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Abstract5

Solutions of Hamilton Jacobi Bellman (HJB) Partial Integro Differential Equations (PIDEs)6

arising in financial option problems are not necessarily unique. In order to ensure conver-7

gence of a numerical scheme to the viscosity solution, it is common to use a positive coefficient8

discretization for such PIDEs. However in finite precision arithmetic one often encounters dif-9

ficulties in solving the discretized nonlinear algebraic equations. In this paper we focus on a10

specific HJB PIDE, arising from pricing American options under jump diffusion. We use two11

formulations of this problem, the first a penalty method and the second a direct control formu-12

lation. In each case we use a positive coefficient discretization which implies that a fixed point13

policy iteration will converge when used to solve the nonlinear discretized algebraic equations,14

under very mild restrictions on parameters. However, when using finite precision arithmetic, we15

observe that convergence may not occur for either formulation, even if the theoretical conditions16

are satisfied. We estimate bounds for the penalty parameter (penalty method) and the scaling17

parameter (direct control formulation) so that convergence of the fixed point policy iteration in18

inexact arithmetic can be expected. Numerical tests verify that these bounds are conservative.19

The lower bound is of more practical importance, and conveniently this has a very simple form.20

We remark that similar issues also arise in more complicated HJB PIDES in finance, for exam-21

ple when pricing American options under regime switching or guaranteed minimum withdrawal22

benefits (GMWB) under jump diffusion.23
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1 Introduction26

Penalty methods have been suggested for American option pricing problems in [15, 21, 35, 11, 26].27

These techniques have also been applied to singular [9, 17] and impulse [6] control problems,28
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transaction cost problems [10], and other Hamilton Jacobi Bellman (HJB) PDEs in finance [32].29

Such methods are simple to implement, and make no assumptions about the connectedness of30

the controlled/uncontrolled regions. It is also straightforward to apply penalty methods to multi-31

dimensional problems [36, 21], jump diffusions [12] and regime switching [23, 18]. However, with32

penalty methods there is always the question of the selection of the dimensionless penalty parameter.33

An alternative approach is based on a direct control formulation [4, 19, 33]. Superficially, a34

direct control method does not appear to require a scaling parameter as is required for the penalty35

method. However, since any iterative method for solution of the discretized equations requires36

comparing two (or more) terms and finding the maximum, there is an implicit scaling parameter37

[19] which affects convergence. This is particularly obvious if the terms being maximized have38

different units, which is often the case.39

After discretizing the original HJB equation in the time and the space-like directions, a nonlinear40

set of algebraic equations must be solved at each timestep. In order to ensure convergence to the41

viscosity solution of the HJB equation, a positive coefficient discretization is used [14]. It is then42

straightforward to prove that policy iteration for the solution of the algebraic equations will converge43

[4, 19]. However, experimental computations show that in inexact arithmetic, the policy iteration44

may not converge for some choices of the penalty parameter or the direct control scaling parameter.45

In the case of an American option with jump diffusion, a full policy iteration is not feasible,46

since the discretization of the jump term results in a dense matrix. The fixed point policy iteration47

algorithm [12] requires only a sparse matrix solve and a dense matrix-vector multiplication at each48

iteration. The matrix-vector multiply can be efficiently carried out using an FFT [13]. Provided a49

positive coefficient discretization is used, then convergence of the fixed point policy iteration can50

be guaranteed [12, 19], under very mild conditions on the scaling parameter, in exact arithmetic.51

The objective of this article is to examine the effect of inexact arithmetic on the convergence of a52

fixed point policy iteration scheme for American options under jump diffusion. We focus exclusively53

on methods which do not require knowledge of the structure of the exercise region. Our analysis54

extends some of the results in [20] for the case of a singular control problem. Our main results are:55

• We derive estimates for the upper and lower bounds for the penalty parameter (penalty56

formulation) and the scaling parameter (scaled direct control formulation) so that convergence57

of the fixed point policy iteration can be expected in the presence of inexact arithmetic effects.58

• The lower bound estimate is of more practical importance than the upper bound estimate,59

and conveniently this bound has a very simple form. Numerical tests indicate that this bound60

is conservative, but not too restrictive.61

In addition, as secondary results, we observe that the computed solution for the scaled direct control62

formulation is insensitive to the choice of scaling parameter over a very wide range (fifteen orders of63

magnitude) while the penalty formulation solution is affected by penalization error if the parameter64

is too large. Also, utilizing the properties of inexact arithmetic, it is possible to convert existing65

software (which uses a penalty method) to use the scaled direct control formulation in just a few66

lines of code. Finally, our analysis can also be applied to other HJB equations, such as singular67

control problems [20].68
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2 American Options under Jump Diffusion69

Let the price of the underlying risky asset be S, which follows the risk neutral process70

dS = (r − λκ)Sdt+ σSdZ + (ξ − 1)Sdq , (2.1)

where dZ is the increment of a Weiner process, r is the risk free rate, and σ is the volatility. Here71

λ is the jump intensity representing the mean arrival rate of the Poisson process:72

dq =

{
0 with probability 1− λdt
1 with probability λdt

, (2.2)

with ξ a random variable representing the jump size of S. When a jump occurs, S → ξS. We73

assume that ξ follows a log-normal distribution p(ξ) given by74

p(ξ) =
1√

2πζξ
exp
(
−(log(ξ)− ν)2

2ζ2

)
, (2.3)

with parameters ζ and ν, κ = E[ξ − 1], where E[·] is the expectation, and E[ξ] = exp(ν + ζ2/2)75

given the distribution function p(ξ) in (2.3).76

Define τ = T − t where t is the forward time, and T is the expiry time of the contract and set77

V = V (W,A, τ) to be the no-arbitrage value of the contingent claim. The no-arbitrage price of the78

claim is then given by79

min

[
Vτ − LV − λJ V, V − V ∗

]
= 0 , (2.4)

where V ∗(S) is the payoff. Here the operators L,J are defined as80

LV =
σ2

2
S2VSS + (r − λκ)SVS − (r + λ)V

=
σ2

2
S2DSSV + (r − λκ)SDSV − (r + λ)V

J V =

∫ ∞
0

V (ξS, τ)p(ξ) dξ . (2.5)

For computational purposes we localize the problem to the domain (S, τ) ∈ [0, Smax]× [0, T ]. The81

boundary conditions for equation (2.4) are82

V (S, 0) = V ∗(S) ; τ = 0

min

[
Vτ − rV, V − V ∗

]
; S = 0

V (Smax, τ) = V ∗(Smax) ; S = Smax

VSS → 0 ; S → Smax . (2.6)

2.1 Direct Control Formulation83

We introduce a scaling parameter Ω into equation (2.4) and rewrite (2.4) in control form [4, 19]84

max
ϕ∈{0,1}

[
Ω ϕ(V ∗ − V )− (1− ϕ)(Vτ − LV − λJ V )

]
= 0 . (2.7)

Although the scaling parameter has no effect on the exact solution of (2.7), it does affect convergence85

of the iterative method used to solve the discretized equations in finite precision arithmetic.86
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2.2 Penalty Formulation87

Penalty methods were first suggested for solution of equation (2.4) in [12] with the idea now applied88

to various other problems in finance [9, 10, 21, 7, 26, 32]. The penalty approach rewrites equation89

(2.4) in the form90

lim
ε→0

[
Vτ − LV − λJ V − max

ϕ∈{0,1}
ϕ

(
V ∗ − V

ε

)]
= 0 . (2.8)

It is straightforward to show that equation (2.8) is consistent [22], in the viscosity sense, with91

equation (2.4). For suppose ψ(S, τ) is a smooth test function, with bounded derivatives of all92

orders. Then replacing V in equation (2.8) by ψ, and removing the control ϕ gives93

lim
ε→0

[
ψτ − Lψ − λJψ −max

(
V ∗ − ψ

ε
, 0

)]
= 0 . (2.9)

Rearranging equation (2.9), noting that ε > 0, then gives94

lim
ε→0

min

[
ψτ − Lψ − λJψ,ψ − V ∗ + ε(ψτ − Lψ − λJψ)

]
= 0 . (2.10)

Taking the limit as ε→ 0 gives an equation consistent with equation (2.4). A more precise argument95

for consistency in the viscosity sense is given in [3] for a more general case of an impulse control96

problem.97

3 Discretization98

Define a set of nodes S1, . . . , Simax , and discrete times τn = n∆τ . Let V n
i be the approximate99

solution of equation (2.4) and set V n = [V1, . . . , Vimax ]′.100

Let Lh,J h, Dh
SS , D

h
S be the discrete forms of the operators L,J , DSS , DS and define101

Lhi V n
i =


−rV n

i i = 1
σ2

2 S
2
iD

h
SSV

n
i + (r − λκ)SiD

h
SV

n
i − (r + λ)V n

i 2 ≤ i ≤ î
σ2

2 S
2
iD

h
SSV

n
i + rSiD

h
SV

n
i − rV n

i î < i < imax

0 i = imax

. (3.1)

We use standard three point central, forward and backward differencing so that the positive co-102

efficient condition is satisfied [30, 14, 17] with central differencing used as much as possible [30].103

Linear behaviour of the solution is assumed for i > î [13, 29]. The integral term J V is discretized104

via transformation into a correlation integral combined with a use of the midpoint rule as described105

in detail in [13, 29]. For notational convenience, we define J hi as106

J hi V n
i =

{
[J hV n]i 2 ≤ i ≤ î
0 otherwise

. (3.2)

Let (∆S)max = maxi(Si+1−Si) and (∆τ)max = max(τn+1− τn). We suppose that the grid and107

timesteps are selected so that108

(∆S)max = Ĉh ; (∆τ)max = C̃h , (3.3)

4



with Ĉ, C̃ being positive constants.109

Observe that the discretization method is at least first order correct. Hence, taking into account110

the definitions (2.5) and (3.1), and noting that J hi represents a discrete probability density (on a111

truncated domain) [13, 29], we obtain the following results. If e is the imax length vector [1, 1, . . . , 1]′,112

then since Dh
S ei = 0 and Dh

SS ei = 0 we have113

Lhi ei =


−r i = 1 or î < i < imax

−(r + λ) 2 ≤ i ≤ î
0 i = imax

J hi ei ≤

{
1 2 ≤ i ≤ î
0 otherwise

. (3.4)

3.1 Discretization: Direct Control Formulation114

We use fully implicit (θ = 1) or Crank Nicolson (θ = 1/2) to discretize equation (2.7), using the115

discrete forms of the operators as discussed in Section 3,116

(1− ϕn+1
i )

(
V n+1
i

∆τ
− θLhi V n+1

i

)
+ Ω ϕn+1

i V n+1
i

= (1− ϕn+1
i )

V n
i

∆τ
+ Ω ϕn+1

i V ∗i + (1− ϕn+1
i )λθJ hi V n+1

i

+ (1− ϕn+1
i )(1− θ)

[
Lhi V n

i + λJ hi V n
i

]
; i < imax

V n+1
i

∆τ
=

V ∗i
∆τ

; i = imax , (3.5)

where117

{ϕn+1
i } ∈ arg max

ϕ∈{0,1}

{
Ω ϕ(V ∗i − V n+1

i )− (1− ϕ)

(
V n+1
i − V n

i

∆τ

− θ
(
Lhi V n+1

i + λJ hi V n+1
i

)
− (1− θ)

(
Lhi V n

i + λJ hi V n
i

))}
. (3.6)

3.2 Discretization: Penalty Method118

If ε = C∆τ , where C > 0 is a constant, then the following is a consistent discretization of (2.8),119

V n+1
i

∆τ
− θLhi V n+1

i +
ϕn+1
i

ε
V n+1
i =

V n
i

∆τ
+
ϕn+1
i

ε
V ∗i + λθJ hi V n+1

i

+ (1− θ)
[
Lhi V n

i + λJ hi V n
i

]
; i < imax

V n+1
i

∆τ
=

V ∗i
∆τ

; i = imax, (3.7)

where120

ϕn+1
i ∈ arg max

ϕ∈{0,1}

{
ϕ

ε
(V ∗i − V n+1

i )

}
. (3.8)

5



4 Solving the Discretized Equations121

At each timestep we must solve the nonlinear equations (3.5) or (3.7). We can write both sets of122

equations in terms of nonlinear matrix operators. Let A, B be imax × imax matrices, and C be an123

imax length vector, which are defined for both the scaled direct control and penalty formulations124

in Appendix A. For each timestep let U denote the vector of the unknown solution V n+1 and125

Q = [ϕ1, . . . , ϕimax ] be an indexed set of controls with each ϕj ∈ {0, 1}. Then, the discretized126

equations (3.5) and (3.7) can be written as127

(A(Q)− B(Q)) U = C(Q)

with each Qi ∈ arg max
Q∈Z

[
−(A(Q)− B(Q))U + C(Q)

]
i

(4.1)

where Z is the set of admissible controls. Observe that A is sparse, but B is dense, since it represents128

the discretization of the jump term J .129

Remark 4.1. Note that [A(Q)]i,j , [B(Q)]i,j , [C(Q)]i depend only on Qi.130

It is useful to note the following properties of A,B.131

Proposition 4.1. Suppose a positive coefficient discretization [14] is used. Then132

(a) B(Q) ≥ 0 .133

(b) The ith row sums for A(Qk) and B(Qk) are134

Direct Control:135

Row Sum ( A(Qk) )i =


(1− ϕki )

(
1

∆τ + θr
)

+ ϕki Ω i = 1 or

i = î+ 1, . . . , imax − 1

(1− ϕki )
(

1
∆τ + θ(r + λ)

)
+ ϕki Ω 2 ≤ i ≤ î

1/(∆τ) i = imax

Row Sum (B(Qk) )i ≤

{
(1− ϕki )θλ 2 ≤ i ≤ î
0 otherwise

, (4.2)

Penalty Method:136

Row Sum (A(Qk) )i =


1

∆τ + θr +
ϕk
i
ε i = 1 or i = î+ 1, . . . , imax − 1

1
∆τ + θ(r + λ) +

ϕk
i
ε 2 ≤ i ≤ î

1/(∆τ) i = imax

Row Sum (B(Qk) )i ≤

{
θλ 2 ≤ i ≤ î
0 otherwise

. (4.3)

(c) The matrices A(Q) − B(Q) and A(Q) in equation (4.1) are strictly diagonally dominant M137

matrices [28].138

Proof. Part (a) follows from the discretization method for J [13, 29], and the definition of B(Q) in139

Appendix A. Part(b) follows from properties (3.4), equations (3.5), (3.7) and Appendix A. Since140

a positive coefficient discretization is used [14], part (c) follows from (b) and [28].141
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4.1 Fixed Point Policy Iteration142

Since B is dense, direct application of policy iteration to solve equation (4.1) is not feasible. Various143

methods have been suggested for solution of equations of this type [12, 2, 27, 19]. For the purposes144

of investigating floating point errors, we will focus on the fixed point policy iteration discussed in145

[12, 19]. Fixed point policy iteration was also used for American options under regime switching in146

[18]. The regime switching case has some similarities with the jump diffusion case, since full policy147

iteration is not efficient for either problem. The fixed point-policy iteration is given in Algorithm148

4.1.149

Algorithm 4.1 Fixed Point-Policy Iteration

U0 = Initial solution vector of size N
for k = 0, 1, 2, . . . until converge do

Qk` ∈ arg max
Q`∈Z

{
−
[
A(Q)− B(Q)

]
Uk + C(Q)

}
`

Solve A(Qk)Uk+1 = B(Qk)Uk + C(Qk)

if k > 0 and max
`

|Uk+1
` − Uk` |

max
[
scale, |Uk+1

` |
] < tolerance then

break from the iteration
end if

end for

The term scale in Algorithm 4.1 is used to ensure that unrealistic levels of accuracy are not150

enforced. As an example, if options are priced in dollars, then a typical value of scale = 1.0. Each151

iteration of Algorithm 4.1 requires a sparse matrix solve (in this case a tridiagonal system) and152

a dense matrix-vector multiply B(Qk)Uk. This dense matrix-vector multiply can be carried out153

efficiently using an FFT as described in [13].154

Theorem 4.1 (Convergence of Fixed Point-Policy Iteration). Suppose:155

(a) The matrix A(Q) is an M matrix [28].156

(b) The matrices A(Q), [A(Q)]−1 and the vector C(Q) are bounded independent of Q.157

(c) There is a constant C1 < 1 such that158

‖A(Qk)−1B(Qk−1)‖∞ ≤ C1 and ‖A(Qk)−1B(Qk)‖∞ ≤ C1 . (4.4)

Then the fixed point-policy iteration in Algorithm 4.1 converges.159

Proof. See [19].160

Corollary 4.1. The fixed point-policy iteration converges unconditionally for the penalty discretiza-161

tion (3.7) and converges for the scaled direct control discretization (3.5) if162

Ω > θλ . (4.5)

Proof. This follows from the definitions of A, B, and C in Appendix A, Proposition 4.1, and163

Theorem 4.1, following the same steps as used in [19] for a regime switching problem.164
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5 Floating Point Considerations: Example165

To motivate our discussion of the floating point issues surrounding the iterative solution of dis-166

cretized HJB equations, we first consider the simple case of an American option with no jumps.167

Formally, we set λ = 0 in equations (2.4-2.5) with the resulting discretized equations then of the168

form (4.1) with B = 0.169

In this case, it is trivial to verify that Algorithm 4.1 converges, since for B = 0, this reduces to170

pure policy iteration. To be precise, policy iteration applied to equation (4.1) with B = 0 is given171

in Algorithm 5.1.172

Algorithm 5.1 Policy Iteration

U0 = Initial solution vector of size N
for k = 0, 1, 2, . . . until converge do

Qk` ∈ arg max
Q`∈Z

{
−A(Q)Uk + C(Q)

}
`

Solve A(Qk)Uk+1 = C(Qk)

if k > 0 and max
`

|Uk+1
` − Uk` |

max
[
scale, |Uk+1

` |
] < tolerance then

break from the iteration
end if

end for

For policy iteration applied to an American option problem with no jumps, we can obtain the173

following result [15, 4, 32].174

Theorem 5.1. If Algorithm 5.1 is applied to the discretized form of equation (2.4-2.5), with λ = 0,175

using either a penalty or a scaled direct control formulation, and176

(a) A(Q) is an M matrix.177

(b) A(Q), A(Q)−1 and C(Q) are bounded independent of Q,178

then the policy iteration Algorithm 5.1 converges in a finite number of steps. Furthermore, conver-179

gence is monotone, non-decreasing (after the first iteration), that is,180

Uk+1 ≥ Uk ; k > 0 . (5.1)

As an example, consider the problem given in Table 5.1. This problem was solved on a se-181

quence of grids, as given in Table 5.2. Crank-Nicolson timestepping was used with the Rannacher182

modification [25] and with variable timestepping [15].183

For the penalty formulation (3.7), we use a penalty factor of the form ε = C∆τ , where C is184

dimensionless. In the case of the direct control method (3.5), the scaling factor Ω should have185

the units of inverse time, so that quantities with the same units are being compared in the max(·)186

expression in equation (2.7). It is convenient to choose Ω = 1/(C∆τ) where C is dimensionless, so187

that Ω = 1/ε.188

Since the penalty method is consistent for any C, such that ε = C∆τ , then any C > 0 will189

result in convergence to the solution as ∆τ → 0. Table 5.3 verifies this for three different choices190
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Expiry Time .25
Exercise American
Strike (Put) K 100
Risk free rate r .02
Volatility σ .20

Table 5.1: Data for the an American put, no jumps (λ = 0).

Refine S Nodes Timesteps

0 129 39
1 257 71
2 513 140
3 1025 276
4 2049 546
5 5097 1087
6 10193 2167

Table 5.2: Grid/timestep data for convergence study, American put, no jumps (λ = 0). Other
data in Table 5.1. On each grid refinement, new fine grids are inserted between each two coarse
grid nodes, and the timestep control parameter is halved.

of C. Table 5.4 compares the performance of the penalty method and the scaled direct control191

formulation, as a function of the scaling parameter Ω or the penalty parameter ε, for a fixed192

grid size. From Table 5.4, we can see that the scaled direct control method (when the iteration193

converges) is unaffected by the size of Ω over eight orders of magnitude. On the other hand, the194

penalty solution is affected when ε is large, at a finite grid size. This is, of course, due to the error195

induced by the term ε(ψτ −Lψ− λJψ) in equation (2.10), which will be present at any finite grid196

size.197

Observe that for sufficiently small ε or 1/Ω, the policy iteration for both penalty and scaled198

direct control methods does not converge. From Theorem 5.1 we learn that policy iteration must199

converge for this problem in exact arithmetic and so the lack of convergence in Table 5.4 is a result200

of using floating point arithmetic. In particular, analysis of the cases where policy iteration did not201

converge revealed that the iterates oscillated, at levels above the convergence tolerance, and so the202

exact arithmetic convergence property (5.1) was violated.203

We can rewrite Algorithm 5.1 in the form204

A(Qk)(Uk+1 − Uk) = max
Q∈Z

{
−A(Q)Uk + C(Q)

}
. (5.2)

The analysis in [14] shows that the right hand side of equation (5.2) is always non-negative for205

k > 0. However, in inexact arithmetic, we have verified that this is not always true, which results206

in the oscillatory iterates and nonconvergence of the iteration. Consequently, the main source of207

finite precision arithmetic error appears to be due to the computation of the right hand side of208

equation (5.2).209

It is now desirable to carry out some analysis to explain the observations in Table 5.4. This210
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Refine ε = 10−6∆τ ε = 10−2∆τ ε = ∆τ
Itns/Step Value Itns/Step Value Itns/Step Value

0 2.54 3.765795756 2.56 3.765735290 2.58 3.760452288
1 2.72 3.767678056 2.72 3.767643630 2.65 3.764771892
2 2.70 3.768152726 2.68 3.768134992 2.64 3.766668367
3 2.68 3.768272342 2.70 3.768263624 2.55 3.767533565
4 2.57 3.768302463 2.51 3.768298209 2.20 3.767938281
5 2.20 3.768310012 2.13 3.768307954 2.04 3.768130740
6 2.03 3.768311910 2.03 3.768310918 2.05 3.768223491

Table 5.3: Convergence study, American put, no jumps (λ = 0). Other data in Table 5.1. Penalty
method (3.7). Value at S = 100. tolerance = 10−6.

ε or tolerance = 10−6 tolerance = 10−8

1/Ω Direct Control Penalty Direct Control Penalty

10−2∆τ 3.768310012 3.768307954 3.768310012 3.768307954
10−3∆τ 3.768310012 3.768309783 3.768310012 3.768309783
10−4∆τ 3.768310012 3.768309989 3.768310012 3.768309989
10−5∆τ 3.768310012 3.768310010 3.768310012 3.768310010
10−6∆τ 3.768310012 3.768310012 3.768310012 3.768310012
10−7∆τ 3.768310012 3.768310012 3.768310012 3.768310012
10−8∆τ 3.768310012 3.768310012 3.768310012 ****
10−9∆τ 3.768310012 3.768310012 **** ****
10−10∆τ **** **** **** ****

Table 5.4: Option value at S = 100, refinement level 5. Comparison of penalty parameter ε
and direct control scaling parameter Ω for the penalty discretization (3.7) and the direct control
discretization (3.5), no jumps (λ = 0). Other data in Table 5.1. ∗ ∗ ∗∗ indicates failure to converge
after 100 iterations in any timestep.

analysis should give us211

• a conservative, order of magnitude estimate of the largest value of Ω (smallest value of ε)212

which can be safely used in either the penalty or scaled direct control formulation,213

• an estimate which depends on the convergence tolerance, consistent with results in Table 5.4.214

We remind the reader that the consistency analysis in equation (2.10) indicates that a small value215

of ε is advantageous for the penalty method, but there is not any particular advantage (in terms of216

solution accuracy at a fixed grid size) in selecting Ω large for the scaled direct control formulation.217
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5.1 Floating Point Considerations: Analysis218

We return now to the case of American options with jump diffusion, where we use the fixed point219

policy iteration in Algorithm 4.1. We rewrite Algorithm 4.1 in the form220

A(Qk)(Uk+1 − Uk) = max
Q∈Z

{
−
[
A(Q)− B(Q)

]
Uk + C(Q)

}
. (5.3)

The analysis in [19] shows that in exact arithmetic, this iteration always converges, hence the right221

hand side of equation (5.3) should converge to zero. However, we have observed in our numerical222

experiments that in any case where the Algorithm 4.1 failed to converge, the computed value of223

the right hand side of equation (5.3) oscillated in sign, with a non-decreasing magnitude. Define224

the residual of the solution of the linear system at iteration k + 1 as225

rk+1 = B(Qk)Uk + C(Qk)−A(Qk)Uk+1 . (5.4)

Numerical examination of A(Qk)−1rk+1 indicated that this was small compared to the convergence226

tolerance. This suggests that the main source of finite precision error is the numerically computed227

right hand side of equation (5.3).228

Let fl(x) denote the floating point representation of a real number x, that is,229

fl(x) = x(1 + δx) with |δx| ≤ δ , (5.5)

where δ is the machine precision. Define the floating point error vector ∆ekδ as230

∆ekδ = max
Q∈Z

{
flcum

(
−A(Q)Uk + B(Q)Uk + C(Q)

)}
−max

Q∈Z

{(
−A(Q)Uk + B(Q)Uk + C(Q)

)}
,

(5.6)

where flcum(·) denotes the accumulated effect of floating point errors from all arithmetic operations231

in (·). Suppose that in exact arithmetic, Algorithm 4.1 would terminate at step k + 1. Let Uk be232

the iterates computed in exact arithmetic, and let ∆Ukδ denote the floating point error in Uk+1
233

generated by ∆ekδ . Then, from equations (5.3) and (5.6), we have234

A(Qk)
[
Uk+1 − Uk + ∆Ukδ

]
= max

Q∈Z

{
−A(Q)Uk + B(Q)Uk + C(Q)

}
+ ∆ekδ

∆Ukδ = A(Qk)−1∆ekδ . (5.7)

Now, if235

max
i

[
| [∆Ukδ ]i |

max(|Uk+1
i |, scale)

]
> tolerance , (5.8)

then Algorithm 4.1 may not converge. Consequently, we should choose parameters such that236

max
i

[
| [∆Ukδ ]i |

max(|Uk+1
i |, scale)

]
= max

i

[
| [A(Qk)−1∆ekδ ]i |
max(|Uk+1

i |, scale)

]
< tolerance . (5.9)
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5.2 Approximation of Equation (5.9)237

If we attempt to provide a rigorous bound for equation (5.9), then the result will be far too238

pessimistic to be useful. Instead we proceed in a somewhat more heuristic manner in order to239

obtain a more practically useful bound.240

We restrict attention to the typical situation where the grid spacing and timestep are reduced241

proportionally to a discretization parameter h, as in equation (3.3), and consider the limit h→ 0.242

Recalling that Ak is a strictly diagonally dominant M matrix, we can write Ak as243

Ak = D + P where [D]ii = Row Sum (Ak )i . (5.10)

Thus D is diagonal, with entry Di > 0 on the ith row, and if e = [1, . . . , 1]′, then Pe = 0.244

Consequently, [I +D−1P ]e = e which gives245

e = [I +D−1P ]−1e , (5.11)

implying that Row Sum ([I +D−1P ]−1 )i = 1 for each i. Now, from equation (5.7), we have that246

Ak∆Ukδ = ∆ekδ (5.12)

so that247

D−1Ak∆Ukδ = D−1∆ekδ , (5.13)

which gives248

∆Ukδ = [I +D−1P ]−1
(
D−1∆ekδ

)
. (5.14)

Let249

gi,j =

[
[I +D−1P ]−1

]
i,j

, (5.15)

so that, since [I+D−1P ] is an M matrix, and noting equation (5.11), then equation (5.14) becomes250 [
∆Ukδ

]
i

=
∑
j

gi,jD
−1
j

[
∆ekδ

]
j

gi,j ≥ 0 ;
∑
j

gi,j = 1 . (5.16)

Let ‖D−1‖∞ = maxi |D−1
i |, and let [∆êkδ ]j be an upper bound estimate for | [∆ekδ ]j |. Then,251

equation (5.16) becomes252 ∣∣∣∣ [∆Ukδ ]i
∣∣∣∣ ≤ ‖D−1‖∞

∑
j

gi,j [∆ê
k
δ ]j . (5.17)

Define the computational domain Φ = [0, Smax]. At any iteration k, the domain can be consid-253

ered to be the union of disjoint sets254
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• Φa : the set of points where the American constraint is active. In this case if Si ∈ Φa then255

ϕki = 1 for both penalty and direct control methods (see Section 3).256

• Φ−Φa: the set of points where the American constraint is not active, that is, if Si ∈ Φ−Φa,257

then ϕki = 0.258

If Si ∈ (Φ − Φa), then we denote the set to which Si belongs by (Φ − Φa)Si , and the boundaries259

of this region by ∂(Φ − Φa)Si . Note that the set Φ − Φa will consist (in general) of the union of260

disjoint sets.261

For Si ∈ Φa, then for the direct control method we have that gi,j = δi,j , and so equation (5.17)262

becomes263 ∣∣∣∣ [∆Ukδ ]i
∣∣∣∣ ≤ ‖D−1‖∞[∆êkδ ]i ; Si ∈ Φa . (5.18)

In the case of the penalty method things are somewhat more involved. In this case, from properties264

(5.16), we have that265 ∥∥∥∥∑
j

gi,j

[
∆êkδ

]
j

∥∥∥∥
∞
≤ ‖∆êkδ‖∞ . (5.19)

As well note that ( (∆S)min = mini(Si+1 − Si) )266

| [D−1P ]i,j | = O

(
ε∆τ

(∆S)2
min

)
= O(C) ; Si ∈ Φa , (5.20)

assuming that the penalty parameter is ε = C∆τ , C is small, and that the grid is refined as in267

equation (3.3). Straightforward computation then shows that268 [
[I +D−1P ]−1∆êkδ

]
i

≤
[
∆êkδ

]
i
+O(C)‖∆êkδ‖∞ ; Si ∈ Φa , (5.21)

and hence equation (5.17) becomes269 ∣∣∣∣ [∆Ukδ ]i
∣∣∣∣ ≤ ‖D−1‖∞

(
[∆êkδ ]i +O(C)‖∆êkδ‖∞

)
; Si ∈ Φa . (5.22)

In the following, we drop the O(C) term in equation (5.22) and assume equation (5.18) holds270

for both direct control and penalty methods. Consider the equation271

[I +D−1P ]W = f (5.23)

where f is an arbitrary vector. Examination of the discretized equations shows that, as h→ 0 (see272

equation (3.3)), for Si ∈ Φ− Φa, we can consider the discrete equations [I +D−1P ]i,j = gi,j to be273

a discrete approximation to the Green’s function solution of the equation274

Wτ − θ
(
σ2S2

2
WSS + (r − λκ)WS

)
= 0 ; W (S, 0) = f(S) . (5.24)
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In equation (5.24) there is no term (r+λ)W since the scaling by D in equation (5.15) has effectively275

removed this term. For S ∈ Φa, we can consider equation (5.23) as specifying that276

W = f ; S ∈ Φa . (5.25)

The Green’s function G(S, τ, S′, τ ′) of equation (5.24) [16] is the formal solution to277

Gτ − θ
(
σ2S2

2
GSS + (r − λκ)GS

)
= δ(S − S′)δ(τ − τ ′) ; S ∈ (Φ− Φa)S

lim
(τ−τ ′)→0

G(S, τ, S′, τ ′) = δ(S − S′) ; S ∈ (Φ− Φa)S

G(S∗, τ, S′, τ ′) = 0 ; S∗ ∈ ∂(Φ− Φa)S , (5.26)

where δ(·) denotes a Dirac function. The solution of the equation278

Wτ − θ
(
σ2S2

2
WSS + (r − λκ)WS

)
= 0 ; S ∈ (Φ− Φa)

W (S∗, τ) = q(S) ; S∗ ∈ ∂(Φ− Φa)S

W (S, 0) = f(S) (5.27)

for arbitrary q(S) is then given by279

W (S, τ) =

∫
(Φ−Φa)S

G(S, τ, S′, 0)f(S′) dS′ +

∫ τ

0

∫
∂(Φ−Φa)S

P (S, τ, S′, τ ′)q(S′) dτ ′ dS′ ,

(5.28)

where P (S, τ, S′, τ ′) is the Poisson function [16]. The Poisson function allows us to handle non-zero280

Dirichlet boundary conditions. We remind the reader that in this context, the Poisson function has281

nothing to do with a Poisson process. The term Poisson function is an unfortunate but standard282

terminology.283

Note that284

G(S, τ, S′, τ ′) ≥ 0 ; P (S, τ, S′, τ ′) ≥ 0∫
(Φ−Φa)S

G(S, τ, S′, 0) dS′ +

∫ τ

0

∫
∂(Φ−Φa)S

P (S, τ, S′, τ ′) dτ ′ dS′ = 1 . (5.29)

which is the continuous analogue of properties (5.16).285

Now, as h→ 0, we expect that (setting q(S) = f(S) from equation (5.25) )286 ∑
j

gi,jf(Sj) →
∫

(Φ−Φa)Si

G(Si,∆τ, S
′, 0)f(S′) dS′ +

∫ ∆τ

0

∫
∂(Φ−Φa)Si

P (Si,∆τ, S
′, τ ′)f(S′) dτ ′ dS′.

(5.30)

From the property of the continuous Green’s function [16] (S ∈ (Φ− Φa))287

lim
∆τ→0

[∫
(Φ−Φa)S

G(S,∆τ, S′, 0)f(S′) dS′ +

∫ ∆τ

0

∫
∂(Φ−Φa)S

P (S,∆τ, S′, τ ′)f(S′) dτ ′ dS′
]

= f(S) ,

(5.31)
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we can conclude that, as h→ 0 (from equations (5.30) and (5.31) ),288

lim
h→0

∑
j

gi,jf(Sj) = f(Si) ; Si ∈ Φ− Φa . (5.32)

More precise estimates of equation (5.32) are given in Appendix B.289

Set f(Si) = [∆êkδ ]i in equation (5.32). We then obtain (using equations (5.17) and (5.32) ) that290

max
i

[
|[∆Ukδ ]i|

max(|Uk+1
i |, scale)

]
≤ max

i

[
‖D−1‖∞[∆êkδ ]i

max(|Uk+1
i |, scale)

]
+ small terms . (5.33)

Assuming we are close to convergence, so that Uk+1
i ' Uki , then we obtain the final estimate for291

bound (5.9)292

max
i

[
‖D−1‖∞[∆êkδ ]i

max(|Uki |, scale)

]
< tolerance . (5.34)

5.3 Bounds on Floating Point Errors293

From equation (5.6), we have that294

|∆ekδ | ≤ max
Q∈Z

{∣∣∣∣flcum(−A(Q)Uk + B(Q)Uk + C(Q)

)
−
(
−A(Q)Uk + B(Q)Uk + C(Q)

)∣∣∣∣}
= ∆êkδ . (5.35)

For the scaled direct control formulation, as Ω→∞, the floating point error bound ∆êkδ (5.35)295

will be dominated by296

Ω(Uki − V ∗i ) . (5.36)

This is because near the exercise region, Uki ' V ∗i . In this case, we are subtracting two almost equal297

floating point numbers (which is highly prone to round off error amplification) and then multiplying298

by a large number.299

Now, examine the error induced by computing term (5.36) in finite precision arithmetic300

[∆êkδ ]i '
∣∣∣∣fl[fl(Ω)fl(fl(Uki )− fl(V ∗i ))

]
− Ω(Uki − V ∗i )

∣∣∣∣
≤ Ωδ(|Uki |+ |V ∗i |) + 3δΩ|Uki − V ∗i |+O(δ2) , (5.37)

where δ is the unit roundoff. Ignoring the second order terms, and assuming that V ∗i = Uki (1 + ai),301

then equation (5.37) becomes302

[∆êkδ ]i ' Ω|Uki |(2 + |ai|)δ + 3|ai|Ω|Uki |
= Ω|Uki |(2 + 4|ai|)δ . (5.38)

Assume that |ai| � 1 (which will be true near the exercise region) so that equation (5.38) becomes303

[∆êkδ ]i ' 2Ω|Uki |δ . (5.39)
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For the penalty formulation, we obtain (5.39) but with Ω = 1/ε.304

For the case where Ω→ 0, the floating point error in ∆êkδ (5.6) will be dominated by the term305

θ
σ2S2

i

2
Dh
SSU

k
i , (5.40)

since computing the numerical second derivative will produce the largest errors. Following a similar306

argument as used in the derivation of equation (5.39), we obtain307

[∆êkδ ]i ' 2θδ
σ2S2

i

(∆S)2
i

|Uki | , (5.41)

where (∆S)i = min(Si+1 − Si, Si − Si−1). For details of the derivation of equation (5.41) see [20].308

5.4 Ω Large, ε small309

From equation (5.39), if Ω→∞ ( ε→ 0), then310

[∆êkδ ]i ' 2Ωδ|Uki |
≤ 2Ωδmax(|Uki |, scale) . (5.42)

From Proposition 4.1, assuming that ε = 1/Ω = C∆τ , C � 1, we can see that the worst case311

for equation (5.34) will occur when ϕki = 0, in which case, for both penalty and direct control312

formulations313

max
i
|D−1

i | ≤ ∆τ . (5.43)

Substituting equations (5.42-5.43) into equation (5.34), and assuming that314

Ω =
1

ε
=

1

C∆τ
, (5.44)

we obtain315

C >
2δ

tolerance
. (5.45)

Assuming that316

δ ' 10−16 ( double precision ) , (5.46)

then we obtain from equation (5.45)317

C >

{
2× 10−8 tolerance = 10−8

2× 10−10 tolerance = 10−6
. (5.47)

This estimate is consistent with the results in Table 5.4.318
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5.5 Ω Small319

From equation (5.41) we have that, for the scaled direct control formulation with Ω→ 0,320

[∆êkδ ]i ' 2θδ
σ2S2

i

(∆S)2
i

|Uki |

≤ 2θδ
σ2S2

i

(∆S)2
i

max(|Uki |, scale) . (5.48)

From Proposition 4.1, for the case Ω→ 0, the worst case will occur when ϕki = 1, so that we have321

max
i
|D−1

i | ≤
1

Ω
. (5.49)

Substituting equations (5.48) (5.49) into equation (5.34), and assuming that322

Ω =
1

C∆τ
, (5.50)

gives323

C <
1

∆τ

(
tolerance

δ

)
min
i

(
(∆S)2

i

2θS2
i σ

2

)
. (5.51)

In addition, from equation (4.5), assuming equation (5.50) holds, then324

C <
1

θλ∆τ
. (5.52)

Combining equations (5.51, 5.52) gives325

C < min

[
1

θλ∆τ
,

1

∆τ

(
tolerance

δ

)
min
i

(
(∆S)2

i

2θS2
i σ

2

)]
. (5.53)

5.6 A Note on Implementation326

We remark here that given a penalty method implementation, it is trivial to generate a scaled327

direct control implementation. In this case, we can use the properties of inexact arithmetic to our328

advantage. The discretized equations (3.7) are used in both cases, but for the scaled direct control329

formulation, ϕ is determined from equation (3.6) (instead of equation (3.8)). In equation (3.6), we330

define331

Ω =
1

C∆τ
(5.54)

with C satisfying conditions (5.45) and (5.53). In equations (3.7), we set332

ε = C2∆τ , (5.55)

with C2 =
√
εsmall, where εsmall is the smallest positive double precision number, e.g. ' 10−308.333

We take the square root here to avoid any possible overflow problems. Effectively, when ϕ = 0, we334

solve the unconstrained PDE. When ϕ = 1, the very small ε eliminates the other terms in equation335

(3.7) (in finite precision arithmetic), so that this equation becomes V n+1
i = V ∗i .336
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Expiry Time .25
Exercise American
Payoff Butterfly
K1,K2 90, 110
Risk free rate r .05
Volatility σ .15
Jump Intensity λ .1
Log jump mean ν -.90
Log jump stnrd dev ζ .45

Table 6.1: Data for the an American butterfly

.

5.7 Generality of Condition (5.34)337

The condition (5.34) is general and can be applied to other HJB equations. We need the following338

properties to hold339

• The discretized equations are of the form (4.1).340

• The matrix A(Q) can be split as in equation (5.10).341

• The result (5.32) holds.342

For each specific PDE, it is only necessary to estimate ‖D−1‖∞ and ∆êδ. For an example application343

of condition (5.34) to a singular control problem, see [20].344

6 Numerical Results: Jump Diffusion345

We consider the case of an American option with jump diffusion, with the data in Table 6.1. We346

take the payoff to be a butterfly347

V ∗ = max(S −K1, 0)− 2 max(S − (K1 +K2)/2, 0) + max(S −K2, 0) , (6.1)

and assume the existence of an American contract with payoff (6.1), which can only be early348

exercised as a unit. This contract has been used as severe test case by several authors [1, 26, 24].349

In the no-jump case, the exercise region is not simply connected to the boundary, hence the direct350

method in [5] cannot be used (at least in straightforward fashion) and an iterative method is351

required. A classical iterative method is described in [8].352

The variable timestep selector described in [12] is used combined with Crank Nicolson timestep-353

ping and the Rannacher modification suggested in [25]. This problem is solved on a sequence of354

(unequally spaced) grids. At each grid refinement, a new fine grid node is inserted between each355

two coarse grid nodes, and the timestep control parameter is halved. Table 6.2 shows the number356

of nodes and timesteps for various levels of refinement. Table 6.3 shows a convergence study for the357

American butterfly case, which demonstrates approximately second order convergence. The value358

at t = 0 is shown in Figure 6.1.359
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Refine S Nodes Timesteps

0 129 35
1 257 70
2 513 137
3 1025 271
4 2049 537
5 5097 1068
6 10193 2130

Table 6.2: Grid/timestep data for convergence study, American butterfly. Data in Table 6.1.
On each grid refinement, new fine grids are inserted between each two coarse grid nodes, and the
timestep control parameter is halved.

Refine Itns/step Value Ratio

0 3.2 5.249893574 N/A
1 3.0 5.251270846 N/A
2 2.98 5.251520409 5.5
3 2.98 5.251585969 3.8
4 2.91 5.251601866 4.1
5 2.65 5.251605835 4.0
6 2.43 5.251606872 3.8

Table 6.3: Convergence study, American butterfly, data in Table 6.1. Penalty formulation (3.7)
used. Value at S = 105. Penalty parameter ε = 10−6∆τ . Crank Nicolson timestepping with the
Rannacher modification used. Ratio is the ratio of successive changes in the solution.
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Figure 6.1: American butterfly, jump diffusion. Data in Table 6.1.

6.1 Bounds on C360

The lower bounds for C for both penalty and direct control methods are given from equation (5.47).361

For a level 5 discretization, we will estimate the upper bounds from the following data362

θ = .5

(∆τ)max = 3× 10−3

λ = .1

σ = .2(
(∆S)i
Si

)
min

= 1.5× 10−4

δ = 10−16 . (6.2)

Bound (5.52) is then363

C <
2

3
× 104 ' 104 (6.3)

while bound (5.51) gives364

C <

{
75
4 × 103 ' 104 tolerance = 10−8

75
4 × 105 ' 106 tolerance = 10−6

. (6.4)

Table 6.4 shows that the lower bounds for C = ε/∆τ , from equation (5.47), tolerance = 10−8 are365

fairly sharp for the penalty method, but conservative for the scaled direct control formulation. Table366
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6.4 also shows that the upper bound (6.4) is quite conservative for the direct control formulation.367

Note that for the penalty method, the consistency error becomes quite large for C > 10−1 (see368

equation (2.10)), hence results for C > 1 are not shown. However, observe that the number of369

iterations per step for the scaled direct control method increases sharply for C > 1. Recall that370

condition (5.52) is sufficient but not necessary for convergence. It would seem that as we near this371

upper bound, the rate of convergence degrades. Nevertheless, Table 6.4 shows the remarkable fact372

that the computed solution for the scaled direct control formulation is unchanged (to 10 digits) for373

C varying by fifteen orders of magnitude.374

From a practical perspective, it would seem that the lower bound for C is of primary interest.375

To verify that the lower bound (5.47) has the correct behaviour as a function of the convergence376

tolerance, Table 6.5 shows the results for tolerance = 10−6. The observed lower bound for C does377

decrease, relative to the values in Table 6.4, as expected.378

The largest value of C where convergence occurs in Tables 6.4 and 6.5 should be about 104 from379

equation (6.3) in both cases if the non-convergence was due to the violation of equation (5.52).380

However, the maximum value of C where convergence occurs increases in Table 6.5 compared to381

Table 6.4, which is what we expect if the non-convergence is due to floating point errors (i.e.382

violation of condition (5.51) ). However, in both cases, non-convergence occurs at significantly383

larger values of C then predicted from equation (5.51).384

On the basis of numerous tests, a useful rule of thumb is to select the lower bound for C to be385

two orders of magnitude larger than the bound (5.45). In several years of experiments, we have386

never seen this fail. In the case of the penalty method, this size for C produces a consistency error387

which is usually much smaller than the discretization error for typical grid sizes. In the case of the388

Direct Control formulation, this choice of C seems to minimize the number of nonlinear iterations.389

Table 6.6 shows the results for the American butterfly, with tolerance 10−6, and a coarser grid390

(refinement 3) compared to Table 6.5. In this case, we expect that the lower bound for C should be391

the same for both Tables, based on the bound (5.47). If the upper bound for C is determined by392

equation (5.51), then it is expected that the upper bound will increase for the coarser grid. We can393

observe this trend (approximately) in Table 6.5 and Table 6.6. However, for both Table 6.5 and394

Table 6.6, we remind the reader that the upper bound is not sharp. Note as well that the average395

number of nonlinear iterations per step decreases as the grid and timestep are refined. This trend396

is consistent across many tests.397

7 Conclusions398

Discretization of the HJB PIDE for American options under jump diffusion gives rise to a system399

of nonlinear algebraic equations at each timestep. If a positive coefficient discretization is used,400

then in exact arithmetic a fixed point policy iteration method is unconditionally convergent for a401

penalty formulation and conditionally convergent for a scaled direct control formulation. However,402

in inexact arithmetic, the fixed point policy iteration may not converge, even though the theoretical403

conditions are satisfied.404

We have determined upper and lower bound estimates for the penalty parameter (penalty405

formulation) and the scaling parameter (direct control formulation) so that convergence can be406

expected in the presence of floating point errors. Numerical experiments show that these estimates407

are the correct order of magnitude. In practice, the lower bound is more important, and the408

expression for the lower bound estimate has a very simple form.409
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ε or Direct Control Penalty
1/Ω Itns/step Value Itns/step Value

107∆τ **** ****
106∆τ 8.95 5.251605841
105∆τ 9.30 5.251605841
104∆τ 9.90 5.251605841
103∆τ 10.1 5.251605841
102∆τ 9.91 5.251605841
101∆τ 8.56 5.251605841

∆τ 4.65 5.251605841 2.63 5.247591885
10−1∆τ 2.75 5.251605841 2.65 5.251199230
10−2∆τ 2.46 5.251605841 2.65 5.251562864
10−3∆τ 2.46 5.251605841 2.65 5.251600928
10−4∆τ 2.46 5.251605841 2.65 5.251605297
10−5∆τ 2.46 5.251605841 2.65 5.251605786
10−6∆τ 2.46 5.251605841 2.65 5.251605835
10−7∆τ 2.46 5.251605841 2.65 5.251605841
10−8∆τ 2.46 5.251605841 **** ****
10−9∆τ 2.46 5.251605841 **** ****
10−10∆τ **** **** **** ****

Table 6.4: Option value at S = 105, refinement level 5, American butterfly, data in Table 6.1.
∗ ∗ ∗∗ indicates failure to converge after 100 iterations in any timestep. tolerance = 10−8.
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ε or Direct Control Penalty
1/Ω Itns/step Value Itns/step Value

10+8∆τ **** ****
10+7∆τ 8.33 5.251605841
10+6∆τ 8.83 5.251605841
10+5∆τ 9.18 5.251605841
10+4∆τ 9.76 5.251605841
10+3∆τ 9.95 5.251605841
10+2∆τ 9.81 5.251605841
10+1∆τ 8.42 5.251605841

∆τ 4.48 5.251605841
10−1∆τ 2.49 5.251605841 2.19 5.251199230
10−2∆τ 2.12 5.251605841 2.30 5.251562864
10−3∆τ 2.12 5.251605841 2.31 5.251600928
10−4∆τ 2.12 5.251605841 2.33 5.251605297
10−5∆τ 2.12 5.251605841 2.33 5.251605786
10−6∆τ 2.12 5.251605841 2.33 5.251605835
10−7∆τ 2.12 5.251605841 2.33 5.251605840
10−8∆τ 2.12 5.251605841 2.33 5.251605841
10−9∆τ 2.12 5.251605841 2.33 5.251605841
10−10∆τ 2.12 5.251605841 **** ****
10−11∆τ **** **** **** ****

Table 6.5: Option value at S = 105, refinement level 5, American butterfly, data in Table 6.1.
∗ ∗ ∗∗ indicates failure to converge after 100 iterations in any timestep. tolerance = 10−6.
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ε or Direct Control Penalty
1/Ω Itns/step Value Itns/step Value

10+11∆τ **** ****
10+10∆τ 3.62 5.251585989
10+9∆τ 3.62 5.251585989
10+8∆τ 3.62 5.251585989
10+7∆τ 3.66 5.251585989
10+6∆τ 3.94 5.251585989
10+5∆τ 4.11 5.251585989
10+4∆τ 4.48 5.251585989
10+3∆τ 4.78 5.251585989
10+2∆τ 4.71 5.251585989
10+1∆τ 4.71 5.251585989

∆τ 2.82 5.251585989
10−1∆τ 2.27 5.251585989 2.46 5.249944409
10−2∆τ 2.25 5.251585989 2.43 5.251409455
10−3∆τ 2.25 5.251585989 2.43 5.251565568
10−4∆τ 2.25 5.251585989 2.43 5.251584012
10−5∆τ 2.25 5.251585989 2.43 5.251585791
10−6∆τ 2.25 5.251585989 2.43 5.251585969
10−7∆τ 2.25 5.251585989 2.43 5.251585987
10−8∆τ 2.25 5.251585989 2.43 5.251585989
10−9∆τ 2.25 5.251585989 2.43 5.251585989
10−10∆τ 2.25 5.251585989 2.43 5.251585989
10−11∆τ **** **** **** ****

Table 6.6: Option value at S = 105, refinement level 3, American butterfly, data in Table 6.1.
∗ ∗ ∗∗ indicates failure to converge after 100 iterations in any timestep. tolerance = 10−6.
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The direct control solution is very insensitive to the choice of scaling parameter, compared to410

the penalty formulation. However, the number of iterations per timestep required for the scaled411

direct control formulation does depend on the scaling parameter. As long as the direct control412

scaling parameter is selected within fairly large bounds, the effect on the computed solution and413

the number of iterations per timestep is fairly small.414

The number of iterations required for solution of the nonlinear iterations for the penalty method415

is insensitive to the choice of the penalty parameter (see also [34]). Nevertheless, a poor choice416

for the penalty parameter will result in poor convergence as the grid and timestep are refined.417

However, with our recommended choice for the penalty parameter (two orders of magnitude larger418

than the lower bound estimate), the consistency error due to the finite penalty parameter is small419

compared to the discretization error at practical grid sizes and timesteps.420

Appendix421

A Matrix Form of the Discretized Equations422

The discretized nonlinear equations (3.5) and (3.7) can be represented as nonlinear matrix equa-423

tions. Let A,B be imax × imax matrices, and C be an imax length vector.424

A.1 Matrix Form: Direct Control425

Equation (3.5) can be written in terms of matrices A,B and vector C defined as operating on the426

imax length vector U (i < imax)427

[A(ϕki )U ]i = [AkU ]i = (1− ϕki )
(
Ui
∆τ
− θLhi Ui

)
+ ϕki Ω U`[

B(ϕki )U
]
i

= [BkU ]i = (1− ϕki )λθJ hi Un+1
i

C(ϕki ) = Cki = (1− ϕki )
V n
i

∆τ
+ ϕki Ω V ∗i

+(1− ϕki )(1− θ)
[
Lhi V n

i + λJ hi V n
i

]
. (A.1)

A.2 Matrix Form: Penalty Method428

Equation (3.7) can also be written in terms of A,B and vector C defined as (i < imax)429

[A(ϕki )U ]i = [AkU ]i =
Ui
∆τ
− θLhi Ui +

ϕki
ε
Ui[

B(ϕki )U
]
i

= [BkU ]i = λθJ hi Un+1
i

C(ϕki ) = Cki =
V n
i

∆τ
+
ϕki
ε
V ∗i + (1− θ)

[
Lhi V n

i + λJ hi V n
i

]
. (A.2)

A.3 Dirichlet Condition430

At i = imax, we define (for both discretizations)431

[AkU ]i =
Uimax

∆τ
; [BkU ]i = 0 ; Cki =

V ∗imax

∆τ
. (A.3)
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B Approximation (5.32)432

In this Appendix, we give a heuristic argument to show that approximation (5.32) is reasonable.433

To make equation (5.32) more precise, we need the following results434

(i) the rate of convergence as h→ 0 in equation (5.30) is required; and435

(ii) the precise form of the Green’s function for equation (5.26) must be known.436

We will use equation (5.32) to bound the effect of floating point errors. At this point, we will437

now proceed in a very informal manner, to provide a non-rigorous justification of equation (5.32).438

Assuming that a consistent finite difference method is used in equation (3.1), then we expect that439 ∑
j

gi,jf(Sj) =

∫
(Φ−Φa)S

G(S,∆τ, S′, 0)f(S′) dS′

+

∫ ∆τ

0

∫
∂(Φ−Φa)S

P (S,∆τ, S′, τ ′)f(S′) dτ ′ dS′ +O(h) .

(B.1)

Equation (B.1) simply states that our finite difference approximation converges at least at a440

first order rate to the exact solution. The Green’s function for equation (5.26) for the domain441

Φ = [0,∞), Φa = ∅ is well known, and is given by [31]442

G∞(S,∆τ, S′, 0) =
1

σS′
√

2π(∆τ)
exp

(
−(log(S/S′) + (r − λκ− σ2/2)∆τ)2

2σ2∆τ

)
. (B.2)

Now, the actual Green’s function G(S,∆τ, S′, 0) for S ∈ (Φ− Φa) can be written as443

G(S,∆τ, S′, 0) = G∞(S,∆τ, S′, 0) + ( terms required for boundary conditions )

= G∞(S,∆τ, S′, 0)−
∫ ∆τ

0

∫
∂(Φ−Φa)S

P (S,∆τ, S′′, τ ′′)G∞(S′′, τ ′′, S′, 0) dτ ′′ dS′′ .

(B.3)

For any point S ∈ (Φ − Φa), G∞(S,∆τ, S′, 0) → δ(S − S′), ∆τ → 0, hence from equation (5.31)444

the integral term involving the Poisson function in equation (B.3) tends to zero as ∆τ → 0. As a445

result, there exists γ > 0 such that446 ∫
(Φ−Φa)S

G(S,∆τ, S′, 0)f(S′) dS′ +

∫ ∆τ

0

∫
∂(Φ−Φa)S

P (S,∆τ, S′, τ ′)q(S′) dτ ′ dS′

=

∫
(Φ−Φa)S

G∞(S,∆τ, S′, 0)f(S′) dS′ +O((∆τ)γ) . (B.4)

From equation (B.2), we have that G∞ can be made arbitrarily small by choosing a C3 sufficiently447

large so that448

| log(S′/S)| ≥ C3

√
∆τ , (B.5)
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which implies that G∞ is non-negligible only if449

|S′ − S| ≤ C3S
√

∆τ +O(∆τ) . (B.6)

Assume that f(S) > 0 and f(S), f ′(S) are bounded. Then we have that, ∀η > 0, and for ∆τ450

sufficiently small, there exists C4(η) such that451 ∫
(Φ−Φa)S

G∞(S,∆τ, S′, 0)f(S′) dS′ ≤ f(S) +O(C4(η)S
√

∆τ) + η . (B.7)

Combining equation (B.1), equation (B.4), and (B.7) gives (for arbitrary small η)452 ∑
j

gi,jf(Sj) ≤ f(Si) +O(h) +O((∆τ)γ) +O(C4(η)Si
√

∆τ) + η . (B.8)

Letting f(Si) = [∆êkδ ]i, then equation (B.8) gives us453 ∑
j

gi,j [∆ê
k
δ ]j ≤ [∆êkδ ]i +O(h) +O((∆τ)γ) +O(C4(η)Si

√
∆τ) + η . (B.9)

Substituting equation (B.9) into equation (5.17) gives454 ∣∣∣∣[∆Ukδ ]i
∣∣∣∣ ≤ ‖D−1‖∞

(
[∆êkδ ]i +O(h) +O((∆τ)γ) +O(C4(η)Si

√
∆τ) + η ,

)
; Si ∈ (Φ− Φa)

(B.10)

From equation (5.18), the same result holds for Si ∈ Φa. As a result, for all Si ∈ Φ, (B.10) gives us455

max
i

[
| [∆Ukδ ]i |

max(|Uk+1
i |, scale)

]
≤ max

i

[
‖D−1‖∞[∆êkδ ]i

max(|Uk+1
i |, scale)

]
+ max

i

[‖D−1‖∞
(
O(h) +O((∆τ)γ) +O(C4(η)Si

√
∆τ) + η

)
max(|Uk+1

i |, scale)

]
' max

i

[
‖D−1‖∞[∆êkδ ]i

max(|Uk+1
i |, scale)

]
, (B.11)

which is equation (5.33).456
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