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Abstract
Spending commitments by institutions such as colleges and universities or hospitals are

frequently funded by endowments which are invested in risky assets. Many institutions use a
simple endowment spending policy based on a maximum payout of a fixed fraction of a rolling
average of the value of the endowment. However, periods of low investment returns on the
endowment will reduce the amount available for disbursement. If this amount is less than the
committed level of spending, the institution may be forced to make up the difference from other
sources. For example, an endowed professorship at a university contains an implicit guarantee
of a certain level of spending. If returns on invested capital are insufficient, the university
must cover the deficit. To reduce the risk involved, some institutions have adopted a policy
of setting aside surplus funds from periods of high returns in a reserve account which can be
drawn upon in the event of a shortfall. We investigate the performance of this type of strategy.
In particular, we determine the no-arbitrage value of guaranteeing a level of spending funded
by an endowment that is invested in risky assets and which has a reserve account. Our results
show that the reserve is not a panacea. For typical parameter values, the implied value of the
guarantee is quite large.

Keywords: Endowment cash flows, valuation of guarantees, path-dependent contingent claims,
spending rules

1 Introduction

The sustainability of long term spending commitments which are funded by risky investments has
been the subject of considerable attention in the financial press over the past few years. The most
commonly cited example is that of retirement programs such as defined benefit pension plans, but
endowments and foundations are also part of the general picture.1 The basic issue arises because
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institutions (and individual investors) frequently have long term annual commitments which require
spending at a rate in excess of that available on risk-free government debt instruments. This leads
to funds being placed in risky assets such as equities, on the grounds that the higher risk premia
available on such investments will support a higher level of spending. However, even if risky
investments do earn relatively high returns on average over the long run, it is highly unlikely to be
true each and every year. The very nature of risk is that low and even negative returns are quite
possible. As pointed out by Dybvig (1999), when an endowment is invested in risky assets, there is

. . . a significant probability of a shortfall. To assert otherwise is to state that the fund
is certain that stocks will go up and that going long stocks and short in the riskless
asset is, in effect, a riskless arbitrage. Such cheerful optimism may be an appealing
personality trait, but it is not a healthy attitude for an investment manager (p. 55).

In other words, despite this “cheerful optimism”, periodic shortfalls are apt to arise because returns
on risky investments are quite likely to occasionally fall below threshold rates necessary to support
desired spending levels.

Despite the obvious importance of the topic (reflected in part by the number of related recent
articles in the popular press), there has not been a great deal of academic research in this area.
Arnott (2004) describes the attention given to the concept of a sustainable spending rate as “scant”
(p. 6), whereas Milevsky and Robinson (2005) portray it as “sporadic” (p. 89). In any case, most
of the extant research focuses on a somewhat different issue than is the case in this article. In
particular, the existing literature has largely concentrated on the question of the rate at which
funds can safely be withdrawn from an invested account to support present and planned future
spending. This is clearly a critical issue, particularly in retirement planning. However, our focus
is on the following related question. Given a plan to spend at a specified rate, what is the value of
a guarantee to support that rate? In other words, what is the fair price of an insurance policy to
protect a desired spending rate?

We investigate this issue in a particular context, that of an academic institution which has
received a donation to fund an endowed research chair. The chairholder’s salary is a commitment
made by the institution: if returns on the invested donation fall short of the amount needed to cover
this salary, the institution must make up the difference. We focus on this particular setting for a
couple of reasons. First, as we will discuss in more detail below, some universities have adopted
a policy of establishing a reserve account to act as a buffer to preserve spending in the event of
poor investment returns. This practice allows us to study a particular and specific example of the
vague but widely held notion that high investment returns in good years can be used to offset poor
returns in bear markets. Second, we believe there is some value in considering a scenario that is
not in the pension setting, simply to draw attention to the fact that the economics of this issue are
more general than the widely publicized case of pensions. We emphasize, however, that although
we cast our investigations in a particular academic setting, our results apply more broadly to the
general question of the fair value of insurance on a spending rate.

It is worth noting that in the area of pensions in the United States, such insurance is provided
by the Pension Benefit Guaranty Corporation (PBGC). According to Arnott (2005), unfunded
liabilities guaranteed by the PBGC presently exceed $1 trillion (using the risk free yield curve for
discounting). Moreover, the PBGC is not empowered to set premiums for this insurance, nor can

2



it charge higher premia or deny coverage to the fiscally irresponsible. As a result, such insurance
is highly likely to be mispriced and abused, with potentially disastrous financial consequences.

Let us now provide more background information about our particular institutional context
of an endowed chair at a university. We begin by noting that many colleges and universities use
a simple rule to target endowment spending. A typical spending rule is to allow a maximum
disbursement of about five per cent of the twelve quarter average of total endowment funds. Any
return in excess of the amount disbursed is added to the endowment principal. Originally suggested
by the Ford Foundation in 1969, this spending rule generally works well in periods of healthy market
returns. However, many endowment agreements require the university to maintain the real value
of the principal. In this case, spending is typically reduced when the return on the endowment is
less than five per cent plus an inflation adjustment.

As pointed out by Mehrling (2004), this approach is unsatisfactory for several reasons. During
the era of high stock market returns of the 1990s, actual endowment returns were greatly in excess
of five per cent. The five per cent rule then had the effect of ratcheting up the endowment principal,
with an effective transfer of wealth to future generations. In recent times, with negative investment
returns, spending from endowments has often been suspended, ostensibly to preserve the endowment
capital. However, the capital may be artificially large, due to the ratcheting effect of the spending
rule in times of high returns. This spending rule has also been criticized by Sedlacek and Clark
(2003) on the basis that spending is too large during periods of high returns and too low in periods
of low returns.

Williams (2003) and Mehrling (2004) suggest the use of a stabilization or reserve account which
receives cash flows during periods of high returns, and can be drawn down in periods of low or
negative investment returns. An alternative approach is advocated by Dybvig (1999), who suggests
an investment strategy similar to constant proportions portfolio insurance. The total portfolio is
split between risk free and risky assets, with the fraction placed at risk determined by the value of
the total portfolio (more is invested in risk free assets if the overall portfolio value declines).

Although it appears that the idea of using a reserve account to smooth spending has gained
some popularity, most universities seem unwilling to adopt the approach of Dybvig (1999). This
may be because Dybvig’s strategy would require universities to acknowledge that, in many cases,
their committed endowment spending exceeds the amount which can be obtained from risk free
investments. Another possible reason is that Dybvig’s policy rule is designed to ensure that spending
will never be cut, but this is achieved through lower initial spending. Such lower levels of spending
may not be appealing to donors establishing endowments, and institutions often compete to attract
donations by promising to spend a higher percentage of endowments.

In this paper, we concentrate on the reserve account idea. In particular, we focus on the class
of spending rules which have the following two characteristics:

1. An attempt is made to ensure that the real value of the original endowment is maintained;
and

2. A reserve fund is established to smooth out fluctuations in endowment returns, so that aca-
demic units can expect reliable cash flows.

The main idea here is that returns in excess of the inflation rate are either allocated to current
spending or to a reserve fund. In this way, the transfer of wealth to future generations is avoided.
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The policies of some institutions specify that if the endowment is underwater (i.e. the real value
of the endowment is less than the original capital), then spending is halted until the real value of
the endowment is restored. However, this is relatively rare. Most policies do not require a catch-up
on returns to restore the real endowment value. Instead, in years when the endowment does not
grow in real terms and the reserve fund is exhausted, spending stops. If the real return is positive
in the following year, spending resumes. Virtually all universities following these types of spending
rules have a cap on the size of the reserve fund. When the reserve fund reaches the cap, excess
returns are then used to increase the principal of the endowment. It appears that the logic behind
this approach is based on the idea that high return years (when the reserve fund is at its maximum)
will restore the endowment capital.

Although in many situations university endowments are used to fund general expenses, it is also
the case that donations are frequently used for specific purposes such as scholarships, construction
and maintenance of buildings, or chaired professorships. Since we wish to focus on the effects of
shortfalls from invested capital to fund committed spending, we will only consider the latter type of
scenario. In particular, we take the point of view of an academic unit in a university. Consider the
following situation. A donor has agreed to fund an endowed chair. The academic unit is informed
that the expected real cash flow from the endowment is, for example, five per cent per year. On this
basis, the unit hires a prominent professor and agrees to cover costs of salary and research support.
These salary and research costs can be expected to increase at a known academic inflation rate.
This represents a deterministic yearly liability over a lengthy time horizon (e.g. twenty years).
However, this liability is funded by investing in risky assets, since it is not possible to obtain a real
return of five per cent in risk free assets.2 A reserve account is used to provide a cushion against
poor investment returns. However, if the reserve is exhausted by years of low returns, then the
academic unit must make up for the shortfall.

In this article, we will determine the no-arbitrage value of this implied guarantee. Using realistic
parameters, it appears that the value of this guarantee is a substantial portion of the original
endowed capital. The motivation for no-arbitrage valuation is as follows. Imagine a setting where
the endowment is passively invested in an exchange-traded market index fund. If the academic
institution were to approach a financial institution to purchase insurance for the implicit guarantees,
standard practice would dictate that the cost of this insurance would be determined by the estimated
cost for the financial institution of hedging the risk involved.3 In principle, this would be the no-
arbitrage value of the guarantee. Of course, this assumes that the underlying asset is known and
tradeable. Other situations might well arise where this is not the case. For example, the endowment
might be actively managed with high turnover of securities, in which case the financial institution
would not be able to directly hedge its risk exposure with liquid market instruments. However, this
would likely imply even larger guarantee values. In other words, our simple passive management
with an indexed investing scenario can be seen as establishing a ballpark estimate, but one which
is likely to be towards the lower end of the range of the cost of providing these guarantees in many
practical situations.

2Even though inflation-indexed government bonds may be available, they would not offer a sufficiently high real
return. Moreover, the academic inflation rate may be different from the general consumer price index used to
determine cash flows on inflation-protected government debt instruments.

3Note that this is consistent with the idea expressed in Arnott (2005) that “the economic value of a liability
. . . should be calculated in such a way that an insurer would actually be willing to assume it”.
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2 Spending Rules

As discussed above, we focus on spending rules which use a reserve fund to smooth out disburse-
ments. A few hours searching the internet with the keywords university endowment, spending rule,
stabilization makes for informative reading. Many institutions have very ad hoc approaches. The
spending rules clearly assume that the return on the endowment will be in excess of five per cent
plus inflation, with perhaps some minor adjustments which can be handled by a small reserve fund
(which may be limited to be as little as five per cent of the endowed capital). Once the reserve fund
reaches its maximum size, excess returns are capitalized. It is interesting to observe that two or
more years of negative endowment returns is regarded as extraordinary, and usually requires special
intervention of the Board of Governors. Some institutions are quite specific about their spending
rules. These institutions are usually very clear that no disbursements from the endowment can be
expected if the endowment return is negative and the reserve fund is exhausted.

The spending rules of various universities have some or all of the characteristics described
above.4 We consider the following prototypical spending rule, which should not be considered as
the exact rule used by any of these institutions, but rather is a model example.

The spending rule specifies a set of valuation dates {ti} (typically yearly). We assume that the
valuation interval ∆t = ti+1 − ti is constant. Let Si = S(ti) be the level of endowed capital at
t = ti. Denote the value of the reserve fund at ti by Ri = R(ti). Also let

Ii = inflation factor in period [ti, ti+1] = exp[Iratei ∆t],
Iratei = inflation rate,
Cr = percentage cap on reserve fund,
Fsp = spending factor in period [ti, ti+1] = F ratesp ∆t,

F ratesp = spending factor rate. (2.1)

At valuation date ti+1 the real gain of the endowment over [ti, ti+1], denoted by RGi+1, is given by

RGi+1 = Si+1 − SiIi. (2.2)

We assume either of two possibilities for the reserve fund. If the reserve fund is invested in risk
free assets, then

Ri+1 = Rie
r∆t (2.3)

where r is the continuously compounded nominal risk free rate of return, or the reserve fund can
be invested in the same risky assets as the endowment fund

Ri+1 = Ri

(
1 +

Si+1 − Si
Si

)
. (2.4)

4See Williams (2003) for a description of the use of a reserve account at Wake Forest University. Among other
universities to have adopted this general type of approach are California Polytechnic State University, North Carolina
State University, Wilfrid Laurier University, Simon Fraser University, Ryerson University, Lakehead University, and
the University of Waterloo. Details about the endowment spending policies of these various institutions may be
found in California Polytechnic State University (2003); North Carolina State University (2004); Wilfrid Laurier
University (2003); Simon Fraser University (1998); Ryerson University (2002); Lakehead University (2003); University
of Waterloo (2005).
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If RGi+1 is negative, the reserve fund Ri+1 is drawn down to ensure that the real value of the
endowment is preserved. If the reserve fund is exhausted, and RGi+1 < 0, then no disbursements
are made.

If RGi+1 > 0, or Ri+1 > 0 after transfers to the endowment principal account, then an attempt
is made to disburse an amount FspSi.5. This amount is first obtained by applying any positive
real investment gain RGi+1. If the real gain is insufficient to provide a cash flow of FspSi, then
the reserve fund Ri+1 can be used to make up for the shortfall. However, the reserve fund is not
allowed to go into a deficit, which means that the disbursement may be less than FspSi.6.

In any cases where the maximum amount of FspSi is disbursed, any remaining excess return
is applied first to increase the reserve fund, to a maximum size of CrSi. Any excess return that
cannot be used to increase the size of the reserve fund is then added to the endowment capital
account.

There are many possible permutations of the above spending rule. As noted above, some
institutions specify that an underwater endowment account (real value less than initial capital) has
disbursements suspended until the real value is restored. Spending priorities (e.g. disbursement to
the units or preservation of endowed capital) seem to vary considerably across various institutions.

In our example scenario, we consider the case of an endowed chair. In this case, we assume
that the expenses associated with the chair simply increase with a known academic inflation factor.
This liability is not directly tied to the size of the endowment capital. We will assume that the
expense rate associated with this chair E(ti)rate = Eratei has the following form

Eratei = Erate0 exp[Aratef ti], (2.5)

where Erate0 is the initial expense and Aratef is the academic inflation factor. We make the simplifying
assumption that the expense for the period [ti−1, ti] is withdrawn from the endowment at ti (there
is no withdrawal at t0 = 0). We denote this actual expense by Ei, which is given by

Ei = Eratei ∆t. (2.6)

In the following, we will refer to Ei as the promised cash flows of the endowment. Note that some
institutions specify start-up rules, e.g. no spending is allowed until the endowment builds up several
years of the promised cash flow in a reserve.

Let Di be the disbursement associated with the spending rules described above. If Di > Ei,
then the excess amount is applied first to the reserve fund, and then to the endowment capital. If
Di < Ei, then this shortfall must be made up by the academic unit. Let G(ti) = Gi be the cash
flow from the academic unit that must occur if there is a shortfall at ti, so that

Gi = max(0, Ei −Di). (2.7)

In the following, we will determine the no-arbitrage value of these cash flow guarantees.
Of course, the ultimate guarantor of these cash flows is the university as a whole. Although a

given unit could simply consider that the university will fund the guarantee if there are a series of
bad investment years, these cash flows must come from the base operating budget of the university,
and hence represent a real cost.

5Note that we have simplified this rule. Often in practice the disbursement rule is based on an average value of
the endowment over several valuation periods

6In practice, some institutions allow for borrowing, but we ignore this case
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3 Terminal and Valuation Date Conditions

The endowment guarantee can be viewed as a path-dependent contingent claim. At any time t, the
claim depends on S(t), the current market value of the endowment; P (t) = S(ti−1), ti−1 < t < ti,
the value of the endowment at the previous valuation date; and R(t) = R(ti−1), ti−1 < t < ti,
the value of the reserve fund at the previous valuation date. Let V̂ (S, P,R, t) be the value of the
endowment guarantee. One of the objectives of the spending rules is to ensure that the real value
of the endowment is preserved, so that the endowment pays out promised cash flows in perpetuity.
However, we will consider the value of the guarantee over a specific time horizon T . For example,
if the endowment is used to fund a chaired professorship, then T would be the expected time to
retirement of the current chairholder. We then have

V̂ (S, P,R, t = T ) = 0. (3.1)

Note that this says that the value of the guarantee must be zero after the last cash flows are paid
out. It does not preclude a cash payment arising from the guarantee immediately before the end
of the time horizon T .

Let t−i and t+i respectively denote the times the instant before and after valuation times ti.
Let (Si, Pi, Ri) be the values of (S, P,R) at t−i . Let (Sspi , P

sp
i , R

sp
i ) be the values obtained after

applying the spending rules to (S, P,R) (i.e. at t+i ). Then, the no-arbitrage value of the guarantee
must satisfy

V̂ (Sspi , P
sp
i , R

sp
i , t

+
i ) = V̂ (Si, Pi, Ri, t−i ) +Gi, (3.2)

where Gi = G(ti) is the non-negative cash flow required to make up for any endowment disburse-
ment shortfall, as in equation (2.7). (Sspi , R

sp
i ) are functions of (Si, Pi, Ri), as set out in the spending

rules. Note that by definition P spi = Sspi .

4 Model Formulation

In general, we assume that the value of the underlying endowment S follows a Poisson jump-
diffusion process as in Merton (1976). Allowing for possible discontinuous jumps permits us to
explore the effects of severe market crashes on the values of these guarantees. Note, however, that
in most of the examples we consider, S will simply be assumed to follow geometric Brownian motion
as in the standard Black-Scholes model (i.e. we will suppress any possible jumps). In particular,
we assume that the risk neutral potential paths followed by S can be modeled by a stochastic
differential equation given by

dS

S
= (r − λκ)dt+ σdz + (η − 1)dq, (4.1)

where r is the risk free rate, dz is the increment of a standard Gauss-Wiener process, σ is the
volatility associated with dz, dq is an independent Poisson process with mean arrival rate λ (i.e.
dq = 1 with probability λ dt and dq = 0 with probability 1 − λ dt), η − 1 is an impulse function
producing a jump from S to Sη, and κ is the mean relative jump size (i.e. κ =

∫∞
0 (η − 1)g(η)dη

where g(η) is the probability density function of the jump amplitude η.
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Although we focus on no-arbitrage valuation (i.e. under the risk neutral probability measure, as
in equation (4.1)), our methods may also be used to calculate the expected value of the guarantees
under the real world probability measure. In cases where we are interested in this alternative
measure, we assume that

dS

S
= (ξ − λPκP )dt+ σdz + (η − 1)dqP , (4.2)

where ξ is the real world drift rate, λP is the real world mean arrival rate of the Poisson process, κP

is the real world mean relative jump size (i.e. κP =
∫∞

0 (η − 1)gP (η)dη, with gP (η) being the real
world probability density function of the jump amplitude η), and dqP is the independent Poisson
process under the real world probability measure. We assume either process (4.1) or process (4.2)
as appropriate for both the partial integro differential equation (PIDE) and Monte Carlo methods
(as described below) for valuing the guarantee.

We now describe the PIDE formulation, beginning with the no-arbitrage value. Let V̂ (S,R, P, t)
be the value of a contingent claim that depends on the underlying endowment value S (and the
auxiliary state variables R and P ) and time t. Since we typically solve option pricing problems
in terms of backwards time τ = T − t, denote V (S,R, P, τ) = V̂ (S,R, P, T − t). For the moment,
ignore any dependence on R and P . As these variables only change at observation times, for any
particular values of R and P between observation times, the following backward PIDE determines
the value of V (S,R, P, τ) (see,e.g. Merton, 1976; Wilmott, 1998; Andersen and Andreasen, 2000):

Vτ =
σS2

2
VSS + (r − λκ)SVS − rV +

(
λ

∫ ∞
0

V (Sη)g(η)dη − λV
)
. (4.3)

Although in principle it is possible to use any reasonable distribution for the jump amplitude η, in
this paper we will restrict attention to the commonly used lognormal probability density function
suggested by Merton (1976). If we denote the mean log jump size by µ and its standard deviation
by γ, then the expected relative change in the stock price (conditional on a jump occurring) is
given by κ = E[η − 1] = exp(µ + γ2/2) − 1. Note that if we set suppress jumps by setting λ = 0
in (4.3), then the classical Black-Scholes partial differential equation for pricing European options
is obtained.

In some cases it is also of interest to determine the expected value of the guarantee under the
real world probability measure. Assuming that the real world process is (4.2), then the expected
value is given by the solution of

Vτ =
σS2

2
VSS + (ξ − λPκP )SVS − ρV +

(
λP
∫ ∞

0
V (Sη)gP (η)dη − λPV

)
, (4.4)

where equation (4.4) contains the real world drift rate ξ, and the superscripts P refer to real world
(i.e. P measure) quantities. For simplicity in the following, we will set the discount rate ρ = r.
Hence we can interpret the solution to equation (4.4) as the negative of the amount which must
be placed in a risk free investment to cover the expected loss of the guarantee. Note that from a
computational standpoint, the PIDE for the no-arbitrage value and the expected value have the
same form, so it is straightforward to calculate either value.
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To complete the description of the PIDE formulation, we need to specify terminal and valuation
date conditions. In terms of V (S, P,R, τ), the terminal condition (3.1) is

V (S, P,R, τ = 0) = 0. (4.5)

The valuation date conditions (3.2) become

V (S, P,R, τ+
i ) = V (Ssp, P sp = Ssp, Rsp, τ−i )−Gi, (4.6)

where τ+
i and τ−i are the instants before and after the valuation dates (with time running back-

wards). As before, we have that (Ssp, Rsp) are known functions of (S, P,R), as given by the spending
rules, and P sp = Ssp. Note that equation (4.6) differs from equation (3.2) since we solve the PIDE
backwards in time.

Let B(S, τ) be the value of the guarantee assuming that the entire capital S is invested in a
risk free asset. If we allow the holder of a short position in this guarantee (the academic unit) to
optimally switch from investing in a risky asset (under the spending rules) or to simply invest the
endowment in a risk free asset, then the valuation date condition (4.6) becomes

V (S, P,R, τ+
i ) = max

[
V (Ssp, P sp = Ssp, Rsp, τ−i ), B(Ssp +Rsp, τ−i )

]
−Gi. (4.7)

We emphasize that equation (4.7) specifies the value if the investment is optimally switched once
from being invested in risky assets to the risk free asset (i.e. we are not permitting multiple switches
back and forth).

Note that PIDE (4.3) contains no derivatives with respect to (R,P ). Hence equation (4.3)
represents a set of one-dimensional PIDEs embedded in the three dimensional space (S, P,R).
These one-dimensional PIDEs exchange information at valuation dates through the valuation date
conditions (4.6) or (4.7).

As an independent check on the PIDE results, we also use a Monte Carlo method. This also
allows us to examine the distribution of the guarantee value under both the risk neutral and the
real world measure.

To determine the no-arbitrage value of the guarantee, the Monte Carlo method consists of the
following three steps (see, e.g. Boyle et al., 1997):

1. Simulate sample paths of the underlying endowment according to equation (4.1).

2. Evaluate the discounted cash flows of the guarantee values on each sample path.

3. Average the discounted cash flows over all the sample paths.

If we are interested instead in the expected value under the real world probability measure, then we
simply change step 1 above so that equation (4.2) is used instead. (This assumes we are interested
in the expected value as of today; in some cases we are interested in it at T , and in these situations
the cash flows are not discounted.)

As we have outlined two alternative formulations, an obvious question is which of them is more
appropriate or efficient in what circumstances. In cases where the guarantee value over a range of
initial capital values is of interest, then the PIDE method is suitable. As well, if optimal decision
making is required, this is easily handled with a PIDE method. Alternatively, if the statistical
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Parameter Value
Promised cash flow rate Erate0 5
Initial reserve R0 0
Reserve cap Cr .15
Maximum spending rate F ratesp .05
Time horizon (T ) 20 years
Valuation frequency yearly
Reserve investment risk free
General inflation rate Iratei .02
Academic inflation rate Aratef .02
σ .10
r .04
λ 0

Table 5.1: Base case parameters. Note that parameters such as the cash flow rate, spending rate,
inflation rates, and the risk free interest rate are expressed in annual terms.

properties of the guarantee value and the endowment capital are of interest, then the Monte Carlo
technique is appropriate.

Appendix A provides technical implementation details for both of these numerical methods. We
also outline some verification tests which show that both methods converge to the same solution. In
the following, we show examples for various choices of the contract and market parameters, using
either numerical PIDE or Monte Carlo methods as appropriate.

5 Numerical Examples

As a base case for our illustrative calculations, we use the parameter values given in Table 5.1.
Note that we assume that Erate0 = 5. We will examine the value of the implied guarantee for initial
capital levels ranging from 0 to 250. To put this in perspective, this means that if we expect to be
able to fund promised cash flows with a real return of 5%, this corresponds to an initial capital of
100. Note the implied shortfall—with an initial capital of 100, we are seeking nominal returns of
7% (5% real plus 2% inflation), but the nominal risk free rate is 4%.

Base case scenario. Figure 5.1 shows the no-arbitrage value of the guarantee, assuming the
data in Table 5.1. The figure depicts the value of V (S, S,R = 0, τ = T ), which is the initial value
of the guarantee, assuming the reserve fund is zero at inception. We also show the value of the
guarantee if the endowment is entirely invested in the risk free asset (σ = 0.0) as well as a high
volatility case (σ = .3).

If we assume that the initial endowment is 100, which is just enough to fund the promised
cash flows under the assumption of a 5% real return, then the value of the guarantee is −38.90
(assuming σ = .10). This clearly represents a substantial fraction of the initial endowment. In
fact, if we double the size of the initial endowment, but keep the promised cash flows constant,
then we only need a 2.5% real return to fund the cash flows. However, in this case, the value of
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Figure 5.1: The no-arbitrage value of the cash flows funded by the endowment. Base case param-
eters are given in Table 5.1. All examples used the base case parameters except where noted in the
figure. The σ = 0 line represents investment of the endowment capital in a risk free asset.

the guarantee is still substantial (−25.60). The value of the guarantee is also significantly higher
if the endowment is invested in riskier assets (σ = .30). For low levels of the initial endowment,
the guarantee is worth more if the funds are placed in the risk free asset. However, as the initial
endowment increases, the guarantee eventually becomes worth more if the endowment is invested
in risky assets (the crossover points being around 60 for the high volatility case and about 160
for the low volatility case). Note that all three cases intersect the vertical axis at around −81.60
when the initial endowment is zero. In this situation, the guarantee is simply a promise to pay out
a real annuity over the next twenty years and its value can easily be calculated as follows. The
annually compounded inflation rate is e.02 − 1 = .020201, and the annually compounded nominal
discount rate is e.04−1 = .040811, implying a real discount rate of 1.040811/1.020201−1 = .020201
(annually compounded). The present value of the annuity is then

5×
[

1− 1.020201−20

.020201

]
= 81.60.

To conclude our discussion of the base case scenario, we note that Figure 5.1 shows a feature
which is counter-intuitive. Recall that the endowment is used to fund cash flows which increase by
a known inflation factor. Consequently, we would expect that the value of the guarantee should
approach zero as the initial capital becomes large. However, in Figure 5.1, the guarantee value
increases (from a negative value) quite quickly at first (as a function of initial capital), but then
rapidly levels off. In order to understand this phenomenon and to illustrate various other aspects
of these guarantees, we will carry out a set of additional illustrative examples.

Reserve fund investment. We begin by considering the effect of assuming that the reserve fund
is invested in the same risky assets as the endowment itself, as opposed to the base case situation
where the reserve is placed in a risk free account. Figure 5.2 shows the results. For both volatilities

11



Initial Capital

G
ua

ra
nt

ee
V

al
u

e

0 50 100 150 200 250
-90

-80

-70

-60

-50

-40

-30

-20

-10

0

σ = .1

σ = .3

Reserve invested
in risk-free asset

Reserve invested
in risky asset

Figure 5.2: Comparison of the effect on the no-arbitrage value of the guarantee if the reserve fund
is invested in risk free assets or in the same risky assets as the endowment itself. Base case values
from Table 5.1 are used unless otherwise indicated.

considered, it appears to be slightly more advantageous to invest the reserve in risk free assets, but
the effect is not very large. Moreover, the general pattern of the magnitude of the guarantee as
a function of initial endowment capital falling rapidly for low levels of the endowment but falling
at a much lower rate as the endowment level is increased persists, independent of how the reserve
account is invested.

Reserve fund cap. We now explore the effect of varying the reserve fund cap Cr on the no-
arbitrage guarantee value. The results are illustrated in Figure 5.3. Recall that Cr is the maximum
percentage of endowed capital permitted to be in the reserve fund. Clearly, when Cr = 0 (no
reserve fund), the academic unit is very exposed to risk. Increasing the size of the reserve cap is
initially very beneficial, particularly for larger values of initial capital, but the effect rapidly tapers
off as Cr is increased.

Optimal switching. What happens if we allow the academic unit to switch from being invested
in risky assets to a risk free asset at each anniversary date of the inception of the endowment?
Note that we only allow one actual switch, but we check whether it is optimal to switch at each
anniversary date. In other words, the option to switch is of the Bermudan type. Figure 5.4 shows
the guarantee value assuming that the academic unit makes the optimal choice (risky or risk free
investment) in order to minimize the value of the guarantee. The figure indicates that it is optimal
to switch to a risk free investment (from a no-arbitrage perspective) if the endowment is sufficiently
large.

Jump diffusion. Thus far, we have explored situations where there are no discontinuous jumps in
the model for the underlying risky asset. The effect of allowing such jumps is examined in Figure 5.5.
This example uses the base case parameters and the jump parameters given in Table 5.2.7 The

7The jump distribution parameters µ and γ indicate that the expected value of a jump is severely negative, but
also that jumps have a large standard deviation. The parameter values used here correspond closely with those
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Figure 5.3: The effect of the reserve fund cap Cr on the no-arbitrage guarantee value. The base
case has Cr = .15. Base case parameters are provided in Table 5.1. All examples use the base case
parameters except as noted in the figure.
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Figure 5.4: The effect of adding the option to switch to a risk free investment on each anniversary
date after the inception of the endowment. Base case parameters are provided in Table 5.1. All
examples use the base case parameters except as noted in the figure.
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Parameter Value
γ .45
µ -.9
λ .1

Table 5.2: Jump parameter values. The implied volatility which matches the price of a 20 year
European call option at the strike priced under a jump diffusion model with the above parameters
is σimp = .2811.
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Figure 5.5: The effect on the no-arbitrage guarantee value of assuming the underlying process
follows a jump diffusion with parameters given in Table 5.2. All other parameters are base case
parameters as in Table 5.1. Also shown is the base case result, as well as the guarantee value with
a constant volatility model (no jumps) with σimp = .2811. This is the implied volatility which, in
a no-jump model, matches the price of a 20 year at-the-money European call option under a jump
diffusion model.

guarantee under jump diffusion is very close to the base case solution. It is important to note that
the jump diffusion case uses the same diffusive volatility σ as the base case. In contrast, we also show
the value given by a no-jump model using the implied volatility which gives that same price as the
jump model for a twenty year at-the-money vanilla European call option. Clearly, for this example, a
diffusion model gives completely different results compared to the jump-diffusion model. Essentially,
the spending rules are such that jumps do not have much effect on the guarantee, compared to
an increase in volatility. In other words, as far as the endowment guarantee is concerned, jumps
should not be modeled by using an effective volatility.

Underwater endowments. As noted above, some institutions enforce a no-spending policy for
underwater endowments, i.e. endowments having a real value less than the initial capital. Figure 5.6

reported by Andersen and Andreasen (2000), which were found by calibrating the jump diffusion model to observed
prices of S&P 500 index options.
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Figure 5.6: The effect on the no-arbitrage guarantee value of not allowing spending if the real
value of the endowment is less than the initial value. Base case parameters (Table 5.1 are used
unless indicated otherwise.

compares this policy with the base case spending rules. In this case, from the standpoint of the
unit providing the guarantee, it is less costly (from a no-arbitrage point of view) to simply invest
in a risk free asset with a certain loss.

Allocation of initial capital in reserve fund. Figure 5.7 shows the effect on the no-arbitrage
guarantee value of different initial allocations between the risky investment and the reserve fund.
The reserve cap Cr = .20 for these examples. All other parameters are base case values, as in
Table 5.1. Increasing the allocation to the reserve decreases the risk, but the effect tapers off when
the fraction of the initial capital invested in the reserve is above 15%.

Modified spending rule. While the examples presented thus far provide many interesting insights
into the qualitative nature of various features of the value of the guarantee, none of them explain
why the guarantee value tends to zero only very slowly as the initial capital increases. By re-
examining the spending rule in our model, we see that the first priority is to maintain the real
value of the endowment capital (many institutions specify this goal as part of their endowment
policy). The reserve fund cannot be used to pay the promised cash flows unless the real value of
the endowment capital has been preserved over the valuation interval.

To be more precise, let Stargi denote the target real value of the endowment capital at time ti,
where Stargi = PiIi−1. If Si − Stargi is negative, then the reserve fund Ri is drawn down first in
an attempt to top-up the endowment to Stargi . The reserve fund is only used to pay the promised
cash flow after top-up of the endowment fund to Stargi . Essentially, (Si − Stargi +Ri) rather than
Ri alone is available to the academic unit to fund the promised cash flow.

To gain some insight into this effect, we examined many of the paths generated by Monte Carlo
simulation. Figure 5.8 shows one typical sample path of S − Stargi , where Stargi is the target value
of the endowment required to preserve the real capital during [ti−1, ti].8 We also show the R and

8The actual path shown was generated under the risk neutral probability measure, but any such path could also
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Figure 5.7: The effect on the no-arbitrage guarantee value of different initial capital allocation to
the reserve fund. The reserve cap Cr = .20. All other parameters are base case parameters, as in
Table 5.1.

−G values. The base case parameters were used with initial capital of 200. More detailed data for
this realized path can be found in Table A.2 in the appendix. Figure 5.8 clearly shows that most of
the time the reserve fund is used to maintain the real value of the endowment fund. Although the
reserve occasionally becomes fairly large (i.e. several times the yearly promised cash flow), this does
not guarantee that the academic unit will be protected from deficit. This is essentially because the
reserve fund is reduced to zero in a year when the endowment capital suffers a large loss. Although
the reserve fund may hold several times the promised cash flows, a small relative loss of a large
endowment capital can quickly eliminate the reserve.

Based on the above analysis, we modify the spending rule so that there is no obligation to
maintain the endowment’s real value on a year by year basis. To be more specific, when there is
a year such that the endowment capital is less than the previous year’s inflated value, we allow
the reserve fund to be used to fund the promised cash flow. In reality, some universities do have
such spending rules (see, e.g. Wilfrid Laurier University, 2003). Under this new spending rule, the
absolute no-arbitrage guarantee value becomes significantly smaller when the initial capital is large.
Figure 5.9 shows the effect of the modified spending rule on the no-arbitrage guarantee value. The
figure clearly indicates that a spending rule which attempts to preserve the endowment capital (on
a year by year basis) transfers risk to the academic unit. Under the original spending rule, this risk
reduces only very slowly as the initial capital becomes large.

Table 5.3 shows the mean values of the endowment fund at the end of the time horizon (twenty
years) under both the original and the modified spending rules. We can see that when the initial
capital is small, both rules are unsuccessful in maintaining the real value of the initial endowment.

be obtained under the real world probability measure. In other words, because the risk neutral measure and the real
world measure are equivalent, the set of possible paths under each measure are identical. The effect of the measure
change is merely to alter the probabilities of the paths.
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Figure 5.8: A sample path with initial capital value of 200. Remaining parameters are base case
(Table 5.1) unless otherwise indicated. S − Starg is the value of the capital account which exceeds
the value required to preserve the real value of the endowment.
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Figure 5.9: The effect of not preserving the endowment real value on the no-arbitrage guarantee
value. When the return on the endowment is less than inflation in any given year, spending is
allowed from reserve fund (denoted by not preserving capital), compared to the base case spend-
ing rule (denoted by preserving capital). Remaining parameters are base case (Table 5.1) unless
otherwise indicated.
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Sinit Inflated Sinit Mean
Preserving the initial capital

100 149.18 121.24
200 298.36 299.73
Not preserving the initial capital
100 149.18 101.14
200 298.36 255.84

Table 5.3: Mean values of the endowment fund at T = 20 years under the risk-neutral probability
measure. Parameters are base case (Table 5.1) unless otherwise indicated. Sinit stands for the initial
capital value. Inflated Sinit refers to Sinit increased by the continuously compounded inflation rate
Irate after T = 20 years.

However, when the initial capital is large, the original spending rule is more successful at maintain-
ing the real value of the initial capital, whereas the modified spending rule still leads to a loss in
the real value of the initial capital.

Expected value of guarantee. All of the results reported thus far have been in terms of the no-
arbitrage value of the guarantee. As explained earlier, this type of analysis is applicable when the
portfolio of risky assets that the endowment is invested in is known and tradeable, for example, a
passive investment in an exchange-traded market index. Alternatively, if the endowment is invested
in an actively managed fashion, the composition of the portfolio may be unknown (to anyone
except the fund managers), and the no-arbitrage value would not be an appropriate measure. As
an alternative, we can calculate the expected value of the guarantee. As described above, the
expected value of the guarantee is simply obtained under the real-world probability measure by
using the real drift rate ξ (and the other P measure quantities such as λP , γP , µP in equation (4.4))
in either the PIDE or the Monte Carlo methods (where we also assume that the guarantee is
discounted by the risk free rate). Recall that we can interpret the expected value as the negative
of the amount which should be invested in a risk free account to cover the expected value of the
guarantee. In the following, we will restrict attention to the no-jump case (λP = 0). Consequently,
the only parameter which must be estimated is the real world drift ξ in equation (4.4).

If the commonly used real return target of 5% is assumed, this implies a drift rate of 7%
assuming constant inflation of 2%. If we assume that the CAPM equation

ξ = r + λRσ (5.1)

holds, where λR is the market price of risk, then for a volatility of σ = .10 and a risk free rate
of r = .04, we have a market price of risk of λR = .3. Figure 5.10 shows the expected value of
the endowment guarantee, where the underlying endowment has the volatilities σ = {0, .1, .3} and
the drift rates are given by equation (5.1) with λR = .3. These results are obtained using the
PIDE approach. Comparing Figures 5.10 and 5.1, we see that the expected absolute values of the
guarantee are somewhat lower than the no-arbitrage values (provided σ 6= 0). This reflects the
stronger upward drift of the underlying asset under the real world probability measure.

Alternatively, the Monte Carlo method can be used to give an idea of the distribution of the
expected guarantee values. Table 5.4 summarizes the statistical properties of the distribution of
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Figure 5.10: The expected value of the guarantee. All cases shown use the base case parameters
(Table 5.1) except where indicated. The drift rate is given by equation (5.1) with λR = .3.

the expected guarantee value for the base case with parameters in Table 5.1. The drift rate is
given in equation (5.1) with λR = .3 and σ = {.1, .3}. 1,000,000 Monte Carlo simulations were
used. Table 5.4 also shows the 95% conditional value-at-risk (CVaR), i.e. the mean of the 5%
worst outcomes. Here the 95% CVaR value turns out to be −52.22 when σ = .1, which is highly
significant compared to the initial capital of 100. If the funds invested are placed in riskier assets
(σ = .3), the 95% CVaR increases to almost 70% of the initial capital.

Recall that by changing the spending rule so that there is no obligation to preserve the endow-
ment fund real value on a year by year basis, the no-arbitrage guarantee value becomes significantly
closer to zero. Table 5.5 presents the statistical properties of the expected guarantee value under
this modified spending rule. Comparing Tables 5.5 and 5.4, we can see that although the magnitude
of the expected guarantee values have been significantly reduced (i.e. become much closer to zero)
under the new rule, the absolute value of the 95% CVaR remains very large.

Table 5.6 shows the statistical properties of the endowment fund capital after 20 years under the
real world probability measure. With the modified spending rule, on average the real value of the
endowment fund is increased from its original level at the inception of the endowment. However,
the real increase is less than that observed under the original spending rule. Consequently, even

σ Mean Std. Dev. 95% CVaR
0.1 -22.04 13.26 -52.22
0.3 -35.04 15.46 -69.52

Table 5.4: Statistical properties of the distribution of the expected guarantee value for the base
case with parameters in Table 5.1. The drift rate is given by equation (5.1) with λR = .3 and the
initial capital Sinit = 100.
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σ Mean Std. Dev. 95% CVaR
0.1 -14.92 12.66 -46.01
0.3 -17.13 17.87 -62.05

Table 5.5: The effect of the modified spending rule of not preserving the real value of the capital
on a year by year basis. Statistical properties of the distribution of the expected guarantee value are
given for the base case with parameters in Table 5.1. The drift rate is given by equation (5.1) with
λR = .3 and the initial capital Sinit = 100.

Sinit Inflated Sinit Mean Std. Dev.
Preserving the initial capital

100 149.18 196.91 84.49
200 298.36 521.20 231.07

Not preserving the initial capital
100 149.18 171.32 82.14
200 298.36 475.68 231.11

Table 5.6: Statistical properties of the endowment fund capital at the end of twenty years under
the real world probability measure. Parameters are base case (Table 5.1), unless otherwise noted.
Sinit stands for the initial capital value.

if we examine the expected value of the guarantee under the real world measure, the effect of
the original spending rule is to transfer wealth to future generations and to transfer risk to the
academic units. The modified spending rule also results in a real increase in the endowment capital
and subsequent transfer of risk. Note that in all cases the standard deviation of the value of the
endowment principal after 20 years is about 50% of the expected value of the principal.

6 Summary and Conclusion

The examples presented above illustrate the fact that the no-arbitrage value of the endowment
guarantee is surprisingly large. To put this in context, consider the following scenario. A donation of
$3 million is received for an endowed chair. Assuming an expected real return of 5%, an endowment
of this amount is projected to generate $150,000 per year (in constant dollars). Based on this, an
academic unit recruits a prominent 45 year old professor to fill the endowed chair. The salary and
benefits associated with this position are currently about $150,000 per year. This amount will, of
course, increase at an academic inflation rate.

Now, suppose the endowment invests in low risk assets and follows the spending rules according
to the parameter values in Table 5.1. From Figure 5.1, we see that for every $100 of initial capital
the guarantee value of meeting an initial $5 expense per year (which increases with inflation) is
about $40. In other words, we see that the no-arbitrage value of the implied salary and benefit
guarantee over the 20 years until the retirement of the professor is about 40% of the original capital.

More generally, we conclude with the following observations. The typical university endowment
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spending rule (a cap of 5% of the 12-quarter average endowment capital, with reduced spending
during periods of low market returns), has been under criticism due to intergenerational transfers of
wealth and cyclical spending (Mehrling, 2004; Sedlacek and Clark, 2003). An alternative approach,
which uses a reserve fund, attempts to achieve the following goals:

• preservation of the real value of the endowment;

• participation in the higher returns of risky investments (equities); and

• risk reduction by using the reserve fund to smooth out possible short-falls in promised cash
flows.

Based on an analysis of the spending rules at several institutions, we have developed a model
spending rule which captures many of the features of this alternative approach. We consider a
typical situation where an academic unit uses the endowment returns to fund fixed cash flows
which increase at a (relatively) predictable academic inflation rate. An example of this situation
would be the funding of the salary and benefits associated with an endowed chair.

Investing in risky assets means that there is some probability of a shortfall in meeting the annual
promised cash flows. The institutional guarantee being provided to ensure that the promised cash
flows are met can be valued using a no-arbitrage approach. It is common to assume that the
endowment will achieve a 5% real return. Based on typical assumptions we find that in the situation
where this expected return is just sufficient to fund the yearly promised cash flows, the no-arbitrage
value of the guarantee is about 40% of the original endowed capital.

This result is perhaps not altogether surprising. As suggested by Dybvig (1999), it is somewhat
foolhardy to attempt to meet promised cash flows using an endowment which cannot fund these
cash flows via risk free investments. In the above example, the initial endowment is such that the
real risk free return is insufficient to fund the promised cash flows. The higher expected returns of
investment in equities can only be achieved by taking on risk. The cost of this risk is given by the
no-arbitrage value of the guarantee.

To make another analogy, as beginning students of finance are taught, leverage (whether of the
financial or the operating variety) increases risk. A firm which is highly levered has large amounts
of fixed spending, and funding these commitments from variable operating revenues is very risky.
The situation of such a firm is quite similar in certain respects to an institution attempting to meet
fixed commitments while depending on variable revenues derived from risky financial investments.
It would not seem to be very surprising to find out that the cost of avoiding this risk through an
insurance policy could be quite high.

It is interesting to observe that the size of the guarantee value decreases very slowly as the
initial endowment capital is increased. This is due to the priority given to preserving the real value
of the endowment on a yearly basis. If this priority is removed, then the guarantee value more
rapidly approaches zero as the initial endowment capital is increased.

If we examine the expected value of the guarantee, as opposed to the no-arbitrage value, then the
situation appears somewhat less gloomy. Although the expected value of the size of the guarantee
is smaller, especially if we remove the priority on yearly capital preservation, the risk, as measured
by the 95% CVaR, remains large.

We have only considered the effects of investment in risky assets, assuming that interest rates
and inflation rates are known constants. In practice, stochastic interest rates and inflation rates
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will introduce additional sources of risk in managing the promised cash flows from the endowment.
Moreover, all of our illustrative calculations are for the case of a fixed time horizon, but in most
situations the endowment is expected to provide funds in perpetuity. These effects (extra risk
factors and infinite time horizon) will both imply that the cost of guaranteeing that a given level
of spending can be maintained is likely to be somewhat higher than our estimates.

In summary, these illustrative computations show that apparently reasonable endowment spend-
ing rules can have unexpected side effects. These side effects include intergenerational transfer of
wealth, and institutional assumption of a significant level of risk due to the implied guarantee on
the promised cash flows. Currently, it appears that most universities are unaware of the cost of this
risk, and are perhaps being overly optimistic in their assumptions about endowment cash flows.

Technical Appendix

A Numerical Methods

This Appendix provides technical details about the numerical methods used to value the endowment
guarantee. We use both a numerical PIDE method and a Monte Carlo method.

A.1 Numerical Solution of the PIDE

Recall that the PIDE for the value of the guarantee V (S,R, P, τ) is given by equation (4.3). For
computational purposes, we consider the finite domain

0 ≤P ≤ Pmax

0 ≤S ≤ Smax

0 ≤R ≤ Rmax. (A.1)

The domain (A.1) assumes that the reserve is not allowed to become negative. In cases where no
spending is allowed if the real value of the endowment is less than the initial value we extend the
range of R values so that −Rmax ≤ R ≤ Rmax. Negative R values can be used to track the deficit
in the capital account. However, for ease of exposition, we will focus on the typical case where the
reserve fund is nonnegative.

Note that the PIDE (4.3) is independent of the new state variables (P,R). Consequently,
we can discretize the state variables as {P1, . . . , Pj , . . . , Pjmax} and {R1, . . . , Rk, . . . , Rkmax}. For
each discrete value of (Pj , Rk), we can solve the one dimensional PIDE (4.3) at times between
the valuation dates. To move the solution across an observation date, we use the valuation date
conditions (4.6) or (4.7).

For fixed (Pj , Rk), each one dimensional PIDE (4.3) is a function of (S, t) only. Our numerical
calculations utilize Crank-Nicolson timestepping with the modification suggested by Rannacher
(1984). Other details of the discretization can be found in d’Halluin et al. (2005). In situa-
tions where a jump diffusion model was used, the discrete algebraic equations are solved using a
fixed point iteration combined with a fast Fourier transform evaluation of the integral term in the
PIDE (4.3). This is described in detail in d’Halluin et al. (2005). The tolerances for all iterative
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Figure A.1: Locally refined grid near S = P .

methods (within each timestep) were set to ensure that the error in the solution of the discretized
equations did not affect the first six significant digits of the solution.

With regard to the mesh for the R variable, there are no particularly noteworthy issues. Suppose
that we use an S grid with Sg = {S1, . . . , Si, . . . , Simax} and a P grid, Pg = {P1, . . . , Pj , . . . , Pjmax},
with Pg = Sg (i.e. a Cartesian product S × P grid, with the same node spacing in the S and P
directions). In this case, no interpolation in the S or P directions is required during the application
of the state variable updating rule

P sp = Ssp. (A.2)

However, Windcliff et al. (2001) show that this type of grid results in poor convergence for shout
options. Normally, we choose a fine node spacing near S = Sinit, since this is the region of most
interest. However, since the nodes P = S for all values of S are required during the application of
the jump condition (A.2), these values may have poor accuracy in areas where the S node spacing
is large. It is therefore desirable to have a fine node spacing in the S direction for all nodes near
Si ' Pj , the diagonal of the (S, P ) grid. Such a grid is shown in Figure A.1.

For this type of grid, application of the jump conditions (4.6) will normally require interpolation
of the discrete solution values. We use linear diagonal interpolation in the (S, P ) plane, as described
in Windcliff et al. (2001), and linear interpolation in the R direction. Since observation times
are independent of the timestep size of the PIDE solve, this will result in global second order
convergence (Forsyth et al., 2002).

Away from valuation dates, each one dimensional PIDE is independent of the other PIDEs,
hence we need only consider the boundary conditions at S = 0 and S = Smax. No boundary
condition is required at S = 0, since the PIDE becomes an ordinary differential equation at that
point. At S = Smax, we apply the condition VSS = 0. See d’Halluin et al. (2005) for details on
applying these boundary conditions to PIDE (4.3). Note that our grid construction method (as in
Figure A.1) ensures that for each fixed (Pj , Rk), Smax � Pj , so that it is reasonable to apply the
condition VSS = 0 at S = Smax.

At observation dates, we note that no information is required for P,R < 0. However, for a
fixed choice of Smax, Rmax, Pmax, there will be some cases (particularly when S > Pmax) when the
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Pmax = 10000, Rmax = 5000 Pmax = 100000, Rmax = 50000
Nodes Timesteps Guarantee value Nodes Timesteps Guarantee value

(nx × ny × nz) at S = 100 (nx × ny × nz) at S = 100
59× 59× 18 240 -39.15 63× 63× 22 240 -39.15

117× 117× 35 480 -38.96 126× 126× 43 480 -38.96
233× 233× 69 960 -38.90 251× 251× 85 960 -38.90

Table A.1: Convergence test of PIDE method. Base case parameters as in Table 5.1. nx, ny, nz
refer to the number of nodes in the S, P and R directions respectively.

spending rules will require evaluation of the solution outside the computational domain. In these
cases, we modify the valuation date conditions (4.6) to be

V (S, P,R, τ+
i ) = V (min(Ssp, Smax),min(P sp = Ssp, Pmax),min(Rsp, Rmax), τ−i )−Gi. (A.3)

Effectively, we can think of the modified valuation date conditions (A.3) as altering the spending
rules so that there is a cap on the absolute value of the endowment principal and the reserve fund.
If Smax, Pmax, Rmax are sufficiently large, these states will have a very low probability and hence
will have little impact on the solution in states of interest. This will be verified in some numerical
tests below.

We conclude our discussion of the PIDE pricing algorithm by providing some convergence tests.
These tests use the base case parameters from Table 5.1. Note that λ = 0, indicating that the
base case has no jumps. Table A.1 shows the results for a sequence of grids. Each fine grid is
constructed by inserting nodes halfway between each coarse grid node. The timestep size on each
fine grid is one half the timestep size on the preceding coarse grid. Table A.1 also shows the
effect of applying valuation date condition (A.3) when the spending rule requires data outside the
computational domain. The effect of finite Pmax, Rmax when Pmax = 10000, Rmax = 5000 on the
solution at S values of interest is clearly very small (the solution is unaffected to four digits by
increasing Pmax, Rmax by a factor of ten). We will use Pmax = 10000, Rmax = 5000 for all subsequent
computations.

A.2 Monte Carlo Methods

We now turn to describing the Monte Carlo algorithm. To simulate a sample path of a jump diffu-
sion, we take the approach of simulating the jump times 0 < t∗1 < t∗2 < . . . explicitly (Glasserman,
2004), where {t∗j , j = 0, 1, 2, . . . } is the jth random arrival time of the jump. For ease of notation,
assume that we are using process (4.1) to determine the no-arbitrage value of the guarantee. Since
we assume z and q in the process (4.1) are independent of each other, S(t) evolves as an ordinary
geometric Brownian motion from one jump time to the next. When a jump occurs, S(t) has a jump
amplitude of η(t). To be more precise, equation (4.1) can be re-written in the following form:

dS

S
= (ξ − λκ)dt+ σdz, if a jump does not occur ,

= (ξ − λκ)dt+ σdz + (η − 1), if a jump occurs.
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Let t∗−j denote the instant before the jth jump event occurs, and let ∆t∗j+1 = t∗j+1 − t∗j denote the
time interval between the (j+ 1)th and jth jump event. Then, we have the following exact solution
of S(t):

S(t∗−j+1) = S(tj) exp
[(
ξ − λκ− σ2

2

)
∆t∗j+1 + σφ

√
∆t∗j+1

]
, (A.4)

and
S(t∗j+1) = S(t∗−j+1)η(tj+1), (A.5)

where φ is a random variable drawn from a standard normal distribution. With the assumption that
dq is a Poisson process having the mean arrival rate of λ, the arrival times {∆t∗j , j = 1, 2, 3, . . . } are
i.i.d. exponential random variables having mean of 1/λ. By generating exponentially distributed
random numbers, we can determine the jump times.

Recall that we also assume that η ∼ lognormal(µ, γ) and η is independent of dq and dz. Con-
sequently, the jump amplitude is generated by drawing a random number that is lognormally
distributed.

As before, let the observation times be denoted by ti, with ∆t = ti+1−ti. Algorithm 1 describes
the steps to generate one sample path of jump diffusion in the observation interval of (ti, ti+1).

Algorithm 1 Generating one sample path of jump diffusion from ti to t−i+1

Require: ∆t∗ + ti is the next jump time after ti
1: S ⇐ Sspi , Telapsed ⇐ ∆t∗

2: if Telapsed > ∆t then
3: generate standard normally distributed random number φ
4: S ⇐ S exp[(ξ − λκ− σ2

2 )∆t+ σφ
√

∆t]
5: ∆t∗ ⇐ ∆t∗ −∆t
6: else
7: while Telapsed < ∆t do
8: generate standard normally distributed random number φ
9: S ⇐ S exp[(ξ − λκ− σ2

2 )∆t∗ + σφ
√

∆t∗]
10: generate lognormally distributed random number R, where R ∼ LN(µ, γ)
11: S ⇐ SR
12: generate ∆t∗ from the exponential distribution with mean 1/λ
13: Telapsed ⇐ Telapsed + ∆t∗

14: end while
15: ∆tleft ⇐ ∆t− (Telapsed −∆t∗)
16: generate standard normally distributed random number φ
17: S ⇐ S exp[(ξ − λκ− σ2

2 )∆tleft + σφ
√

∆tleft]
18: ∆t∗ ⇐ Telapsed −∆t
19: end if
20: Si+1 ⇐ S
21: return ∆t∗ {∆t∗ + ti+1 is now the next jump time after ti+1}

For the special case of λ = 0, Algorithm 1 can be simplified as a simulation of an ordinary
geometric Brownian motion from ti to t−i+1. Because there are no jumps involved, we do not need
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to compute or return ∆t∗. In this simplified setting we can simply calculate Si+1 using

Si+1 = Sspi exp[(ξ − σ2

2
)∆t+ σφ

√
∆t]. (A.6)

Algorithm 1 generates a sample path of jump diffusion from the instant after the previous val-
uation to the instant right before the current observation. Then we apply the spending rule in
equation (2.7) to compute Gi+1 and to update (Sspi+1, P

sp
i+1, R

sp
i+1) based on the values of (Si, Pi, Ri).

Let Gmi denote the non-negative cash flow required to make up for any endowment disbursement
shortfall at time ti on the mth simulated path, with N = T/∆t being the number of valuation dates.
Then the discounted cash flow V m on mth simulation can be computed using

V m = −
i=N∑
i=1

Gmi e
−rti . (A.7)

Suppose there are M simulated sample paths. Setting ξ = r gives the no-arbitrage value of the
endowment guarantee by averaging Vm over all the sample paths

V̂ (S, S,R, t = 0) =
1
M

m=M∑
m=1

V m. (A.8)

Alternatively, the expected value of the guarantee is given by using the real world drift ξ in equation
(A.6). As for the PIDE case, we use r for the discount rate (recall that we are computing the amount
which should be placed in a risk free reserve to fund the expected value of the guarantee).

Table A.2 shows a representative sample path for the base case scenario with an initial capital
value of 200. This is the same realized path shown in Figure 5.8.

We conclude our discussion of the Monte Carlo technique with some convergence tests. Table A.3
shows the results for a sequence of tests performed with an increasing number of sample paths
(without jumps). The base case no-arbitrage value was computed using the data in Table 5.1. The
results in Table A.3 should be compared to the PIDE results in Table A.1. Assuming that the
PIDE method is converging quadratically, then extrapolation of the results in Table A.1 gives a
value of -$38.88. This is in close agreement with the value of -$38.89 from Table A.3.

Figure A.2 shows the base case no-arbitrage guarantee value versus number of simulation paths
by Monte Carlo methods.
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