direct approximation of the control exploits the lower dimensionality of
the optimal control and bypasses the problem of solving high-dimensional conditional expectations associated
with DP methods. We note that the idea of using a neural network to directly approximate the control
process is also used in Han et al. (2016); Buehler et al. (2019); Tsang and Wong (2020); Reppen et al.
(2022), in which they propose a stacked neural network approach that includes individual sub-networks for
each rebalancing step. In contrast, we propose a single shallow neural network that includes time as an
input feature, and thus avoids the need to have multiple sub-networks for each rebalancing step and greatly
reduces the computational and modeling complexity. Furthermore, using time as a feature in the neural
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network approximation function is consistent with the observation that (under assumptions) the optimal
control is naturally a continuous function of time, which we discuss in detail in Section 2.4.

The idea of using a single neural network to approximate controls has also been explored in previous
studies such as Li and Forsyth (2019) and Ni et al. (2022). These studies focus on portfolio optimization
problems with long-only constraints. The neural network architecture proposed in these studies transforms
the constrained portfolio optimization problems into unconstrained optimization problems, making them
computationally easier to solve. However, these existing neural network architectures do not address the
bounded leverage constraint, which limits the total long exposure in the portfolio. The limited literature
on portfolio optimization with bounded leverage is likely due to the added complexity arising from the
combination of long and short positions in the portfolio.

A significant contribution of this article is the introduction of a novel leverage-feasible neural network
(LFNN) model, which converts the leverage-constrained optimization problem into an unconstrained opti-
mization problem. This model enables the incorporation of the bounded leverage constraint into the portfolio
optimization framework. Additionally, in Section 2.8, we provide a mathematical proof that, under reason-
able assumptions, the solution of the unconstrained optimization problem obtained using the LFNN model
can approximate the optimal control of the original problem arbitrarily well. This mathematical justification
validates the effectiveness and validity of the LFNN approach.

In Section 3, we present a case study on active portfolio optimization in a high-inflation regime. To
identify historical high-inflation periods, we employ a simple filtering method. Subsequently, we use bootstrap
resampling to generate training and testing data sets, which consist of price paths for four assets: the equal-
weighted and cap-weighted stock indexes, as well as the 30-day and 10-year U.S. treasury indexes.

Using the leverage-feasible neural network (LFNN) model and the cumulative quadratic tracking shortfall
(CS) objective, we derive a leverage-constrained strategy for portfolio optimization. Our results demonstrate
that the LFNN model produces a strategy that consistently outperforms the fixed-mix benchmark. Specifi-
cally, the strategy achieves a median (annualized) internal rate of return (IRR) that is more than 2% higher
than the benchmark. Moreover, there is a probability of over 90% that the strategy will yield a higher
terminal wealth compared to the benchmark.

These findings highlight the efficacy of the LFNN model in optimizing portfolios under high-inflation
conditions. By incorporating the bounded leverage constraint and utilizing the CS objective, our approach
enables investors to achieve superior performance and mitigate risks in a high-inflation environment.

Our contributions are summarized below:

(i) To gain intuition about the behavior of the optimal controls, we derive the closed-form solution under
a jump-diffusion asset price model and other typical assumptions (such as continuous rebalancing)
for a two-asset case. The closed-form solution provides important insights into the properties of the
optimal control as well as meaningful interpretations of the neural network models that approximate
the controls.

(ii) We propose to represent the control directly by a neural network representation so that the stochastic
optimal control problem can be solved numerically under realistic constraints such as discrete rebalanc-
ing and limited leverage. Particularly, we propose the novel leverage-feasible neural network (LFNN)
model to convert the original complex leverage-constrained optimization problem into an unconstrained
optimization problem that can be solved easily by standard optimization methods.

(iii) We prove that, with a suitable choice of the hyperparameter of the LFNN model, the solution of the
parameterized unconstrained optimization problem can approximate the optimal control arbitrarily
well. This provides a mathematical justification for the validity of the LFNN approach. This is further
supported by the numerical results that the performance of the LFNN model matches the clipped form
of the closed-form solution on simulated data.

(iv) In the case study on active portfolio optimization in high-inflation, we apply the neural network method
to bootstrap resampled asset returns with four underlying assets, including the equal-weighted/cap-
weighted stock indexes, and the 30-day/10-year treasury bond indexes. The dynamic strategy from
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the learned LFNN model outperforms the fixed-mix benchmark strategy consistently throughout the
investment horizon, with a 2% higher median (annualized) internal rate of return (IRR), and more than
90% probability of achieving a higher terminal wealth. Furthermore, the learned allocation strategy
suggests that the equal-weighted stock index and short-term bonds are preferable investment assets
during high-inflation regimes.

2 Outperform dynamic benchmark under bounded leverage

2.1 Sovereign wealth funds and benchmark targets

Instead of taking a passive approach, some of the largest sovereign wealth funds often adopt an active
management philosophy and use passive portfolios as the benchmark to evaluate the efficiency of active
management. For example, the Canadian Pension Plan (CPP) uses a base reference portfolio of 85% global
equity and 15% Canadian government bonds (CPP Investments, 2022). Another example is the Government
Pension Fund Global of Norway (also known as the oil fund) managed by Norges Bank Investment Manage-
ment (NBIM), which uses a benchmark index consisting of 70% equity index and 30% bond index.1 The
benchmark equity index is constructed based on the market capitalization for equities in the countries in-
cluded in the benchmark. The benchmark index for bonds specifies a defined allocation between government
bonds and corporate bonds, with a weight of 70 percent to government bonds and 30 percent to corporate
bonds (Norges Bank, 2022).

However, the excess return that these well-known sovereign wealth funds have achieved over their re-
spective passive benchmark portfolios cannot be described as impressive. In the 2022 fiscal year report,
CPP claims to have beaten the base reference portfolio by an annualized 80 bps after fees over the past 5
years (CPP Investments, 2022). On the other hand, NBIM reports a mere average of 27 bps of annual excess
return over the benchmark over the last decade (see Table 2.1). It is worth noting that these behemoth funds
achieve seemingly meager results by hiring thousands of highly paid investment professionals and spending
billions of dollars on day-to-day operations. For example, the CPP 2021 annual report (CPP Investments,
2021) lists personnel costs as CAD 938 million, for 1,936 employees, which translates to average costs of
about CAD 500,000 per employee-year.

Year 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 Average
Excess return (%) 0.21 0.99 -0.77 0.45 0.15 0.70 -0.30 0.23 0.27 0.74 0.27

Table 2.1: Norges Bank Investment Management, relative return to benchmark portfolio

The stark contrast between the enormous spending of sovereign wealth funds and the meager outperfor-
mance of the funds relative to the passive benchmark portfolios is probably provocative to taxpayers and
pensioners who invest their hard-earned money in the funds. Equally concerning is the potential of a long,
persistent inflation regime and the funds’ ability to consistently beat the benchmark portfolio in such times.
After all, both the CPP Investments and NBIM were established in the late 1990s, a decade after the last
long inflation period ended in the mid-1980s.

These concerns prompt us to ask the following question: in a presumed persistent high-inflation envi-
ronment, can a fund manager find a simple asset allocation strategy that consistently beats the benchmark
passive portfolios by a reasonable margin (preferably without spending billions of dollars in personnel costs)?

2.2 Mathematical formulation

In this section, we mathematically formulate the problem of outperforming a benchmark. Let [t0(= 0), T ]
denote the investment horizon, and let W (t) denote the wealth (value) of the portfolio actively managed

1The Ministry of Finance of Norway sets the allocation fraction between the equity index and the bond index. It gradually
raised the weight for equities from 60% to 70% from 2015-2018.
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by the manager at time t ∈ [t0, T ]. We refer to the actively managed portfolio as the “active portfolio”.
Furthermore, let Ŵ (t) denote the wealth of the benchmark portfolio at time t ∈ [t0, T ]. To ensure a fair
assessment of the relative performance of the two portfolios, we assume both portfolios start with an equal
initial wealth amount w0 > 0, i.e., W (t0) = Ŵ (t0) = w0 > 0.

Technically, the admissible sets of underlying assets for the active and passive portfolio need not be
identical. However, for simplicity, we assume that both the active portfolio and the benchmark portfolio can
allocate wealth to the same set of Na assets.

Let vector S(t) = (Si(t) : i = 1, · · · , Na)> ∈ RNa denote the asset prices of the Na underlying assets
at time t ∈ [t0, T ]. In addition, let vectors p(t) = (pi(t) : i = 1, · · · , Na)> ∈ RNa and p̂(t) = (p̂i(t) : i =
1, · · · , Na)> ∈ RNa denote the fraction of wealth allocated to the Na underlying assets at time t ∈ [t0, T ],
respectively, for the active portfolio and the benchmark portfolio. From a control theory perspective, the
allocation vector p can be regarded as the control of the system, as it determines how the wealth of the
active portfolio evolves over time. We will seek to find the optimal feedback control. In other words, the
closed-loop controls (allocation decisions) are assumed to also depend on the value of the state variables (e.g.
portfolio wealth). Therefore, we consider the control p to be a function of time as well as the relevant state
variables. In addition, the benchmark portfolio allocation p̂ can be regarded as a known function of its state
variables and time as well.

Mathematically, p(X(t)) = (pi(X(t)) : i = 1, · · · , Na)> ∈ RNa and p̂(X̂(t)) = (p̂i(X̂(t)) : i =

1, · · · , Na)> ∈ RNa , where X(t) ∈ X ⊆ RNx and X̂(t) ∈ X̂ ⊆ RNx̂ are the state variables taken into
account by the active portfolio and the benchmark portfolio respectively. Here we include t in X(t) and

X̂(t) for notational simplicity. In this article, we consider the particular problem of outperforming a passive

portfolio, in which X(t) =
(
t,W (t), Ŵ (t)

)>
.

We assume that the active portfolio and the benchmark portfolio follow the same rebalancing schedule
denoted by T ⊆ [t0, T ]. In the case of discrete rebalancing, T ⊂ [t0, T ] is a discrete set. In the case of
continuous rebalancing, T = [t0, T ], i.e., rebalancing happens continuously throughout the entire investment
horizon.

Additionally, we assume both portfolios follow the same deterministic sequence of cash injections, defined
by the set C = {c(t), t ∈ Tc}, where Tc ⊆ [t0, T ] is the schedule of the cash injections. When Tc is a discrete
injection schedule, c(t) is the amount of cash injection at t. In the case of continuous cash injections, i.e.,
T = [t0, T ], c(t) is the rate of cash injection at t, i.e., the total cash injection amount during [t, t + dt] is
c(t)dt, where dt is an infinitesimal time interval. For simplicity, we assume that Tc = T , so that the cash
injections schedule is the same as the rebalancing schedule. At t ∈ T , W (t) and Ŵ (t) always denote the
wealth after the cash injection (assuming there is a cash injection event happening at t).

The active and benchmark strategies, respectively, are defined as the sequence of the allocation fractions
following the rebalancing schedule. Mathematically, the active and benchmark strategies are defined by sets

P = {p(X(t)), t ∈ T }, and P̂ = {p̂(X̂(t)), t ∈ T }. (2.1)

Denote A as the set of admissible strategies, which reflects the investment constraints on the controls.
We assume that admissibility can vary with state and let {Xi: i = 1, · · · , k} be a partition of X (the state
variable space), i.e. {⋃k

i=1 Xi = X ,
Xi
⋂
Xj = ∅,∀1 ≤ i < j ≤ k,

(2.2)

and {Zi ⊆ RNa : i = 1, · · · , k} be the corresponding value sets of feasible controls such that any feasible
control p satisfies

p(x) ∈ Zi,∀x ∈ Xi, ∀i ∈ {1, · · · , k}. (2.3)

We say that strategy P is an admissible strategy, i.e., P ∈ A, if and only if

P =
{
p(X(t)), t ∈ T

∣∣∣ p(X(t)) ∈ Zi, if X(t) ∈ Xi
}

(2.4)
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Consider a discrete rebalancing schedule T = {tj , j = 0, · · · , N} with N rebalancing events, where
t0 < t1 < · · · < tN = T .2 Then, the wealth evolution of the active portfolio and the benchmark portfolio
can be described by the equations

W (tj+1) =
( Na∑
i=1

pi(X(tj)) · Si(tj+1)−Si(tj)
Si(tj)

)
W (tj) + c(tj+1), j = 0, · · · , N − 1,

Ŵ (tj+1) =
( Na∑
i=1

p̂i(X̂(tj)) · Si(tj+1)−Si(tj)
Si(tj)

)
Ŵ (tj) + c(tj+1), j = 0, · · · , N − 1.

(2.5)

In the continuous rebalancing case, T = [t0, T ]. Let dSi(t) denote the instantaneous change in price
for asset i, i ∈ [1, · · · , Na].3 Then, at t ∈ T = [t0, T ], the wealth dynamics of the active portfolio and the
benchmark portfolio, following their respective strategies P and P̂, can be described by the equations

dW (t) =
( Na∑
i=1

pi(X(t)) · dSi(t)Si(t)

)
W (tj) + c(t)dt,

dŴ (t) =
( Na∑
i=1

p̂i(X̂(t)) · dSi(t)Si(t)

)
Ŵ (tj) + c(t)dt.

(2.6)

Let sets WP = {W (t), t ∈ T } and ŴP̂ = {Ŵ (t), t ∈ T } denote the wealth trajectories of the ac-

tive portfolio and the benchmark portfolio following their respective investment strategies P and P̂. Let
F (WP , ŴP̂) ∈ R denote an investment metric that measures the performances of the active and benchmark
strategies, based on their respective wealth trajectories.

In this article, we assume that the asset prices S(t) ∈ RNa are stochastic. Then, the wealth trajectories
WP and ŴP̂ are also stochastic, as well as the performance metric F (WP , ŴP̂), which measures the relative
performance of the active strategy with respect to the benchmark strategy. Therefore, when investment
managers target to optimize an investment metric, the evaluation is often on the expectation of the random
metric.

Let E(t0,w0)
P [F (WP , ŴP̂)] denote the expectation of the value of the performance metric F , with respect

to a given initial wealth w0 = W (0) = Ŵ (0) at time t0 = 0, following an admissible investment strategies
P ∈ A, and the benchmark investment strategy P̂. Since the benchmark strategy is often pre-determined
and known, we keep the benchmark strategy P̂ implicit in this notation for simplicity. Subsequently we use

E(t0,w0)
P [F (WP , ŴP̂)], the expectation of a desired performance metric, as the (investment) objective function

and solve

(Optimization problem): inf
P∈A

E(t0,w0)
P

[
F (WP , ŴP̂)

]
. (2.7)

2.3 Choice of investment objective

The first step to designing a proper outperforming investment objective is to clarify the definition of beating
the benchmark. In the context of measuring the performance of the portfolio against the benchmark, a
common metric is the tracking error, which measures the volatility of the difference in returns, i.e.,

Tracking error = stdev(R− R̂), (2.8)

where R denotes the return of the active portfolio, and R̂ denotes the return of the benchmark portfolio. Note
that the returns of the active portfolio and the benchmark portfolio are determined from their respective
wealth trajectories (WP and ŴP̂) that are evaluated under the same investment horizon and same market

2Technically, at t = t0, the manager makes the initial asset allocation, rather than a “rebalancing” of the portfolio. However,
despite the different purposes, a rebalancing of the portfolio is simply a new allocation of the portfolio wealth. Therefore, for
notational simplicity, we include t0 in the rebalancing schedule.

3For illustration purposes, here we assume Si(t), i ∈ [1, · · · , Na] follow standard diffusion processes, i.e., no jumps. We will
discuss the case with jumps in detail in Section 2.4.
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conditions. The tracking error measures the volatility of the difference in returns over the investment
horizon. A criticism of the tracking error is that it only measures the variability in the difference in returns,
but does not reflect the magnitude of the return difference itself. For example, an active strategy with a
constant negative return difference over the investment horizon would yield a better tracking error than
an active strategy with a positive but volatile return difference. For this reason, many prefer the tracking
difference (Johnson et al., 2013; Hougan, 2015; Charteris and McCullough, 2020; Boyde, 2021), which is
defined as the annualized difference between the active portfolio’s cumulative return and the benchmark
portfolio’s cumulative return over a specific period. Note that both tracking error and tracking difference
metrics measure the return difference of the active portfolio over the benchmark portfolio. In other words,
these metrics measure how closely the return of the active portfolio tracks the return of the benchmark
portfolio. In practice, if an investment manager aims to achieve a certain annualized relative return target,
e.g., β, then the tracking difference metric may not be appropriate. To address this, van Staden et al. (2022)
suggests the investment objective

inf
P∈A

E(t0,w0)
P

[(
W (T )− eβT Ŵ (T )

)2]
, (2.9)

where W (T ) and Ŵ (T ) are the respective terminal wealth of the active portfolio and the benchmark portfolio
at terminal time T , and β is the annualized relative return target.

The optimal control problem (2.9) aims to produce an active strategy that minimizes the quadratic
difference between W (T ) and the terminal portfolio value target of eβT Ŵ (T ). In other words, the optimal
control policy tries to outperform the benchmark portfolio by a total factor of eβT over the time horizon [0, T ],
which is equivalent to an annualized relative return of β. The quadratic term of the difference incentivizes
the terminal wealth of the active portfolio W (T ) to closely track the elevated target eβT .

It is worth noting that the relative return target β can be intuitively interpreted as the manager’s
willingness to take more risks. As β ↓ 0, the optimal solution to problem (2.9) is simply to mimic the
benchmark strategy. However, as β grows larger, the manager needs to take on more risk (for more return)
in order to beat the benchmark portfolio by the relative return target rate.

A criticism of the investment objective (2.9) is that it is symmetrical in terms of the outperformance and
underperformance of W (T ) relative to the elevated target eβT Ŵ (T ). This is a common issue for volatility-
based measures, such as the Sharpe ratio (Ziemba, 2005). In practice, investors may favor outperformance
more than underperformance, while still aiming to track the elevated target closely. Acknowledging this,
instead of (2.9), Ni et al. (2022) propose the following asymmetrical objective function,

inf
P∈A

E(t0,w0)
P

[(
min(W (T )− eβT Ŵ (T ), 0)

)2

+ max
(
W (T )− eβT Ŵ (T ), 0

)]
. (2.10)

The investment objective (2.10) penalizes the outperformance (of W (T ) relative to the elevated target
eβT Ŵ (T )) linearly but the underperformance quadratically, thus encouraging the optimal policy to favor
outperformance more than underperformance when necessary. Note that the use of objective function (2.10)
does not permit closed-form solutions and machine learning techniques are used (Ni et al., 2022) to compute
the desired optimal strategy numerically.

Another criticism of the investment objective (2.9) and (2.10) is that both are only concerned with the
relative performance at terminal time T . In reality, investment managers are often required to report in-
termediate portfolio performance internally or externally at regular time intervals. Instead of achieving the
annualized relative return target when reviewing the portfolio performance at the end of the investment hori-
zon, managers may want to consistently achieve the relative return target throughout the entire investment
horizon. In this case, managers may need to set an investment objective function to control the devia-
tion of the wealth of the portfolio from the target along a market scenario within the investment horizon.
Consequently, van Staden et al. (2022) propose the following cumulative quadratic tracking difference (CD)
objectives
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(CD(β)) :


inf
P∈A

E(t0,w0)
P

[∫ T

t0

(
W (t)− eβtŴ (t)

)2

dt

]
, if T = [t0, T ], (2.11)

inf
P∈A

E(t0,w0)
P

[ ∑
t∈T ∪{T}

(
W (t)− eβtŴ (t)

)2
]
, if T ⊆ [t0, T ], T discrete. (2.12)

Here, note that objective (2.11) is for the continuous rebalancing case, and (2.12) for discrete rebalancing.
Both (2.11) and (2.12) measure the cumulative deviation of the wealth of the active portfolio relative to the
target, along a market scenario within the entire investment horizon. Therefore, they measure the intermedi-
ate performance deviations effectively. However, similar to (2.9), (2.11) and (2.12) penalize outperformance
and underperformance symmetrically. Therefore, we also consider following cumulative quadratic shortfall
(CS) objectives that only penalize the shortfall (underperformance with respect to the target)

(CS(β)) :



inf
P∈A

E(t0,w0)
P

[∫ T

t0

(
min

(
W (t)− eβtŴ (t), 0

))2

dt+ εW (T )

]
, if T = [t0, T ], (2.13)

inf
P∈A

E(t0,w0)
P

[ ∑
t∈T ∪{T}

(
min

(
W (t)− eβtŴ (t), 0

))2

+ εW (T )

]
, if T ⊆ [t0, T ], T discrete.

(2.14)

Here (2.13) and (2.14) are the investment objectives for the continuous rebalancing and discrete rebalancing
cases respectively. ε is a small regularization parameter to ensure that problem (2.13) and (2.14) are well-
posed. A more detailed comparison of the CD and CS objective functions can be found in Appendix H in
Ni et al. (2023).

2.4 Closed-form solution for CD problem

In this section, we present the closed-form solution to the CD problem (2.11) under several assumptions.
The closed-form solution not only provides us with insights for understanding the CD-optimal controls for
problem (2.11), but also serves as the baseline for understanding the numerical results derived from the
neural network method (discussed in later sections). Specifically, in this section, we consider the case that
all asset prices follow jump-diffusion processes and portfolios with cash injections, which are aspects not
frequently considered in benchmark outperformance literature Browne (1999, 2000); Tepla (2001); Basak
et al. (2006); Yao et al. (2006); Zhao (2007); Davis and Lleo (2008); Lim and Wong (2010b); Oderda (2015);
Zhang and Gao (2017); Al-Aradi and Jaimungal (2018b); Nicolosi et al. (2018); Bo et al. (2021).

We first summarize the assumptions for obtaining the closed-form solution to CD problem (2.11).

Assumption 2.1. (Two assets, no friction, unlimited leverage, trading in insolvency, constant rate of cash
injection) The active portfolio and the benchmark portfolio have access to two underlying assets, a stock index,
and a constant-maturity bond index. Both portfolios are rebalanced continuously, i.e., T = [t0, T ]. There is
no transaction cost and no leverage limit. Furthermore, we assume that trading continues in the event of
insolvency, i.e., when W (t) < 0 for some t ∈ [t0, T ]. Finally, we assume both portfolios receive constant cash
injections with an injection rate of c, which means during any time interval [t, t + ∆t] ⊆ [t0, T ],∀∆t > 0,
both portfolios receive cash injection amount of c∆t.

Remark 2.1. (Remark on Assumption 2.1) For illustration purposes, we assume only two underlying assets.
However, the technique for deriving the closed-form solution can be extended to multiple assets. We remark
that unlimited leverage is unrealistic, and is only assumed for deriving the closed-form solution. In Section
C.1, we will discuss the technique for handling the leverage constraint in more detail. We also acknowledge
that it is not realistic to assume that the manager can continue to trade and borrow when insolvent. However,
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this assumption is typically required for obtaining closed-form solutions, see Zhou and Li (2000); Li and Ng
(2000) for the case of a multi-period mean-variance asset allocation problem. In Appendix C.1, we have
more discussion on the impact of insolvency and its handling in experiments.

Assumption 2.2. (Fixed-mix benchmark strategy) We assume that the benchmark strategy is a fixed-mix
strategy (also known as the constant weight strategy). We assume the benchmark always allocates a constant
fraction of %̂ (∈ R) of the portfolio wealth to the stock index, and a constant fraction of 1−%̂ to the bond index.
Let %̂ = (%̂, 1− %̂)> ∈ R2 denote the vector of allocation fractions to the stock index and the bond index, the

benchmark strategy is the fixed-mix strategy defined by P̂ = {p̂(X̂(t)) =
(
p̂1(X̂(t)), p̂2(X̂(t))

)> ≡ %̂, ∀t ∈ T }.
Finally, we assume the stock index price and bond index price follow the jump-diffusion processes de-

scribed below.

Assumption 2.3. (Jump-diffusion processes) Let S1(t) and S2(t) denote the deflated (adjusted by inflation)
price of the stock index and the bond index at time t ∈ [t0, T ]. We assume Si(t), i ∈ {1, 2} follow the
jump-diffusion processes

dSi(t)

Si(t−)
= (µi − λiκi + ri · 1Si(t−)<0)dt+ σidZi(t) + d

( πi(t)∑
k=1

(ξ
(k)
i − 1)

)
, i = 1, 2. (2.15)

Here µi are the (uncompensated) drift rate, σi is the diffusive volatility, Z1(t), Z2(t) are correlated Brownian
motions, where E[dZ1(t) · dZ2(t)] = ρdt. ri are the borrowing premiums when Si(t

−) is negative.4 πi(t) is

a Poisson process with positive intensity parameter λi. {ξ(k)
i , k = 1, · · · , πi(t)} are i.i.d. positive random

variables that describe jump multipliers associated with the assets. If a jump occurs for asset i at time
t ∈ (t0, T ], its underlying price jumps from Si(t

−) to Si(t) = ξi · Si(t−).5 κi = E[ξi − 1]. ξi and πi(t) are
independent of each other. Moreover, π1(t) and π2(t) are assumed to be independent.6

Remark 2.2. (Motivation for jump-diffusion model) The assumption of stock index price following a jump-
diffusion model is common in the financial mathematics literature (Merton, 1976; Kou, 2002). In addition,
we follow the practitioner approach and directly model the returns of the constant maturity bond index as a
stochastic process, see for example Lin et al. (2015); MacMinn et al. (2014). As in MacMinn et al. (2014), we
also assume that the constant maturity bond index follows a jump-diffusion process. During high-inflation
regimes, central banks often make rate hikes to curb inflation, which causes sudden jumps in bond prices
(Lahaye et al., 2011). We believe this is an appropriate assumption for bonds in high-inflation regimes.

Under the jump-diffusion model (2.15), the wealth processes for the active portfolio and benchmark
portfolio are 

dW (t) =
( Na∑
i=1

pi(X(t−)) · dSi(t)Si(t−)

)
W (t−j ) + cdt,

dŴ (t) =
( Na∑
i=1

p̂i(X̂(t−)) · dSi(t)Si(t−)

)
Ŵ (t−j ) + cdt,

(2.16)

where t ∈ (t0, T ], W (t0) = Ŵ (t0) = w0 and X(t−) = (t,W (t−), Ŵ (t−))> ∈ R3 is the state variable vector.
We now derive the closed-form solution of the CD problem (2.11) under Assumption 2.1, 2.2 and 2.3. We

first present the verification theorem for the HJB integro-differential equation (PIDE) satisfied by the value
function and the optimal control of the CD problem (2.11).

Theorem 2.1. (Verification theorem for CD problem (2.11) For a fixed β > 0, assume that for all (t, w, ŵ, %̂) ∈
[t0, T ]×R3, there exists a function V (t, w, ŵ, %̂) : [t0, T ]×R3 7→ R and p∗(t, w, ŵ, %̂) : [t0, T ]×R3 7→ R2 that

4Intuitively, there is a premium for shorting an asset. In the closed-form solution derivation, we assume ri = 0.
5For any functional ψ(t), we use the notation ψ(t−) as shorthand for the left-sided limit ψ(t−) = lim∆t↓0 ψ(t−∆t).
6See Forsyth (2020) for the discussion on the empirical evidence for stock-bond jump independence. Also note that the

assumption of independent jumps can be relaxed without technical difficulty if needed (Kou, 2002), but will significantly
increase the complexity of notations.
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satisfy the following two properties. (i) V and p∗ are sufficiently smooth and solve the HJB PIDE (2.17),
and (ii) the function p∗(t, w, ŵ, %̂) attains the pointwise infimum in (2.17) below

∂V
∂t + (w − eβtŵ)2 + inf

p∈R2
H(p; t, w, ŵ, %̂) = 0,

V (T,w, ŵ, %̂) = 0,
(2.17)

where

H(p; t, w, ŵ, %̂) =
(
w ·α>p+ c

)
· ∂V
∂w

+
(
ŵ ·α>%̂+ c

)
· ∂V
∂ŵ
−
(∑

i

λi

)
· V (t, w, ŵ, %̂)

+
w2

2
·
(
p>Σp

)
· ∂

2V

∂w2
+
ŵ2

2
·
(
%̂>Σ%̂

)
· ∂

2V

∂ŵ2
+ wŵ ·

(
p>Σ%̂

)
· ∂

2V

∂w∂ŵ

+
∑
i

λi

∫ ∞
0

V (w + piw(ξ − 1), ŵ + p̂iŵ(ξ − 1), t, %̂)fξi(ξ)dξ. (2.18)

Here α = (µ1 − λ1κ1, µ2 − λ2κ2)> is the vector of (compensated) drift rates, Σ =

[
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

]
is the

covariance matrix, and fξi is the density function for ξi.
Then, under Assumption 2.1, 2.2 and 2.3, V is the value function and p∗ is the optimal control for the

CD problem (2.11).

Proof. See Appendix A.1

Define several auxiliary variables
κ

(2)
i = E

[
(ξi − 1)2

]
, (σ

(2)
i )2 = (σi)

2 + λiκ
(2)
i , i ∈ {1, 2},

ϑ = σ1σ2ρ− (σ
(2)
2 )2, γ = (σ

(2)
1 )2 + (σ

(2)
2 )2 − 2σ1σ2ρ,

φ = (µ1−µ2)(µ1−µ2+ϑ)
γ , η = (µ1−µ2+θ)2

γ − (σ
(2)
2 )2,

(2.19)

then we have the following proposition regarding the optimal control of problem (2.11).

Proposition 2.1. (CD-optimal control) Suppose Assumption 2.1, 2.2 and 2.3 are applicable, then the optimal
control fraction of the wealth of the active portfolio to be invested in the stock index for the CD(β) problem
(2.11) is given by p∗(t, w, ŵ, %̂) ∈ R, where

p∗(t, w, ŵ, %̂) =
1

W ∗(t)

[
(µ1 − µ2)

γ
h(t;β, c) +

(µ1 − µ2 + ϑ)

γ

(
g(t;β)Ŵ (t)−W ∗(t)

)
+ g(t;β)Ŵ (t) · %̂

]
. (2.20)

Here W ∗(t) denotes the wealth process of the active portfolio from (2.6) following control p∗(t,W ∗(t), Ŵ (t), %̂) =(
p∗(t,W ∗(t), Ŵ (t), %̂), 1−p∗(t,W ∗(t), Ŵ (t), %̂)

)>
, where p∗ is the optimal stock allocation described in (2.20),

and Ŵ (t) is the wealth process of the benchmark portfolio following the fixed-mixed strategy described in As-
sumption 2.2. Here, h and g are deterministic functions of time,

g(t;β) = −D(t;β)

2A(t)
, h(t;β, c) = −B(t;β, c)

2A(t)
, (2.21)

where A,D and B are deterministic functions defined as

A(t) =
e(2µ2−η)(T−t) − 1

(2µ2 − η)
, D(t;β) = 2eβT

(e−β(T−t) − e(2µ2−η)(T−t)

2µ2 − η + β

)
, (2.22)
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and

B(t;β, c) =
2c

2µ2 − η

(e(2µ2−η)(T−t) − e(µ2−φ)(T−t)

µ2 + φ− η
− e(µ2−φ)(T−t) − 1

µ2 − φ

)
+

2ceβT

2µ2 − η + β

(e(µ2−φ)(T−t) − e−β(T−t)

µ2 − φ+ β
− e(2µ2−η)(T−t) − e(µ2−φ)(T−t)

µ2 + φ− η

)
. (2.23)

Proof. See Appendix A.2.

2.4.1 Insights from CD-optimal control

The CD-optimal control (2.20) provides insights into the behaviour of the optimal allocation policy. For ease
of exposition, we first establish the following properties of g(t;β) and h(t;β, c).

Corollary 2.1. (Properties of g(t;β)) The function g(t;β) defined in (2.21) has the following properties for
t ∈ [t0, T ] and β > 0:

(i) For fixed t ∈ [t0, T ], g(t;β) is strictly increasing on β ∈ (0,∞).

(ii) For fixed β > 0, g(t;β) is strictly increasing on t ∈ [t0, T ].

(iii) g(t;β) admits the following bounds:
eβt ≤ g(t;β) ≤ eβT . (2.24)

Proof. See Appendix A.3.

Corollary 2.2. (Properties of h(t;β, c)) The function h(t;β, c) defined in (2.21) has the following properties
for t ∈ [t0, T ], β > 0 and c ≥ 0:

(i) For fixed t ∈ [t0, T ] and c > 0, h(t;β, c) is strictly increasing on β ∈ (0,∞).

(ii) h(t;β, c) ≥ 0, ∀(t, β, c) ∈ [t0, T ]× (0,∞)× [0,∞).

(iii) For fixed t ∈ [t0, T ] and β > 0, h(t;β, c) is strictly increasing on c ∈ [0,∞). h(t;β, 0) ≡ 0. Moreover,
h(t;β, c) ∝ c, i.e. h(t;β, c) is proportional to c.

Proof. See Appendix A.3.

In order to analyze the closed-form solution, we make the following assumptions.

Assumption 2.4. (Drift rates of the two assets) We assume that the drift rates of the stock and the bond
index µ1 and µ2 satisfy the following properties,

µ1 − µ2 > 0, µ1 − µ2 + ϑ > 0, (2.25)

where ϑ is defined in (2.19).

Remark 2.3. (Remark on drift rate assumptions) The first inequality µ1 − µ2 > 0 indicates that the stock
index has a higher drift rate than the bond index, which is a standard assumption.7 The second inequality
µ1−µ2 +ϑ > 0 is also practically reasonable. ϑ is a variance term that is usually on a smaller scale compared
to the drift rates. In reality, it is unlikely that µ1 − µ2 > 0 but µ1 − µ2 + ϑ ≤ 0.8

7In fact, in this two-asset case, this assumption does not cause loss of generality.
8For reference, based on the calibrated jump-diffusion model (2.15) on historical high-inflation regimes, µ1 = 0.051, µ2 =

−0.014, ϑ = −0.00024, and thus both inequalities are satisfied.
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Now we proceed to summarize the insights from the CD-optimal control (2.20). The first obvious obser-
vation is that the CD-optimal control is a contrarian strategy. This can be seen from the fact that fixing
time and the wealth of the benchmark portfolio Ŵ (t), the allocation to the more risky stock index decreases
when the wealth of the active portfolio W ∗(t) increases.

If we take a deeper look at (2.20), we can see that the CD-optimal control consists of two components:
a cash injection component p∗cash and a tracking component p∗track. Mathematically,

p∗(t, w, ŵ, %̂) = p∗cash(t, w, ŵ) + p∗track(t, w, ŵ, %̂), (2.26)

where 
p∗cash(t, w, ŵ) = 1

W∗(t)

[
(µ1−µ2)

γ h(t;β, c)

]
,

p∗track(t, w, ŵ, %̂) = 1
W∗(t)

[
(µ1−µ2+ϑ)

γ

(
g(t;β)Ŵ (t)−W ∗(t)

)
+ g(t;β)Ŵ (t) · %̂

]
.

(2.27)

Based on Assumption 2.4 and Corollary 2.2, the cash injection component pcash is always non-negative.
Furthermore, from Corollary 2.2, we know that the stock allocation from the cash injection component is
proportional to the cash injection rate c. In addition, as t ↑ T , h(t;β, c) increases, and thus the stock
allocation from the cash injection component also increases with time.

On the other hand, the tracking component ptrack does not depend on the cash injection rate c, but only
concerns the tracking performance of the active portfolio. One key finding is that{

p∗track(t, w, ŵ, %̂) ≥ %̂, if W ∗(t) ≤ g(t;β)Ŵ (t),

p∗track(t, w, ŵ, %̂) < %̂, if W ∗(t) > g(t;β)Ŵ (t).
(2.28)

This means that the CD-optimal control uses g(t;β)Ŵ (t) as the true target for the active portfolio to decide
if the active portfolio should take more or less risk than the benchmark portfolio. This is a key observation,
since the CD objective function (2.11) measures the difference between W (t) and eβtŴ (t). One would naively
think that the optimal strategy would be based on the deviation from eβtŴ (t). In contrast, from Corollary
2.1, we know that the true target g(t;β)Ŵ (t) used for decision making is greater than eβtŴ (t). The insight
from this observation is that if the manager wants to track an elevated target eβtŴ (t), she should aim higher
than the target itself.

2.5 Leverage constraints

In practice, large pension funds such as the Canadian Pension Plan often have exposures to alternative
assets, such as private equity (CPP Investments, 2022). Unfortunately, due to practical limitations, we
only have access to long-term historical returns of publicly traded stock indexes and treasury bond indexes.
Although controversial, some literature suggests that returns on private equity can be replicated using a
leveraged small-cap stock index (Phalippou, 2014; L’Her et al., 2016). Following this line of argument, we
allow managers to take leverage to invest in public stock index funds to roughly mimic the pension fund
portfolios with some exposure to private equities.

Essentially, taking leverage to invest in stocks requires borrowing additional capital, which incurs bor-
rowing costs. For simplicity, we assume the borrowing activity is represented by shorting some bond assets
within the portfolio, and thus the manager is required to pay the cost of shorting these shortable assets. We
assume that the cost consists of two parts: the returns of the shorted assets, and an additional borrowing
premium (rate depends on specific investment scenarios) so that the total borrowing cost reflects both the
interest rate environment (the return of shorted bond assets) and is reasonably estimated (with the added
borrowing premium).

Following the notation from Section 2.2, we assume that the total Na underlying assets are divided into
two groups. The first group of Nl assets are long-only assets, which we index by the set {1, · · · , Nl}. The
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second group of Na −Nl assets are shortable assets that can be shorted to create leverage and are indexed
by the set {Nl + 1, · · · , Na}. Recall the notation of pi(X(t)) for the allocation fraction for asset i at time t.

For long-only assets, the wealth fraction needs to be non-negative, hence we have

(Long-only constraint): pi(X(t)) ≥ 0, i ∈ {1, · · · , Nl}, t ∈ T . (2.29)

Furthermore, the total allocation fraction for all assets should be one. Therefore, the following summation
constraint needs to be satisfied

(Summation constraint):

Na∑
i=1

pi(X(t)) = 1, t ∈ T . (2.30)

In practice, due to borrowing costs (from taking leverage) and risk management mandates, the use of
leverage is often constrained. For this reason, we cap the maximum leverage by introducing a constant pmax,
which represents the total allocation fraction for long-only assets. Therefore,

(Maximum leverage constraint):

Nl∑
i=1

pi(X(t)) ≤ pmax, t ∈ T . (2.31)

Note that no leverage is permitted if pmax = 1.
Finally, we make the following assumption on the scenario of shorting multiple shortable assets.

Assumption 2.5. (Simultaneous shorting) If one shortable asset has a negative weight, other shortable
assets must have nonpositive weights. Mathematically, this assumption can be expressed as

(Simultaneous shorting constraint):

{
pi(X(t)) ≤ 0, ∀i ∈ {Nl + 1, · · · , Na}, if

∑Nl
i=1 pi(X(t)) > 1, t ∈ T

pi(X(t)) ≥ 0, ∀i ∈ {Nl + 1, · · · , Na}, if
∑Nl
i=1 pi(X(t)) ≤ 1, t ∈ T

.

(2.32)

Remark 2.4. (Remark on Assumption 2.5) This assumption avoids the ambiguity between the long-only
assets and shortable assets in scenarios that involve leverage. When leveraging occurs, all shortable assets
are treated as one group to provide the needed liquidity to achieve the desired leverage level.

The above constraints consider scenarios with non-negative portfolio wealth. Before we proceed to the
handling of the negative portfolio wealth scenarios, we first define the following partition of the state space
X ,

Definition 2.1. (Partition of state space) We define
{
X1,X2

}
to be a partition of the state space X , such

that X1 =
{
x = (t,W, Ŵ )> ∈ X

∣∣∣W ≥ 0
}
,

X2 =
{
x = (t,W, Ŵ )> ∈ X

∣∣∣W < 0
}
.

(2.33)

Intuitively, we separate the state space X into two regions by the wealth of the active portfolio, one
with non-negative wealth and the other with negative wealth. Then, we present the following assumption
concerning the negative wealth (insolvency) scenarios.

Assumption 2.6. (No trading in insolvency) If the wealth of the active portfolio is negative, then all
long-only asset positions should be liquidated, and all the debt (i.e. the negative wealth) is allocated to the
least-risky shortable asset (in terms of volatility). Particularly, without loss of generality, we assume all debt
is allocated to asset Nl + 1. Let ei ∈ RNa = (0, · · · , 0, 1, 0, · · · , 0)> denote the standard basis vector of which
the i-th entry is 1 and all other entries are 0. Then, we can formulate this assumption as follows.

(No trading in insolvency): p(X(t)) = eNl+1, if X(t) ∈ X2. (2.34)
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Remark 2.5. (Remark on Assumption 2.6) Essentially, when the portfolio wealth is negative, we assume
the debt is allocated to a short-term bond asset and accumulates over time.

Summarizing the constraints, we can define two sets Z1,Z2:
Z1 =

z ∈ RNa
∣∣∣∣∣


zi ≥ 0,∀i ∈ {1, · · · , Nl},∑Na
i=1 zi = 1,∑Nl
i=1 zi ≤ pmax,

zi ≤ 0, ∀i ∈ {Nl + 1, · · · , Na}, if
∑Nl
i=1 zi > 1,

zi ≥ 0, ∀i ∈ {Nl + 1, · · · , Na}, if
∑Nl
i=1 zi ≤ 1

, (2.35)

Z2 =
{
eNl+1

}
, (2.36)

Then, the corresponding space of feasible control vector values Z and the admissible strategy set A are

(Admissible set) :


Z = Z1 ∪ Z2, (2.37)

A =

{
P =

{
p(X(t)), t ∈ T

∣∣∣∣∣
{
p(X(t)) ∈ Z1, if X(t) ∈ X1,

p(X(t)) ∈ Z2, if X(t) ∈ X2,

}}
. (2.38)

It is not obvious how the conditional constraints in (2.37) and (2.38) can be formulated into a standard
constrained optimization problem.

2.6 Neural network method

In Section 2.4, we derive the closed-form solution under the jump-diffusion model, which requires several
unrealistic assumptions such as continuous rebalancing, unlimited leverage, and trading in insolvency. Fur-
thermore, the closed-form solution is specific to the investment objective defined in the CD problem (2.11).
To discover optimal strategies for high inflation regimes, capability in solving general investment problem
(2.7) for different objectives and under realistic constraints, such as discrete rebalancing and limited leverage
(i.e., leverage constraints discussed in Section 2.5), is critically beneficial. Therefore, we need computationally
efficient methods to solve these problems numerically, particularly in high-dimensional cases.

Solving a discrete-time multi-period optimal asset allocation problem often utilizes dynamic programming
(DP). For example, Dixon et al. (2020); Park et al. (2020); Lucarelli and Borrotti (2020); Gao et al. (2020) use
Q-learning algorithms to solve the discrete-time multi-period optimal allocation problem. In general, if there
are Na assets to invest in, then the use of Q-learning involves approximation of an action-value function
(“Q” function) which is a (2Na + 1)-dimensional function (van Staden et al., 2023) which represents the
conditional expectation of the cumulative rewards at an intermediate state.9 Meanwhile, the optimal control
is a mapping from the state space to the allocation fractions to the assets. If the state space is relatively
low-dimensional, 10 then the DP-based approaches are potentially unnecessarily high-dimensional.

Instead of using dynamic programming methods, Han et al. (2016); Buehler et al. (2019); Tsang and
Wong (2020); Reppen et al. (2022) propose to approximate the optimal control function by neural network
functions directly. In particular, they propose a stacked neural network approach that essentially uses a
sub-network to approximate the control at every rebalancing step. Therefore, the number of neural networks
required grows linearly with the number of rebalancing periods. Note that, in the taxonomy of Powell (2023),
this method is termed as Policy Function Approximation (PFA).

In this article, we follow the lines of Li and Forsyth (2019); Ni et al. (2022) and propose a single neural
network to approximate the optimal control function. The direct representation of the control function avoids
the high-dimensional approximation required in DP-based methods. In addition, we consider time t as an

9Intuitively, the dimensionality comes from tracking the allocation in the Na assets for both the active portfolio and bench-
mark portfolio when evaluating the changes in wealth of both portfolios over one period in the action-value function.

10For example, the state space of problem (2.11) with assumptions of a fixed-mix strategy is a vector in R3.
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input feature (along with the wealth of the active portfolio and benchmark portfolio), therefore avoiding the
need for multiple sub-networks in the stacked neural network approach.

The numerical solution to the general problem (2.7) requires solving for the feedback control p. We
approximate the control function θ by a neural network function f(X(t);θ) : X 7→ RNa , where θ ∈ RNθ

represents the parameters of the neural network (i.e., weights and biases). In other words,

p(X(t)) ' f(X(t);θ) ≡ f(·;θ). (2.39)

Then, the optimization problem (2.7) can be converted to solving the following optimization problem.

(Parameterized optimization problem): inf
θ∈Zθ

E(t0,w0)
f(·;θ)

[
F (Wθ, ŴP̂)

]
. (2.40)

HereWθ is the wealth trajectory of the active portfolio following the neural network approximation function
parameterized by θ. Zθ ⊆ RNθ is the feasibility domain of the parameter θ, which is translated from the
constraints of the original problem, e.g., (2.37) and (2.38). Mathematically,

Zθ =

{
θ :

{
f(X;θ) ∈ Z1, if X ∈ X1,

f(X;θ) ∈ Z2, if X ∈ X2.

}
. (2.41)

Here Z1,Z2 are defined in (2.35), (2.36) and X1,X2 are partitions of the state space X defined in Definition
2.1.

Note here that Zθ depends on the structure of the neural network function f(·;θ). Intuitively, Zθ is the
preimage of Z, i.e., any θ ∈ Zθ, f(·;θ) ∈ Z. Specific neural network model design may result in Zθ = RNθ ,
which means (2.40) becomes an unconstrained optimization problem. For long-only investment problems,
the only constraints are the long-only constraint (2.29) and the summation constraint (2.30). Previous work
has proposed a neural network architecture with a softmax activation function at the last layer so that the
output (vector of allocation fractions) automatically satisfies the two constraints, and thus Zθ = RNθ and
problem (2.40) becomes an unconstrained optimization problem (see, e.g., Li and Forsyth (2019); Ni et al.
(2022)). However, as discussed in Section 2.5, we consider the more complicated case where leverage and
shorting are allowed. The problem thus involves more constraints than the long-only case and therefore
we would like to design a new model architecture to convert the constrained optimization problem to an
unconstrained problem. We will discuss the design of the leverage-feasible neural network (LFNN) model in
the next section, and how the LFNN model achieves this goal.

It is worth noting that for the particular CD problem (2.12) and CS problem (2.14), our technique may
be formulated to appear similar to policy gradient methods in RL literature (Silver et al., 2014) on a high
level. Examples of policy gradient methods in financial problems include Coache and Jaimungal (2021), in
which the authors develop an actor-critic algorithm for portfolio optimization problems with convex risk
measures. However, there are two main differences between our proposed methodology and policy gradient
algorithms. Firstly, we assume that the randomness of the environment (i.e., asset returns) over the entire
investment horizon is readily available upfront (e.g., through calibration of parametric models or resampling
of historical data), which is a common assumption adopted by practitioners when backtesting investment
strategies. On the other hand, RL literature often considers an unknown environment, and the algorithms
focus on the exploration of the agent to learn from the unknown environment and thus may be unnecessarily
complicated for our use case. Secondly, our proposed methodology is not limited to the cumulative reward
framework in RL and thus is more universal and suitable for problems in which the investment objective
cannot be easily expressed in the form of a cumulative reward.

2.7 Leverage-feasible neural network (LFNN)

In this section, we propose the leverage-feasible neural network (LFNN) model, which yields Zθ = RNθ for
leverage constraints defined in equation (2.37), and converts a constrained optimization problem (2.40) to
an unconstrained problem.
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Let vector x = (t,W (t), Ŵ (t))> ∈ X be the feature (input) vector. We first define a standard fully-
connected feedforward neural network (FNN) function f̃ : X 7→ RNa+1 as follows:

(FNN) :



h
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j = Sigmoid

(∑Nx
i=1 xiθ
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j

)
, j = 1, · · · , N (1)
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h
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i θ

(k)
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)
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(K)
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(K+1)
ij , j = 1, · · · , Na + 1,

f̃(x;θ) := (o1, · · · , oNa+1)>.

(2.42)

Here Sigmoid(·) denotes the sigmoid activation function, K denotes the number of hidden layers, hkj denotes

the value of the j-th node in the k-th hidden layer, and N
(k)
h is the number of nodes in the k-th hidden

layer. Additionally, θ(k) = (θ
(k)
ij ) ∈ RN

(k)
h ×N

(k−1)
h and b(k) = (b

(k)
j ) ∈ RN

(k)
h are the (vectorized) weight

matrix and bias vector for the k-th layer,11 and the parameter vector of the entire neural network is θ =

(θ(1), b(1), · · · ,θ(K), b(K),θ(K+1))> ∈ RNθ , where Nθ =
∑K+1
k=1 N

(k)
h ·N (k−1)

h +
∑K
k=1N

(k)
h .

Building on f̃ , we propose the following leverage-feasible neural network (LFNN) model f : X 7→ Z:

(LFNN) : f(x;θ) := ψ
(
f̃(x;θ),x

)
∈ Z. (2.43)

Here, ψ(·) is the leverage-feasible activation function. For o = (o1, · · · , oNa+1)> ∈ RNa+1, and p =
ψ(o,x), ψ(·) : (o,x) ∈ RNa+1 ×X 7→ Z is defined by

p = ψ(o,x) =




l = pmax · Sigmoid(oNa+1),

pi = l · eoi∑Nl
k=1 e

ok
, i ∈ {1, · · · , Nl}, if x ∈ X1,

pi = (1− l) · eoi∑Na
k=Nl+1 e

ok
, i ∈ {Nl + 1, · · · , Na},

eNl+1, if x ∈ X2.

(2.44)

Recall that Nl is the number of long-only assets and pmax is the maximum leverage allowed. We show
that the leverage-feasible activation function ψ has the following property.

Lemma 2.1. (Decomposition of ψ) The leverage-feasible function ψ defined in (2.44) has the function
decomposition that

ψ(o,x) = ϕ(ζ(o),x), (2.45)

where
ζ : RNa+1 7→ Z̃, ζ(o) =

(
Softmax

(
(o1, · · · , oNl)

)
,Softmax

(
(oNl+1, · · · , oNa)

)
, pmax · Sigmoid(oNa+1)

)>
,

ϕ : Z̃ × X 7→ Z, ϕ(z) =
(
zNa+1 · (z1, · · · , zNl), (1− zNa+1) · (zNl+1, · · · , zNa)

)>
· 1x∈X1

+ eNl+1 · 1x∈X2
,

(2.46)
and

Z̃ =

{
z ∈ RNa+1,

Nl∑
i=1

zi = 1,

Na∑
i=Nl+1

zi = 1, zNa+1 ≤ pmax, zi ≥ 0,∀i

}
. (2.47)

Proof. This is easily verifiable by definition of ψ in (2.44).

Remark 2.6. (Remark on Lemma 2.1) The leverage-feasible activation function ψ corresponds to a two-
step decision process described by ζ and ϕ. Intuitively, ζ first determines the internal allocations within
long-only assets and shortable assets, as well as the total leverage. Then, ϕ converts the internal allocations
and total leverage into final allocation fractions, which depend on the wealth of the active portfolio.

11For k = K + 1, define N
(K+1)
h = Na + 1 so θ(K+1) is well-defined.
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With the LFNN model outlined above, the parameterized optimization problem (2.40) becomes an un-
constrained optimization problem. Specifically, we present the following theorem regarding the feasibility
domain Zθ associated with the LFNN model (2.43).

Theorem 2.2. (Unconstrained feasibility domain) The feasibility domain Zθ defined in (2.41) associated
with the LFNN model (2.43) is RNθ .

Proof. See Appendix B.1.

Following Theorem 2.2, the constrained optimization problem (2.7) can be transformed into the following
unconstrained optimization problem

(Unconstrained parameterized problem): inf
θ∈RNθ

E(t0,w0)
f(·;θ)

[
F (Wθ, ŴP̂)

]
. (2.48)

2.8 Mathematical justification for LFNN approach

By approximating the feasible control with a parameterized LFNN model, we have shown that the origi-
nal constrained optimization problem is transformed into an unconstrained optimization problem, which is
computationally more implementable.

However, an important question remains: is the solution to the parameterized unconstrained optimization
problem (2.48) capable of yielding the optimal control of the original problem (2.7)? In other words, suppose
θ∗ is the solution to (2.48), can f(·;θ∗) approximates solution to (2.7) with desired accuracy?

In this section, we prove that under benign assumptions and appropriate choices of the hyperparameter of
the LFNN model (2.43), solving the unconstrained problem (2.48) provides an arbitrarily close approximation
the original problem (2.7). We start by establishing the following lemma.

Lemma 2.2. (Structure of feasible control) Any feasible control function p : X 7→ Z, where Z is defined in
(2.38), has the function decomposition

p(x) = ϕ(ω(x), x), (2.49)

where ϕ : Z̃ × X 7→ Z is defined in (2.46) and ω : X 7→ Z̃.

Proof. See Appendix B.2.

Next, we propose the following benign assumptions on the state space and the optimal control.

Assumption 2.7. (Assumption on state space and optimal control)

(i) The space X of state variables is a compact set.

(ii) Following Lemma 2.2, the optimal control p∗ : X 7→ Z has the decomposition p∗(x) = ϕ(ω∗(x), x) for
some ω∗ : X 7→ Z̃. We assume ω∗ ∈ C(X , Z̃), where C(X , Z̃) denotes the set of continuous mappings
from X to Z̃.

Remark 2.7. (Remark on Assumption 2.7) In our particular problem of outperforming a benchmark port-
folio, the state variable vector is X(t) = (t,W (t), Ŵ (t))> ∈ X where t ∈ [0, T ]. In this case, assumption (i)
is equivalent to the assumption that the wealth of the active portfolio and benchmark portfolio is bounded,
i.e. X = [0, T ]× [wmin, wmax]× [wmin, ŵmax], where wmin, wmax and ŵmin, ŵmax are the respective wealth
bounds for the portfolios. Intuitively, assumption (ii) states that the decision process for the optimal control
to obtain the internal allocation fractions within the long-only assets, shortable assets, and the total leverage
is a continuous function. This is a natural extension of the long-only case, in which it is commonly assumed
that the allocation within long-only assets is a continuous function of state variables.

Finally, we present the following theorem.
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Theorem 2.3. (Approximation of optimal control) Following Assumption 2.7, ∀ε > 0, there exists Nh ∈ N,
and θ ∈ RNθ such that the corresponding LFNN model f(·;θ) described in (2.43) satisfies the following:

sup
x∈X
‖f(x;θ)− p∗(x)‖ < ε. (2.50)

Proof. See Appendix B.2.

Theorem 2.3 shows that given any arbitrarily small tolerance ε > 0, there exists a suitable choice of the
hyperparameter of the LFNN model (e.g. the number of hidden layers and nodes), and a parameter vector
θ, such that the corresponding parameterized LFNN function is within this tolerance of the optimal control
function.12 In other words, with a large enough LFNN model (in terms of the number of hidden nodes), solv-
ing the unconstrained parameterized problem (2.48) approximately solves the original optimization problem
(2.7) with any required precision.

Remark 2.8. (Empirical evidence of approximation) In practice, we find that a small neural network struc-
ture with one single hidden layer and only 10 hidden nodes achieves excellent approximation performance.
In particular, in a numerical experiment with simulated data, we compare the LFNN model with the ap-
proximate form of the closed-form solution derived in Section 2.4, and find that the LFNN model mimics
the closed-form solution very well. This provides further empirical evidence that supports Theorem 2.3.
Additional details can be found in Appendix C.

2.9 Training LFNN

Since the numerical experiments involve the solution and evaluation of the optimal parameters θ∗ of the
LFNN model (2.43) in problem (2.48), we briefly review how the parameters are computed in experiments.

In numerical experiments, the expectation in (2.48) is approximated by using a finite set of samples of the
set Y = {Y (j) : j = 1, · · · , Nd}, where Nd is the number of samples, and Y (j) represents a time series sample
of joint asset return observations Ri(t), i ∈ {1, · · · , Na}, observed at t ∈ T .13 Mathematically, problem
(2.48) is approximated by

inf
θ∈RNθ

{
1

Nd

Nd∑
j=1

F
(
W(j)
θ , Ŵ(j)

P̂

)}
. (2.51)

Here W(j)
θ is the wealth trajectory of the active portfolio following the LFNN parameterized by θ, and Ŵ(j)

is the wealth trajectory of the benchmark portfolio following the benchmark strategy P̂, both evaluated on
Y (j), the j-th time series sample.

We use a shallow neural network model, specifically, an LFNN model with one single hidden layer with 10

hidden nodes, i.e., K = 1 and N
(1)
h = 10. We use the 3-tuple vector (t,Wθ(t), Ŵ (t))> as the input (feature)

to the LFNN network. At t ∈ [t0, T ], Wθ(t) is the wealth of the active portfolio of the strategy that follows
the LFNN model parameterized by θ, and Ŵ (t) is the wealth of the benchmark portfolio.

Then, the optimal parameter θ∗ can be numerically obtained by solving problem (2.51) using standard
optimization algorithms such as ADAM (Kingma and Ba, 2014). This process is commonly referred to as
“training” of the neural network model, and Y is often referred to as the training data set (Goodfellow et al.,
2016).

Once θ∗ is numerically obtained, the resulting optimal strategy f(·;θ∗) is evaluated on a separate “test-
ing” data set Y test, which contains a different set of samples generated from either the same distribution of
the training process or a different process (depending on experiment purposes) so that the “out-of-sample”
performance of f(·;θ∗) is assessed.

12The distance is defined in (2.50), i.e. the supremum of the pointwise distance over the extended state space X .
13Note that the corresponding set of asset prices can be easily inferred from the set of asset returns, or vice versa.
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3 Numerical experiments

In this section, we present a case study that explores optimal asset allocation during high-inflation periods
using the LFNN model through numerical experiments. To conduct our analysis, we need data specifically
from high inflation periods. Such data can be acquired using parametric modeling or non-parametric sample
generation methods. It is important to note that our LFNN approach is agnostic to the choice of data
modeling methods. While there is no universally accepted method for identifying or modeling high inflation
regimes, for the purpose of this demonstration, we employ a simple filtering technique to identify inflation
regime data and generate the required samples for training the LFNN.

3.1 Filtering historical inflation regimes

We use the U.S. CPI index and monthly data from the Center for Research in Security Prices (CRSP) over
the 1926:1-2022:1 period.1415 We select high-inflation periods as determined by the CPI index using the
following filtering procedure. Using a moving window of k months, we determine the cumulative CPI index
log return (annualized) in this window. If the cumulative annualized CPI index log return is greater than
a cutoff, then all the months in the window are flagged as part of a high-inflation regime. Note that some
months may appear in more than one moving window. Any months which do not meet this criterion are
considered to be in low-inflation regimes. Pseudo-code can be found in Appendix D in Ni et al. (2023).

Since the average annual inflation over the period 1926:1-2022:1 was 2.9%, and Federal Reserve poli-
cymakers have been targeting the inflation rate of 2% over the long run to achieve maximum employment
and price stability (The Federal Reserve, 2011), we use a cutoff of 5% as the threshold for high inflation.
In addition, we use the moving window size of 5 years (see Appendix D.2 in Ni et al. (2023) for more
discussion). This uncovers two inflation regimes: 1940:8-1951:7 and 1968:9-1985:10, which correspond to
well-known market shocks (i.e. the second world war, and price controls; the oil price shocks and stagflation
of the seventies).

Table 3.1 shows the average annual inflation over the two regimes identified from our filter.

Time Period Average Annualized Inflation
1940:8-1951:7 .0564
1968:9-1985:10 .0661

Table 3.1: Inflation regimes determined using a five-year moving window with a cutoff inflation rate of 0.05.

For possible investment assets, we consider the 30-day U.S. T-bill index (CRSP designation “t30ind”), a
constant maturity 10-year U.S. treasury index,16 and the cap-weighted stock index (CapWt) and the equal-
weighted stock index (EqWt), also from CRSP.17 All of these various indexes are adjusted for inflation by
using the U.S. CPI index.

We find that the equal-weighted stock index has a higher average return and higher volatility than the
cap-weighted stock index. In addition, we find that the 30-day T-bill index has a similar average return as the

14The date convention is that, for example, 1926:1 refers to January 1, 1926.
15More specifically, results presented here were calculated based on data from Historical Indexes, ©2022 Center for Research

in Security Prices (CRSP), The University of Chicago Booth School of Business. Wharton Research Data Services (WRDS)
was used in preparing this article. This service and the data available thereon constitute valuable intellectual property and
trade secrets of WRDS and/or its third-party suppliers.

16The 10-year treasury index was generated from monthly returns from CRSP back to 1941 (CRSP designation “b10ind”). The
data for 1926-1941 are interpolated from annual returns in Homer and Sylla (1996). The 10-year treasury index is constructed
by (a) buying a 10-year treasury at the start of each month, (b) collecting interest during the month, and then (c) selling the
treasury at the end of the month. We repeat the process at the start of the next month. The gains in the index then reflect
both interest and capital gains and losses.

17The capitalization-weighted total returns have the CRSP designation “vwretd”, and the equal-weighted total returns have
the CRSP designation “ewretd”.
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10-year T-bond index, but much lower volatility, see Appendix D.3 in Ni et al. (2023) for more details. This
indicates that the T-bill index is the better choice of a defensive asset during high inflation. Subsequently,
we consider the equal-weighted stock index, the cap-weighted stock index, and the 30-day T-bill index.

3.2 Bootstrap resampling

Once we have obtained the filtered historical high-inflation data series from Section 3.1, it becomes necessary
to generate training and testing data sets from the original time series data. While one common approach is
to assume and fit a parametric model to the underlying data, it is important to acknowledge the limitations
associated with this choice.

Parametric models have several drawbacks, including the difficulty of accurately estimating their param-
eters (Black, 1993). Even for a simple geometric Brownian motion (GBM) model, accurately estimating
the drift rate can be challenging and prone to errors, requiring a long historical period of data coverage
(Brigo et al., 2008). More complex models, such as the jump-diffusion model (2.15), introduce additional
components to the stochastic model, which necessitates the estimation of extra parameters. Furthermore,
parametric models inherently make assumptions about the true stochastic model for asset prices, which can
be subject to debate.

Acknowledging the above limitations of parametric market data models, we turn to the alternative non-
parametric method of bootstrap resampling as a data-generating process for numerical experiments. Unlike
parametric models, non-parametric models such as bootstrap resampling do not make assumptions about
the parametric form of the asset price dynamics. Intuitively speaking, the bootstrap resampling method
randomly chooses data points from the historical time series data and reassembles them into new paths of
time series data. The bootstrap was initially proposed as a statistical method for estimating the sampling
distribution of statistics (Efron, 1992). We use it as a data-generating procedure, as the philosophy behind
bootstrap resampling is consistent with the idea that “history does not repeat, but it rhymes.”. The bootstrap
resampling provides an empirical distribution, which seems to be the least prejudiced estimate possible of
the underlying distribution of the data-generating process. We also note that bootstrap resampling is widely
adopted by practitioners (Alizadeh and Nomikos, 2007; Cogneau and Zakamouline, 2013; Dichtl et al., 2016;
Scott and Cavaglia, 2017; Shahzad et al., 2019; Cavaglia et al., 2022; Simonian and Martirosyan, 2022) as
well as academics (Anarkulova et al., 2022).

Specifically, we choose to use the stationary block bootstrap resampling method (Politis and Romano,
1994). See Appendix E.1 in Ni et al. (2023) for the detailed pseudo-code for bootstrap resampling. Compared
to the traditional bootstrap method, the block bootstrap technique preserves the local dependency of data
within blocks. Furthermore, the stationary block bootstrap uses random blocksizes which preserves the
stationarity of the original time series data. An important parameter is the expected blocksize, which,
informally, is a measure of serial correlation in the return data. A challenge in using block bootstrap
resampling is the need to choose a single blocksize for multiple underlying time series data so that the
bootstrapped data entries for different assets are synchronized in time. Subsequently, we use the expected
blocksize of 6 months for all time series data. However, we have compared different numerical experiments
using a range of blocksizes, including i.i.d. assumptions (i.e. expected blocksize equal to one month), and
find that the results are relatively insensitive to blocksize, as discussed in more detail in Appendix E.2 in Ni
et al. (2023).

Typically, the bootstrap technique resamples from data sourced from one contiguous segment of histor-
ical periods. However, the moving-window filtering algorithm has identified two non-contiguous historical
inflation regimes. To apply the bootstrap method, there are two intuitive possibilities: 1) concatenate the
two historical inflation regimes first, then bootstrap from the concatenated combined series, or 2) bootstrap
within each regime (i.e., using circular block bootstrap resampling within each regime), then combine the
bootstrapped resampled data points. We have experimented with both methods and find that the difference
is minimal (see Appendix E.3 in Ni et al. (2023)). In this article, we adopt the first method, i.e., we concate-
nate the historical regimes first, then bootstrap from the combined series. This method is also adopted by
Anarkulova et al. (2022), where stock returns from different countries are concatenated and the bootstrap
is applied to the combined data.
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3.3 A case study on high inflation investment: a 4-asset scenario

3.3.1 Experiment setup

In this section, we conduct a case study on optimal asset allocation during a consistent high-inflation regime.
The details of the investment specification are given in Table 3.2. Briefly, the active portfolio and benchmark
portfolio begin with the same initial wealth of 100 at t0 = 0. Both portfolios are rebalanced monthly. The
investment horizon is 10 years, and there is an annual cash injection of 10 for both portfolios, evenly divided
over 12 months.

We consider an empirical case in which we allow the manager to allocate between four investment assets:
the equal-weighted stock index, the cap-weighted stock index, the 30-day U.S. T-bill index, and the 10-year
U.S. T-bond index. We assume that the stock indexes and the 10-year T-bond index are long-only assets.
The manager can short the T-bill index to take leverage and invest in the long-only assets (with maximum
total leverage of 1.3). In this experiment, we assume the borrowing premium rate is zero. Essentially, we
assume that the manager can borrow short-term funding to take leverage at the same cost as the treasury
bill. This may be a reasonable assumption for sovereign wealth funds, as they are state-owned and enjoy a
high credit rating. We remark that the borrowing premium does not really affect the results significantly.18

The annual outperformance target β is set to be 2% (i.e. 200 bps per year).
It is worth noting that we choose the benchmark portfolio to be a fixed-mix portfolio that maintains a

70% weight in the equal-weighted stock index and 30% in the 30-day U.S. T-bill index. We select this fixed-
mix portfolio as the benchmark based on our observation that the equal-weighted stock index shows superior
performance compared to the cap-weighted stock index during high-inflation environments. Surprisingly,
when analyzing bootstrap resampled data from the historical inflation regimes, we find that the fixed-mix
portfolio consisting of 70% in the equal-weighted stock index and 30% in the 30-day U.S. T-bill index partially
stochastically dominates the fixed-mix portfolio consisting of 70% in the cap-weighted stock index and 30%
in the 30-day U.S. T-bill index. For more detailed information, interested readers can refer to Appendix F
in Ni et al. (2023).

Investment horizon T (years) 10
Equity market indexes CRSP cap-weighted/equal-weighted index (real)
Bond index CRSP 30-day/10-year U.S. treasury index (real)
Index samples for bootstrap Concatenated 1940:8-1951:7, 1968:9-1985:10
Initial portfolio wealth/annual cash injection 100/10
Rebalancing frequency Monthly
Maximum leverage 1.3
Outperformance target rate β 2%

Table 3.2: Investment scenario.

As discussed in the previous section, we use the stationary bootstrap resampling algorithm to generate a
training data set Y and a testing data set Y test (both with 10,000 resampled paths) from the concatenated
index samples from two historical inflation regimes: 1940:8-1951:7 and 1968:9-1985:10, using an expected
blocksize of 6 months. The testing data set Y test is generated using a different random seed as the training
data set Y , and thus the probability of seeing the same sample in Y and Y test is near zero (see Ni et al.
(2022) for proof).

We remark that in this experiment, we train the LFNN model (2.43) on Y under the discrete-time CS
objective (2.14), instead of the CD objective (2.12). As discussed in Section 2.3, the CS objective function
only penalizes underperformance relative to the elevated target. Numerical comparisons of the two objective
functions suggest that the CS objective function indeed yields more favorable investment results than the
CD objective (see Appendix H in Ni et al. (2023)).

18See Appendix I in Ni et al. (2023) for a more detailed discussion.
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In this section, unless stated otherwise, all the results presented are testing results.

3.4 Experiment results
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Figure 3.1: Percentiles of wealth ratio W (t)

Ŵ (t)
and CDF of terminal wealth ratio W (T )

Ŵ (T )
and internal rate of

return (IRR). Results are based on the evaluation of the learned neural network model on Y test.

Strategy Median[WT ] E[WT ] std[WT ] 5th Percentile Median IRR (annual)
Neural network 364.2 403.4 211.8 136.3 0.078
Benchmark 308.5 342.9 165.0 149.0 0.056

Table 3.3: Statistics of strategies. Results are based on the evaluation results on the testing data set.

The analysis of Figure 3.1a reveals that the neural network strategy (the strategy following the training
LFNN model) consistently outperforms the benchmark strategy in terms of the wealth ratio W (t)/Ŵ (t).
Over time, both the mean and median wealth ratios demonstrate a smooth and consistent increase. Regarding
tail performance (20th percentile), the neural network strategy initially falls behind the benchmark but
gradually recovers and ultimately achieves 10% greater wealth at the terminal time. This observation
indicates that the neural network strategy effectively manages tail risk.

An additional metric that holds significant interest for managers is the distribution of the terminal wealth

ratio W (T )

Ŵ (T )
. This metric examines the relative performance of the strategies at the end of the investment

period. Figure 3.1b illustrates that there is a greater than 90% chance that the neural network strategy
outperforms the benchmark strategy in terms of terminal wealth. This outcome is particularly noteworthy
as the objective function (2.14) does not directly target the terminal wealth ratio.

Given the constant cash injections in the portfolios, it is appropriate to employ the internal rate of return
(IRR) as a measure of the portfolio’s annualized performance. Figure 3.1c demonstrates that the neural
network strategy has a more than 90% chance of producing a higher IRR. Furthermore, the median IRR of
the neural network strategy exceeds that of the benchmark strategy by slightly over 2%, aligning with the
chosen target outperformance rate of β = 0.02. This indicates that the neural network model consistently
achieves the desired target performance across most outcomes.

The results from Table 3.3 indicate that the 5th percentile of the terminal wealth for the neural network
strategy is lower than that of the benchmark strategy. This suggests that in some scenarios, particularly
during persistent bear markets when stocks perform poorly, the neural network strategy may experience
lower terminal wealth compared to the benchmark strategy. The neural network strategy takes on more
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risk by allocating a higher fraction of wealth to the equal-weighted stock index, which is considered a riskier
asset, in comparison to the benchmark portfolio.

It’s important to note, however, that these scenarios occur with low probability. As depicted in Figure
3.1b, the neural network strategy exhibits a significantly high probability of outperforming the benchmark in
terms of terminal wealth, exceeding 90%. This implies that while there might be instances where the neural
network strategy suffers relative to the benchmark, the overall performance is consistently strong, resulting
in a high likelihood of achieving superior terminal value.

To gain insight into the strong performance of the neural network strategy, we further examine its
allocation profile.
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Figure 3.2: Mean allocation fraction over time, evaluated on Y test

We begin by examining the mean allocation fraction for the four assets over time, as depicted in Figure
3.2. The first noteworthy observation from Figure 3.2 is that, on average, the neural network strategy does
not allocate wealth to the cap-weighted stock index. Initially, this might appear surprising; however, it
aligns with historical data indicating significantly higher real returns for the equal-weighted stock index
during periods of high inflation (refer to Appendix D.3 in Ni et al. (2023)). Given that the objective is to
outperform a benchmark heavily invested in the equal-weighted index (70%), it is logical to avoid allocating
wealth to a comparatively weaker index in the active portfolio.

The second observation derived from Figure 3.2 pertains to the evolution of mean bond allocation frac-
tions. Initially, the neural network strategy shorts the 30-day T-bill index and assumes some leverage while
heavily investing in the equal-weighted stock index during the first two years. This indicates a deliberate
risk-taking approach early on to establish an advantage over the benchmark strategy. Subsequently, the allo-
cation to the 10-year T-bond decreases, coinciding with the reduction in the allocation to the equal-weighted
index. This suggests that the initial allocation to the T-bond was primarily for leveraging purposes, with
the 10-year bond being the only defensive asset available. As leverage is no longer used in later years, the
neural network strategy favors the T-bill over the 10-year bond.

Overall, despite the gradual decrease in stock allocation over time, the neural network strategy maintains
an average allocation of more than 80% to the equal-weighted stock index. This is expected, as outperforming
an aggressive benchmark with a 70% allocation to the equal-weighted stock index necessitates assuming
higher levels of risk. Despite the higher allocation to riskier assets, the neural network strategy consistently
delivers strong results compared to the benchmark strategy, as illustrated in Figure 3.1.

Lastly, it is worth noting that the neural network strategy, trained under high-inflation regimes, exhibits
remarkable performance on low-inflation testing datasets. This unexpected outcome highlights the robustness
of the strategy. For further discussion on this topic, interested readers can refer to Appendix J in Ni et al.
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(2023).

4 Conclusion

In this paper, our primary objective is to propose a framework that generates optimal dynamic allocation
strategies under leverage constraints in order to outperform a benchmark during high inflation regimes.
Imposing leverage-constraint in multi-period asset allocation is consistent with the practice in large sovereign
wealth funds, which often have exposures to alternative assets. Our proposed framework efficiently solves
high-dimensional optimal control problems, accommodating diverse objective functions, constraints, and
data sources.

We begin by assuming that both asset prices follow jump-diffusion models. Under this assumption, we
derive a closed-form solution for a two-asset case using the cumulative tracking difference (CD) objective
function. However, to obtain this closed-form solution, we need to make additional unrealistic assumptions
such as continuous rebalancing, unlimited leverage, and continued trading in insolvency. Despite these
assumptions, the closed-form solution provides valuable insights into the optimal control behavior. Notably,
to track the elevated target, the optimal control needs to aim higher than the target when making allocation
decisions.

To overcome the limitations of unrealistic assumptions and derive a more practical solution, we introduce
a novel leverage-feasible neural network (LFNN) model. The LFNN model approximates the optimal control
directly, eliminating the need for high-dimensional approximations of conditional expectations required in
dynamic programming approaches. Additionally, the LFNN model converts the leverage-constrained opti-
mization problem into an unconstrained optimization problem. Importantly, we justify the validity of the
LFNN approach by mathematically proving that the solution to the parameterized unconstrained optimiza-
tion problem can approximate the solution to the original constrained optimization problem with arbitrary
precision.

To illustrate the effectiveness of our proposed approach, we conduct a case study on optimal asset
allocation during high-inflation regimes. We apply the LFNN model to bootstrap resampled data from
filtered historical high-inflation data. In our numerical experiment, we consider an investment case with
four assets in high inflation regimes. The results consistently demonstrate that the neural network strategy
outperforms the benchmark strategy throughout the investment period. Specifically, the neural network
strategy achieves a 2% higher median Internal Rate of Return (IRR) compared to the benchmark strategy
and yields a higher terminal wealth with more than a 90% probability. The allocation strategy derived from
the LFNN model suggests that managers should favor the equal-weighted stock index over the cap-weighted
stock index and short-term bonds over long-term bonds during high-inflation periods.
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A Technical details of closed-form solution

A.1 Proof of Theorem (2.17)

At any state (t, w, ŵ) ∈ [t0, T ]× R2, define the value function V (w, ŵ, t) to the CD problem (2.11) as

V (t, w, ŵ, %̂)) = inf
p

{
Ep

[∫ T

t

(
W (s)− eβsŴ (s)

)2
ds
∣∣∣W (t) = w, Ŵ (t) = ŵ

]}
. (A.1)

By the dynamic programming principle, we have

V (t, w, ŵ, %̂) = inf
p

{
Ep
[(
V (t+∆t,W (t+∆t), Ŵ (t+∆t), %̂)+

∫ t+∆t

t

(
W (s)−eβsŴ (s)

)2
ds
)∣∣∣W (t) = w, Ŵ (t) = ŵ

]}
(A.2)

Rearrange equation (A.2) to obtain

inf
p

{
Ep
[(
dV (t, w, ŵ, %̂) +

∫ t+∆t

t

(
W (s)− eβsŴ (s)

)2
ds
)∣∣∣W (t) = w, Ŵ (t) = ŵ

]}
= 0 (A.3)

Then, apply Itô’s lemma with jumps (Cont et al., 2011), substitute dW and dŴ terms with (2.16), and take
limits as ∆t ↓ 0, we obtain (2.17).

The above results merely serve as an intuitive guide to obtain (2.17). The formal proof of (2.17) proceeds
by using a suitably smooth test function, see for example (Øksendal and Sulem, 2007).

A.2 Proof of results for CD-optimal control

In Section 2.4, we emphasized the dependence of B and D (defined in (2.23) and (2.22)) on parameters β
and c for understanding the optimal control function. As β and c are fixed parameters, in this proof, we
omit the dependence of B and D on them for notational simplicity.

The quadratic source term
(
w − eβtŵ

)2
in Theorem (2.17) suggests the following ansatz for the value

function V in Theorem 2.17 of the form

V (t, w, ŵ) = A(t)w2 +B(t)w + C(t) + Â(t)ŵ2 + B̂(t)ŵ +D(t)wŵ, (A.4)

where A,B,C, Â, B̂,D are unknown deterministic functions of time t. If (A.4) is correct, then the pointwise
infimum in (2.17) is attained by p∗ satisfying the relationship(

w · ∂
2V

∂w2

)
· p∗ = − 1

γ

((
µ1 − µ2

)
· ∂V
∂w

+
(
%̂γ + θ

)
· ŵ · ∂

2V

∂wŵ
+ θ · w · ∂

2V

∂w2

)
, (A.5)

assuming A(t) > 0. Here γ and θ are defined in (2.19). (A.4) implies that the relevant partial derivatives of
V are of the form

∂2V

∂w2
= 2A(t),

∂V

∂w
= 2A(t)w +B(t) +D(t)ŵ,

∂2V

∂wŵ
= D(t). (A.6)

Substituting (A.6) into (A.5), the optimal control p∗ obtained is in the form of (2.20), where h and g are
given by (2.21). Then, it only remains to determine the functions A,B,D. Substituting (A.5) into PIDE
(2.17), we can obtain the following ordinary differential equations (ODE) for A,B,D,

dA(t)
dt = −

(
2µ2 − η

)
A(t)− 1, A(T ) = 0,

dD(t)
dt = −

(
2µ2 − η

)
D(t) + 2eβt, D(T ) = 0,

dB(t)
dt = −(µ2 − φ)B(t)− 2cA(t)− cD(t), B(T ) = 0,

(A.7)

Solving the ODE system gives us the A,B,D defined in (2.22) and (2.23). We also note that A(t) > 0, thus
completing the proof.
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A.3 Proof of Corollary (2.1) and (2.2)

van Staden et al. (2022) derive the CD-optimal control under the assumption that the stock price follows
the double-exponential jump-diffusion model and the bond is risk-free with the bond price B(t) following

dB(t)

B(t)
= r. (A.8)

Under such, assumptions, van Staden et al. (2022) shows that the CD-optimal control can be expressed in
a similar form as in (2.20) with g and h functions. The g and h functions satisfy the same properties as in
Corollary (2.1) and (2.2). Despite the fact that we assume the bond price follows a jump-diffusion model,
the proof of Corollary (2.1) and (2.2) follows similar steps as the proof in van Staden et al. (2022).

B Technical details of LFNN model

B.1 Proof of Theorem 2.2

Theorem 2.2. (Unconstrained feasibility domain) The feasibility domain Zθ defined in (2.41) associated
with the LFNN model (2.43) is RNθ .

Proof. First, it is obvious that Zθ ⊆ RNθ by definition of (2.41). Next, we show that RNθ ⊆ Zθ. To prove
this, we need to show that for any θ ∈ RNθ ,

f(x;θ) = p ∈

{
Z1, if x ∈ X1,

Z2, if x ∈ X2,
∀x ∈ X . (B.1)

Here f is the LFNN function defined in (2.43), p = (p1, · · · , pNa)> ∈ RNa is the output of the LFNN
model that represents the wealth allocation to the assets, Z is the feasibility domain defined in (2.37), and

x =
(
t,W (t), Ŵ (t)

)> ∈ X is a feature vector. To prove (B.1), we verify the two scenarios (x ∈ X1 and
x ∈ X2) separately.

When x ∈ X2, it is easily verifiable that p = eNl+1 via the definition of the leverage-feasible activation
function (2.44).

Next, we verify that when x ∈ X1, p ∈ Z1. To prove this, we need to show that constraints of (2.29)-(2.32)
are satisfied when x ∈ X1.

By definition of (2.44), it is obvious that the long-only constraint (2.29) holds for long-only assets.
It is also easy to verify that the summation constraint (2.30) is satisfied. This can be observed after the

fact that
Nl∑
i=1

pi = l, and

Na∑
i=Nl+1

pi = 1− l. (B.2)

The maximum leverage constraint (2.31) is also satisfied, as

Nl∑
i=1

pi = l = pmax · Sigmoid(−oNa+1) ≤ pmax. (B.3)

Finally, the simultaneous shorting constraint (2.5) is satisfied. To see this, we examine the scenario when

leverage occurs, i.e.,
∑Nl
i=1 pi = l > 1. Then, by definition from (2.44), we know

pi = (1− l) · eoi∑Na
k=N+1 e

ok
≤ 0, ∀i ∈ {Nl + 1, · · · , Na} (B.4)

From (B.4) it is clear that if l ≤ 1, then pi ≥ 0,∀i.
Therefore, for any θ ∈ RNθ , (B.1) is satisfied. This implies RNθ ⊆ Zθ.
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B.2 Proof of Lemma 2.2 and Theorem 2.3

Lemma 2.2. (Structure of feasible control) Any feasible control function p : X 7→ Z, where Z is defined in
(2.38), has the function decomposition

p(x) = ϕ(ω(x), x), (B.5)

where ϕ : Z̃ × X 7→ Z is defined in (2.46), i.e.

ϕ(z) =
(
zNa+1 · (z1, · · · , zNl), (1− zNa+1) · (zNl+1, · · · , zNa)

)>
· 1x∈X1

+ eNl+1 · 1x∈X2
, (B.6)

and ω : X 7→ Z̃. Here

Z̃ =

{
z ∈ RNa+1,

Nl∑
i=1

zi = 1,

Na∑
i=Nl+1

zi = 1, zNa+1 ≤ pmax, zi ≥ 0,∀i

}
. (B.7)

Proof. We prove the lemma by existence.
Define ω as

ω(x) =

{
φ
(
p(x)

)
, if x ∈ X1,(

1
Nl
, · · · , 1

Nl
, 1
Na−Nl , · · · ,

1
Na−Nl , 0

)>
, if x ∈ X2,

(B.8)

where for ∀z = (z1, · · · , zNa)> ∈ Z1, y = φ(z)∈ RNa+1 is as defined below

φ(z) ≡ y =




yi = zi∑Nl

j=1 zj
, i ∈ {1, · · · , Nl},

yi = zi

1−
∑Nl
j=1 zj

, i ∈ {Nl, · · · , Na},

yNa+1 =
∑Nl
j=1 zj ,

if
∑Nl
i=1 zi ∈ (0, 1) ∪ (1, pmax],


yi = zi, i ∈ {1, · · · , Nl},
yi = 1/(Na −Nl), i ∈ {Nl, · · · , Na},
yNa+1 = 1,

if
∑Nl
i=1 zi = 1,


yi = 0, i ∈ {1, · · · , Nl},
yi = zi, i ∈ {Nl, · · · , Na},
yNa+1 = 0,

if
∑Nl
i=1 zi = 0,

(B.9)

It can then be easily verified that ω : X 7→ Z̃, and that p(x) = ϕ(ω(x), x).

Lemma B.1. (Approximation of controls with a specific structure) Assume a control function p : X 7→ Z
has the structure

p(x) = Φ(Ω(x), x), x ∈ X , (B.10)

where X is compact, Ω ∈ C(X ,Y), i.e. Ω is a continuous mapping from X to Y, and Φ : Y × X 7→ Z is
Lipschitz continuous on Y × Xi, ∀i = 1, · · · , n, where {Xi, i = 1, · · · , n} is a partition of X , i.e.{⋃n

i=1 Xi = X ,
Xi
⋂
Xj = ∅,∀1 ≤ i, j ≤ n.

(B.11)

If ∃m ∈ N and Υ : Rm 7→ Y such that

(i) Υ has a continuous right inverse on Im(Υ).

(ii) Im(Υ) is dense in Y, then ∀ε > 0.
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(iii) ∂Im(Υ) is collared.

Then there exists a choice of Nh and θ such that the fully connected feedforward neural network function
f̃(·;θ) defined in (2.42) satisfies

sup
x∈X
‖Φ
(

Υ
(
f̃(x;θ)

)
, x
)
− p(x)‖ < ε. (B.12)

Proof. Let
LΦ = max

1≤i≤n
Li, (B.13)

where Li is the Lipschitz constant for Φ on Y × Xi.
Since Ω ∈ C(X ) in compact X , following Kratsios and Bilokopytov (2020), we know that ∀ε,, there exists

Nh ∈ N and θ ∈ RNθ such that the corresponding FNN f̃(·;θ) : X 7→ Rm defined in (2.42) satisfies

sup
x∈X
‖Υ
(
f̃(x;θ)

)
− Ω(x)‖ < ε/LΦ, (B.14)

Then

sup
x∈X
‖Φ
(

Υ
(
f̃(x;θ)

)
, x
)
− p(x)‖ = sup

1≤i≤n
sup
x∈Xi

‖Φ
(

Υ
(
f̃(x;θ)

)
, x
)
− Φ

(
Ω(x), x

)
‖ (B.15)

≤ sup
1≤i≤n

sup
x∈Xi

Li ·
(
‖Υ
(
f̃(x;θ)

)
− Ω(x)‖

)
(B.16)

< sup
1≤i≤n

Li
LΦ

ε (B.17)

≤ ε. (B.18)

Remark B.1. (Remark on Lemma B.1) Normally, the universal approximation theorem only applies to
the approximation of continuous functions defined on a compact set (Hornik, 1991). Lemma B.1 extends
the universal approximation theorem to a broader class of functions that have the structure of (B.10).
Furthermore, Lemma B.1 provides guidance on constructing neural network functions that handle stochastic
constraints on controls which are usually difficult to address in stochastic optimal control problems. Consider
the following example: the control p : X 7→ RNa has stochastic constraints such that p(x) ∈ [a(x), b(x)] where
a, b : X 7→ RNa are deterministic functions. This is a common setting in portfolio optimization problems in
which allocation fractions to specific assets are subject to thresholds tied to the performance of the portfolio.
With Lemma B.1, with a bit of engineering, one can easily construct a Φ so that the corresponding neural
network satisfies the constraints naturally and be guaranteed that such a neural network can approximate
the control well.

We then proceed to prove Theorem 2.3.
Theorem 2.3. (Approximation of optimal control) Following Assumption 2.7, ∀ε > 0, there exists Nh ∈ N,
and θ ∈ RNθ such that the corresponding LFNN model f(·;θ) described in (2.43) satisfies the following:

sup
x∈X
‖f(x;θ)− p∗(x)‖ < ε. (B.19)

Proof. From (2.43) and Lemma 2.1, we know that

f(x;θ) = ψ
(
f̃(x;θ), x

)
= ϕ

(
ζ
(
f̃(x;θ)

)
, x
)
, (B.20)

where f̃ is the FNN defined in (2.42) and ϕ : Z̃ × X 7→ RNa , ζ : RNa+1 7→ Z̃ are defined in (2.46).
It can be easily verified that ζ satisfies the following:
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(i) ζ has a continuous right inverse, e.g.

ζ−1(z) : Im(ζ) 7→ RNa+1, ζ−1(z) =

(
log(z1), · · · , log(zNa), σ−1(zNa+1/pmax)

)>
, (B.21)

where σ−1 is the inverse function of the sigmoid function.

(ii) Im(ζ) is dense in Z̃. This is because Im(ζ), the closure of Im(ζ), is Z̃.

(iii) ∂Im(ζ) is collared (Brown, 1962; Connelly, 1971; Baillif, 2022).

Furthermore, consider the partition of X ,
{
X1,X2

}
, which is defined in Definition 2.1. It is easily verifiable

that ϕ is Lipschitz continuous on Z̃ × X1 and Z̃ × X2 respectively.
Finally, according to Assumption 2.7, p∗(x) = ϕ

(
ω∗(x), x

)
, where ω∗ ∈ C(X , Z̃).

Applying Lemma B.1 with Y = Z̃,Ω(·) = ω∗(·), Υ(·) = ζ(·), and Φ(·, ·) = ϕ(·, ·), we know that there

exists Nh ∈ N, and θ ∈ RNθ such that the corresponding LFNN model f(x;θ) = ϕ
(
ζ
(
f̃(x;θ)

)
, x
)

satisfies

the following:
sup
x∈X
‖f(x;θ)− p∗(x)‖ < ε. (B.22)

C Comparing LFNN with closed-form solution

In this section, we compare the performance of the strategy following the learned shallow LFNN model
(which we refer to as the “neural network strategy” from now on) with the closed-form solution (2.20), and
provide empirical validation of the LFNN approach.

C.1 Approximate form under realistic assumptions

We first note that the closed-form solution p∗ defined in (2.20) is obtained under several unrealistic assump-
tions, namely continuous rebalancing, unlimited leverage, and continuing trading in insolvency.19 In practice,
investors have constraints such as discrete rebalancing, limited leverage, and no trading when insolvent. For
a meaningful comparison, instead of comparing the neural network strategy with the closed-form solution p∗

directly, we compare the neural network strategy with an easily obtainable approximation to the closed-form
solution which satisfies realistic constraints.

In particular, we consider an equally-spaced discrete rebalancing schedule T∆t defined as

T∆t =
{
ti : i = 0, · · · , N

}
, (C.1)

where ti = i∆t, and ∆t = T/N . Then, the clipped form p̄∆t : T∆t × R3 7→ R is defined as

(Clipped form) : p̄∆t(ti, W̄∆t(ti), Ŵ∆t(ti), %̂) = min

(
max

(
p∗(ti, W̄∆t(ti), Ŵ∆t(ti), %̂), pmin

)
, pmax

)
.

(C.2)
Here [pmin, pmax], where pmin = 0 and pmax ≥ 1, is the allowed range, W̄∆t(ti) is the wealth of the active
portfolio at ti following p̄∆t from t0 to ti, Ŵ∆t(ti) is the wealth of the benchmark portfolio at ti following the
fixed-mix strategy described by constant allocation fraction %̂, but only rebalanced discretely according to
T∆t. Clearly, the allocation strategy from p̄∆t follows the discrete schedule of T∆t, and satisfies the leverage
constraint that p̄∆t ∈ [pmin, pmax]. p∆t approaches the closed-form solution p∗ as ∆t ↓ 0, pmin ↓ −∞ and

19Note that we consider a two-asset scenario here, thus the scalar p∗ ∈ R (allocation fraction for the stock index) fully
describes the allocation strategy p∗, since p∗ = (p∗, 1− p∗)>.
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pmax ↑ ∞. We note that a similar clipping idea is explored in Vigna (2014) in the context of closed-form
solutions for multi-period mean-variance asset allocation. However, it should be emphasized that the clipped
form p̄∆t with finite (pmin, pmax) is a feasible, but in general sub-optimal, control of the leverage-constrained
CD problem (2.12).

We then address the assumption that trading continues when insolvent, i.e., when the wealth of the
portfolio reaches zero. While necessary for the mathematical derivation of the closed-form solution, we
acknowledge that this is by no means reasonable for practitioners. Under the continuous rebalancing case
(no jumps), if the control (allocation) is bounded, it is shown that the wealth of the portfolio can never be
negative (Wang and Forsyth, 2012). However, with discrete rebalancing, even with a bounded control, as
long as the upper bound pmax > 1, it is theoretically possible that the portfolio value becomes negative.
We address this assumption by applying an overlay on strategies so that in the case of insolvency, we
assume the manager liquidates the long-only positions and allocates the debt (negative wealth) to a shortable
(bond) asset (consistent with Assumption 2.6) to allow outstanding debt to accumulate until the end of the
investment horizon. Going forward, when we refer to any strategy (e.g. neural network strategy, clipped
form), we mean the strategy with this overlay applied. We remark that in practice, this overlay has little
effect. In numerical experiments with 10,000 samples of observed wealth trajectories (based on calibrated
jump-diffusion model or bootstrap resampled data paths), we do not observe any single wealth trajectory
that ever hits negative wealth for any strategy (e.g., neural network strategy, clipped form, etc).

In summary, the clipped form satisfies the realistic constraints and is a comparable benchmark for the
neural network strategy. In the following section, we will numerically compare the performance of the clipped
form, the neural network strategy, and the closed-form solution.

C.2 Comparison: LFNN strategy vs clipped-form solution

We assess and compare the performance of the neural network strategy and the clipped form, we assume the
following investment scenario described in Table C.1.

Investment horizon T (years) 10
Assets CRSP cap-weighted index (real)/30-day T-bill (U.S.) (real)
Index Samples Concatenated 1940:8-1951:7, 1968:9-1985:10
Initial portfolio wealth/annual cash injection 100/10
Rebalancing frequency Monthly, quarterly, semi-annually, annually
Maximum leverage 1.3
Benchmark equity percentage 0.7
Outperformance target rate β 1% (100 bps)

Table C.1: Investment scenario.

We assume the stock index and the bond index prices follow a double exponential jump model (2.15),
see e.g., (Kou, 2002; Kou and Wang, 2004), i.e., for the jump variable ξi, yi = log(ξi) follows the double
exponential distribution with density functions gi(yi) defined as follows

gi(yi) = νiιie
−ιiyi1yi≥0 + (1− νi)ςie−ςiyi1yi<0, i = 1, 2. (C.3)

where νi is the probability for an upward jump, and ιi and ςi are parameters that describe the upward jump
and downward jump respectively. The double exponential jump-diffusion model allows the flexibility of
modeling asymmetric upward and downward jumps in asset prices, which seems an appropriate assumption
for inflation regimes.20

Using the threshold technique (Mancini, 2009; Cont et al., 2011; Dang and Forsyth, 2016), we calibrate
the double exponential jump-diffusion models to the historical high-inflation periods described in Section 3.1.

20We remind the reader that the closed-form solution is derived under the jump-diffusion model.
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The calibrated parameters can be found in Appendix G in Ni et al. (2023). Then, we construct a training
data set Y and a testing data set Y test by sampling the calibrated model, each with 10,000 samples.

The neural network strategy follows the LFNN model learned from Y . We then evaluate the performance
of the neural network strategy and the approximate form (C.2) on the testing data set Y test. Specifically,
we compare the value of the CD objective function (2.12) for the neural network strategy and the clipped
form on Y test. In particular, this training/testing process is repeated for various rebalancing frequencies
from monthly to annually, as described in Table C.1.

Closed-form solution objective function value: 418
Strategy ∆t = 1 ∆t = 1/2 ∆t = 1/4 ∆t = 1/12 ∆t = 0
Clipped form 545 504 479 467 461 (extrapolated)
Neural network 537 498 476 464 458 (extrapolated)

Table C.2: CD objective function values. Results shown are evaluated on Y test, the lower the better.

In Table C.2, we can see that the neural network strategy consistently outperforms the clipped form in
terms of the objective function value for all rebalancing frequencies. From Table 4.2 we can see that the
objective function values of both the neural network strategy and the clipped form converge at roughly a
first-order rate as ∆t ↓ 0. Assuming this to be true, we extrapolate the solution to ∆t = 0 using Richardson
extrapolation. These extrapolated values are estimates of the exact value of the continuous-time CD objective
function (2.11) for the clipped form and the neural network strategy. We can see that the neural network
strategy still outperforms the clipped form in terms of the extrapolated objective function value. We can
also see that the extrapolated neural network objective function value is lower than the (suboptimal) clipped
form extrapolated value, but, of course, larger than the unconstrained closed-form solution.

(a) Clipped form (b) Neural network strategy

Figure C.1: Stock allocation fraction w.r.t. tracking ratio W (t)/
(
eβtŴ (t)

)
and time t. Results are based

on the evaluation on the testing data set Y test, and monthly rebalancing (i.e. ∆t = 1/12).

Finally, we compare the neural network allocation strategy with the clipped form strategy. Specifically,
in Figure C.1, we consider the case of monthly rebalancing and present the scatter plots of the allocation
fraction in the stock index with respect to time t and the ratio between the wealth of the active portfolio
W (t) and the elevated target eβtŴ (t). For simplicity, we call this ratio the “tracking ratio”. We plot the

3-tuple
(

W (t)

eβtŴ (t)
, t, p1(W (t), Ŵ (t), t)

)
(obtained from the evaluation of the strategies on samples from Y test)
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by using time t as the x-axis, the tracking ratio W (t)

eβtŴ (t)
as the y-axis, and the values of the corresponding

allocation fraction to the cap-weighted index p1(W (t), Ŵ (t), t) to color the scattered dots on the plot. A
darker shade of the color indicates a higher allocation fraction.

As we can see from Figure C.1, the stock allocation fraction of the neural network strategy behaves
similarly to the stock allocation fraction from the clipped form. Both strategies invest more wealth in the
stock when the tracking ratio is lower, which is consistent with the insights we obtained in Section 2.4.1.
In addition, the transition patterns of the allocation fraction of the two strategies are also highly similar.

One can almost draw an imaginary horizontal dividing line around W (t)

eβtŴ (t)
= 0.9 that separates high stock

allocation and low stock allocation for both strategies.
We remark that a common criticism towards the use of neural networks is about the lack of interpretability

compared to more interpretable counterparts such as the regression models (Rudin, 2019). In this section,
we see that the neural network strategy closely resembles the closed-form solution for the CD objective.
The closed-form solution, in turn, complements the neural network model and offers an alternative way of
interpreting results obtained from the neural network.
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