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Abstract1

Without resorting to dynamic programming, we determine the decumulation strategy for2

the holder of a defined contribution (DC) pension plan. We formulate this as a constrained3

stochastic optimal control problem. Our approach is based on data-driven neural network (NN)4

optimization. Customized activation functions for the output layers of the NN are applied, which5

permits training via standard unconstrained optimization. The optimal solution yields a multi-6

period decumulation and asset allocation strategy, useful for a holder of a (DC) pension plan.7

The objective function of the optimal control problem is a weighted expected wealth withdrawn8

(EW) and expected shortfall (ES) that directly targets left-tail risk. The stochastic bound9

constraints enforce a guaranteed minimum withdrawal each year. We show that the proposed10

NN approach compares favorably with the numerical results from a Hamilton-Jacobi-Bellman11

(HJB) Partial Differential Equation (PDE) computational framework.12

Keywords: Portfolio decumulation, neural network, stochastic optimal control13

JEL codes: G11, G2214

AMS codes: 93E20, 91G, 68T07, 65N06, 35Q9315

1 Introduction16

Access to traditional defined benefit (DB) pension plans continues to disappear for employees. In17

2022, only 15% of private sector workers in the United States had access to a defined benefit plan,18

while 66% had access to a defined contribution (DC) plan [51]. In other countries, DB plans have19

become a thing of the past.20

Defined contribution plans leave the burden of creating a withdrawal and allocation strategy to21

the individual investor, which Nobel Laureate William Sharpe referred to as “the nastiest, hardest22

problem in finance” [40]. Indeed, a review of the literature on decumulation strategies [3, 28] shows23

that balancing all of retirees’ concerns with a single strategy is exceedingly difficult. To address24

these concerns and find an optimal balance between maximizing withdrawals and minimizing the25

aDavid R. Cheriton School of Computer Science, University of Waterloo, Waterloo ON, Canada N2L 3G1,
marcandre.chen@uwaterloo.ca

bDavid R. Cheriton School of Computer Science, University of Waterloo, Waterloo ON, Canada N2L 3G1,
mmkshirazi@uwaterloo.ca

cDavid R. Cheriton School of Computer Science, University of Waterloo, Waterloo ON, Canada N2L 3G1,
paforsyt@uwaterloo.ca

dDavid R. Cheriton School of Computer Science, University of Waterloo, Waterloo ON, Canada N2L 3G1,
yuying@uwaterloo.ca

1



risk of depletion, while guaranteeing a minimum withdrawal, the approach in [17] determines a26

decumulation and allocation strategy for a standard 30-year investment horizon by formulating27

it as a constrained optimal stochastic control problem. Numerical solutions are obtained in [17]28

using dynamic programming, which results in a Hamilton-Jacobi-Bellman (HJB) Partial Differential29

Equation (PDE).30

The HJB PDE framework developed in [17] maximizes expected withdrawals and minimizes the31

risk of running out of savings, measured by the left-tail in the terminal wealth distribution. Maxi-32

mizing withdrawals and minimizing risk are conflicting goals. Consequently, in order to determine33

Pareto optimal points, we will use a scalarization technique. A fixed lower bound is imposed on the34

withdrawal, providing a guaranteed income. An upper bound on withdrawal is also imposed, which35

can be viewed as the target withdrawal. The investment allocation is also constrained to prohibit36

shorting and leverage.37

This constrained stochastic optimal control problem yields a dynamic stochastic strategy as a38

solution, which naturally aligns with retirees’ concerns and objectives. Note that cash flows are not39

mortality weighted, consistent with [2]. This can be justified on the basis of planning to live, not40

planning to die as discussed in [35].41

Our dynamic strategy can be contrasted to traditional strategies such as the Bengen Rule (4%42

Rule), which recommends withdrawing a constant 4% of initial capital each year (adjusted for43

inflation) and investing equal amounts into stocks and bonds [2]. Initially proposed in 1994, the 4%44

Rule is found in [43] to still be a popular strategy 14 years later, and remains as the near-universal45

recommendation of the top brokerage and retirement planning groups. Recently there has been46

acknowledgment in the asset management industry that the 4% Rule is sub-optimal, but wealth47

managers still recommend variations of the same constant withdrawal principle [55]. The strategy48

proposed by [17] is shown to be far more efficient than the Bengen 4% Rule. Unfortunately, the49

PDE solution in [17] is restricted to low dimensions (i.e. a small number of stochastic factors).50

In order to remedy some of the deficiencies of PDE methods (such as in [17]), we propose a51

neural network (NN) based framework without using dynamic programming. In contrast to the52

PDE solution approach, our proposed NN approach has the following advantages:53

(i) It is data-driven and does not depend on availability of a parametric model for traded assets.54

This makes the framework versatile in selecting training data, and less susceptible to model55

misspecification.56

(ii) The control is learned directly by solving original multi-period optimal control problem and57

explicitly exploiting the low dimensionality of the control [52]. This technique thus avoids58

dynamic programming and the associated error propagation. The NN approach can also be59

applied to higher dimensional problems, such as those with a large number of assets.60

(iii) The control generated from NN is a continuous function of time, which fits naturally if the61

optimal control has the same continuity property. If the optimal control is discontinuous in62

time 1, the NN appears capable of producing a smooth, but quite accurate, approximation.263

The NN generates an approximate solution to complicated stochastic optimal control problem.64

Consequently, it is imperative to assess accuracy and robustness. Rarely is the quality of an NN65

solution assessed rigorously, since an accurate solution to the optimal control problem is often not66

readily available. In this paper, we compare the NN solution to the decumulation problem against67

the ground-truth solutions from the provably convergent HJB PDE method.68

1Bang-bang controls, frequently encountered in optimal control, are discontinuous as a function of time.
2For a possible explanation of this, see [22].
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Although unusual, similar a comparison assessment exists in different applications, see, e.g., [26]69

for a comparison study on a fishing control problem. As machine learning and artificial intelli-70

gence based methods continue to proliferate in finance and investment management, it is crucial to71

demonstrate that these methods are reliable and explainable in the financial domain [7]. We believe72

that our proposed framework and test results make a step forward in demonstrating deep learning’s73

potential for stochastic control problems in finance.74

We summarize the main contributions of this paper are as follows:75

• Proposing an NN framework with suitable activation functions for decumulation and allo-76

cation controls, which yields an approximate solution to the constrained stochastic optimal77

decumulation problem in [17] by solving a standard unconstrained optimization problem;78

• Demonstrating that the NN solution achieves very high accuracy in terms of the efficient fron-79

tier and the decumulation control when compared to the solution from the provably convergent80

HJB PDE method;81

• Illustrating that, with a suitably small regularization parameter, the NN allocation strategy82

can differ significantly from the PDE allocation strategy in the region of high wealth and near83

the end of withdrawal time horizon, while the relevant risk-reward statistics remain unaffected.84

This is due to the fact that the problem is ill-posed, with objective function insensitive to the85

control in these regions, unless we add a small regularization term;86

• Testing the NN solution’s robustness on out-of-sample and out-of-distribution data, as well as87

its versatility in using different datasets for training.88

Our work differs from other NN methods for stochastic optimal problems in finance in that one89

NN is used for the discontinuous decumulation control while the second NN represents allocation90

control. As a NN solution to an optimal control problem in general, while other neural network and91

deep learning methods for optimal stochastic control problems have been proposed before, they differ92

significantly from our approach in architecture. These previous approaches take a stacked neural93

network approach as in [8, 19, 50] or a hybrid dynamic programming and reinforcement learning94

approach [21]. In contrast, our framework uses the same two neural networks at all rebalancing times95

in the investment scenario. Since our NNs take time as an input, the solution will be continuous in96

time if the control is continuous. Note that the idea of using time as an input to the NN was also97

suggested in [26]. According to the taxonomy of sequential decision problems proposed in [39], our98

approach would most closely be described as Policy Function Approximation (PFA).99

Furthermore, with the exception of [26], previous papers do not provide a benchmark for nu-100

merical methods, as we do in this work. Our results show that our proposed NN method is able101

to approximate the numerical results in [17] with high accuracy. Especially notable, and somewhat102

unexpected, is that the bang-bang control3 for the withdrawal is reproduced very closely with the103

NN method.104

2 Problem Formulation105

2.1 Overview106

The investment scenario described in [17] concerns an investor with a portfolio wealth of a specified107

size, upon retirement. The investment horizon is fixed with a finite number of equally spaced108

3In optimal stochastic control, a bang-bang control is a discontinuous function of the state.
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rebalancing times (usually annually). At each rebalancing time, the investor first chooses how much109

to withdraw from the portfolio and then how to allocate the remaining wealth. The investor must110

withdraw an amount within a specified range. The wealth in this portfolio can be allocated to any111

mix of two given assets, with no shorting or leverage. The assets the investor can access are a broad112

stock index fund and a constant maturity bond index fund.113

In the time that elapses between re-balancing times, the portfolio’s wealth will change according114

to the dynamics of the underlying assets. If the wealth of the portfolio goes below zero (due to115

minimum withdrawals), no stock purchases are permitted. From this point on, debt will grow at116

the borrowing rate, and withdrawals are restricted to the minimum amount. At the end of the time117

horizon, a final withdrawal is made and the portfolio is liquidated, yielding the terminal wealth.118

We assume here that the investor has other assets, such as real estate, which are non-fungible119

with investment assets. These other assets can be regarded as a hedge of last resort, which can120

be used to fund any accumulated debt [36]. This is not a novel assumption and is in line with121

the mental bucketing idea proposed by [45]. The use of this assumption within literature targeting122

similar problems is also common (see [18]). Of course, the objective of the optimal control is to123

make running out of savings an unlikely event.124

The investor’s goal then is to maximize the weighted sum of expected total withdrawals and125

the mean of the worst 5% of the outcomes (in terms of terminal wealth). We term this tail risk126

measure as Expected Shortfall (ES) at the 5% level. In this section, this optimization problem will127

be described with the mathematical details common to both the HJB and NN methods.128

2.2 Stochastic Process Model129

Let St and Bt represent the real (i.e. inflation-adjusted) amounts invested in the stock index130

and a constant maturity bond index, respectively. These assets are modeled with correlated jump131

diffusion models, in line with [29]. These parametric stochastic differential equations (SDEs) allow132

us to model non-normal asset returns. The SDEs are used in solving the HJB PDE, and generating133

training data with Monte Carlo (MC) simulations in the proposed NN framework. For the remainder134

of this paper, we refer to simulated data using these models as synthetic data.135

If a jump is triggered, St = ξsSt− , where ξs is a jump multiplier and St− = S(t− ε), ε→ 0+ (St−136

is the time immediately before t). log(ξs) is assumed to follow a double exponential distribution137

[24, 25]. The jump is either upward or downward, with probabilities us and 1−us respectively. Let138

y = log(ξs), and y has density139

140

fs(y) = usηs1e
−ηs1y1y≥0 + (1− us)ηs2eη

s
2y1y<0 . (2.1)141

142

We also define143

γsξ = E[ξs − 1] =
usηs1
ηs1 − 1

+
(1− us)ηs2
ηs2 + 1

− 1 . (2.2)144

145

The starting point for building the jump diffusion model is a standard geometric Brownian146

motion, with drift rate µs and volatility σs. A third term is added to represent the effect of jumps,147

and a compensator is added to the drift term to preserve the expected drift rate. For stocks, this148

gives the following stochastic differential equation (SDE) that describes how the amount in the149

stock account St (inflation adjusted) evolves between rebalancing times:150

4



dSt
St−

=
(
µs − λsξγsξ

)
dt+ σs dZs + d

 πst∑
i=1

(ξsi − 1)

 , t ∈ (ti,ti+1) (2.3)

where dZs is the increment of a Wiener process, πst is a Poisson process with positive intensity151

parameter λsξ. For all i, ξ
s
i are assumed i.i.d, positive, and with distribution (2.1). In addition, it is152

assumed that ξsi , π
s
t , and Zs are all mutually independent.153

In the practitioner literature, it is usual to model the returns of a constant maturity (real,154

i.e. inflation adjusted) bond index fund, by an SDE. Following the lead of [29, 27], we model the155

constant maturity (real) bond index by a jump diffusion process. Let the amount in the constant156

maturity bond index be Bt− = B(t − ε), ε → 0+. Between rebalancing times, the amount in the157

bond account Bt evolves as158

dBt
Bt−

=
(
µb − λbξγbξ + µbc1{Bt−<0}

)
dt+ σb dZb + d

 πbt∑
i=1

(ξbi − 1)

 , t ∈ (ti,ti+1) (2.4)

where the corresponding terms in Equation (2.4) are defined in similar fashion to Equation (2.3).159

πbt denotes a Poisson process, having non-negative intensity parameter λbξ, γ
b
ξ = E[ξb − 1], and y =160

log(ξb) has the same distribution as in equation (2.1) (denoted by f b(y)) with distinct parameters,161

ub, ηb1, and ηb2. We make the assumption that ξbi , π
b
t , and Zb mutually independent, similar to162

assumptions placed on the SDE for St. The term µbc1{Bt−<0} represents the borrowing spread163

(assumed non-negative).164

The correlation between the two assets’ diffusion processes is ρsb, i.e., dZs · dZb = ρsb dt. The165

jump processes are assumed to be independent. For further details concerning the justification of166

this market model, refer to [17].167

The total amount in the retirement account at time t, Wt is given by168

Total wealth ≡Wt = St +Bt. (2.5)

With the exception of an insolvency state, shorting stock and using leverage (i.e., borrowing) are169

not permitted, a realistic constraint in the context of DC retirement plans. Furthermore, if the170

wealth ever goes below zero, due to the guaranteed withdrawals, all stock holdings are sold. Debt171

then grows at the bond rate plus a borrowing spread. We emphasize that we are assuming that172

the retiree has other assets (i.e., residential real estate) which can be used to fund any accumulated173

debt. In practice, this could be done using a reverse mortgage [36].174

2.3 Notational Conventions175

Let T denote the set of discrete times at which rebalancing and withdrawals are permitted176

T = {t0 = 0 < t1 < t2 < . . . < tM = T} . (2.6)

The beginning of the investment period is t0 = 0. We assume each rebalancing time is evenly spaced,177

meaning ti−ti−1 = ∆t = T/M is constant. For notational simplicity, it will be convenient to denote178

time dependence in two forms, i.e. St ≡ S(t), Bt ≡ B(t) and Wt ≡W (t). At each rebalancing time,179

ti ∈ T , we consider the following ordering of events. First, the investor withdraws an amount of180

cash qi from the portfolio. Subsequently, the portfolio is then rebalanced. At time T , there is one181
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final withdrawal, qT , and then the portfolio is liquidated. We assume no taxes or transaction costs182

are incurred on rebalancing. The no-tax assumption is reasonable since retirement accounts are183

typically tax-advantaged. In addition, since trading is infrequent, we assume transaction costs to184

be negligible [11]. For any function f(t), we denote185

f(t+i ) ≡ lim
ε→0+

f(ti + ε) , f(t−i ) ≡ lim
ε→0+

f(ti − ε) . (2.7)

Let X (t) = (S (t) , B (t)), t ∈ [0,T ] denote the multidimensional controlled underlying process.186

Following typical notation, let x = (s, b) denote the the realized state of the system.187

At each rebalancing time ti, the investor first withdraws the amount qi(·), determined by the188

control at time ti; that is, qi(·) = qi(X(t−i )) = q(X(t−i ), ti). This control is used to evolve the189

investment portfolio from W−t to W+
t190

W (t+i ) = W (t−i )− qi , ti ∈ T . (2.8)

The withdrawal and allocation controls are formally functions of state before withdrawal, X(t−i ).191

However, it is useful to note that the allocation control is specifically a function of state after192

withdrawal. This is simply due to the fact that rebalancing occurs after the withdrawal. Let pi(·)193

represent the fraction of wealth in stocks, after rebalancing194

S(t+i ) = p(X(t+i ), ti)W (t+i )

B(t+i ) = (1− p(X(t+i ), ti))W (t+i ) . (2.9)

As formulated, assuming no transaction costs, it is shown in [17] that the control depends on wealth195

only, i.e., pi(·) = p(X(t+i ), ti) = pi(W
+
i )). Therefore, we make another notational adjustment for196

the sake of simplicity and consider qi(·) to be a function of wealth before withdrawal, W−i , and pi(·)197

to be a function of wealth after withdrawal, W+
i .198

We assume instantaneous rebalancing, with the implication that the control at time ti is de-199

scribed by a pair (qi(·), pi(·)) ∈ Z(W−i ,W
+
i , ti), where Z(W−i ,W

+
i , ti) represents the set of admissible200

control values for ti. The constraints on the allocation control are no shorting, no leverage (except201

in an insolvent state). There are minimum and maximum values for the withdrawal. In the normal202

course of events, the no-shorting and no-leverage constraints imply that wealth is always positive.203

However, due to minimum withdrawals at rebalancing times, it is possible for insolvency to occur.204

In this case, no stock holdings are permitted, and debt accumulates at the borrowing rate. Any205

subsequent withdrawals are restricted to the minimum amounts. Any non-zero stock stock positions206

are liquidated at terminal time. We can mathematically state these constraints by imposing suitable207

bounds on the value of the controls as follows:208

Zq(W−i ,ti) =


[qmin, qmax], if ti ∈ T , W−i > qmax

[qmin,W
−
i ], if ti ∈ T , qmin < W−i < qmax

{qmin}, if ti ∈ T , W−i < qmin

, (2.10)

Zp(W+
i ,ti) =


[0,1], if W+

i > 0, ti ∈ T , ti 6= tM

{0}, if W+
i ≤ 0, ti ∈ T , ti 6= tM

{0}, if ti = tM

, (2.11)

Z(W−i ,W
+
i ,ti) = Zq(W−i ,ti)×Zp(W

+
i ,ti) . (2.12)

At each ti, we seek the optimal control for all possible combinations of (S(t), B(t)) having the209

same total wealth [17]. Hence, the controls for both withdrawal and allocation are formally a210
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function of wealth and time before withdrawal (W−i ,ti), but for implementation purposes it will211

be helpful to write the allocation as a function of wealth and time after withdrawal (W+
i ,ti). The212

admissible control set A can be written as213

A =

{
(qi, pi)0≤i≤M : (qi, pi) ∈ Z(W−i ,W

+
i ,ti)

}
. (2.13)

An admissible control P ∈ A, can be written as214

P = {(qi(·), pi(·)) : (qi(·), pi(·)) ∈ Z(W−i ,W
+
i ,ti), i = 0, . . . ,M} . (2.14)

It will sometimes be necessary to refer to the tail of the control sequence at [tn, tn+1, . . . , tM ], which215

we define as216

Pn = {(qn(·), pn(·)) . . . , (pM (·), qM (·))} . (2.15)

The essence of the problem, for both the HJB and NN methods outlined in this paper, will be to217

find an optimal control P∗.218

2.4 Risk: Expected Shortfall219

Let G(WT ) be the probability density of terminal wealth WT at t = T . For 0 < α < 1, typically220

α = 5%, let W ′α satisfy221 ∫ W ′α

−∞
G(WT ) dWT = α , (2.16)

i.e., Pr [WT < W ′α] = α. W ′α can be interpreted as the Value at risk (VAR) at the level α. We222

then define the Expected Shortfall (ES) as the mean of the worst α fraction of the terminal wealth.223

Mathematically,224

ESα =

∫W ′α
−∞WT G(WT ) dWT

α
. (2.17)

As formulated, a higher ES is more desirable than a smaller ES (equation (2.17) is formulated in225

terms of final wealth not losses). For computational purposes, it is useful to use the definition of226

ES as devised in [41],227

ESα = sup
W ′

E

[
W ′ +

1

α
min(WT −W ′, 0)

]
. (2.18)

Under a control P, and initial state X0, this becomes:228

ESα(X−0 , t
−
0 ) = sup

W ′
E
X−0 ,t

−
0

P

[
W ′ +

1

α
min(WT −W ′, 0)

]
. (2.19)

The candidate values of W ′ can be taken from the set of possible values of WT . It is important229

to note here that we define ESα(X−0 ,t
−
0 ) which is the value of ESα as seen at t−0 . Hence, W ′ is230

fixed throughout the investment horizon. In fact, we are considering the induced time consistent231

strategy, as opposed to the time inconsistent version of an expected shortfall policy [47, 14]. This232

issue is addressed in more detail in Appendix A.233
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2.5 Reward Measure: Total Expected Withdrawals (EW)234

As a measure of reward, we will use total expected withdrawals. Mathematically, total expected235

withdrawals (EW) is defined as236

EW(X−0 , t
−
0 ) = E

X−0 ,t
−
0

P

[ M∑
i=0

qi

]
. (2.20)

Remark 2.1 (No discounting, no mortality weighting). Note that we do not discount the future cash237

flows in Equation (2.20). We remind the reader that all quantities are assumed real (i.e. inflation-238

adjusted), so that we are effectively assuming a real discount rate of zero, which is a conservative239

assumption. This is also consistent with the approach used in the classical work of [2]. In addition,240

we do not mortality weight the cash flows, which is also consistent with [2]. See [35] for a discussion241

of this approach (i.e. plan to live, not plan to die).242

2.6 Defining a Common Objective Function243

In this section, we describe the common objective function used by both the HJB method and the244

NN method.245

Since increasing Expected Withdrawals (EW) typically causes a simultaneous decrease in Ex-246

pected Shortfall (ES), we determine Pareto optimal points for this multi-objective problem. For a247

given scalarization parameter κ, we seek the optimal control P0 such that the following is maximized,248

EW(X−0 , t
−
0 ) + κESα(X−0 , t

−
0 ) . (2.21)

We define (2.21) as the pre-commitment EW-ES problem (PCEEt0(κ)) and write the problem249

formally as250

(PCEEt0 (κ)) :

J
(
s,b, t−0

)
= sup
P0∈A

sup
W ′

{
E
X−0 ,t

−
0

P0

[
M∑
i=0

qi + κ

(
W ′ +

1

α
min(WT −W ′, 0)

) stabilization︷ ︸︸ ︷
+εWT∣∣∣∣X(t−0 ) = (s,b)

]}

subject to



(St, Bt) follow processes (2.3) and (2.4); t /∈ T
W+
i = S−i +B−i − qi , X

+
i = (S+

i , B
+
i )

S+
i = pi(·)W+

i , B+
i = (1− pi(·))W+

i

(qi(·), pi(·)) ∈ Z(W−i ,W
+
i ,ti)

i = 0, . . . ,M, ti ∈ T

. (2.22)

The εWT stabilization term serves to avoid ill-posedness in the problem when Wt �W ′, t→ T ,251

and has little effect on optimal (ES, EW) or other summary statistics when |ε| � 1. Further details252

about this stabilization term and its effects on both the HJB and NN framework will be discussed253

in Section 6. The objective function in (2.22) serves as the basis for the value function in the HJB254

framework and the loss function for the NN method.255
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Remark 2.2 (Induced time consistent policy). Note that a strategy based on (PCEEt0 (κ)) is for-256

mally a pre-commitment strategy (i.e., time inconsistent). However, we will assume that the retiree257

actually follows the induced time consistent strategy [47, 14, 17], which is identical to the pre-258

commitment control at the initial time. See Appendix A for more discussion of this subtle point.259

Subsequently we will refer to the strategy from (2.22) as the EW-ES optimal control, noting that it260

is equivalent to an induced time consistent control at any time ti > t0.261

3 HJB Dynamic Programming Optimization Framework262

The HJB framework uses dynamic programming, creating sub-problems from each time step in the263

problem and moving backward in time. For the convenience of the reader, we will summarize the264

algorithm in [17] here.265

3.1 Deriving Auxiliary Function from PCEEt0 (κ)266

The HJB framework begins with defining auxiliary functions based on the objective function (2.22)267

and the underlying stochastic processes. An equivalent problem is then formulated, which will then268

be solved to find the optimal value function.269

We begin by interchanging the supP0
and supW ′ operators. This will serve as the starting point270

for the HJB solution271

J
(
s,b, t−0

)
= sup

W ′
sup
P0∈A

{
E
X−0 ,t

−
0

P0

[
M∑
i=0

qi + κ

(
W ′ +

1

α
min(WT −W ′, 0)

)

+εWT

∣∣∣∣X(t−0 ) = (s,b)

]}
. (3.1)

The auxiliary function which needs to be computed in the dynamic programming framework at272

each time tn will have an associated strategy for any tn > 0 that is equivalent with the solution of273

PCEEt0 (κ) for a fixed W ′. For a full discussion of pre-commitment and time-consistent ES strate-274

gies, we refer the reader to [14], which also includes a proof with similar steps of how the following275

auxiliary function is derived from (3.1). Including W ′ in the state space gives us the expanded state276

space X̂ = (s,b,W ′). Define the problem domain Ω = [0,∞) × (−∞,+∞) × (−∞,+∞) × [0,∞).277

The auxiliary function V (s, b,W ′, t) ∈ Ω is then defined as,278

V (s, b,W ′, t−n ) = sup
Pn∈An

{
EX̂

−
n ,t
−
n

Pn

[
M∑
i=n

qi + κ

(
W ′ +

1

α
min((WT −W ′),0)

)

+εWT

∣∣∣∣X̂(t−n ) = (s,b,W ′)

]}

subject to



(St, Bt) follow processes (2.3) and (2.4); t /∈ T
W+
i = S−i +B−i − qi , X̂

+
i = (S+

i , B
+
i ,W

′)

S+
i = pi(·)W+

i , B+
i = (1− pi(·))W+

i

(qi(·), pi(·)) ∈ Z(W−i ,W
+
i ,ti)

i = n, . . . ,M, ti ∈ T

. (3.2)
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3.2 Applying Dynamic Programming at Rebalancing Times279

The principle of dynamic programming is applied at each tn ∈ T on (3.2). As usual, the op-280

timal control needs to be computed in reverse time order. We split the supPn operator into281

supq∈Zq supp∈Zp(w−−q,t).282

V (s,b,W ′, t−n ) = sup
q∈Zq

sup
p∈Zp(w−−q,t)

{
q +

[
V ((w− − q)p, (w− − q)(1− p),W ′, t+n )

]}
= sup

q∈Zq

{
q +

[
sup

p∈Zp(w−−q,t)
V ((w− − q)p, (w− − q)(1− p),W ′, t+n )

]}
w− = s+ b . (3.3)

Let V denote the upper semi-continuous envelope of V , which will have already been computed283

as the algorithm progresses backward through time. The optimal allocation pn(w,W ′) at time tn is284

then given by285

pn(w,W ′) =

 arg max
p′∈[0,1]

V (wp′, w(1− p′),W ′, t+n ), w > 0, tn 6= tM

0, w ≤ 0 or tn = tM
. (3.4)

Since we proceed backwards in time, the allocation control is determined first (in backwards time)286

followed by the withdrawal control q287

qn(w,W ′) = arg max
q′∈Zq

{
q′ +V ((w − q′)pn(w − q′,W ′), (w − q′)(1− pn(w − q′,W ′)),W ′, t+n )

}
.

(3.5)

Using these controls for tn, the solution then moves from from t+n to t−n288

V (s, b,W ′,t−n ) = qn(w−,W ′) +V (w+pn(w+,W ′), w+( 1− pn(w+,W ′) ),W ′, t+n )

w− = s+ b, w+ = s+ b− qn(w−,W ′) .

(3.6)

At t = T , we have the terminal condition289

V (s, b,W ′,T+) = κ

(
W ′ +

min((s+ b−W ′), 0)

α

)
. (3.7)

3.3 Conditional Expectations between Rebalancing Times290

For t ∈ (tn−1,tn), the tower property gives, for 0 < h < (tn − tn−1),291

V (s,b,W ′, t) = E

[
V (S(t+ h), B(t+ h),W ′, t+ h)

∣∣S(t) = s,B(t) = b

]
; t ∈ (tn−1, tn − h) .

(3.8)

Assuming a parametric model of stock and bond SDEs, Ito’s Lemma for jump processes [49] is292

first applied assume SDEs (2.3) and (2.4). The gives a partial integro differential equation (PIDE),293

as shown in [17] and Appendix B. In computational practice, the resulting PIDE is solved using294

Fourier methods discussed in [16].295
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3.4 Equivalence with PCEEt0 (κ)296

Proceeding backward in time, the auxiliary function V (s,b,W ′,t−0 ) is determined at time zero.297

Problem PCEEt0 (κ) is then solved using a final optimization step298

J(s,b,t−0 ) = sup
W ′

V (s,b,W ′,t−0 ) . (3.9)

Notice that V (s,b,W ′,t−0 ) denotes the auxiliary function for the beginning of the investment period,299

and represents the last step (going backward) in solving the dynamic programming formulation. To300

obtain this, we begin with Equation (3.7) and recursively work backwards in time. In the final step301

(going backwards), interchanging supW ′ supP gives Equation (2.22).302

This formulation (3.2-3.8) is equivalent to problem PCEEt0(κ). For a summary of computa-303

tional details, refer to Appendix C or see [17].304

4 Neural Network Formulation305

As an alternative to the HJB framework, we develop a neural network framework to solve the306

stochastic optimal control problem (2.22), which has the following characteristics:307

(i) The NN framework is data driven, which does not require a parametric model for traded308

assets being specified. This avoids explicitly postulating parametric stochastic processes and309

the estimation of associated parameters. In addition, this allows us to add auxiliary market310

signals/variables (although we do not exploit this idea in this work).311

(ii) The NN framework avoids the computation of high-dimensional conditional expectations by312

solving for the control at all times directly from a single standard unconstrained optimization,313

without dynamic programming (see [52] for a discussion of this). Since the control is low-314

dimensional, the approach avoids the curse of dimensionality by solving for the control directly,315

instead of via value iteration such as in the HJB dynamic programming method [52]. Such an316

approach also eliminates backward error propagation through rebalancing times.317

(iii) If the optimal control is a continuous function of time and state, the NN control will naturally318

reflect this property. If the optimal control is discontinuous, NN representation produces a319

smooth approximation. While not required by the original problem formulation in (2.22), this320

continuity property likely leads to practical implementation benefits.321

(iv) The NN method is further scalable and can be easily adapted to problems with longer horizons322

or higher rebalancing frequency without significantly increasing the computational complexity323

of the problem. This is in contrast to existing approaches using a stacked neural network324

approach [50].325

We now formally describe the proposed NN framework and demonstrate the aforementioned326

properties. We approximate the control in P directly by using feed-forward, fully-connected neu-327

ral networks. Given parameters θp and θq, i.e. NN weights and biases, p̂(W (ti), ti,θp) and328

q̂(W (ti), ti,θq) approximate the controls pi and qi respectively,329

q̂(W−i , t
−
i ,θq) ' qi(W

−
i ), i = 0, . . . ,M

p̂(W+
i , t

+
i ,θp) ' pi(W

+
i ), i = 0, . . . ,M − 1

P̂ = {(q̂(·), p̂(·))} ' P
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The functions p̂ and q̂ take time as one of the inputs, and therefore we can use just two NN330

functions to approximate control P across time instead of defining a NN at each rebalancing time.331

In this section, we discuss how we solve problem (2.22) using this approximation and then provide332

a description of the NN architecture that is used. We discuss the precise formulation used by the333

NN, including activation functions that encode the stochastic constraints.334

4.1 Neural Network Optimization for PCEEt0 (κ)335

We begin by describing the NN optimization problem based on the stochastic optimal control336

problem (2.22). We first recall that, in the formulation in Section 3, controls qi and pi are functions337

of wealth only. Our goal is to choose NN weights θp and θq by solving (2.22), with q̂(W−i ,t
−
i ,θq) and338

p̂(W+
i ,t

+
i ,θp) approximating feasible controls (qi, pi) ∈ Z(W−i ,W

+
i ,ti) for ti ∈ T . For an arbitrary339

set of controls P̂ and wealth level W ′, we define the NN performance criteria VNN as340

VNN (P̂,W ′, s,b, t−0 ) = E
X−0 ,t

−
0

P̂0

[
M∑
i=0

q̂i + κ

(
W ′ +

1

α
min(WT −W ′, 0)

)

+εWT

∣∣∣∣X(t−0 ) = (s,b)

]

subject to



(St, Bt) follow processes (2.3) and (2.4), t /∈ T
W+
i = S−i +B−i − qi , X

+
i = (S+

i , B
+
i )

S+
i = p̂i(·)W+

i , B+
i = (1− p̂i(·))W+

i

(q̂i(·), p̂i(·)) ∈ Z(W−i ,W
+
i ,ti)

i = 0, . . . ,M, ti ∈ T

.(4.1)

The optimal value function JNN (at t−0 ) is then given by341

JNN (s, b, t−0 ) = sup
W ′

sup
P̂∈A

VNN (P̂,W ′, s,b, t−0 ) . (4.2)

Next we describe the structure of the neural networks and feasibility encoding.342

4.2 Neural Network Framework343

Consider two fully-connected feed-forward NNs, with p̂ and q̂ determined by parameter vectors344

θp ∈ Rνp and θq ∈ Rνq , representing NN weights and biases respectively. The two NNs can differ345

in the choice of activation functions and in the number of hidden layers and nodes per layer. Each346

NN takes input of the same form (W (ti),ti), but the withdrawal NN q̂ takes the state variable347

observed before withdrawal, (W (t−i ), ti), and the allocation NN p̂ takes the state variable observed348

after withdrawal, (W (t+i ), ti).349

In order for the NN to generate a feasible control as specified in (4.4), we use a modified sigmoid350

activation function to scale the output from the withdrawal NN q̂ according to the PCEEt0(κ)351

problem’s constraints on the withdrawal amount qi, as given in Equation (2.10). This ultimately352

allows us to perform unconstrained optimization on the NN training parameters.353

Specifically, assuming x ∈ [0,1], the function a+ (b− a)x scales the output to [a,b]. We restrict354

withdrawal to q̂ in [qmin, qmax]. We note that this withdrawal range qmax − qmin depends on wealth355

W−, see from (2.10). Specifically, define the range of permitted withdrawal as follows,356
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range =


qmax − qmin, if W−i > qmax

W− − qmin, if qmin < W−i < qmax

0, if W−i < qmin

.

More concisely, we have the following mathematical expression:

range = max
(
(min(qmax,W

−)− qmin), 0
)
.

Let z ∈ R be the NN output before the final output layer of q̂. Note that z depends on the input357

features, state and time, before being transformed by the output activation function. We then have358

the following expression for the withdrawal,359

q̂(W−, t,θq) = qmin + range ·
(

1

1 + e−z

)
= qmin + max

(
(min(qmax,W

−)− qmin), 0
)( 1

1 + e−z

)
.

Note that the sigmoid function 1
1+e−z is a mapping from R→ [0,1].360

Similarly, we use a softmax activation function on the NN output for p̂, ensuring no-shorting361

and no-leverage constraints are automatically satisfied.362

With these output activation functions, it can be easily verified that (q̂i(·), p̂i(·)) ∈ Z
(
W−i ,W

+
i , ti

)
363

always. Using the defined NN, this transforms the problem (4.2) of finding an optimal P̂ into the364

optimization problem:365

ĴNN (s, b, t−0 ) = sup
W ′∈R

sup
θq∈Rνq

sup
θp∈Rνp

V̂NN (θq,θp,W
′, s,b, t−0 )

= sup
(W ′,θq ,θp)∈Rνq+νp+1

V̂NN (θq,θp,W
′, s,b, t−0 ) . (4.3)

It is worth noting here that, while the original control P is constrained in (2.13), the formulation366

(4.3) is an unconstrained optimization over θq, θp, and W ′. Hence we can solve problem (4.3)367

directly using a gradient descent method. In the numerical experiments detailed in Sections 6 and368

7, we use Adam stochastic gradient descent [23] to determine the optimal points θ∗q, θ∗p, and W ′.369

Note that the output of NN q̂ yields the amount to withdraw, while the output of NN p̂ produces370

asset allocation weights.371

Figure 4.1 presents the proposed NN. We emphasize the following key aspects of this NN struc-372

ture.373

(i) Time is an input to both NNs in the framework. The parameter vectors θq and θp are constant374

and do not vary with time.375

(ii) At each rebalancing time, the wealth observation before withdrawal is used to construct the376

feature vector for q̂. The resulting withdrawal is then used to calculate wealth after withdrawal,377

which is an input feature for p̂.378

(iii) Standard sigmoid activation functions are used at each hidden layer output.379

(iv) The output activation function for withdrawal is different from the activation function for380

allocation. Control q̂ uses a modified sigmoid function, which is chosen to transform its381

output according to (2.10). Control p̂ uses a softmax activation which ensures that its output382
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gives only positive weights for each portfolio asset and the weights sum to one, as specified383

in (2.11). By constraining the NN output this way through proposed activation functions, we384

can use unconstrained optimization to train NN.385

Input Layer 
Feature Vector 

 

 

Hidden Layers
 

 

 
 

 

 

 

Input Layer 
Feature Vector 

Hidden Layers
 

full set of
nodes and

connections
not shown

 full set of
nodes and

connections
not shown

Withdrawal NN result
is used to create
feature vector for

allocation NN

Output Layer
1 node, modified

sigmoid activation to   
ensure

(withdrawal amount)

Output Layer
1 node per asset,

Softmax activation to   
ensure
(portfolio weight for stocks)

within constraints

(Withdrawal NN) (Allocation NN)

Figure 4.1: Illustration of the NN framework as per Section 4.2. Additional technical details can be
found in Appendix D.

4.3 NN Estimate of the Optimal Control386

Now we describe the NN training optimization problem for the decumulation problem, which is387

independent of the underlying data generation process. We assume that a set of asset return388

trajectories are available, which are used to approximate the expectation in (4.1) for any given389

control. For NN training, we approximate the expectation in (4.1) based on a finite number of390

samples as follows:391

V̂NN (θq,θp,W
′, s,b, t−0 ) =

1
N

N∑
j=1

[
M∑
i=0

q̂((Wi)
j , ti;θq) + κ

(
W ′ +

1

α
min((WT )j −W ′, 0)

)
+ ε(WT )j

∣∣∣∣X(t−0 ) = (s,b)

]

subject to



((St)
j , (Bt)

j) drawn from the jth sample of returns; t /∈ T
(W+

i )j = (S−i )j + (B−i )j − q̂
(
(W−ti )j ,ti,θq

)
, (X+

i )j = (S+
i , B

+
i )j

(S+
i )j = p̂

(
(W+

i )j , ti,θp
)

(W+
i )j , (B+

i )j = (1− p̂
(
(W+

i )j , ti,θp)
)

(W+
i )j

(q̂i(·), p̂i(·)) ∈ Z
(
(W−i )j , (W+

i )j , ti
)

i = 0, . . . ,M, ti ∈ T

,

(4.4)

where the superscript j represents the jth path of joint asset returns and N is the total number392

of sampled paths. For subsequent benchmark comparison, we generate price paths using processes393

(2.3) and (2.4). However, any method can be used to generate these paths. We are not restricted to394

parametric SDEs. We assume that the random sample paths are independent, but that correlations395
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can exist between returns of different assets. In addition, correlation between the returns of differ-396

ent time periods can also be represented, e.g., block bootstrap resampling is designed to capture397

autocorrelation in the time series data.398

The optimal parameters obtained by training the neural network are used to generate the control399

functions q̂∗(·) := q̂(·;θ∗
q) and p̂∗(·) := p̂(·;θ∗

p), respectively. With these functions, we can evaluate400

the performance of the generated control on testing data sets that are out-of-sample or out-of-401

distribution. We present the detailed results of such tests in Section 7.402

5 Data403

For the computational study in this paper, we use data from the Center for Research in Security404

Prices (CRSP) on a monthly basis from 1926:1 to 2019:12.4 The specific indices used are the CRSP405

10-year U.S. Treasury index for the bond asset5 and the CRSP cap-weighted total return index for406

the stock asset6. Retirees are, naturally, concerned with preserving real (not nominal) spending407

power. Hence, we use the US CPI index (from CSRP) to adjust these indexes for inflation. We use408

the above market data in two different ways in subsequent investigations:409

(i) Stochastic model calibration: Any data set referred to in this paper as synthetic data is gener-410

ated by parametric stochastic models (SDEs) (as described in Section 2.2), whose parameters411

are calibrated to the CRSP data using a threshold technique [30, 10, 12]. We divide the412

nominal CRSP data by the CPI as supplied by CRSP, so the the data is inflation adjusted.413

Calibration to the historical data generates the results in Table E.1. In order to compute the414

correlation ρsb, we first remove any returns which occur at jump times (in either series). See415

[12] for details of the technique for detecting jumps.416

(ii) Bootstrap resampling: Any data set referred to in this paper as historical data is generated by417

using the stationary block bootstrap method [37, 38, 34, 13] to resample the historical CRSP418

data series. This method involves repeatedly drawing randomly sampled blocks of random419

size, with replacement, from the original data series. The block size follows a geometric420

distribution with a specified expected block size. We simultaneously draw returns from both421

series, in order to preserve correlation effects between asset returns. This, in effect, randomly422

shuffles the original data and can be repeated to obtain however many resampled paths one423

desires. Since the order of returns in the sequence is unchanged within the sampled block, this424

method accounts for some possible serial correlation in market data. Detailed pseudo-code for425

this method of block bootstrap resampling is given in [15].426

We note that block resampling is commonly used by practitioners and academics (see for427

example [1, 13, 44, 46, 9]). Block bootstrap resampling will be used to carry out robustness428

checks in Section 7. Note that for any realistic number of samples and expected block size,429

the probability of repeating a resampled path is negligible [32].430

4More specifically, results presented here were calculated based on data from Historical Indexes, ©2020 Center for
Research in Security Prices (CRSP), The University of Chicago Booth School of Business. Wharton Research Data
Services was used in preparing this article. This service and the data available thereon constitute valuable intellectual
property and trade secrets of WRDS and/or its third-party suppliers.

5The 10-year Treasury index was calculated using monthly returns from CRSP dating back to 1941. The data for
1926-1941 were interpolated from annual returns in [20]. The bond index is constructed by (i) purchasing a 10-year
Treasury at the start of each month, (ii) collecting interest during the month and (iii) selling the Treasury at the end
of the month.

6The stock index includes all distributions for all domestic stocks trading on major U.S. exchanges.
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One important parameter for the block resampling method is the expected block size. The431

algorithm in [34] is used to determine the optimal expected block size for the bond and stock432

returns separately; see Table F.1. For our data set here, a reasonable expected block size for433

paired resampling is about three months [17]. Subsequently, we will also test the sensitivity434

of the results to a range of block sizes from 1 to 12 months in numerical experiments.435

To train the neural networks, we require that the number of sampled paths, N , be sufficiently436

large to fully represent the underlying market dynamics. Subsequently, we first generate training437

data through MC simulations of the calibrated parametric models in (2.3) and (2.4). We emphasize438

however that, in the proposed data driven NN framework, we only require return trajectories of439

the underlying assets. In later sections, we present results from NNs trained on non-parametrically440

generated data, e.g. resampled historical data. We also demonstrate the NN framework’s robustness441

on test data.442

6 Computational Results443

We now present and compare performance of the optimal control from the HJB PDE and NN444

method respectively on synthetic data, with investment specifications given in Table 6.1. Each445

strategy’s performance is measured w.r.t. to the objective function in (2.22), which is a weighted446

reward (EW) and risk (ES) measure. To trace out an efficient frontier in the (EW,ES) plane, we447

vary κ and the efficient frontier curve represents the (EW,ES) performance on a set of optimal448

Pareto points.449

We first present strategies computed from the HJB framework described in Section 3. We450

verify that the numerical solutions are sufficiently accurate, which implies that this solution can be451

regarded as ground truth. We then present results computed using the NN framework of Section 4,452

and demonstrate the accuracy of the NN results by comparing to the ground truth computed from453

the HJB equation. We carry out further analysis by selecting an interesting point on the (EW,ES)454

efficient frontier, corresponding to κ = 1.0, to study in greater detail. The point κ = 1.0 is at455

the knee of the efficient frontier, which makes it desirable in terms of risk-reward tradeoff (picking456

the exact κ will be a matter of investor preference, however). This notion of the knee point is457

loosely based on the concept of a compromise solution of multi-objective optimization problems,458

which selects the point on the efficient frontier with the minimum distance to an unattainable ideal459

point [31]. For this knee point of κ = 1.0, we analyze the controls and wealth outcomes under both460

frameworks. We also discuss some key differences between the HJB and NN frameworks’ results461

and their implications.462

6.1 Strategies Computed from HJB Equation463

We carry out a convergence test for the HJB framework by tracing the efficient frontier (i.e. varying464

the scalarization parameter κ) for solutions of varying refinement levels (i.e. number of grid points in465

the (s,b) directions). Figure 6.1 shows these efficient frontiers. As the efficient frontiers from various466

grid sizes all practically overlap each other, this demonstrates convergence of solutions computed467

from solving HJB equations. Table G.1 shows a convergence test for a single point on the frontier.468

The convergence is roughly first-order (for the value function). This convergence test justifies the469

use of the HJB framework results as a ground-truth.470

Remark 6.1 (Effect of Stabilization Term εWT ). Recall the stabilization term, εWT , introduced in471

(2.22), where the parameter ε has a small magnitude. We now provide motivation for its inclusion,472
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Investment horizon T (years) 30
Equity market index CPI adjusted CRSP US Total Market Index
Bond index CPI adjusted US 10-year treasury
Initial portfolio value W0 1000
Cash withdrawal times t = 0,1, . . . , 30
Withdrawal range [35, 60]
Equity fraction range [0,1]
Borrowing spread µbc 0.0
Rebalancing interval (years) 1
Market model parameters See Appendix E

Table 6.1: Problem setup and input data. Monetary units: USD$ in thousands.
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Figure 6.1: EW-ES frontier, computed from problem (2.22). Note: Scenario in Table 6.1.
Comparison of HJB solution performance with varying grid sizes. HJB solution performance
computed on 2.56 × 106 observations of synthetic data. Parameters for synthetic data based on
CPI adjusted CRSP US Total Market Index and CRSP US 10-year treasury (see Table E.1). Min-
imum withdrawal: 35. Maximum withdrawal: 60. ε = 10−6. Monetary units: USD$ in thousands.

and observe its effect on the control P̂. When Wt � W ′ and t→ T , the objective function value is473

relatively insensitive to the change in control. This is because, in this situation, Pr[WT < W ′] ' 0474

and thus the allocation control will have little effect on the ES term in the objective (recall that W ′ is475

held constant for the induced time consistent strategy, see Appendix A). In addition, the withdrawal476

is capped at qmax , so the withdrawal control does not depend on Wt for very high value of Wt either.477

The stabilization term is used to alleviate this ill-posedness of the problem.478

In Figure 6.2, we present the heat map of the allocation control computed from the HJB frame-479

work. Subplot (a) presents allocation control heat map for a small positive stabilization parameter480

ε = 10−6, while Subplot (b) presents allocation control heat map with ε = −10−6. In the ill-posed481

region (the top right region of the heat maps), the presence of εWT , with ε = 10−6, forces the control482

to invest 100% in stocks to generate high terminal wealth. Conversely, changing the stabilization483

parameter to ε = −10−6 forces the control to invest completely in bonds.484

We observe that the control behaves differently only at high level of wealth as t → T in both485

cases. The 5th and the 50th percentiles of control on the synthetic data set behave similarly both486

when ε is positive and when ε is negative. In contrast, the 95th percentile curves tend towards487

higher wealth during later phases of the investment period when the ε is positive (Figure 6.2(a)),488

whereas the curve tends downward when ε is negative (Figure 6.2(b)). When the magnitude of ε is489
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sufficiently small, the inclusion of εWT in the objective function does not change summary statistics490

(to four decimal places when |ε| = 10−6). While the choice in the sign of ε with small magnitude491

can lead to different allocation control scenarios at high wealth level near the end of time horizon,492

this choice makes little difference from the perspective of the problem PCEEt0(κ). If the investor493

reaches very high wealth near T , the choice between 100% stocks and 100% bonds does not matter494

as the investor always ends with WT �W ′. Our experiments show that the control q is unaffected495

when the magnitude of ε is small and continues to call for maximum withdrawals at high wealth496

levels as t→ T , just as described in Remark 6.1.497

Comparing the optimal withdrawal strategy from solving stochastic optimal control problem498

(2.22) with a fixed withdrawal strategy (both strategies with dynamic asset allocation), [17] finds499

that the stochastic optimal strategy (2.22) is much more efficient in balancing reward and risk.500

With a slight increase in risk, the retiree can expect to significantly increase total cash withdrawals.501

For a more detailed discussion of the optimal control, we refer the reader to [17].502

(a) Fraction in stocks, HJB Control, ε =
10−6

(b) Fraction in stocks, HJB Control, ε =
−10−6

Figure 6.2: Effect of ε: fraction in stocks computed from the problem (2.22). Note: investment
setup is as in Table 6.1. HJB solution performance computed on 2.56 × 106 observations of syn-
thetic data. Parameters for synthetic data based on CPI adjusted CRSP US Total Market Index,
CRSP US 10-year treasury (see Table E.1), Minimum withdrawal: 35. Maximum withdrawal: 60. κ =
1.0. W ′ = 58.0 for PIDE results. (a) ε = 10−6. (b) ε = −10−6. Monetary units: USD$ in thousands.

6.2 Accuracy of NN Strategy503

We compute the NN control as in Section 4. We compare the efficient frontiers obtained from the504

HJB equation solution and the NN solution. From Figure 6.3, the NN control efficient frontier is505

almost indistinguishable from the HJB control efficient frontier. In Appendix H.2, we also report506

numerical value for each computed point on the frontier. Objective function values corresponding507

to these points from the NN and HJB controls are presented in Appendix H.3. For most points on508

the frontier, the difference in objective function values, from NN and HJB, is less than 0.1%. This509

demonstrates that the accuracy of the NN framework approximation of the ground-truth solution510

is more than adequate, noting that the difference between the NN solution and the PDE solution511

is about the same as the estimated PDE error (see Table G.1).512

We now further analyze the control P̂ produced by the NN framework for κ = 1. Comparing513
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Figure 6.3: Comparison of EW-ES frontier for the Neural Network (NN) and Hamilton-Jacobi-
Bellman (HJB) Partial Differential Equation (PDE) methods, computed from the problem (2.22).
Note: investment setup in Table 6.1. HJB solution performance computed on 2.56× 106 observations
of synthetic data. Parameters for synthetic data based on CPI adjusted CRSP US Total Market Index
and CRSP US 10-year treasury (see Table E.1). Control computed from the NN model, trained on
2.56 × 106 observations of synthetic data. Minimum withdrawal: 35. Maximum withdrawal: 60.
ε = 10−6. Monetary units: USD$ in thousands. Labels on nodes indicate κ parameter.

Figure 6.4(b) with Figure 6.4(d), we observe that the withdrawal control q̂ produced by the NN is514

practically identical to the withdrawal control produced by the HJB framework. However, there are515

differences in the allocation control heat maps. The NN heat map for allocation control p (Figure516

6.4(a)) appears most similar to that of the HJB allocation heat map for negative ε (Figure 6.2(b)),517

but it is clear that the NN allocation heat map differs significantly from the HJB heat map for518

positive ε (Figure 6.2(a)) at high level of wealth as t → T . The NN allocation control behaves519

differently from the HJB controls in this region, choosing a mix of stocks and bonds instead of520

choosing a 100% allocation in a single asset. We emphasize that this difference is only at higher521

level of wealth near T and the 5th percentile and the median wealth curves are indistinguishable.522

The NN control’s 95th percentile curve, however, is different. Indeed the NN 95th percentile curve is523

in between the 95th percentile curves from the negative and positive versions of the HJB-generated524

control.525

Based on above observations, we attribute the NN framework’s inability to fully replicate the526

HJB control to the ill-posedness of the optimal control problem, due to fact that the objective527

function is insensitive to the control in the (top-right) region of high wealth levels near T . The528

small value of ε means that the stabilization term contributes a very small fraction of the objective529

function value and thus has a very small gradient, relative to the first two terms in the objective530

function. Moreover, the data for high levels of wealth as t→ T is very sparse. As a result, the NN531

appears to smoothly extrapolate in this region and therefore avoids investment into a single asset.532

Recall that in Section 6.1, we stated that the choice in the sign of ε, with small magnitude, in the533

stabilization term is somewhat arbitrary and does not affect summary statistics. Therefore, we see534

that the controls produced by the two methods only differ in irrelevant aspects, at least based on535

the EW and ES reward-risk consideration.536

It is interesting to observe that the proposed neural network framework is able to produce537

the bang-bang withdrawal control computed in [17], especially since we are using the continuous538

function q̂ as an approximation.7 A bang-bang control switches abruptly as shown here: the optimal539

7Note that [17] shows that that in the continuous withdrawal limit, the withdrawal control is bang-bang. Our
computed HJB results show that for discrete rebalancing, the control appears to be bang-bang for all practical
purposes.
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NN Control Results

(a) Fraction in stocks, NN Control (b) Withdrawals, NN Control

HJB Control Results

(c) Fraction in stocks, HJB Control (d) Withdrawals, HJB Control

Figure 6.4: Control heat map: withdrawals and fraction in stocks, determined by solving prob-
lem (2.22). Note: problem setup described in Table 6.1. HJB solution performance com-
puted on 2.56 × 106 observations of synthetic data. Parameters for synthetic data based on
CPI adjusted CRSP US Total Market Index and CRSP US 10-year treasury (see Table E.1). NN
model trained on 2.56 × 106 observations of synthetic data. Minimum withdrawal: 35. Maximum
withdrawal: 60. κ = 1.0. W ′ = 59.1 for NN results. W ′ = 58.0 for the HJB results. ε = 10−6.
Relative withdrawal (q − qmin)/(qmax − qmin). Monetary units: USD$ in thousands

strategy is to withdraw qmin if the wealth is less than a threshold, and withdraw qmax otherwise.540

As expected, the control threshold decreases as we move forward in time. We can see that the541

NN and HJB withdrawal controls behave very similarly at the 95th, 50th, and 5th percentiles of542

wealth (Figures 6.5(c) and 6.5(f)). Essentially, the optimal strategy withdraws at either qmax or543

qmin, with a very small transition zone. This is in line with our expectations. By withdrawing less544

and investing more initially, the individual decreases the chance of running out of savings.545

We also note that the NN allocation control presents a small spread between the 5th and 95th546

percentile allocation control (Figure 6.5(a)). In fact, the maximum stock allocation for the 95th547

percentile never exceeds 40%, indicating that this is a stable low-risk strategy, which as we shall548
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Figure 6.5: Scenario in Table 6.1. NN and HJB controls computed from the problem (2.22). Param-
eters based on the inflation adjusted CRSP index, and the inflation adjusted 10-year treasuries (see
Table E.1). NN model trained on 2.56 × 105 observations of synthetic data. HJB framework results
from 2.56× 106 observations of synthetic data. Minimum withdrawal: 35. Maximum withdrawal: 60.
κ = 1.0. W ′ = 59.1 for NN results. W ′ = 58.0 for HJB results. Monetary units: USD$ in thousands.

see, outperforms the Bengen strategy [2].549
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7 Model Robustness550

A common potential pitfall of neural networks is over-fitting to the training data. Neural networks551

that are over-fitted do not have the ability to generalize to unseen data. Since future asset return552

paths cannot be predicted, it is important to ascertain that the computed strategy is not overfitted553

to the training data and can perform well on unseen return paths. In this section, we demonstrate554

the robustness of the NN model’s generated controls.555

We conduct three types of robustness tests: (i) out-of-sample testing, (ii) out-of-distribution556

testing, and (iii) control sensitivity to training distribution.557

7.1 Out-of-sample testing558

Out-of-sample tests involve testing model performance on an unseen data set sampled from the559

same distribution. In our case, this means training the NN on one set of SDE paths sampled from560

the parametric model, and testing on another set of paths generated using a different random seed.561

We present the efficient frontier generated by computed controls on this new data set in Figure 7.1,562

which shows almost unchanged performance on the out-of-sample test set.563
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Figure 7.1: Out-of-sample test. EW-ES frontiers, computed from the problem (2.22). Note: Sce-
nario in Table 6.1. Comparison of NN training performance results vs. out-of-sample test. Both
training and testing data are 2.56× 105 observations of synthetic data, generated with a different ran-
dom seed. Parameters for synthetic data based on CPI adjusted CRSP US Total Market Index and
CRSP US 10-year treasury (see Table E.1). Minimum withdrawal: 35. Maximum withdrawal: 60.
ε = 10−6. Monetary units: USD$ in thousands. Labels on nodes indicate κ parameter values.

7.2 Out-of-distribution testing564

Out-of-distribution testing involves evaluating the performance of the computed control on a data set565

sampled from a different distribution. Specifically, test data is not generated from the parametric566

model used to produce training data, but is instead bootstrap resampled from historical market567

returns via the method described in Section 5. We vary the expected block sizes to generate568

multiple testing data sets of 2.56× 105 paths.569

In Figure 7.2, we see that for each block size tested, the efficient frontiers are fairly close,570

indicating that the performance of control is relatively robust. Note that the efficient frontiers for571

test performance in the historical market with expected block size of 1 and 3 months plot slightly572

above the synthetic market frontier. We conjecture that this may be due to more pessimistic tail573

events in the synthetic market.574
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Figure 7.2: Out-of-distribution test. EW-ES frontiers of controls generated by NN model trained
on 2.56× 105 observations of synthetic data, tested on 2.56× 105 observations of historical data with
varying expected block sizes. Computed from the problem (2.22). Note: Setup as in Table 6.1. Pa-
rameters based on inflation adjusted CRSP index and inflation adjusted 10-year U.S. Treasuries (see
Table E.1). Historical data between 1926:1 to 2019:12. Monetary units: USD$ in thousands. Mini-
mum withdrawal: 35. Maximum withdrawal: 60. Simulated training data refers to MC simulations
using the SDEs (2.3) and (2.4).

The out-of-sample and out-of-distribution tests verify that the neural network is not over-fitting575

to the training data, and is generating an effective strategy, at least based on block resampling test576

data.577

7.3 Sensitivity to training distribution578

To test the NN framework’s sensitivity to training data set, we train the NN framework on historical579

data (with expected block sizes of both 3 months and 12 months) and then test the resulting control580

on synthetic data. In Figure 7.3, we compare the training performance and the test performance.581

The EW-ES frontiers for the test results on the synthetic data are very close to the results on the582

bootstrap market data (training data set). This shows the NN framework’s adaptability to use583

alternative data sets to learn, with the added advantage of not being reliant on a parametric model,584

which is prone to miscalibration. Figure 7.3 also shows that, the EW-ES control significantly585

outperforms the Bengen 4% Rule 8 [2] in all cases, in the synthetic or historical market.586

8The results for the Bengen strategy on the historical test data were computed with fixed withdrawals of 4% of
initial capital, adjusted for inflation. We also used a constant allocation of 30% in stocks for expected block size
of 3 months, and 35% in stocks for expected block size of 12 months. These were found to be the best performing
constant allocations when paired with constant 4% real withdrawals, in terms of ES efficiency.
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Figure 7.3: Training on historical data. EW-ES frontiers of controls generated by NN model trained
on 2.56×105 observations of historical data with expected block sizes of a) 3 months and b) 12 months,
each tested on 2.56 × 105 observations of synthetic data. Parameters based on the inflation adjusted
CRSP index and inflation adjusted 10-year U.S. Treasuries (see Table E.1). Historical data between
1926:1 to 2019:12. Monetary units: USD$ in thousands. Minimum withdrawal: 35. Maximum with-
drawal: 60. Bengen point [2] is based on bootstrap resampling of the historical data. Labels on nodes
indicate κ parameter values. Simulated testing data refers to MC simulations using the SDEs (2.3)
and (2.4). ε = +10−6.

8 Conclusion587

In this paper, we put forward a neural network (NN) method to efficiently and accurately compute588

the optimal decumulation strategy for retirees with DC pension plans. This strategy is computed589

by directly solving a stochastically constrained optimal control problem based on a single standard590

unconstrained optimization, without using dynamic programming.591

We began by highlighting the increasing prevalence of DC pension plans over traditional DB592

pension plans, and outlining the critical decumulation problem that faces DC plan investors. We593

examine a Hamilton-Jacobi-Bellman (HJB) Partial Differential Equation (PDE) based approach594

that can be shown to converge to an optimal solution for a dynamic withdrawal/allocation strategy.595

This provides an attractive balance of risk management and withdrawal efficiency for retirees. In596

this paper, we build upon this approach by developing a new, more versatile framework using NNs597

to solve the decumulation optimal control problem.598

We conduct computational investigations to demonstrate the accuracy and robustness of the599

proposed NN solution, utilizing the unique opportunity to compare NN solutions with the HJB re-600

sults as a ground truth. Of particular noteworthiness is that the continuous function approximation601

from the NN framework is able to approximate a bang-bang control with high accuracy. We extend602

our experiments to establish the robustness of our approach, testing the NN control’s performance603

on both synthetic and historical data sets.604

We demonstrate that the proposed NN framework produced solution accurately approximates605

the ground truth solution. We also note the following advantages of the proposed NN framework:606

(i) The NN method is data driven, and does not require postulating and calibrating a parametric607

model for traded asset prices.608

(ii) The NN method directly estimates the low dimensional control by solving a single uncon-609

strained optimization problem, avoiding problems associated with dynamic programming610
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methods, which require estimating high dimensional conditional expectations (see [52]).611

(iii) The NN formulation maintains its simple structure (discussed in Section 4.2), immediately612

extendable to problems with more frequent rebalancing and/or withdrawal events. In fact,613

for the problem presented in (2.22), each control NN only requires two hidden layers for 30614

rebalancing and withdrawal periods.615

(iv) The approximated NN control maintains continuity in time and/or space, a natural choice if616

solution has this continuity property. Otherwise NN control provides a smooth approximation.617

Continuity in the allocation control p can be a practical implementation benefit.618

Due to the ill-posedness of the stochastic optimal control problem in the region of high wealth619

near the end of the decumulation horizon, we observe that the NN allocation can appear to be very620

different from the HJB PDE solution. We note, however, that both strategies yield indistinguishable621

performance when assessed with the expected withdrawal and ES reward-risk criteria. In other622

words, these differences hardly affect the objective function value, which is a weighted reward and623

risk value. In the region of high wealth level near the end of the time horizon, the retiree is free to624

choose whether to invest 100% in stocks or 100% in bonds, since this has a negligible effect on the625

objective function value (or reward-risk consideration).9626

To conclude, the NN solution framework provides a more versatile method, in comparison the627

HJB PDE approach. We expect that the NN approach can be readily extended to problems of628

higher complexity, e.g., involving a higher number of assets. In addition, the NN method can be629

applied to other proposed retirement planning problem formulations (for example, see [18]). We630

leave such extension to future work.631
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Appendix639

A Induced Time Consistent Policy640

In this section of the appendix, we review the concept of time consistency and relate its relevance641

to the PCEEt0(κ) problem, (2.22).642

Consider the optimal control P∗ for problem (2.22),643

(P∗)t0(X(t−i ), ti) ; i = 0, . . . ,M . (A.1)
9This can be termed the Warren Buffet effect. Buffet is the fifth richest human being in the world. He is 92 years

old. Buffet can choose any allocation strategy, and will never run out of cash.
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Equation (A.1) can be interpreted as the optimal control for any time ti ≥ t0, as a function of the644

state variables X(t), as computed at t0.645

Now consider if we were to solve the problem (2.22) starting at a later time tk, k > 0. This646

optimal control starting at tk is denoted by:647

(P∗)tk(X(t−i ), ti) ; i = k, . . . ,M} . (A.2)

In general, the solution of (2.22) computed at tk is not equivalent to the solution computed t0:648

(P∗)tk(X(t−i ), ti) 6= (P∗)t0(X(t−i ), ti) ; i ≥ k > 0. (A.3)

This non-equivalence makes problem (2.22) time inconsistent, implying that the investor will be649

motivated to diverge from the control determined at time t0 at later times. This type of control is650

considered a pre-commitment control since the investor would need to commit to following the strat-651

egy at all times following t0. Some authors describe pre-commitment controls as non-implementable652

because of the incentive to diverge from the initial control.653

In our case, however, the pre-commitment control from (2.22) can be shown to be identical to654

the time consistent control for an alternative version of the objective function. By holding W ′ fixed655

at the optimal value (at time zero), we can define the time consistent equivalent problem (TCEQ).656

We define the optimal value of W ′ as 10
657

W∗(s,b) = arg max
W ′

sup
P0∈A

{
E
X−0 ,t

−
0

P0

[
M∑
i=0

qi + κ

(
W ′ +

1

α
min(WT −W ′, 0)

)∣∣∣∣X(t−0 ) = (s,b)

]}
.

(A.4)

With a given initial wealth of W−0 , this gives the following result from [14]:658

Proposition A.1 (Pre-commitment strategy equivalence to a time consistent policy for an alter-659

native objective function). The pre-commitment EW-ES strategy found by solving J
(
s,b, t−0

)
from660

(2.22), with fixed W ′ = W∗ from Equation A.4, is identical to the time consistent strategy for the661

equivalent problem TCEQ (which has fixed W∗(0,W−0 )), with the following value function:662

(TCEQtn (κ/α)) :

J̃
(
s,b, t−n

)
= sup

Pn∈A

{
EX

−
n ,t
−
n

Pn

[
M∑
i=n

qi +
κ

α
min(WT −W∗(0,W−0 ),0)

∣∣∣∣X(t−n ) = (s,b)

]}
.

(A.5)

Proof. This follows similar steps as in [14], proof of Proposition (6.2).663

With fixed W ′, TCEQtn (κ/α) uses a target-based shortfall as its measure of risk, which is664

trivially time consistent. W ′ has the convenient interpretation of a disaster level of final wealth, as665

specified at time zero. Since the optimal controls for PCEEt0(κ) and TCEQtn (κ/α) are identical,666

we regard TCEQtn (κ/α) as the induced time consistent strategy [47] for problem EW-ES. The667

retiree has no motivation to diverge from the induced time consistent strategy, determined at time668

zero. Hence this policy is implementable.669

For more detailed analysis concerning the subtle distinctions involved in pre-commitment, time670

consistent, and induced time consistent strategies, please consult [5, 6, 53, 54, 47, 14, 4].671

10The argmax is well defined since supP{·} is a continuous function of W ′.
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B PIDE Between Rebalancing Times672

Applying Ito’s Lemma for jump processes [49], using Equations (2.3) and (2.4) in Equation (3.8)673

gives674

Vt +
(σs)2s2

2
Vss + (µs − λsξγsξ )sVs + λsξ

∫ +∞

−∞
V (exs, b, t)fs(x) dx+

(σb)2b2

2
Vbb

+ (µb + µbc1{b<0} − λbξγbξ)bVb + λbξ

∫ +∞

−∞
V (s, exb, t)f b(x) dx− (λsξ + λbξ)V + ρsbσ

sσbsbVsb = 0 ,

s ≥ 0 . (B.1)

where the density functions fs(x), f b(x) are as given in equation (2.1).675

C Computational Details: Hamilton-Jacobi-Bellman (HJB) PDE676

Framework677

For a detailed description of the numerical algorithm used to solve the HJB equation framework678

described in Section 3, we refer the reader to [17]. We summarize the method here.679

First, we solve the auxiliary problem (3.2), with fixed values of W ′, κ and α. The state space in680

s > 0 and b > 0 is discretized using evenly spaced nodes in log space to create a grid to represent681

cases. A separate grid is created in a similar fashion to represent cases where wealth is negative.682

The Fourier methods discussed in [16] are used to solve the PIDE representing market dynamics683

between rebalancing times. Both controls for withdrawal and allocation are discretized using equally684

spaced grids. The optimization problem (3.4) is solved first for the allocation control by exhaustive685

search, storing the optimal for each discretized wealth node. The withdrawal control in (3.5) can686

then be solved in a similar fashion, using the previously stored allocation control to evaluate the687

right-hand side of (3.5). Linear interpolation is used where necessary. The stored controls are used688

to advance the solution in (3.7).689

Since the numerical method just described assumes a constant W ′, an outer optimization step690

to find the optimal W ′ (candidate Value-at-Risk) is necessary. Given an approximate solution to691

(3.2) at t = 0, the full solution to PCEEt0(κ) (2.22) is determined using Equation (3.9). A coarse692

grid is used at first for an exhaustive search. The coarse grid solution is used as an initial guess for693

a univariate optimization technique on finer grids.694

D Computational Details: NN Framework695

D.1 NN Optimization696

The NN framework, as described in Section 4 and illustrated in Figure 4.1, was implemented using697

the PyTorch library [33]. The withdrawal network q̂, and allocation network p̂ were both imple-698

mented with 2 hidden layers of 10 nodes each, with biases. Stochastic Gradient Descent [42] was699

used in conjunction with the Adaptive Momentum optimization algorithm to train the NN frame-700

work [23]. The NN parameters and auxiliary training parameter W ′ were trained with different701

initial learning rates. The same decay parameters and learning rate schedule were used. Weight702

decay (`2 penalty) was also employed to make training more stable. The training loop utilizes the703

auto-differentiation capabilities of the PyTorch library. Hyper-parameters used for NN training in704

this paper’s experiments are given in Table D.1.705
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The training loop tracks the minimum loss function value as training progresses and selects the706

model that had given the optimal loss function value based on the entire training dataset by the707

end of the specified number of training epochs.708

D.2 Transfer learning between different κ points709

For high values of κ, the objective function is weighted more towards optimizing ES (lower risk).710

In these cases, optimal controls are more difficult to compute. This is because the ES measure used711

(CVAR) is only affected by the sample paths below the 5th percentile of terminal wealth, which are712

quite sparse. To overcome these training difficulties, we employ transfer learning [48] to improve713

training for the more difficult points on the efficient frontier. We begin training the model for the714

lowest κ from a random initialization (‘cold-start’), and then initialize the models for each increasing715

κ with the model for the previous κ. Through numerical experiments, we found this method made716

training far more stable and less likely to terminate in local minima for higher values of κ.717

D.3 Running minimum tracking718

The training loop tracks the minimum loss function value as training progresses and selects the719

model that had given the optimal loss function value based on the entire training dataset by the720

end of the specified number of training epochs.721

NN framework hyper-parameter Value

Hidden layers per network 2
# of nodes per hidden layer 10
Nodes have biases True
# of iterations (#itn) 50,000
SGD mini-batch size 1,000
# of training paths 2.56× 105

Optimizer Adaptive Momentum
Initial Adam learning rate for (θq,θp) 0.05
Initial Adam learning rate for W ′ 0.04
Adam learning rate decay schedule [0.70×#itn, 0.97×#itn], γ = 0.20
Adam β1 0.9
Adam β2 0.998
Adam weight decay (`2 Penalty) 0.0001
Transfer Learning between κ points True
Take running minimum as result True

Table D.1: Hyper-parameters used in training the NN framework for numerical experiments pre-
sented in this paper.

D.4 Standardization722

To improve learning for the neural network, we normalize the input wealth using means and stan-723

dard deviations of wealth samples from a reference strategy. We use the constant withdrawal and724

allocation strategy defined in [17] as the reference strategy with 2.56×105 simulated paths. Let W b
t725

denote the wealth vector at time t based on simulations. Then W̄ b
t and σ(W b

t ) denote the associated726

average wealth and standard deviation. Then we normalize the feature input to the neural network727

in the following way:728
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W̃t =
Wt − W̄ b

t

σ(W b
t )

For the purpose of training the neural network, the values W̄ b
t and σ(W b

t ) are just constants, and729

we can use any reasonable values. This input feature normalization is done for both withdrawal730

and allocation NNs.731

In Section 7, we show in out-of-sample and out-of-distribution tests that W̄ b
t and σ(W b

t ) do not732

need to be related to the testing data as long as these are reasonable values. In Section 4, when733

referring to W as part of the input to the NN functions q̂ and p̂, we use the standardized W̃ for734

computation.735

E Model Calibrated from Market Data736

Table E.1 shows the calibrated model parameters for processes (2.3) and (2.4), from [17] using737

market data described in §5.738

Calibrated Model Parameters

CRSP µs σs λs us ηs1 ηs2 ρsb

0.0877 0.1459 0.3191 0.2333 4.3608 5.504 0.04554

10-year Treasury µb σb λb ub ηb1 ηb2 ρsb

0.0239 0.0538 0.3830 0.6111 16.19 17.27 0.04554

Table E.1: Calibrated (annualized) parameters for double exponential jump diffusion model.
CPI adjusted CRSP US Total Market Index and CRSP US 10-year treasury, also inflation adjusted.
Data from 1926:1 to 2019:12.

F Optimal expected block sizes for block resampling739

Table F.1 shows our estimates of the optimal block size using the algorithm in [38, 34] using market740

data described in §5.

Optimal expected block size for bootstrap resampling historical data

Data Optimal expected
block size b̂ (months)

CRSP US 10-year treasury 4.2
CPI adjusted CRSP US Total Market Index 3.1

Table F.1: Optimal expected blocksize b̂ = 1/v, from [34]. Range of historical data is between 1926:1
and 2019:12. The blocksize is a draw from a geometric distribution with Pr(b = k) = (1− v)k−1v.

741
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G Convergence Test: HJB Equation742

Table G.1 shows a detailed convergence test for a single point on the (EW, ES) frontier, using the743

PIDE method. The controls are computed using the HJB PDE, and stored, which are then used744

in MC simulations. These results are used to verify the PDE solution, and also generate various745

statistics of interest.746

HJB Method in §3 MC Simulation

Grid nx × nb ES (5%) E[
∑

i qi]/(M + 1) Value Function W ′ ES (5%) E[
∑

i qi]/(M + 1)

512× 512 -51.302 52.056 1.562430e+3 50.10 -45.936 52.07
1024× 1024 -46.239 52.049 1.567299e+3 52.47 -45.102 52.05
2048× 2048 -42.594 51.976 1.568671e+3 58.00 -42.623 51.97
4096× 4096 -40.879 51.932 1.569025e+3 61.08 -41.250 51.93

Table G.1: HJB convergence analysis. CPI adjusted CRSP US Total Market Index and
CRSP US 10-year treasury. Investment setup up in Table 6.1. Calibrated jump model in Table E.1.
2.56 × 106 MC simulations. κ = 1.0, α = .05. Discretization grid in Section 3. nx: # of nodes in
log s. nb : # of nodes log b. Monetary units: USD$ in thousands. (M + 1): # of withdrawals. M : #
of rebalancing dates. Minimum withdrawal: 35. Maximum withdrawal: 60. HJB method in Section
3.

H Detailed efficient frontier comparisons747

Table H.1 shows the detailed efficient frontier, computed using the HJB equation method, using the748

2048 × 2048 grid. Table H.2 shows the efficient frontier computed from the NN framework. This749

should be compared to Table H.1. Table H.3 compares the objective function values, at various750

points on the efficient frontier, for the HJB and NN frameworks.751
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Efficient Frontier Details: HJB Framework

κ ES (5%) E[
∑

i qi]/(M + 1) Median[WT ]

0.05 -596.00 57.14 124.36
0.2 -334.29 56.17 92.99
0.5 -148.99 54.25 111.20
1.0 -42.62 51.97 227.84
1.5 -8.05 50.63 298.20
3.0 17.42 48.95 380.36
5.0 24.09 48.12 414.60
50.0 30.60 45.70 519.03
∞ 31.00 35.00 1003.47

Table H.1: Details of training performance efficient frontier in Figure 6.3 for HJB
optimal strategies based on calibrated jump model. Investment setup in Table 6.1.
CPI adjusted CRSP US Total Market Index and CRSP US 10-year treasury. Jump model parame-
ters from Table E.1. Monetary units: USD$ in thousands. 2.56 × 106 MC simulations. Control is
computed using HJB method in §3 with (2048 × 2048 grid) stored, subsequently used in MC simula-
tions. Minimum withdrawal: 35. Maximum withdrawal: 60. (M + 1) : # of withdrawals. M : # of
rebalancing dates. ε = 10−6.

Detailed Efficient Frontier: NN Framework
κ ES (5%) E[

∑
i qi]/(M + 1) Median[WT ]

0.05 -599.81 57.15 106.23
0.2 -333.01 56.14 78.59
0.5 -160.14 54.40 105.05
1 -43.02 51.95 227.79
1.5 -8.57 50.62 302.17
3 16.01 48.99 374.43
5 23.20 48.13 425.13
50 29.88 45.72 493.41
∞ 29.90 35.00 947.60

Table H.2: Details of training performance efficient frontier in Figure 6.3 for NN
optimal strategies based on calibrated jump model. Investment setup in Table 6.1.
CPI adjusted CRSP US Total Market Index and CRSP US 10-year treasury. Jump model parame-
ters from Table E.1. Monetary units: USD$ in thousands. 2.56 × 105 MC simulations. Control is
computed using NN in Section 4. Minimum withdrawal: 35. Maximum withdrawal: 60. (M + 1) : #
of withdrawals. M : # of rebalancing dates. ε = 10−6.
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Objective Function Value Comparison: HJB Framework vs. NN Framework

κ HJB equation NN % difference
0.05 1741.54 1741.71 0.01%
0.2 1674.41 1673.81 -0.04%
0.5 1607.26 1606.44 -0.05%
1 1568.45 1567.34 -0.07%
1.5 1557.46 1556.22 -0.08%
3 1569.71 1566.86 -0.18%
5 1612.16 1607.86 -0.27%
50 2946.70 2911.10 -1.21%

Table H.3: Comparison in objective function values between HJB equation and NN framework model
for various κ values. Objective function values for both frameworks computed according to PCEEt0(κ)
(higher is better). Investment setup in Table 6.1. CPI adjusted CRSP US Total Market Index and
CRSP US 10-year treasury. Jump model parameters from Table E.1. HJB solution statistics based
on 2.56 × 106 MC simulations. HJB control is computed as in Section 3, (2048 × 2048 grid) stored,
and then used in the MC simulations. NN Training performance statistics based on 2.56 × 105 MC
simulations. Control is computed using the NN framework in Section 4. Minimum withdrawal: 35.
Maximum withdrawal: 60. (M + 1) : # of withdrawals. M : # of rebalancing dates. ε = 10−6.
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