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Abstract5

We consider the practical investment consequences of implementing the two most popular formulations of6

the scalarization (or risk-aversion) parameter in the time-consistent dynamic mean-variance (MV) portfolio7

optimization problem. Specifically, we compare results using a scalarization parameter assumed to be (i)8

constant and (ii) inversely proportional to the investor’s wealth. Since the link between the scalarization9

parameter formulation and risk preferences is known to be non-trivial (even in the case where a constant10

scalarization parameter is used), the comparison is viewed from the perspective of an investor who is other-11

wise agnostic regarding the philosophical motivations underlying the different formulations and their relation12

to theoretical risk-aversion considerations, and instead simply wishes to compare investment outcomes of the13

different strategies. In order to consider the investment problem in a realistic setting, we extend some known14

results to allow for the case where the risky asset follows a jump-diffusion process, and examine multiple sets15

of plausible investment constraints that are applied simultaneously. We show that the investment strategies16

obtained using a scalarization parameter that is inversely proportional to wealth, which enjoys widespread17

popularity in the literature applying MV optimization in institutional settings, can exhibit some undesirable18

and impractical characteristics.19
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1 Introduction22

Since its introduction by Markowitz (1952), mean-variance (MV) portfolio optimization has come to play a23

fundamental role in modern portfolio theory (see for example Elton et al. (2014)), partly due to its intuitive24

nature. In single-period (non-dynamic) settings, MV optimization simply involves maximizing the expected25

return of a portfolio given an acceptable level of risk, where risk is measured by the variance of portfolio26

returns.27

In multi-period or dynamic settings (see for example Li and Ng (2000); Zhou and Li (2000)), MV optimization

involves maximizing the expected value of the controlled terminal wealth (E [W [T ]]), while simultaneously

minimizing its variance (V ar [W [T ]]), with T > 0 being the investment time horizon. By control, we mean

the investment strategy followed by the investor over [0, T ]. Using the standard scalarization method for multi-

criteria optimization problems (Yu (1971)), the single MV objective to be maximized over a set of admissible

controls (defined rigorously below), is given by

E [W [T ]]− ρ · V ar [W [T ]] , (1.1)

where the parameter ρ > 0 is the scalarization (or risk-aversion) parameter.28

Since the variance term in (1.1) is not separable in the sense of dynamic programming, three main approaches29

for solving a stochastic optimal control problem with the MV objective (1.1) can be identified.30

The first approach, pre-commitment MV optimization, typically results in time-inconsistent optimal controls31

or investment strategies (see Basak and Chabakauri (2010),Vigna (2020)). However, pre-commitment strategies32

are typically time consistent under an alternative induced objective function (Strub et al. (2019)). The second33
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approach, namely the dynamically-optimal MV optimization approach proposed by Pedersen and Peskir (2017),34

involves solving (1.1) dynamically forward at time, resulting in an updated optimization problem to be solved35

at each time instant t ∈ [0, T ]. The third approach, namely time-consistent MV (TCMV) optimization, is the36

focus of this paper.37

The TCMV formulation involves maximizing the objective (1.1) subject to a time-consistency constraint,38

which essentially means the optimization is performed only over the subset of controls which are time-consistent39

with respect to the objective (1.1); see for example Basak and Chabakauri (2010); Björk et al. (2017); Björk40

and Murgoci (2014); Cong and Oosterlee (2016); Wang and Forsyth (2011).41

We refer to the TCMV problem with a constant value ρ > 0 of the risk-aversion parameter in the objective42

(1.1) as the cMV problem. In the special case where the risky asset follows geometric Brownian motion (GBM)43

dynamics and no investment constraints are applicable (for example, trading continues in the event of insolvency,44

short selling is permitted, infinite leverage is allowed, etc.), Basak and Chabakauri (2010) solves the cMV45

problem to find that the resulting optimal control, or amount to be invested in the risky asset at time t ∈ [0, T ],46

does not depend on the investor’s wealth at time t. This observation also holds for the cMV problem if the47

risky asset follows one of the standard jump-diffusion models for asset prices such as the Merton (1976) or the48

Kou (2002) models - see for example Zeng et al. (2013).49

Observing that this is an undesirable outcome, Björk et al. (2014) proposes replacing the constant ρ in (1.1)50

with a wealth-dependent scalarization parameter of the form51

ρ (w) =
γ

2w
, γ > 0, (1.2)52

where γ > 0 is some constant and w > 0 is the investor’s current wealth, and finds that the resulting optimal53

investment strategy depends (linearly) on the current wealth. For analytical purposes, in this paper we follow54

Bensoussan et al. (2014) in also considering a slightly more general formulation of (1.2), namely55

ρ (w, t) =
γt
2w

, γt > 0, ∀t ∈ [0, T ] , (1.3)56

where γt is a positive, differentiable, non-random function of time with a bounded derivative on [0, T ].57

We will subsequently refer to either (1.2) or (1.3) as simply the wealth-dependent1 scalarization parameter ρ,58

and the TCMV problem using either (1.2) or (1.3) will be referred to as the dMV problem. We do not consider59

the additional slight generalizations ρ (w, t) = γt/f (w) that has been proposed in the literature, where f is for60

example a linear (Hu et al. (2012); Liang et al. (2014); Peng et al. (2018); Sun et al. (2016)) or a piecewise-linear61

(Cui et al. (2017, 2015); Zhou et al. (2017)) function of the current wealth, since the main arguments of this62

paper only require ρ to be inversely proportional to wealth, which is obviously satisfied in these cases.63

The wealth-dependent scalarization parameter formulation has proven to be very popular in the recent64

literature concerned with TCMV optimization. To name just a few recent examples, the formulation (1.2)-(1.3)65

has been described as a “suitable choice” (Bi and Cai (2019)), “more economically relevant” (Li et al. (2016)),66

“more realistic” (Liang et al. (2014); Zhang and Liang (2017)), “economically reasonable” (Li and Li (2013)),67

“intuitive and reasonable” (Wang and Chen (2018)), “reasonable and realistic from an economic perspective”68

(Sun et al. (2016)). Furthermore, it has also proven to be very popular in institutional settings, for example the69

investment-reinsurance problems faced by insurance providers (Bi and Cai (2019); Li and Li (2013)), investment70

strategies for pension funds (Liang et al. (2014); Sun et al. (2016); Wang and Chen (2018, 2019)), corporate71

international investment (Long and Zeng (2016)), and asset-liability management (Peng et al. (2018); Zhang72

et al. (2017)). However, since the wealth-dependent ρ is used in a TCMV setting, Bensoussan et al. (2019)73

astutely observes that the impact of the formulation (1.2)-(1.3) should be considered in conjunction with the74

application of the time-consistency constraint, and not on its own merits.75

Unfortunately, when applying the time-consistency constraint as per the TCMV approach, the wealth-76

dependent ρ formulation can give rise to a number of practical problems. Most criticisms in the literature77

narrowly focus on its most obvious challenge, first highlighted in Wu (2013), namely that it leads to irrational78

investor behavior if w < 0 since the objective (1.1) can become unbounded. This problem does not arise in79

the original setting of Björk et al. (2014), since the optimal associated wealth process cannot attain negative80

values. To address this challenge either directly or indirectly in more general settings, various measures are81

employed in the literature, which include ruling out the short-selling of all assets to ensure w > 0 (Bensoussan82

et al. (2014), Wang and Chen (2019)), incorporating downside risk constraints (Bi and Cai (2019)), or proposing83

more elaborate definitions of ρ (w, t) to ensure that ρ remains non-negative even if w < 0 (Cui et al. (2017),84

1We note that there are other forms of the risk-aversion parameter considered in literature that are also wealth- or state-
dependent, for example it can be a function of the market regime (Liang and Song (2015); Wei et al. (2013); Wu and Chen (2015)).
These have not proven as popular as (1.2), and are therefore not considered in this paper.
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Cui et al. (2015), Zhou et al. (2017)). It should be noted that in the case of many of these proposals, the85

primary objective is simply ensuring the non-negativity of wealth, while the actual economic reasonableness of86

the changes/constraints in the formulation are only of secondary importance.87

In contrast, more fundamental concerns regarding the use of the wealth-dependent ρ formulation in con-88

junction with the time-consistency constraint are expressed relatively infrequently. For example, Cong and89

Oosterlee (2016) observes that (1.2) combines “easy-to-lose” with “hard-to-recover” features, in that a very90

small risk-aversion for high levels of wealth implies a willingness to gamble which leads to losses, and very91

large risk aversion for low levels of wealth result in very low investment returns. Furthermore, using numerical92

experiments, it is well-known that (1.2), compared to a constant ρ, appear to result in not only less MV-efficient93

investment outcomes (Cong and Oosterlee (2016); Van Staden et al. (2018); Wang and Forsyth (2011)), but94

that investment outcomes improve when investment constraints are applied (Bensoussan et al. (2014); Wang95

and Forsyth (2011)).96

A systematic and rigorous analysis of the latter phenomenon is presented by Bensoussan et al. (2019) for97

the case of GBM dynamics for the risky asset in combination with a specific set of investment constraints.98

Specifically, Bensoussan et al. (2019) show how the time-consistency constraint in connection with the wealth-99

dependent ρ results in some economically unreasonable results when no shorting of either asset and no leverage100

is allowed.101

In justifying the particular form of the wealth-dependent ρ (the inverse proportionality to wealth), the102

literature often focuses on risk-aversion considerations (see for example Björk et al. (2014); Landriault et al.103

(2018)). However, it should be noted that issues involved are quite subtle, and cannot be reduced to simple104

arguments regarding the form of the scalarization parameter. Vigna (2017, 2020) rigorously defines and analyzes105

the notion of “preferences consistency” in dynamic MV optimization approaches, which can informally be defined106

as the case when the investor’s risk preferences at time t ∈ (0, T ] agree with the investor’s risk preferences at107

some prior time t̂ ∈ [0, t). Vigna (2020) finds that only the dynamically-optimal approach of Pedersen and108

Peskir (2017) is “preferences-consistent”, i.e. instantaneously consistent with the investor’s risk preferences at109

any prior time. In particular, we emphasize that even the use of a constant ρ in the TCMV approach does not110

imply that the investor has a constant level of risk aversion throughout the time horizon [0, T ].111

As a result, since the link between the scalarization parameter formulation and risk preferences is far from112

trivial, we instead consider the problem from a purely practical perspective. Specifically, given the popularity of113

TCMV optimization in institutional settings noted above, the main objective of this paper is to compare the re-114

sulting practical investment consequences from using a constant and wealth-dependent ρ in TCMV optimization.115

The main contributions of this paper are as follows.116

(i) We analytically solve the dMV problem subject to short-selling prohibitions applicable to both the risky117

and risk-free assets, extending known results to allow for the use of any of the commonly used jump-118

diffusion models in finance as a model of the risky asset process.119

(ii) We investigate and discuss a number of practical implications arising from the use of different scalarization120

parameter formulations in the TCMV optimization problem. Our investigation incorporates the available121

analytical solutions, and where not available, employs numerical solutions of the problem using the al-122

gorithm of Van Staden et al. (2018), which allow us to investigate different combinations of investment123

constraints and portfolio rebalancing frequencies. In all of our numerical results, we use model parameters124

calibrated to inflation-adjusted, long-term US market data (89 years), ensuring that realistic conclusions125

can be drawn from the results.126

(iii) Our investigation leads to the conclusion that the wealth-dependent ρ of the form (1.2)-(1.3), when used127

in conjunction with the time-consistency constraint in a dynamic MV optimization setting, can lead to128

a number of potentially undesirable investment consequences which are not observed in the case of a129

constant ρ. This does not imply that using a constant ρ ought to be preferred over a wealth-dependent130

ρ. However, it does imply that in practical settings such as those encountered by institutional investors,131

where the TCMV investor faces realistic investment constraints such as leverage constraints and the need132

to avoid insolvency, the investor should be particularly cautious and aware of these issues that arise when133

using a wealth-dependent ρ in the MV objective (1.1).134

The remainder of the paper is organized as follows. Section 2 formulates the various optimization problems135

as well as the investment constraints under consideration. Section 3 presents the known analytical solutions136

to the cMV and dMV problems, and presents analytical results for the case where the risky asset follows a137

jump-diffusion process. In Section 4, the practical investment outcomes of using a wealth-dependent ρ together138

with a time-consistency constraint are presented and contrasted with the outcomes when using a constant ρ in139

this setting. Finally, Section 5 concludes the paper.140
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2 Formulation141

Let T > 0 denote the fixed investment time horizon/maturity, and let w0 > 0 denote the initial wealth of the142

investor. For any functional f , let f (t−) = limε↓0 f (t− ε) and f (t+) = limε↓0 f (t+ ε). Informally, t− and t+143

denotes the instants of time immediately before and after the forward time t ∈ [0, T ], respectively.144

We consider portfolios consisting of two assets only, namely a risky asset and a risk-free asset. Since we145

consider the risky asset to be a well-diversified stock index instead of a single stock (see Section 4), this treatment146

allows us to focus on the primary question of the stocks vs bonds allocation of the portfolio wealth, rather than147

secondary questions relating to risky asset basket compositions2.148

2.1 Discrete portfolio rebalancing149

To model the discrete rebalancing of the portfolio (continuous rebalancing is described in Subsection 2.2 below),150

let S (t) and B (t) denote the amounts invested at time t ∈ [0, T ] in the risky and risk-free asset, respectively.151

Furthermore, let X (t) = (S (t) , B (t)) , t ∈ [0, T ] denote the multi-dimensional controlled underlying process,152

and x = (s, b) the state of the system. The controlled portfolio wealth, denoted by W (t), is given by153

W (t) = W (S (t) , B (t)) = S (t) +B (t) , t ∈ [0, T ] . (2.1)154

Given an initial state of the system at time t = 0, X(0) = (S(0), B(0)) = x0 = (s0, b0), the given initial wealth155

w0 of the investor therefore satisfies w0 = W (0) = W (s0, b0) = s0 + b0.156

Define Tm as the set of m predetermined, equally spaced rebalancing times in [0, T ],157

Tm = { tn| tn = (n− 1) ∆t, n = 1, . . . ,m} , ∆t = T/m. (2.2)158

Consider any two consecutive rebalancing times tn, tn+1 ∈ Tm. In the case of discrete rebalancing, there is no

intervention by the investor according to some control or investment strategy between rebalancing times, i.e.

for t ∈
(
t+n , t

−
n+1

)
. The amounts in the risky and risk-free asset are assumed to have the following dynamics in

the absence of control,

dS (t)

S (t−)
= (µt − λκ) dt+ σtdZ + d

π(t)∑
i=1

(ξi − 1)

 , dB (t) = rtB (t) dt, t ∈
(
t+n , t

−
n+1

)
. (2.3)

Here, rt denotes the continuously compounded risk-free rate, while µt and σt are the real world drift and159

volatility respectively, with rt, µt and σt assumed to be deterministic, locally Lipschitz continuous functions3
160

on [0, T ], and σ2
t > 0,∀t. Z denotes a standard Brownian motion, π (t) is a Poisson process with intensity161

λ ≥ 0, and ξi are i.i.d. random variables with E [ξi − 1] = κ. It is furthermore assumed that ξi, π (t) and Z are162

mutually independent. Note that GBM dynamics for S (t) can be recovered from (2.3) by setting the intensity163

parameter λ to zero.164

Let ξ denote a random variable representing a generic jump multiplier with the same probability density165

function (pdf) p (ξ) as the i.i.d. random variables ξi in (2.3). For concreteness, we consider two distributions of166

log ξ, namely a normal distribution (Merton (1976) model) and an asymmetric double-exponential distribution167

(Kou (2002) model). For subsequent reference, we also define κ2 = E
[
(ξ − 1)

2
]
.168

Discrete portfolio rebalancing is modelled using the discrete impulse control formulation as discussed in for169

example Dang and Forsyth (2014); Van Staden et al. (2018, 2019), which we now briefly summarize. Let un170

denote the impulse applied at rebalancing time tn ∈ Tm, which corresponds to the amount invested in the risky171

asset after rebalancing the portfolio at time tn, and let Z denote the set of admissible impulse values. Suppose172

that the system is in state x = (s, b) = (S (t−n ) , B (t−n )) for some tn ∈ Tm. Letting (S (tn) , B (tn)) denote the173

state of the system immediately after the application of the impulse un at time tn, we define174

S (tn) = un, B (tn) = (s+ b)− un. (2.4)175

2In the available analytical solutions for multi-asset time-consistent MV problems (see, for example, Li and Ng (2000); Zeng and
Li (2011)), the composition of the risky asset basket remains relatively stable over time, which suggests that the primary question
remains the overall risky asset basket vs. the risk-free asset composition of the portfolio, instead of the exact composition of the
risky asset basket.

3The assumptions regarding rt, µt and σt align with the assumptions of Bensoussan et al. (2014), so that the results reported in
Bensoussan et al. (2014) can be extended to jump processes in this paper. Note that the volatility is assumed to be deterministic,
which we argue is reasonable given that the results of Ma and Forsyth (2016) show that the effects of stochastic volatility, with
realistic mean-reverting dynamics, are not important for long-term investors with time horizons greater than 10 years.
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Let A denote the set of admissible impulse controls, defined as

A =
{
U = ({tn, un})n=1,...,m : tn ∈ Tm and un ∈ Z, for n = 1, . . . ,m

}
. (2.5)

For simplicity, the discrete admissible impulse control U ∈ A associated with given fixed set of rebalancing times176

Tm will subsequently be written as only the set of impulses U ≡ U1 = {un ∈ Z : n = 1, . . . ,m} , while we define177

Un ≡ Utn = {un, un+1 . . . , um} to be the subset of impulses (and, implicitly, the corresponding rebalancing178

times) of U applicable to the time interval [tn, T ].179

2.2 Continuous portfolio rebalancing180

In the case of continuous portfolio rebalancing, let Wu (t) denote the controlled wealth process starting from181

the initial wealth Wu (0) = w0 > 0. Let u : (Wu (t) , t) 7→ u (t) = ut = u (Wu (t) , t) , t ∈ [0, T ] be the adapted182

feedback control representing the amount invested in the risky asset at time t given wealth Wu (t). In this183

case, we follow the example of Björk et al. (2014); Zeng et al. (2013) in assuming that the dynamics of unit184

investments in the risky and risk-free assets respectively (in the absence of control) are of the form (2.3), so185

that a single stochastic differential equation for the controlled wealth process4 can be obtained. Specifically,186

the dynamics of Wu (t) are given by (see for example Björk (2009))187

dWu (t) = [rtW
u (t) + αtut] dt+ σtutdZ + utd

π(t)∑
i=1

(ξi − 1)

 , t ∈ (0, T ] , (2.6)188

Wu (0) = w0,189

where αt = µt−λκ− rt, with all the coefficients and sources of randomness having the same interpretation and190

properties as in (2.3). For proof that (2.6) is also the limiting case of the discrete impulse control formulation191

presented in Subsection 2.1 as ∆t ↓ 0, please refer to Van Staden et al. (2019).192

The set of admissible controls in the case of continuous rebalancing is defined as193

Au =
{
u (t)|u (t) ∈ Uw,t, Wu (t) via (2.6) with Wu (t) = w, and t ∈ [0, T ]

}
, (2.7)194

where Uw,t ⊆ R is the admissible control space applicable at time t ∈ [0, T ] given that the controlled wealth195

(2.6) is in state Wu (t) = w.196

2.3 Investment constraints197

We now describe the investment constraints considered in this paper, starting with the case of discrete rebal-198

ancing. Suppose that the system is in state x = (s, b) = (S (t−n ) , B (t−n )) for some tn ∈ Tm. We follow Dang199

and Forsyth (2014) in defining the bankruptcy (or insolvency) region B as200

B =
{

(s, b) ∈ R2 : W (s, b) ≤ 0, W given by (2.1)
}
. (2.8)201

In the case of discrete rebalancing, the following investment constraints will be considered sometimes indi-202

vidually and sometimes jointly, where (S (tn) , B (tn)) is calculated according to (2.4):203

S (tn) ≥ 0, n = 1, . . . ,m, (No short selling, risky asset) , (2.9)204

B (tn) ≥ 0, n = 1, . . . ,m, (No short selling, risk-free asset) , (2.10)205

S (tn)

W (S (tn) , B (tn))
≤ qmax, n = 1, . . . ,m, (Leverage constraint) , (2.11)206

as well as the solvency condition207

If (s, b) ∈ B at t−n ⇒

{
we require (S (tn) = 0, B (tn) = W (s, b))

and remains so ∀t ∈ [tn, T ] .
(Solvency condition) (2.12)208

The solvency condition (2.12) states that in the event of bankruptcy, defined to be the case when (s, b) ∈ B,209

then the position in the risky asset has to be liquidated, total remaining wealth has to be placed in the risk-free210

4In contrast, as observed in Dang et al. (2017), in the case of the discrete portfolio rebalancing presented in Subsection 2.1, it
is conceptually simpler to model the dollar amounts invested in the risky and risk-free asset directly.
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asset, and all subsequent trading activities must cease. The maximum leverage constraint (2.11) ensures that the211

leverage ratio, defined here as the fraction of wealth invested in the risky asset after rebalancing, does not exceed212

some maximum value qmax, typically in the range qmax ∈ [1.0, 2.0]. Note that the short-selling constraints on213

the risky and the risk-free assets, given by equations (2.9) and (2.10) respectively, are not enforced jointly if214

we also wish to allow for leverage (i.e. a choice of qmax > 1 in (2.11)). Therefore in the case discussed below215

where we choose a maximum leverage level qmax > 1, we assume that the short-selling of the risk-free asset is216

allowed (the investor can borrow funds to invest in the risky asset), so that (2.10) is not enforced, while the217

short selling constraint (2.9) is still applied to the risky asset.218

For theoretical purposes (see Section 3), we occasionally also consider a combination of (2.9) and (2.11) in219

constraints of the form220

pn ·W (S (tn) , B (tn)) ≤ S (tn) ≤ qn ·W (S (tn) , B (tn)) , 0 ≤ pn ≤ qn ≤ 1, n = 1, . . . ,m, (2.13)221

where we assume that pn, qn are specified by the investor for n = 1, . . . ,m.222

Table 2.1 summarizes the combinations of constraints playing a key role in the subsequent results, as well223

as the associated naming conventions (“Description” column) and whether an analytical solution is available224

(see Section 3). Observe that Combination 1pq refers to constraints of the form (2.13). In the case of discrete225

rebalancing, we will therefore consider the following concrete examples of the set of admissible impulse values226

Z,227

Z0 = {un ∈ R : (S,B) via (2.4), ∀n} , (No constraints) (2.14)228

Zpq = {un ∈ R : (S,B) via (2.4) s.t. (2.9), (2.10), (2.13), ∀n} , (Combination 1pq)229

Z2 = {un ∈ R : (S,B) via (2.4) s.t. (2.9), (2.11) with qmax = 1.5, (2.12), ∀n} , (Combination 2)230

Note that Combination 1 in Table 2.1 is a special case of Combination 1pq with pn = 0 and qn = qmax = 1 in231

(2.13) for all n.232

Table 2.1: Combinations of constraints considered in this paper

Description Short selling allowed? Leverage constraint If insolvent Analytical solution

available?

Risky asset Risk-free

asset

cMV dMV

No constraints Yes Yes None Continue trading Yes Yes

Combination 1pq No No Lower bound p ≥ 0,

upper bound q ≤ 1

Not applicable No Yes

Combination 1 No No qmax = 1.0 Not applicable No Yes

Combination 2 No Yes qmax = 1.5 Liquidate No No

233

In the case of continuous rebalancing, we do not consider Combination 2, while in this case Combination234

1pq imposes constraints of the form235

ptW
u (t) ≤ u (t) ≤ qtWu (t) , 0 ≤ pt ≤ qt ≤ 1, ∀t ∈ [0, T ] , (2.15)236

where pt and qt are locally Lipschitz continuous functions specified by the investor. As a result, the following237

concrete cases of the admissible control space Uw,t for continuous rebalancing will be considered,238

Uw,t0 = {u (t) ∈ R : Wu via (2.6), Wu (t) = w, t ∈ [0, T ]} , (No constraints) (2.16)239

Uw,tpq = {u (t) ∈ [ptw, qtw] : pt, qt as per (2.15), Wu via (2.6), Wu (t) = w, t ∈ [0, T ]} . (2.17)240

In the case of continuous rebalancing, Combination 1 can be recovered from Combination 1pq by setting pt ≡ 0241

and qt ≡ qmax = 1 in (2.15) for all t ∈ [0, T ] .242

Remark 2.1. (Combinations of constraints) While some of the theoretical results in Section 3 are presented for243

Combination 1pq, it is not necessarily a very practical set of constraints from an investor’s perspective due to244

the requirement to specify the bounds in (2.13),(2.15). As a result, we instead follow Bensoussan et al. (2019)245

in highlighting an important special case of Combination 1pq, namely Combination 1 (see Table 2.1) in our246

calculations and in the numerical results presented in Section 4 below. However, we observe that Combinations247

1 and 1pq present an extremely restrictive set of constraints, since even retail investors are typically able to248

6



leverage their investments to some extent. Combinations 1 and 1pq effectively also rule out insolvency, since the249

initial wealth is positive and no borrowing in either asset is permitted. Note that in the case of Combination 2,250

a constant ρ together with the economically reasonable assumption that µ > r implies that a short position in251

the risky asset is never cMV-optimal, so the short-selling restriction in this particular case would not be active;252

however, as discussed in Section 4 below, this constraint might be active in the case of the dMV problem.253

Finally, if we were to rank the constraint combinations in terms of the extent to which it restricts investment254

decisions, we observe that Combination 2 can be informally ranked somewhere between the extremes of “No255

constraints” and Combination 1, an observation of significance that will be revisited in the subsequent results256

(see Section 4).257

3 Analytical results258

Recall that the cMV and dMV problems refer to the TCMV optimization problems using a constant scalarization259

parameter ρ and a wealth-dependent ρ of the form (1.2)-(1.3), respectively, in the objective (1.1).260

In this section, we present the formulation and analytical solutions of the cMV and dMV problems, and261

extend the results of Bensoussan et al. (2014) to the case where the risky asset follows a jump-diffusion process.262

We also derive a number of additional analytical results that play an important role in the subsequent discussion.263

In the case of discrete rebalancing, we fix a set of discrete rebalancing times Tm as in (2.2). Let Ex,tnUn [W (T )]264

and V arx,tnUn [W (T )] denote the mean and variance of the terminal wealth W (T ), respectively, given that we are265

in state x = (s, b) = (S (t−n ) , B (t−n )) for some tn ∈ Tm and using discrete impulse control Un ∈ A over [tn, T ].266

For subsequent reference, we also define the following constants for n = 1, . . . ,m,267

r̂n = exp

{∫ tn+1

tn

rτdτ

}
, α̂n = exp

{∫ tn+1

tn

µτdτ

}
− exp

{∫ tn+1

tn

rτdτ

}
, (3.1)268

σ̂2
n = exp

{∫ tn+1

tn

(
2µτ + σ2

τ + λκ2

)
dτ

}
− exp

{∫ tn+1

tn

2µτdτ

}
. (3.2)269

In the case of continuous rebalancing, the notation Ew,tu [Wu (T )] and V arw,tu [Wu (T )] denote the mean and270

variance of terminal wealth, respectively, given wealth Wu (t) = w at time t and the use of admissible control271

u ∈ Au over the time period [t, T ].272

3.1 Constant scalarization parameter273

We now formally define problems cMV∆t (ρ) and cMV (ρ) as the cMV problems (using a constant scalarization274

parameter ρ > 0) in the cases of discrete and continuous rebalancing, respectively.275

Given the state x = (s, b) = (S (t−n ) , B (t−n )) for some tn ∈ Tm, the cMV problem in the case of discrete276

rebalancing is defined by (see for example Van Staden et al. (2018))277

(cMV∆t (ρ)) : V c∆t (s, b, tn) := sup
Un∈A

(
Ex,tnUn [W (T )]− ρ · V arx,tnUn [W (T )]

)
, ρ > 0, (3.3)278

s.t. Un =
{
un,Uc∗n+1

}
:=
{
un, u

c∗
n+1, . . . , u

c∗
m

}
, (3.4)279

where Uc∗n = {uc∗n , . . . , uc∗m} denotes the optimal control5 for problem cMV∆t (ρ). We also define the following

auxiliary function using Uc∗n ,

gc∆t (x, tn) = Ex,tnUc∗n [W (T )] . (3.5)

Lemma 3.1 gives the analytical solution to (3.3)-(3.15) in the case of no investment constraints.280

Lemma 3.1. (Analytical solution: Problem cMV∆t (ρ) - discrete rebalancing, no constraints) Fix a set of

rebalancing times Tm and a state x = (s, b) = (S (t−n ) , B (t−n )) with wealth w = s + b for some tn ∈ Tm. In

the case of no constraints (Z = Z0), the optimal amount invested in the risky asset at rebalancing time tn for

problem cMV∆t (ρ) in (3.3)-(3.4) is given by

uc∗n =
1

2ρ
· α̂n
σ̂2
n

·

(
m∏

i=n+1

r̂i

)−1

. (3.6)

5The resulting optimal control Uc∗
n satisfies the conditions of a subgame perfect Nash equilibrium control, justifying the termi-

nology “equilibrium” control often preferred (see e.g. Bensoussan et al. (2014); Björk et al. (2014)). However, we will follow the
example of Basak and Chabakauri (2010); Cong and Oosterlee (2016); Li and Li (2013); Wang and Forsyth (2011) and retain the
terminology “optimal” control for simplicity.
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The auxiliary function gc∆t and value function V c∆t are respectively given by

gc∆t (x, tn) =

(
m∏
i=n

r̂i

)
· w +

1

2ρ
·
m∑
i=n

α̂2
i

σ̂2
i

, V c∆t (x, tn) = gc∆t (x, tn)− 1

4ρ
·
m∑
i=n

α̂2
i

σ̂2
i

. (3.7)

Proof. The proof relies on backward induction - see for example Van Staden et al. (2019).281

In the case of continuous rebalancing, the cMV problem given wealth Wu (t) = w at time t, is defined as282

(see for example Wang and Forsyth (2011))283

(cMV (ρ)) : V c (w, t) := sup
u∈Au

(
Ew,tu [Wu (T )]− ρ · V arw,tu [Wu (T )]

)
, ρ > 0, (3.8)284

s.t. uc∗ (t; y, v) = uc∗ (t′; y, v) , for v ≥ t′, t′ ∈ [t, T ] , (3.9)285

where uc∗ (t; y, v) denotes the optimal control for problem cMV (ρ) calculated at time t to be applied at some

future time v ≥ t′ ≥ t given future state Wu (v) = y, while uc∗ (t′; v, y) denotes the optimal control calculated at

some future time t′ ∈ [t, T ] for problem cMV (ρ), also to be applied at the same later time v ≥ t′ given the same

future state Wu (v) = y. To lighten notation and emphasize dependence on the given wealth level Wu (t) = w

at time t (which remains implicit in (3.9) for purposes of clarity), we will use the notation uc∗ (w, t) to denote

the optimal control for problem (3.8)-(3.9). Using control uc∗, we define the following auxiliary function,

gc (w, t) = Ex,tnuc∗ [Wu (T )] . (3.10)

Lemma 3.2 gives the analytical solution to (3.8)-(3.9) in the case of no investment constraints.286

Lemma 3.2. (Analytical solution: Problem cMV (ρ) - continuous rebalancing, no constraints). Suppose we are287

given wealth Wu (t) = w at time t ∈ [0, T ]. In the case of no investment constraints (Uw,t = Uw,t0 ), the optimal288

amount invested in the risky asset at time t for problem cMV (ρ) in (3.8)-(3.9) is given by289

uc∗ (w, t) =
(µt − rt)

2ρ (σ2
t + λκ2)

e−
∫ T
t
rτdτ . (3.11)290

The auxiliary function gc and value function V c are respectively given by

gc (w, t) = w · e
∫ T
t
rτdτ +

1

2ρ

∫ T

t

(µτ − rτ )
2

(σ2
τ + λκ2)

dτ, V c (w, t) = gc (w, t)− 1

4ρ

∫ T

t

(µτ − rτ )
2

(σ2
τ + λκ2)

dτ. (3.12)

Proof. See Zeng et al. (2013).291

As highlighted in Basak and Chabakauri (2010); Björk et al. (2014), the optimal controls in the case of a292

constant ρ (see (3.6) and (3.11)) do not depend on the investor’s current wealth w. For subsequent use, we also293

introduce the following definition that is standard in the literature (see for example Wang and Forsyth (2010)).294

Definition 3.3. (Efficient frontier - cMV problem) Suppose that the system is in state x0 = (s0, b0) with initial295

wealth w0 = s0 + b0 at time t0 ≡ t1 = 0 ∈ Tm. Define the following sets associated with problems cMV∆t (ρ)296

and cMV (ρ), respectively,297

YcMV∆t(ρ) =

{(√
V arx0,t0

Uc∗ [W (T )], Ex0,t0
Uc∗ [W (T )]

)}
,298

YcMV (ρ) =

{(√
V arw0,t0

uc∗ [Wu (T )], Ew0,t0
uc∗ [Wu (T )]

)}
. (3.13)299

The efficient frontiers associated with problems cMV∆t (ρ) and cMV (ρ) are defined as
⋃
ρ>0 YcMV∆t(ρ) and300 ⋃

ρ>0 YcMV (ρ), respectively.301

3.2 Wealth-dependent scalarization parameter302

We formulate the dMV problem in terms of the wealth-dependent scalarization parameter of the form (1.3),303

with the formulation (1.2) being a special case used for illustrative purposes in the numerical results in Section304

4.305
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In the case of discrete rebalancing, given the set {γn : n = 1, . . . ,m}, we define ρn = γn/ (2w) as the306

scalarization parameter applicable at time tn ∈ T for the interval [tn, tn+1). Given the state x = (s, b) =307

(S (t−n ) , B (t−n )) for some tn ∈ Tm, let W (s, b) = s + b = w > 0. Problem dMV∆t (γn) is then defined as (see308

for example Bensoussan et al. (2014))309

(dMV∆t (γn)) : V d∆t (s, b, tn) := sup
Un∈A

(
Ex,tnUn [W (T )]− γn

2w
· V arx,tnUn [W (T )]

)
, γn > 0, (3.14)310

s.t. Un =
{
un,Ud∗n+1

}
:=
{
un, u

d∗
n+1, . . . , u

d∗
m

}
, (3.15)311

where Ud∗n =
{
ud∗n , . . . , u

d∗
m

}
is the optimal control for problem dMV∆t (γn), also used to define the following

auxiliary functions:

gd∆t (x, tn) = Ex,tnUd∗n
[W (T )] , hd∆t (x, tn) = Ex,tnUd∗n

[
W 2 (T )

]
. (3.16)

The available analytical solutions to problem dMV∆t (γn) are presented in Lemma 3.4.312

Lemma 3.4. (Analytical solution: Problem dMV∆t (γn) - discrete rebalancing) Fix a set of rebalancing times

Tm and a state x = (s, b) = (S (t−n ) , B (t−n )) with wealth w = s+ b > 0 for some tn ∈ Tm. In the cases of (i) no

constraints (Z = Z0) and (ii) Combination 1pq (Z = Zpq), the optimal amount invested in the risky asset at

rebalancing time tn for problem dMV∆t (γn) in (3.14)-(3.15) is given by

ud∗n = Cnw, where Cn = Fn

(
α̂n
γn
·
An+1 − γnr̂n

(
Dn+1 −A2

n+1

)
α̂2
n

(
Dn+1 −A2

n+1

)
+ σ̂2

nDn+1

)
, (3.17)

while the auxiliary functions gd∆t and hd∆t, defined in (3.16) are given by

gd∆t (x, tn) = Anw, hd∆t (x, tn) = Dnw
2. (3.18)

Here, An and Dn solve the following difference equations,313

An = (r̂n + α̂nCn)An+1, n = 1, . . . ,m, (3.19)314

Dn =
[
(r̂n + α̂nCn)

2
+ σ̂2

nC
2
n

]
Dn+1, n = 1, . . . ,m, (3.20)315

with terminal conditions Am+1 = 1 and Dm+1 = 1, respectively, while the function Fn depends on the combina-

tion of constraints,

Fn (y) =

{
y if Z = Z0, (No constraints)

F pqn (y) if Z = Zpq, (Combination 1pq)
, where F pqn (y) =


pn if y < pn

y if y ∈ [pn, qn]

qn if y > qn.

. (3.21)

Finally, for all n = 1, . . . ,m, we have Dn > 0 and
(
Dn −A2

n

)
≥ 0.316

Proof. See Bensoussan et al. (2014).317

We introduce the following assumption, which is occasionally used for convenience to illustrate some practical318

implications of the analytical results.319

Assumption 3.1. (Constant process parameters) In the dynamics (2.3) and (2.6), we (occasionally) assume

that the parameters are constants, i.e. let rt ≡ r > 0, µt ≡ µ > r and σt ≡ σ > 0 for all t ∈ [0, T ]. Under this

assumption, the constants (3.1)-(3.2) simplify to r̂n ≡ r̂, α̂n ≡ α̂ and σ̂2
n ≡ σ̂2 for all n = 1, . . . ,m, where we

define

r̂ = er∆t, α̂ =
(
eµ∆t − er∆t

)
, σ̂2 =

(
e(2µ+σ2+λκ2)∆t − e2µ∆t

)
. (3.22)

The solution of the difference equations (3.19)-(3.20) in Lemma 3.4 becomes analytically intractable fairly320

quickly as n ≤ m− 2. In Lemma 3.5 and Lemma 3.6 below, we present the explicit analytical solutions in the321

case of the penultimate rebalancing time tm−1 = T − 2∆t, which also corresponds to the case of an investor322

rebalancing twice in [0, T ]. These results play an important role in the discussion in Section 4.323

Lemma 3.5. (dMV∆t (γ)-optimal fraction of wealth in risky asset at time tm−1: No constraints) Assume that324

the system is in the state x = (s, b) =
(
S
(
t−m−1

)
, B
(
t−m−1

))
with wealth w = s+ b > 0 and that Assumption 3.1325
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is applicable. Furthermore, set γn ≡ γ > 0 for all n. In the case of no investment constraints, the dMV∆t (γ)-326

optimal fraction of wealth Cm−1 invested in the risky asset at time tm−1 = T − 2∆t is given by327

Cm−1 (γ) =
r̂γ − (r̂ − 1) α̂

2

σ̂2

γ2r̂2 σ̂2

α̂ + 2γr̂α̂+ α̂+ 2 α̂
3

σ̂2

, γ > 0. (3.23)328

The function γ → Cm−1 (γ) attains a unique, global maximum at γ = γmaxm−1 > 0, where329

γmaxm−1 =
α̂

σ̂2
·
α̂ (r̂ − 1) +

√
α̂2 (1 + r̂2) + σ̂2

r̂
. (3.24)330

Furthermore, for sufficiently small γ > 0, we have331

Cm−1 (γ) = −k̂0 + k̂1 · γ − k̂2 · γ2 +O
(
γ3
)
, where (3.25)332

k̂0 =
(r̂ − 1) α̂

2α̂2 + σ̂2
, k̂1 =

σ̂2r̂
(
2r̂α̂2 + σ̂2

)
α̂ (2α̂2 + σ̂2)

2 , k̂2 =
r̂2σ̂4

α̂ (2α̂2 + σ̂2)
2

(
(r̂ − 1)

(
2α̂2 − σ̂2

)
(2α̂2 + σ̂2)

+ 2

)
. (3.26)

If r∆t < 1, which is a sufficient but not necessary condition, easily satisfied if economically reasonable parameters333

are used, we have k̂0 > 0, k̂1 > 0 and k̂2 > 0.334

Proof. Result (3.23) follows from Lemma 3.4, with the first order optimality condition giving (3.24), where335

µ > r > 0 ensures that α̂ > 0 and r̂ > 1, so that γmaxm−1 > 0. Expanding γ → Cm−1 (γ) up to second order gives336

(3.25)-(3.26). Since µ > r > 0, then k̂0 > 0, k̂1 > 0, and additionally requiring r∆t < 1 is sufficient to ensure337

that (r̂ − 1)
(
2α̂2 − σ̂2

)
+ 2

(
2α̂2 + σ̂2

)
> 0, so that k̂2 > 0.338

Lemma 3.6 extends the results of Lemma 3.5 to the case of Combination 1 of investment constraints339

Lemma 3.6. (dMV∆t (γ)-optimal fraction of wealth in risky asset at time tm−1: Combination 1) Assume that340

the system is in the state x = (s, b) =
(
S
(
t−m−1

)
, B
(
t−m−1

))
with wealth w = s + b > 0 and that Assumption341

3.1 is applicable. Furthermore, set γn ≡ γ > 0 for all n. In the case of Combination 1 of constraints, the342

dMV∆t (γ)-optimal fraction of wealth Cm−1 invested in the risky asset at time tm−1 = T − 2∆t is given by343

Cm−1 (γ) =


1 if 0 < γ < γcritm−1(
α̂
σ̂2 · (r̂+α̂)

2α̂(r̂+α̂)+r̂2+σ̂2

)
1
γ −

(
α̂r̂

2α̂(r̂+α̂)+r̂2+σ̂2

)
if γcritm−1 ≤ γ < α̂

σ̂2

r̂γ−(r̂−1) α̂
2

σ̂2

γ2r̂2 σ̂2

α̂ +2γr̂α̂+α̂+2 α̂
3

σ̂2

if γ ≥ α̂
σ̂2 ,

(3.27)344

where

γcritm−1 =
α̂

σ̂2
· (r̂ + α̂)

3α̂r̂ + 2α̂2 + r̂2 + σ̂2
. (3.28)

Proof. This result follows from Lemma 3.4. If µ > r > 0, then α̂ > 0 and r̂ > 1, so 0 < γcritm−1 <
α̂
σ̂2 .345

While Lemma 3.5 and Lemma 3.6 provide expressions for γ → Cm−1 (γ) at the penultimate rebalancing time346

tm−1 = T − 2∆t, the following remark discusses the challenges involved in deriving a more general analytical347

expression for the function γ → Cn (γ), for some n ≤ m− 2.348

Remark 3.7. (Analytical tractability of γ → Cn (γ)) Recall that by Lemma 3.4, Cn gives the dMV-optimal349

fraction of wealth to invest in the risky asset at rebalancing time tn ∈ Tm. Considering this fraction as the350

function γ → Cn (γ), Lemma 3.5 and Lemma 3.6 provide the fraction γ → Cm−1 (γ) at the penultimate351

rebalancing time tm−1 = T − 2∆t under the assumptions of no constraints and Combination 1 of constraints,352

respectively. Stepping backwards in time to rebalancing time tm−2 = T − 3∆t, the solution of γ → Cm−2 (γ)353

requires, as per Lemma 3.4, the solution of the difference equations (3.19)-(3.20) for Am−1 and Dm−1, which354

depend on the function γ → Cm−1 (γ). However, simply considering the expressions for Cm−1 (γ) given by355

(3.23) and (3.27) in combination with the expressions (3.17) and (3.19)-(3.20) to be used to obtain Cm−2 (γ),356

it is clear that γ → Cn (γ) is no longer analytically tractable for n ≤ m− 2. Fortunately, the numerical results357

presented in Section 4 show that even at the initial rebalancing time t0 ≡ t1 = 0 ∈ Tm, the fraction γ → C0 (γ)358

in the case of no constraints and Combination 1 of constraints share the same qualitative characteristics as359

the expressions γ → Cm−1 (γ) derived in Lemma 3.5 and Lemma 3.6, respectively. Therefore, the analytical360

results for γ → Cm−1 (γ) in (3.23) and (3.27) can assist in providing a qualitative explanation for the behavior361

of γ → Cn (γ) for n ≤ m− 2 observed in numerical experiments.362
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In the case of continuous rebalancing, the dMV problem given wealth Wu (t) = w > 0 at time t is defined as363

(dMV (γt)) : V d (w, t) := sup
u∈Au

(
Ew,tu [Wu (T )]− γt

2w
· V arw,tu [Wu (T )]

)
, (3.29)364

s.t. ud∗ (t; y, v) = ud∗ (t′; y, v) , for v ≥ t′, t′ ∈ [t, T ] , (3.30)365

where ud∗ denotes the optimal control for problem dMV (γt), and the interpretation of the time-consistency366

constraint (3.30) is the same as in the case of (3.9).367

Using the techniques of Björk et al. (2017), we have the following verification theorem and correspond-368

ing extended HJB equation associated with problem dMV (γt) in (3.29)-(3.30) subject to Combination 1pq of369

constraints.370

Theorem 3.8. (Verification theorem) Suppose that, for all (w, t) , (y, τ) ∈ R+ × [0, T ], there exist real-valued371

functions V d (w, t), gd (w, t), ud∗ (w, t) and f (w, t, y, τ) with the following properties: 1) V d, gd and f are372

sufficiently smooth and solve the extended HJB system of equations (3.31)-(3.34), and 2) the function ud∗ (w, t)373

is an admissible control (ud∗ ∈ Au) that attains the pointwise supremum in equation (3.31).374

∂V d

∂t
(w, t)− ∂f

∂τ
(w, t, w, t)−

(
γ′t
2w

+ λ
γt
2w

)(
gd (w, t)

)2 − λV d (w, t)375

+ sup
u∈[ptw,qtw]

{
(rtw + αtu)

[
∂V d

∂w
(w, t)− ∂f

∂y
(w, t, w, t) +

γt
2w2

(
gd (w, t)

)2]
376

+
1

2
σ2
t u

2

[
∂2V d

∂w2
(w, t)− γt

w3

(
gd (w, t)

)2
+ 2gd (w, t)

γt
w2

∂gd

∂w
(w, t)377

−γt
w

(
∂gd

∂w
(w, t)

)2

− 2
∂2f

∂w∂y
(w, t, w, t)− ∂2f

∂y2
(w, t, w, t)

]
378

+λ

∫ ∞
0

[
f (w + u (ξ − 1) , t, w, t)− f (w + u (ξ − 1) , t, w + u (ξ − 1) , t)

]
p (ξ) dξ379

+λ

∫ ∞
0

[
γt
w
gd (t, w) · gd (w + u (ξ − 1) , t) + V d (w + u (ξ − 1) , t)

]
p (ξ) dξ380

−λγt
∫ ∞

0

1

2 (w + u (ξ − 1))

(
gd (w + u (ξ − 1) , t)

)2
p (ξ) dξ

}
= 0, (3.31)381

∂gd

∂t
(w, t) +

(
rtw + αtu

d∗) ∂gd
∂w

(w, t) +
1

2
σ2
t

(
ud∗
)2 ∂2gd

∂w2
(w, t)382

−λgd (w, t) + λ

∫ ∞
0

gd
(
w + ud∗ (ξ − 1) , t

)
p (ξ) dξ = 0, (3.32)383

∂f

∂t
(w, t, y, τ) +

(
rtw + αtu

d∗) ∂f
∂w

(w, t, y, τ) +
1

2
σ2
t

(
ud∗
)2 ∂2f

∂w2
(w, t, y, τ)384

−λf (w, t, y, τ) + λ

∫ ∞
0

f
(
w + ud∗ (ξ − 1) , t, y, τ

)
p (ξ) dξ = 0, (3.33)385

V d (w, T ) = w, gd (w, T ) = w, f (w, T, y, τ) = w − γ (τ)

2y
w2. (3.34)386

Then ud∗ is the optimal control and V d is the value function for problem dMV (γt) in (3.29)-(3.30) sub-

ject to Combination 1pq of investment constraints. In addition, the functions g and f have the probabilistic

representations

gd (w, t) = Ew,t
ud∗

[Wu (T )] , f (w, t, y, τ) = Ew,t
ud∗

[
Wu (T )− γτ

2y
(Wu (T ))

2

]
, (3.35)

where Wu denotes the controlled wealth process using ud∗ (w, t) in dynamics (2.6).387

Proof. See Appendix A.388

We observe that by setting λ ≡ 0 in Theorem 3.8, we recover the extended HJB equation presented in389
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Bensoussan et al. (2014), as expected. The next theorem gives a solution to the extended HJB equation390

presented in Theorem 3.8, as well as the solution in the case of no investment constraints.391

Theorem 3.9. (Analytical solution: Problem dMV (γt) - continuous rebalancing, with constraints and jumps,392

ρ (t, w) = γt/ (2w)). A solution to the optimal amount invested in the risky asset ud∗ for problem dMV (γt)393

satisfying the extended HJB equation of Theorem 3.8, subject to either (i) no investment constraints (Uw,t =394

Uw,t0 ) or (ii) Combination 1pq of constraints (Uw,t = Uw,tpq ), is given by395

ud∗ (w, t) = c (t)w, where c (t) = Ft

(
µt − rt

γt (σ2
t + λκ2)

{
e−I1(t;c)−I2(t;c) + γte

−I2(t;c) − γt
})
. (3.36)396

Here, I1 (t; c) and I2 (t; c) are defined as

I1 (t; c) =

∫ T

t

(rτ + (µτ − rτ ) c (τ)) dτ, I2 (t; c) =

∫ T

t

(
σ2
τ + λκ2

)
c2 (τ) dτ, (3.37)

while Ft depends on the combination of constraints,

Ft (y) =

{
y if Uw,t = Uw,t0 (No constraints)

F pqt (y) if Uw,t = Uw,tpq , (Combination 1pq)
, where F pqt (y) =


pt if y < pt

y if y ∈ [pt, qt]

qt if y > qt

. (3.38)

Furthermore, the value function V d of problem dMVt (γt) is given by397

V d (w, t) =
[
eI1(t;c) − γt

2
· e2I1(t;c)

(
eI2(t;c) − 1

)]
w, (3.39)398

while the functions f and gd, with probabilistic representations as in (3.35), are given by399

gd (w, t) = eI1(t;c)w, f (w, t, y, τ) = gd (w, t)−
[
γτ
2y
· e2I1(t;c)+I2(t;c)

]
w2. (3.40)

Proof. For the case of no investment constraints, see Björk et al. (2014) for the case of no jumps, and Sun et al.400

(2016) for the case of jumps. For the case of Combination 1pq of constraints, see Appendix A.401

As expected, setting λ ≡ 0 in the case of Combination 1pq of constraints in Theorem 3.9 recovers the results402

presented in Bensoussan et al. (2014) for the case where the risky asset follows GBM dynamics. The existence403

of a unique solution to the integral equation (3.36) is established by the following lemma.404

Lemma 3.10. (Uniqueness of integral equation for c) The integral equation for c (t) in (3.36) admits a unique405

solution in C [0, T ], the space of continuous functions on [0, T ] endowed with the supremum norm.406

Proof. Since σt is assumed to be locally Lipschitz continuous and therefore uniformly bounded on [0, T ], so is407

σ2
t +λκ2, therefore the same arguments as in Bensoussan et al. (2014) can be used to conclude the result of the408

lemma.409

Lemma 3.11 gives the expected convergence Cn → c (tn) as ∆t ↓ 0 (or m→∞) for the case of jumps in the410

risky asset process, which is illustrated in Figure 3.1.411

Lemma 3.11. (Convergence) Given γt > 0, t ∈ [0, T ], consider the continuous rebalancing problem dMV (γt)

subject to either (i) no constraints, or (ii) Combination 1pq of constraints, in which case we are also given pt, qt
with 0 ≤ pt ≤ qt ≤ 1 for all t ∈ [0, T ]. For a given set of rebalancing times Tm, define the discrete rebalancing

approximation to problem dMV (γt) as the problem dMV∆t (γn) obtained by choosing γn := γtn , n = 1, . . . ,m,

and in the case of Combination 1pq, setting

pn := ptn , qn := qtn , n = 1, . . . ,m. (3.41)

Then for all ε > 0, there exists Kε > 0 independent of n such that |Cn − c (tn)| < Kεε for all n = 1, . . . ,m,412

where Cn and c (tn) is given by (3.17) and (3.36), respectively.413

Proof. Since σ2
t + λκ2 is uniformly bounded on [0, T ], the result can be proven using similar arguments as in414

Bensoussan et al. (2014).415
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Figure 3.1: Illustration of the convergence of Cn → c (tn), where tn = (n− 1) · (T/m), as m → ∞. The
assumed investment parameters include an initial wealth of w0 = 100, a time horizon of T = 1 year, and
γt = γn = γ > 0,∀t, n. The risky asset follows the Kou model, with parameters as in Table 4.1.

416

To define the efficient frontier in the case of the dMV problem, we limit our attention to the case where417

γn = γt ≡ γ > 0, for all n = 1, . . . ,m and all t ∈ [0, T ], since (as discussed in Section 4), this turns out to be418

not too restrictive.419

Definition 3.12. (Efficient frontier - dMV problem) Suppose that the system is in state x0 = (s0, b0) with420

initial wealth w0 = s0 + b0 > 0 at t0 ≡ t1 = 0 ∈ Tm, and that the scalarization parameter is of the form421

ρ (w) = γ/ (2w) for some constant γ > 0. Define the following sets associated with problems dMV∆t (γ) and422

dMV (γ), respectively:423

YdMV∆t(γ) =

{(√
V arx0,t0

Ud∗ [W (T )], Ex0,t0
Ud∗ [W (T )]

)}
,424

YdMV (γ) =

{(√
V arw0,t0

ud∗
[Wu (T )], Ew0,t0

ud∗
[Wu (T )]

)}
. (3.42)425

The efficient frontiers associated with problems dMV∆t (γ) and dMV (γ) are then defined as
⋃
γ>0 YdMV∆t(γ)426

and
⋃
γ>0 YdMV (γ), respectively.427

Figure 3.2 illustrates the efficient frontiers (Definition 3.12) constructed using the results of Theorem 3.9.428

It is clear that using a jump-diffusion model for the risky asset can potentially have a material effect6 on the429

investment outcomes, illustrating the importance of the extension of the results of Bensoussan et al. (2014) to430

jump processes as presented in this section.431

432

3.3 Comparison of objective functionals433

In order to explain the consequences of using different scalarization parameter formulations in conjunction with434

the time-consistency constraint in dynamic MV optimization, the objective functionals presented in Lemma435

3.13 play a key role in the subsequent discussion.436

Lemma 3.13. (Objective functionals - discrete rebalancing). Assume that the system is in state x = (s, b) =437

(S (t−n ) , B (t−n )) with wealth w = s+ b > 0 for some tn ∈ Tm. Let Ex,tnun [·] and V arx,tnun [·] denote the expectation438

and variance, respectively, using impulse un ∈ Z at time tn, and define Xn+1 :=
(
S
(
t−n+1

)
, B
(
t−n+1

))
.439

Problem cMV∆t (ρ) in (3.3)-(3.4) can be solved using the following backward recursion,440

V c∆t (x, tn) = sup
un∈Z

Jc∆t (un;x, tn) , n = m, . . . , 1, where (3.43)441

Jc∆t (un;x, tn) = Ex,tnun [V c∆t (Xn+1, tn+1)]− ρ · V arx,tnun [gc∆t (Xn+1, tn+1)] , (3.44)442

with terminal conditions V c∆t (s, b, tm+1) = gc∆t (s, b, tm+1) = s+ b.443

6The fact that the frontiers for the GBM and Merton models is not entirely unexpected - see Van Staden et al. (2021).
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Figure 3.2: Efficient frontiers for the dMV problem with continuous rebalancing, where ρ (w) = γ/ (2w), for
γ > 0. The assumed investment parameters include an initial wealth of w0 = 100 and a time horizon of T = 1
year. The risky asset follows the Kou model, with parameters as in Table 4.1.

Problem dMV∆t (γn) in (3.14)-(3.15) can be solved using the following backward recursion,444

V d∆t (x, tn) = sup
un∈Z

Jd∆t (un;x, tn) , n = m, . . . , 1, where (3.45)445

Jd∆t (un;x, tn) = Ex,tnun

[
V d∆t (Xn+1, tn+1)

]
− γn

2w
· V arx,tnun

[
gd∆t (Xn+1, tn+1)

]
446

+Hd
∆t (un;x, tn) , (3.46)447

with terminal conditions V d∆t (s, b, tm+1) = gd∆t (s, b, tm+1) = s+ b, and with the functional Hd
∆t given by

Hd
∆t (un;x, tn) =

γn
2w
· Ex,tnun

[(
γn+1

γn
· w

W
(
t−n+1

) − 1

)
· V arXn+1,tn+1

Ud∗n+1

[W (T )]

]
, (3.47)

where we use the convention γm+1 ≡ γm in (3.47) for the case when n = m.448

Proof. Follows from the problem definitions in conjunction with the time-consistency constraints.449

For subsequent use, we note that in the special case where γn ≡ γ > 0 for all n, the functional Hd
∆t in (3.47)450

reduces to451

Hd
∆t (un;x, tn) =

γ

2w
· Ex,tnun

[(
w

W
(
t−n+1

) − 1

)
· V arXn+1,tn+1

Ud∗n+1

[W (T )]

]
. (3.48)452

Lemma 3.13 shows how the time-consistency constraint enables us to reduce the cMV and dMV problems453

to a series of single-period objective functions, which is consistent with the game-theoretic formulation of Björk454

and Murgoci (2014) where the TCMV optimization problem is viewed as a multi-period game played by the455

investor against their own future incarnations. Specifically, we make the following observations.456

First, in the case of the cMV problem, Basak and Chabakauri (2010) observes that the two components of457

the objective functional Jc∆t in (3.44) has a simple intuitive interpretation: (i) Ex,tnun [V c∆t (Xn+1, tn+1)] gives458

the expected future value of the choice un ∈ Z, while (ii) V arx,tnun [gc∆t (Xn+1, tn+1)] can be interpreted as an459

adjustment, weighted by the investor’s scalarization parameter ρ, quantifying the incentive of the investor at460

time tn to deviate from the choice that maximizes the expected future value (see Basak and Chabakauri (2010)).461

Second, in the case of the dMV problem, the first two components of the objective functional Jd∆t in (3.46)462

has a very similar intuitive interpretation as in the case of the cMV problem. However, the addition of the463

functional Hd
∆t in (3.47) complicates matters significantly, so that the dMV problem no longer admits this464

straightforward interpretation. Observe that the functional Hd
∆t vanishes if n = m, i.e. at the last rebalancing465

time tm = T −∆t, or equivalently if the investor rebalances only once7 at the start of [0, T ]. This observations466

turns out to be critical in understanding the impact of rebalancing frequency on the MV outcomes discussed467

below, since rebalancing once presents one extreme end of the spectrum of rebalancing frequency possibilities,468

with continuous rebalancing at the other extreme end.469

7If the investor rebalances only once in [0, T ], the cMV and dMV formulations can be viewed as trivially equivalent, in the sense
that ∀γm > 0, ∃ρ ≡ γm/ (2w) > 0 such that ud∗m = uc∗m ∈ Z.
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To analyze the implications of the functional Hd
∆t in (3.46), we present the following theorem examining the470

behavior of Hd
∆t in the case where a fixed parameter γ > 0 (see (3.48)) in ρ (w) = γ/ (2w) takes on extreme471

values.472

Theorem 3.14. (Problem dMV∆t (γ): γ-dependence of functional Hd
∆t) Let γn ≡ γ > 0 for all n. Assume473

that the system is in state x = (s, b) = (S (t−n ) , B (t−n )) with wealth w = s + b > 0 at tn ∈ Tm, where474

n ∈ {1, . . . ,m− 1}, and that µt > rt,∀t ∈ [0, T ]. Furthermore, assume that the values of r̂n, α̂n and σ̂2
n in475

(3.1)-(3.2) do not depend on γ. In the case of no investment constraints, the functional Hd
∆t (3.47) satisfies476

∣∣Hd
∆t (un;x, tn)

∣∣ → {
0, as γ →∞,
∞, as γ ↓ 0.

(No constraints) (3.49)477

In the case of Combination 1 of constraints, the functional Hd
∆t satisfies478

∣∣Hd
∆t (un;x, tn)

∣∣ → {
0, as γ →∞,
0, as γ ↓ 0.

(Combination 1) (3.50)479

Proof. Note that in both the cases of no constraints and Combination 1, the analytical solution of Lemma 3.4480

gives the following expression for Hd
∆t at arbitrary rebalancing time tn ∈ Tm,481

Hd
∆t (un;x, tn) = γ · 1

2w
·
(
Dn+1 −A2

n+1

)
· Ex,tnun

[
W
(
t−n+1

)
·
(
w −W

(
t−n+1

))]
, (3.51)482

so that the γ-dependence of Hd
∆t is limited to the term γ ·

(
Dn+1 −A2

n+1

)
. We give an outline of the proof of

(3.49), since the proof of (3.50) proceeds along similar lines. First, we observe that as a result of (3.51), proving

(3.49) requires us to show that in the case of no investment constraints, we have

γ ·
(
Dn+1 −A2

n+1

)
→

{
0, as γ →∞
∞, as γ ↓ 0

, for all n = 1, . . . ,m− 1. (3.52)

We prove (3.52) using backward induction. To establish that (3.52) holds for the base case of n = m − 1, we

recall that the results of Lemma 3.4 imply that in the case of no investment constraints, we have

γ ·
(
Dm −A2

m

)
=

1

γ
· α̂

2
m

σ̂2
m

, Cm =
1

γ
· α̂m
σ̂2
m

, Am = r̂m +
1

γ
· α̂

2
m

σ̂2
m

, Dm = A2
m +

(
1

γ
· α̂m
σ̂m

)2

. (3.53)

It is clear from (3.53) that γ ·
(
Dn+1 −A2

n+1

)
satisfies (3.52) for n = m − 1. Furthermore, Am and Dm are

bounded as γ →∞, and we observe that Am > 0. For the induction step, fix an arbitrary n ∈ {1, . . . ,m− 1},
and assume that γ ·

(
Dn+1 −A2

n+1

)
satisfies (3.52). To treat the case of γ →∞, assume that An+1 and Dn+1

are bounded as γ →∞. Recalling that r̂n, α̂n and σ̂2
n do not depend on γ, the expression for Cn (3.17) in the

case of no constraints together with the stated assumptions guarantee that Cn ∼ O (1/γ)→ 0 as γ →∞. This

implies that (r̂n + α̂nCn) and σ̂2
nC

2
n are bounded as γ →∞. Since An+1 and Dn+1 are assumed to be bounded

as γ → ∞, An and Dn obtained by solving the difference equations (3.19)-(3.20) are also bounded as γ → ∞.

Furthermore, γ ·C2
n ∼ O (1/γ) as γ →∞, so γ ·C2

n · σ̂2
nDn+1 → 0 as γ →∞. Since we can rearrange the results

of Lemma 3.4 to obtain

γ ·
(
Dn −A2

n

)
= (r̂n + α̂nCn)

2
γ ·
(
Dn+1 −A2

n+1

)
+ γ · C2

n · σ̂2
nDn+1, (3.54)

we have therefore established that γ ·
(
Dn −A2

n

)
→ 0 as γ → ∞. To treat the case where γ ↓ 0, assume that

An+1 > 0, and recall from Lemma 3.4 that Dn+1 > 0 and Dn+1 − A2
n+1 ≥ 0 for all n. Since σ̂n > 0, and the

assumption µt > rt,∀t ∈ [0, T ] also implies that α̂n > 0, we therefore have

0 <

[
1−

α̂2
n

(
Dn+1 −A2

n+1

)
α̂2
n

(
Dn+1 −A2

n+1

)
+ σ̂2

nDn+1

]
≤ 1, (3.55)

which implies that (r̂n + α̂nCn)
2
> 0. Using the fact that Dn+1 > 0 and γ > 0, we also have γ ·C2

n · σ̂2
nDn+1 ≥ 0.483

Since (3.52) by assumption, the expression (3.54) therefore implies that γ ·
(
Dn −A2

n

)
→ ∞ as γ ↓ 0. Finally,484

since An = (r̂n + α̂nCn)An+1, we have An > 0. Therefore, we conclude by backward induction that (3.52) and485

therefore (3.49) hold for all n ∈ {1, . . . ,m− 1}.486
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Theorem 3.14 is particularly valuable in that it describes the dependence of the functional Hd
∆t on γ in the487

limiting cases without solving the difference equations (3.19)-(3.20) explicitly (as noted above, the analytical488

solution of these equations become intractable for n ≤ m−2). To illustrate the conclusions of Theorem 3.14, the489

following lemma gives concrete examples of functional Hd
∆t for the simplest non-trivial case where the difference490

equations can be solved analytically, namely at the penultimate rebalancing time tm−1 = T − 2∆t.491

Lemma 3.15. (Problem dMV∆t (γ) - Examples of the functional Hd
∆t at tm−1 ∈ Tm) Let γn ≡ γ > 0 for all n.492

Assume that the system is in state x = (s, b) =
(
S
(
t−m−1

)
, B
(
t−m−1

))
with wealth w = s+ b > 0 at tm−1 ∈ Tm,493

and that Assumption 3.1 is applicable. In the case of no investment constraints, the functional Hd
∆t in (3.47)494

at time tm−1 is given by495

Hd
∆t (um−1;x, tm−1) =

1

γ
· 1

2w
· α̂

2

σ̂2
· Ex,tm−1

um−1

[
W
(
t−m
)
·
(
w −W

(
t−m
))]

, (3.56)496

while in the case of Combination 1 of constraints, Hd
∆t is given by497

Hd
∆t (um−1;x, tm−1) =

{
γ · 1

2w · σ̂
2 · Ex,tm−1

um−1 [W (t−m) · (w −W (t−m))] if 0 < γ < α̂
σ̂2

1
γ ·

1
2w ·

α̂2

σ̂2 · Ex,tm−1
um−1 [W (t−m) · (w −W (t−m))] if γ ≥ α̂

σ̂2 .
(3.57)498

Proof. At rebalancing time tm−1, we can solve the difference equations (3.19)-(3.20) explicitly (see for example499

(3.53)) to obtain
(
Dm −A2

m

)
, and substitute the result into (3.51) to obtain (3.56) and (3.57), respectively.500

4 Practical consequences for the investor501

In this section, we present a detailed overview of the practical investment consequences from implementing a502

constant and a wealth-dependent scalarization parameter ρ in the TCMV portfolio optimization problem. We503

use the analytical solutions of Section 3 wherever possible, and where analytical solutions are not available (see504

Table 2.1), we solve the cMV and dMV problems numerically using the algorithm of Van Staden et al. (2018).505

Whenever a comparison of different scalarization parameter formulations is attempted, the relationship506

between risk preferences and the scalarization parameter should be highlighted. Remark 4.1 discusses some of507

the challenges involved.508

Remark 4.1. (Scalarization parameter formulation and risk preferences) As noted in the Introduction, the509

connection between the scalarization parameter formulation and the investor’s risk preferences is non-trivial.510

While one might be tempted to assume there is a simple link between risk preferences and the choice of a511

scalarization parameter formulation, the issues involved are in fact far more subtle, except in the limiting cases512

of ρ ↓ 0 and ρ → ∞. As noted above, Vigna (2017, 2020) rigorously analyzes the notion of “preferences513

consistency” in dynamic MV optimization approaches, which can informally be defined as the case when the514

investor’s risk preferences at time t ∈ (0, T ] agree with the investor’s risk preferences at some prior time t̂ ∈ [0, t).515

With the exception of the dynamically-optimal approach of Pedersen and Peskir (2017), Vigna (2020) shows that516

none of the dynamic MV optimization approaches are “preferences-consistent”, i.e. instantaneously consistent517

at time t with the investor’s risk preferences at any prior time t̂. In particular, even if an investor were to518

use a constant value of the scalarization parameter ρ, it does not imply that the investor has a constant risk519

aversion throughout the time horizon. Furthermore, in the case of a wealth-dependent ρ, we show below that520

the usual intuition regarding the risk preferences and the scalarization parameter simply does not hold. Given521

these observations, it is impractical to argue that an investor should select a particular scalarization parameter522

formulation on the basis of some simplistic arguments regarding the structure of their risk preferences. Instead,523

in what follows we avoid theoretical arguments related to risk-aversion altogether, and simply focus on the524

practical investment consequences of the different scalarization parameter formulations.525

In order to compare the investment outcomes from different scalarization parameter formulations on a526

reasonable basis, we introduce two practical assumptions, formalized in Assumption 4.1.527

Assumption 4.1. (Assumptions for comparison purposes) First, we assume that the investor wishes to compare528

the results from the perspective of a fixed time t ≡ 0. This is reasonable since the investor will evaluate expected529

future performance by necessity from the perspective of a particular point in time, and we simply choose this530

time to be the initial time of the investment time horizon. Second, we assume the investor remains agnostic as531

to the philosophical motivations underlying the different scalarization parameter formulations and their relation532

to theoretical risk-aversion considerations, and instead simply wishes to compare the investment outcomes of533

the different resulting investment strategies. In the light of the observations in Remark 4.1, this is clearly also534

a reasonable assumption.535
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For convenience, the numerical results in this section are based on an initial wealth of w0 = 100, a time536

horizon of T = 20 years, and the assumption of constant process parameters (Assumption 3.1), which can be537

relaxed without fundamentally affecting our conclusions. We therefore set rt ≡ r, µt ≡ µ and σt ≡ σ for538

all t ∈ [0, T ] in the underlying asset dynamics (2.3). We also set γt = γn ≡ γ > 0 for all n and t, so that539

ρ (w) = γ/ (2w) in all numerical results for the dMV problem. As discussed below, this assumption is also not540

too limiting.541

Furthermore, the parameter values for the asset dynamics used throughout this section are calibrated to542

inflation-adjusted, long-term US market data (89 years), which ensures that realistic conclusions can be drawn543

from the numerical results. Specifically, in order to parameterize (2.3), the same calibration data and techniques544

are used as detailed in Dang and Forsyth (2016); Forsyth and Vetzal (2017). In terms of the empirical data545

sources, the risky asset data is based on inflation-adjusted daily total return data (including dividends and546

other distributions) for the period 1926-2014 from the CRSP’s VWD index8, which is a capitalization-weighted547

index of all domestic stocks on major US exchanges. A jump is only identified in the historical time series if the548

absolute value of the inflation-adjusted, detrended log return in that period exceeds 3 standard deviations of549

the “geometric Brownian motion change” (see Dang and Forsyth (2016)), which is a highly unlikely event. In550

the case of the Merton (1976) model, p (ξ) is the log-normal pdf, so that we assume log ξ is normally distributed551

with mean m̃ and variance γ̃2. In the case of the Kou (2002) model, p (ξ) is of the form552

p (ξ) = νζ1ξ
−ζ1−1I[ξ≥1] (ξ) + (1− ν) ζ2ξ

ζ2−1I[0≤ξ<1] (ξ) , υ ∈ [0, 1] and ζ1 > 1, ζ2 > 0, (4.1)553

where ν denotes the probability of an upward jump (given that a jump occurs). The calibrated parameters for554

the risky asset dynamics are provided in Table 4.1 for each of the models considered.555

Table 4.1: Calibrated risky asset parameters

Parameters µ σ λ m̃ γ̃ υ ζ1 ζ2

GBM 0.0816 0.1863 n/a n/a n/a n/a n/a n/a

Merton 0.0817 0.1453 0.3483 -0.0700 0.1924 n/a n/a n/a

Kou 0.0874 0.1452 0.3483 n/a n/a 0.2903 4.7941 5.4349

556

The risk-free rate is based on 3-month US T-bill rates9 over the period 1934-2014, and has been augmented557

with the NBER’s short-term government bond yield data10 for 1926-1933 to incorporate the impact of the 1929558

stock market crash. Prior to calculations, all time series were inflation-adjusted using data from the US Bureau559

of Labor Statistics11. This results in a risk-free rate of r = 0.00623.560

For ease of reference, the various observations regarding the different scalarization parameter formulations561

presented in this section are identified below as Observation 1 through Observation 9.562

Remark 4.2. (Order of observations) We emphasize that the observations presented in this section (with the563

possible exception of Observation 1 below) are not mathematical in nature, but economic. By this, we mean564

that while both scalarization parameter formulations are mathematically sound, it is possible that a particular565

formulation can be associated with a number of attributes which an investor is likely to find particularly566

challenging in a practical application. We present no rank-ordering of these observations, since their relative567

importance depends on the investor’s point of view and on the particular application, as discussed below.568

Furthermore, we view these observations not in terms of some causal hierarchy (i.e. one causing another),569

but as being interconnected, with each observation highlighting a different aspect of the consequences of the570

scalarization parameter formulation in conjunction with the time-consistency constraint.571

We start with the most obvious observation, unsurprisingly also the most frequently mentioned in the572

literature.573

Observation 1. (dMV value function is unbounded for w < 0) The dMV problem is economically unsound574

if w < 0, since this implies an unbounded value function due to the simultaneous maximization of both the575

expected value and variance of terminal wealth. Despite the attention this has received in literature, whether576

it is just noted (e.g. Wu (2013)) or whether a concrete solution is proposed (e.g. Bensoussan et al. (2014); Cui577

8Calculations were based on data from the Historical Indexes 2015Â©, Center for Research in Security Prices (CRSP), The
University of Chicago Booth School of Business. Wharton Research Data Services was used in preparing this article. This service
and the data available thereon constitute valuable intellectual property and trade secrets of WRDS and/or its third party suppliers.

9Data has been obtained from See http://research.stlouisfed.org/fred2/series/TB3MS.
10Obtained from the National Bureau of Economic Research (NBER) website, http://www.nber.org/databases/macrohistory/contents/chapter13.html.
11The annual average CPI-U index, which is based on inflation data for urban consumers, were used - see http://www.bls.gov.cpi

.
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et al. (2017, 2015)), we observe that it is not hard to address in any practical/numerical implementation of the578

dMV problem, since it is simultaneously (i) easy to identify and (ii) easy to explicitly rule out in any numerical579

algorithm (see Cong and Oosterlee (2016); Van Staden et al. (2018); Wang and Forsyth (2011)).580

It should be highlighted that Observation 1 does not arise in the original proposal12 of Björk et al. (2014),581

and thus might not be problematic under some specific circumstances. In more general settings, this observation582

becomes very relevant, and difficult to address analytically. However, as noted in Observation 1, it is not hard583

to address this challenge in a numerical solution of the problem.584

The next observation presents a very practical problem that might arise when an investor attempts to explain585

the results from the dMV problem.586

Observation 2. (MV intuition does not apply to dMV optimization) An investor using a wealth-dependent ρ in587

conjunction with the time-consistency constraint does not actually perform dynamic MV portfolio optimization588

in the intuitive sense in which it is usually understood, with one exception: in the case of discrete rebalancing,589

the usual intuition applies only at the final rebalancing time tm = T −∆t .590

To explain Observation 2, we observe that it is standard in literature to define MV optimization as the maxi-591

mization of the vector {E [W (T )] ,−V ar [W (T )]}, subject to control admissibility requirements and constraints592

- see for example Hojgaard and Vigna (2007); Zhou and Li (2000). This definition also aligns with an intuitive593

understanding of what dynamic MV optimization should entail. Using the standard linear scalarization method594

for solving multi-criteria optimization problems (Yu (1971)), the MV objective (1.1) with constant ρ > 0 (i.e.595

the cMV formulation) is thus obtained, so that varying ρ ∈ (0,∞) enables us to solve the original multi-criteria596

MV problem (see e.g. Hojgaard and Vigna (2007)).597

If ρ is no longer a scalar but instead inversely proportional to wealth, the resulting dMV objective is no598

longer consistent with maximizing the vector {E [W (T )] ,−V ar [W (T )]}, and therefore does not align with599

either the intuitive understanding or usual definition of MV optimization. For example, consider the objectives600

at time t = 0. In the case of the cMV objective at time t = 0, the ratio of the weight applied to the first objective601

(E [W (T )]) to the weight applied to the second objective (V ar [W (T )]) is constant in absolute value, namely602

1/ρ . In the case of the dMV objective at time t = 0, this same ratio is 2w0/γ in absolute value. Therefore, all603

else being equal, as initial wealth decreases, the dMV strategy increasingly favors the minimization of variance604

over the maximization of expected wealth. However, considering the problem at some t > 0 in the dynamic605

context considered here, this simple observation is not longer precisely correct, but its intuitive content remains606

true. As the subsequent results show, early in the investment time horizon [0, T ] when the dMV investor’s607

wealth is relatively small, the dMV investor focuses on minimizing risk by sacrificing returns, to the detriment608

of the expected value of terminal wealth.609

To provide a more rigorous explanation in the dynamic context considered here, consider Lemma 3.13, and610

in particular the economic consequences of the implicit incentive encoded by the functional Hd
∆t, faced by the611

dMV investor but not by the cMV investor. At time tn ∈ Tm, the investor is given Ud∗n+1 (since the problem is612

solved backwards in time) and wishes to maximize Jd∆t in (3.46). All else being equal, a choice un ∈ Z achieving613

a relatively larger value of Hd
∆t is to be preferred. Making a small investment un in the risky asset (possibly614

even short-selling the risky asset) at time tn would achieve a larger value of Hd
∆t, again all else being equal.615

It also implies that very risky “future” strategies Ud∗n+1 over [tn+1, T ] are likely to be counter-balanced by a616

very low-risk strategy at time tn. Note how this runs completely counter to the intuition underlying the MV617

optimization framework. In particular, Hd
∆t contributes an incentive for the investor to invest in such a way618

that the end-of-period wealth W
(
t−n+1

)
is small compared to the “current” wealth w at time tn, an observation619

which is discussed more rigorously below. Here we simply highlight that the analytical results presented in620

Lemma 3.15 confirm this perspective explicitly, while the more general results of Theorem 3.14 (discussed in621

more detail below) can be used to show that if the impact of Hd
∆t can be limited in some way, superior MV622

outcomes are easily obtained. Therefore, we conclude that the presence of the functional Hd
∆t in the dMV623

objective (3.46) significantly complicates the intuitively expected behavior of the dMV problem. Finally, the624

exception noted in Observation 2 arises since Hd
∆t vanishes when n = m.625

The next observation focuses only on the MV outcomes of terminal wealth.626

Observation 3. (dMV-optimal strategy not as MV-efficient as cMV-optimal strategy) The efficient frontiers627

obtained using a wealth-dependent ρ show a substantially worse MV trade-off for terminal wealth than those628

obtained using a constant ρ, regardless of the combination of investment constraints, rebalancing frequency, or629

risky asset model under consideration.630

12The dMV-optimal controlled wealth process is simply GBM in the specific formulation of the problem considered in Björk et al.
(2014), and thus always positive.
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Observation 3 is based on the result, illustrated in Figure 4.1, that the dMV efficient frontier (Definition631

3.12) always appears to show a worse MV trade-off than the corresponding cMV efficient frontier (Definition632

3.3). First observed in Wang and Forsyth (2011), this observation has been confirmed subsequently without633

exception using many different model assumptions and investment constraint combinations (Cong and Oosterlee634

(2016); Van Staden et al. (2018)). As observed in Figure 4.1, the gap between the cMV and dMV frontiers are635

narrower in two cases: (i) for extremely risk-averse investors, all wealth is simply invested in the risk-free asset636

regardless of the exact form of the scalarization parameter, and (ii) the application of constraints appear to637

narrow the gap between the cMV and dMV efficient frontiers. The latter case is discussed in more detail below638

(see Observation 5).639

Observation 3 is to be expected given the results of Lemma 3.13. Informally, as noted in the discussion of640

Observation 1, the cMV formulation is actually consistent with maximizing the MV trade-off of terminal wealth641

in the usual sense of performing multi-criteria optimization, which is not the case for the dMV formulation. It642

is therefore only natural that the dMV strategy would underperform the cMV strategy in terms of the resulting643

efficient frontiers.644
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Figure 4.1: MV efficient frontiers for a constant and wealth-dependent ρ, respectively, assuming discrete (annual)
rebalancing of the portfolio and a Merton model for the risky asset. The investment parameters include an
initial wealth w0 = 100 and a maturity of T = 20 years.

645

The next observation describes a very significant practical problem associated with the dMV formulation.646

Observation 4. (dMV mean-variance outcomes are adversely affected by increasing the portfolio rebalancing647

frequency) The more frequently the investor using a wealth-dependent ρ rebalances the portfolio, the potentially648

worse the resulting MV outcomes of terminal wealth. In other words, increasing the rebalancing frequency649

can lower the dMV efficient frontier. There appears to be two groups of dMV-investors less affected by this650

phenomenon: (i) extremely risk-averse investors, and (ii) investors implementing Combination 1 of investment651

constraints.652

Intuition suggests that when transaction costs are zero, an investor rebalancing their portfolio more fre-653

quently should achieve a result no worse than the result obtained if the investor were to rebalance less frequently.654

However, as Figure 4.2 (no investment constraints) and Figure 4.3 (Combinations 1 and 2) illustrate, this intu-655

ition is accurate in the case of the cMV formulation, but does not hold in the case of the dMV formulation.656

657

658

We can explain this strange phenomenon informally, by noting that more frequent rebalancing increases the659

number of times the investor has to act consistently with the dMV objective functional (3.46) which includes660

the incentive encoded by the functional Hd
∆t (see the discussion of Observation (2) and Observation (3)).661

More rigorously, we can explain Observation 4 as follows. Lemma 3.13 shows that rebalancing only once in662

[0, T ] will result in identical efficient frontiers for the dMV and cMV problems (Hd
∆t vanishes when n = m),663

regardless of the set of investment constraints under consideration13. Suppose now that the investor rebalances664

twice in [0, T ]. Considering the results of Lemma 3.15 for the cases of no constraints and Combination 1, we665

observe the following. First, observe that the form of Hd
∆t for both these cases (3.51) implies that Hd

∆t adds666

13If n = m, the objective functionals (3.44) and (3.46) are equivalent, in the sense that ∀γm > 0 for the dMV problem, we can
set ρ = γm/ (2w) for the cMV problem to obtain the identical objective (Hd

∆t vanishes if n = m).
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Figure 4.2: Illustration of the effect of the rebalancing frequency on the MV efficient frontiers for a constant
and a wealth-dependent ρ, respectively, given the assumptions of no investment constraints and the Kou model
for the risky asset. The same scale is used on the y-axis of both figures for ease of comparison. Note that the
dotted lines in subfigures (a) and (b) are identical as a consequence of Lemma 3.13. The investment parameters
include an initial wealth w0 = 100 and a maturity of T = 20 years. For ease of reference, we recall that m is
the number of equally-spaced rebalancing events in [0, T ].
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Figure 4.3: Illustration of the effect of the rebalancing frequency on the MV efficient frontiers for wealth-
dependent ρ with Combinations 1 and 2 of investment constraints, respectively, under the assumption of the
Merton model for the risky asset. The investment parameters include an initial wealth of w0 = 100 and a
maturity of T = 20 years. For ease of reference, we recall that m is the number of equally-spaced rebalancing
events in [0, T ].

an incentive to the objective functional Jd∆t in (3.46) to choose un such that W
(
t−n+1

)
·
(
w −W

(
t−n+1

))
is667

maximized. Since the function y → y (w − y) attains an unconstrained maximum at y∗ = w/2, we see that at668

each rebalancing time tn when the investor maximizes the functional Jd∆t in (3.46), component Hd
∆t contributes669

an incentive to invest a relatively small fraction (� 1) of wealth in the risky asset. The relative role Hd
∆t plays670

in the overall objective Jd∆t obviously depends on a number of factors. For example, as noted above, the more671

frequently the investor rebalances in [0, T ], the more often Jd∆t is maximized, and the more often the incentive672

implied by Hd
∆t plays a role (however small) in the investment decision.673

For a more general explanation when the investor rebalances m times in [0, T ], we can rely on the results of674

Theorem 3.14 to explain the two exceptions highlighted in Observation 4. In particular, Theorem 3.14 shows675

that these two exception arise precisely because the suppression of Hd
∆t benefits the MV outcomes. Explaining676

the first exception (extremely risk-averse investors), we note that for both no constraints and Combination 1,677

(3.49) and (3.50) show that Hd
∆t → 0 as γ → ∞, thus the dMV frontiers behave more like cMV frontiers in678

the case of extreme risk aversion. However, for investors that are less risk-averse, choosing smaller values of γ679

magnifies the effect of Hd
∆t in the case of no constraints (3.56), since Hd

∆t → ∞ as γ ↓ 0. As a result, as we680

move along the standard deviation axis in Figure 4.2(b), the more pronounced the adverse impact on the MV681

outcomes. In contrast, in the case of Combination 1, (3.51) shows that Hd
∆t → 0 as γ ↓ 0, explaining the second682
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exception noted in Observation 4, which is illustrated by Figure 4.3(a). In other words, Combination 1 turns683

out to be one example of a very effective way to reduce the adverse impact of Hd
∆t on MV outcomes, in that684

for this particular set of constraints (arguably very restrictive, as discussed in Remark 2.1), the dMV investor685

acts somewhat more like the cMV investor and thus improves the resulting MV outcomes.686

Unfortunately, as Figure 4.3(b) shows for the case of Combination 2, the fundamental challenge that Hd
∆t687

forms part of the objective functional Jd∆t (3.46) of the dMV problem, and thereby adversely impacts MV688

outcomes, simply cannot be managed by imposing some constraints on the problem. For example, the impact689

of the rebalancing frequency on MV outcomes in the case of Combination 2, for which no analytical solution690

is known, is qualitatively between the extremes of no constraints (Figure 4.2(b)) and Combination 1 (Figure691

4.3(a)), as expected - see Remark 2.1.692

The next observation is also deeply problematic from a practical investment perspective.693

Observation 5. (The constrained dMV-optimal strategy outperforms the corresponding unconstrained strat-694

egy) In the case of a wealth-dependent ρ, applying investment constraints improves the MV outcomes compared695

to those obtained in the case of no constraints. In other words, even though the unconstrained dMV investor696

should intuitively also be able to follow the investment strategies of a constrained dMV investor, the constrained697

investor achieves a higher efficient frontier. Similarly, more stringent investment constraints (e.g. Combination698

1) improves the MV outcomes relative to those subject to less stringent investment constraints (e.g. Combination699

2).700

Observation 5, first noted in the numerical experiments of Wang and Forsyth (2011), has subsequently been701

confirmed in experiments formulated using many different underlying models, sets of investment constraints and702

rebalancing frequencies - see for example Wong (2013), Bensoussan et al. (2014) and Van Staden et al. (2018).703

Figure 4.4(a) shows that Observation 5 does not occur in the case of the cMV problem (see Van Staden et al.704

(2018); Wang and Forsyth (2011) for more examples), in contrast to the case of the dMV problem illustrated705

in Figure 4.4(b). Furthermore, since Combination 2 can be viewed as qualitatively between the extremes of706

no constraints and Combination 1 (Remark 2.1), Figure 4.4(b) illustrates the “hierarchy effect” mentioned in707

Observation 5 that occurs in the case of the dMV problem, whereby relatively more strict constraints results in708

better MV outcomes.709

Based on the assumption of GBM dynamics for the risky asset and the available analytical solutions (i.e.710

the cases of no constraints and Combination 1), Bensoussan et al. (2019) presents a rigorous and detailed study711

of the phenomenon described by Observation 5. Bensoussan et al. (2019) accurately concludes that the time-712

consistency constraint is responsible for Observation 5, which can be also be seen in our results. For example,713

the recursive relationship for the dMV problem presented in Lemma 3.13, and in particular the functional714

Hd
∆t, owe their existence to the time-consistency constraint. Furthermore, other examples in literature (see715

for example Forsyth (2020)) show that in certain settings, the time-consistency constraint can indeed have716

undesirable consequences. However, for the purposes of this paper, we observe that cMV problem is also subject717

to the time-consistency constraint, and it is clear from comparing Figures 4.4(a) and 4.4(b) that Observation718

5 arises only in the case of the dMV formulation. We therefore agree with Bensoussan et al. (2019) that the719

time-consistency constraint plays a critical role, but also observe that this problem can apparently be avoided720

altogether in a dynamic MV setting if a constant ρ is used, without revisiting the notion of time-consistency.721

Finally, the results of Theorem 3.14 suggests an explanation of Observation 5 that is perhaps more intuitive722

than the explanation offered by Bensoussan et al. (2019), but by necessity also less rigorous, since it helps to723

explain the results from Combination 2 where no analytical solution is available. As noted above, Theorem 3.14724

shows that Combination 1 of constraints acts to reduce the adverse impact of Hd
∆t on MV outcomes, since in725

this case Hd
∆t → 0 as γ ↓ 0 and as γ →∞. Informally, we can argue that the dMV investor acts more like the726

cMV investor, so that the dMV efficient frontier improves (see discussion of Observation 3). Therefore, in the727

case of Combination 2, due to the informal ranking of constraints in terms of restrictiveness noted in Remark728

2.1, we expect the dMV frontier to be closer to the cMV frontier than in the case of no constraints, but not as729

close as in the case of Combination 1. This explains the phenomenon illustrated in Figure 4.1, whereby the cMV730

and dMV frontiers are closer to each other for Combination 2 than for no constraints, a result that follows from731

the cMV (resp. dMV) frontier for Combination 2 being lower (resp. higher) than the corresponding frontiers732

in the case of no constraints.733

734

The next observation is especially problematic for interpreting the dMV formulation and associated results.735

Observation 6. (Role of γ in ρ (w) = γ/ (2w) is economically ambiguous) Smaller values of γ in ρ (w) = γ/ (2w)736

do not necessarily imply more risk-seeking (or technically, less risk-averse) behavior on the part of the investor.737

In particular, except at the final rebalancing time tm = T −∆t, the optimal fraction of wealth invested in the738
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Figure 4.4: Illustration of the effect of investment constraints on the MV efficient frontiers for a constant and a
wealth-dependent ρ, respectively, under the assumptions of discrete (annual) rebalancing of the portfolio, and a
Merton model for the risky asset. The investment parameters include an initial wealth of w0 = 100 a maturity
of T = 20 years.

risky asset does not monotonically increase as γ decreases. This appears to hold regardless of the combination739

of investment constraints or the discrete rebalancing frequency under consideration.740

Observation 6 is illustrated by Figure 4.5, Figure 4.6, as well as Figure 4.7. In more detail, Figure 4.5 shows741

the cMV-optimal fraction of wealth as a function of ρ at the first rebalancing time t0 ≡ t1 = 0 ∈ Tm. In other742

words, Figure 4.5(a) therefore simply plots the function ρ→ uc∗0 (ρ) /w0, where uc∗0 is given by (3.6) with n = 1743

(since t0 ≡ t1, i.e. the initial time is also the first rebalancing event), while Figure 4.5(b) shows the function744

ρ→ uc∗0 (ρ) /w0 obtained numerically when investment constraints are imposed.745

Figure 4.6 and Figure 4.7 illustrate the dMV-optimal fraction of wealth invested in the risky asset at two746

different rebalancing times tn, which by Lemma 3.4 is simply the function γ → Cn (γ) = ud∗n (γ) /W (tn).747

Specifically, Figure 4.6 illustrate γ → C0 (γ) at the initial rebalancing time t0 ≡ t1 = 0 ∈ Tm; in the case of748

no constraints and Combination 1, this is obtained by solving the difference equations presented in Lemma 3.4749

numerically (see Remark 3.7), while in the case of Combination 2 the fraction is calculated numerically using the750

algorithm of Van Staden et al. (2018). Figure 4.7 also illustrates the dMV-optimal fraction of wealth invested751

in the risky asset as a function of γ, but at the penultimate rebalancing time tm−1 = T − 2∆t. However,752

in the cases of no constraints and Combination 1 in Figure 4.7, the function γ → Cm−1 (γ) is obtained by753

simply plotting the analytical solutions presented Lemma 3.5 and Lemma 3.6, without the need to solve the754

difference equations in Lemma 3.4 numerically. As noted in Remark 3.7, we can use the qualitative aspects of755

the analytical solutions of γ → Cm−1 (γ) used in in Figure 4.7 to explain the behavior of γ → C0 (γ) observed756

in Figure 4.6, which is discussed below.757

Finally, we note that the cMV- and dMV-optimal fractions invested in the risky asset at the final rebalancing758

time, tm = T − ∆t, are not shown in these figures. The reason is that the functions ρ → uc∗m (ρ) /w0 and759

γ → Cm (γ) = ud∗m (γ) /W (tm) are both monotonically decreasing in ρ and γ respectively (as highlighted in760

Observation 6 for the dMV case), and qualitatively similar to the results illustrated in Figure 4.5. This follows761

since at the final rebalancing time when n = m, the objective functionals (3.44) and (3.46) are equivalent, in762

the sense that for any γ > 0 for the dMV problem, there exists a value of ρ > 0 for the cMV problem which763

gives the same fraction of wealth to invest in the risky asset.764

Before discussing the causes of Observation 6 in more detail, we make a few observations. First, Figure 4.5765

shows that this problem appears not to arise at all in the case of the cMV formulation. Second, this challenge766

seems to be largely overlooked in the available literature concerned with the dMV problem. For example,767

Bensoussan et al. (2019, 2014) models γ = γt by means of a logistic function which is justified on the basis that768

investors “become more risk-averse, relative to their current wealth, as time evolves”, while Wang and Chen769

(2019) makes use of γ = γt = c/t, c > 0 in a pension fund setting, justifying this choice by noting that as “the770

retirement time approaches, the suggestion usually given to the investor in pension plans is to decrease the771

investment in the risky asset.” While these observations regarding the evolution of risk preferences might be772

economically reasonable, the results of Figure 4.6 show that γ does not necessarily encode risk preferences in773

such a straightforward way. Complicating the definition of ρ (w, t) even further using economic reasoning as in774

Cui et al. (2017, 2015) may be problematic if the underlying economic intuition regarding the role of γ in the775

simplest case ρ (w) = γ/ (2w) turns out to be ambiguous.776
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Figure 4.5: The cMV-optimal fraction of wealth invested in the risky asset at time t = 0 as a function of ρ > 0,
assuming a Merton model for the risky asset. The investment parameters include an initial wealth of w0 = 100
and a maturity of T = 20 years.
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778

Explaining the causes of Observation 6 is not straightforward, since the dMV-optimal control’s dependence779

on γ is very complex due to the integral equation (3.36) in the case of continuous rebalancing and the difference780

equations (3.19)-(3.20) in the case of discrete rebalancing. However, Lemma 3.5 and Lemma 3.6 rigorously show781

that the function γ → Cm−1 (γ) (see Figure 4.7) exhibit all the key qualitative characteristics of the function782

γ → C0 (γ) (see Figure 4.6), and is therefore instructive for understanding the underlying causes of Observation783

6.784

We note that the result of Lemma 3.5, illustrated in Figure 4.7(a), is not unexpected given the results of785

Theorem 3.14, and in particular the special case given in Lemma 3.15 applicable to rebalancing time tm−1.786

Specifically, in the case of no constraints, we know that Hd
∆t → 0 as γ → ∞, so that the dMV problem has787

a structural similarity to the cMV problem as γ becomes large. This explains why the monotone decreasing788

behavior of γ → Cm−1 (γ) for large γ in Figure 4.7(a) is comparable to that of Figure 4.5(a). In contrast, as789

γ ↓ 0, in the case of no constraints Hd
∆t → ∞. Lemma 3.5 shows that in the case of tm−1, there is a value of790

γ, namely γmaxm−1, where the contribution of Hd
∆t effectively overwhelms the other terms of objective Jd∆t (3.46),791

so that its implied incentive to invest a relatively small fraction of wealth in the risky asset dominates. This792

explains the parabolic behavior in (3.25), which is illustrated in Figure 4.7(a).793

Now consider Lemma 3.6, which extends the results of Lemma 3.5 to the case of Combination 1 of investment794

constraints. In this case, as γ ↓ 0, the fact that Hd
∆t → 0 (see Theorem 3.14 and Lemma 3.15) means that the795

dependence on γ for small γ illustrated in Figure 4.7(b) is more comparable to the dependence on ρ for small796

ρ illustrated in Figure 4.5(b).797
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Figure 4.7: Illustration of the function γ → Cm−1 (γ), which gives the dMV -optimal fraction of wealth invested
in the risky asset Cm−1 (γ) at time tm−1 = T − 2∆t as a function of γ > 0, for a given level of wealth w = 100.
The investment maturity is T = 20 years.
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Unfortunately, the impact of Hd
∆t cannot be ignored entirely, even in the case of Combination 1 of constraints.799

Specifically, considering the results of Lemma 3.6, we observe that if γ ≥ α̂
σ̂2 , the expression (3.27) is identical800

to the no constraints case in (3.23). Suppose for the moment that γmaxm−1 >
α̂
σ̂2 , where γmaxm−1 is defined in (3.24).801

Then even in the case of Combination 1, as γ increases, the dMV-optimal fraction of wealth in the risky asset802

γ → Cm−1 (γ) in (3.27) is (i) constant if γ ∈
(
0, γcritm−1

)
, (ii) decreasing if γ ∈

[
γcritm−1,

α̂
σ̂2

)
, (iii) increasing if803

γ ∈
[
α̂
σ̂2 , γ

max
m−1

]
, and finally (iv) decreasing if γ ∈

(
γmaxm−1,∞

)
. This is illustrated in Figure 4.7(b). This is just one804

example of possible behavior however, since depending on the underlying parameters and rebalancing frequency,805

it might be the case that γmaxm−1 <
α̂
σ̂2 , with either γmaxm−1 < γcritm−1 or γmaxm−1 > γcritm−1 possible. Regardless of the806

exact behavior, the fact that γ has a non-monotonic or economically ambiguous influence on the dMV-optimal807

strategy is a very concerning aspect of the dMV formulation.808

Given this interesting dependence of the dMV-optimal control on γ, the next observation is perhaps not809

surprising.810

Observation 7. (dMV-optimal strategy potentially calls for economically counterintuitive positions in underly-811

ing assets) In the case of using a wealth-dependent ρ, it might be optimal to short the risky asset. Furthermore,812

even for a well-performing risky asset (µ � r), it might be dMV-optimal, in both the constrained and uncon-813

strained case, to invest all wealth in the risk-free asset for a substantial portion of the investment time horizon.814

Neither of these positions are intuitively expected in a dynamic MV optimization framework.815

Comparing results of Lemmas 3.15, 3.5 and 3.6, we observe that the shorting of the risky asset highlighted816

in Observation 7 can also be explained as a consequence of the functional Hd
∆t in the dMV objective becoming817

dominant for certain values of γ. Shorting the risky asset is not intuitively expected in the MV framework (and818

is indeed never cMV optimal) if there is a single risky asset and µ > r, since an otherwise identical short and819

long position incurs the same risk as measured by the variance, but at the cost of negative expected returns in820

the case of a short position. The possibility that shorting the risky asset might be dMV-optimal is therefore821

deeply counterintuitive from a MV perspective.822

As to the second part of Observation 7, namely that it might be dMV-optimal to invest all wealth in the823

risk-free asset, see Bensoussan et al. (2019) for a rigorous discussion. Here we simply note that in the case of824

Combination 2, where no analytical solution is available, Figure 4.8(b) shows that even when µ� r (as in the825

case of the parameters in Table 4.1), the dMV-investor spends more than a third of the investment time horizon826

of T = 20 years, and in particular the critical early years, with zero investment in the risky asset (i.e. all wealth827

invested in the risk-free asset).828

We explore this strange phenomenon in more detail as part of the explanation of the next observation829

associated with the dMV formulation.830

831

Observation 8. (dMV -optimal strategy has an undesirable risk profile for the long-term investor) Using a832

wealth-dependent ρ results in an optimal investment strategy with a very undesirable risk profile, especially833

from the perspective of long-term investors with a fixed investment time horizon, such as institutional investors834
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Figure 4.8: Illustration of the median fraction of wealth invested in the risky asset over time, by rebalancing
according to the optimal control achieving a standard deviation of terminal wealth equal to 400. The median
wealth values are obtained numerically using 1 million Monte Carlo simulations using a Kou model for the risky
asset. The investment parameters include the discrete (annual) rebalancing of the portfolio, an initial wealth of
w0 = 100, and a maturity of T = 20 years.

like pension funds. This appears to remain true regardless of the combination of investment constraints under835

consideration.836

Figures 4.8 and 4.9 plots the fraction of wealth invested in the risky asset over time according to the cMV837

and dMV-optimal strategies, with the values of ρ and γ chosen to obtain the desired standard deviation of838

terminal wealth. Observe that in the case of the cMV formulation, this fraction depends on wealth even in the839

case of no constraints. In the case of the dMV formulation, this fraction depends on wealth only in the case of840

Combination 2. In all cases where this fraction depends on wealth, the data for Figures 4.8 and 4.9 is obtained841

by solving the problems using the algorithm of Van Staden et al. (2018), outputting the optimal controls, and842

rebalancing the portfolio in a Monte Carlo simulation at each rebalancing time according to the saved controls843

(see Van Staden et al. (2018) for more details), so that we obtain a distribution of the fraction invested in the844

risky asset over time that enables the plotting of certain percentiles of this distribution over time.845

Figure 4.8 and Figure 4.9(b) show that regardless of the investment constraints, the dMV-optimal fraction of846

wealth increases as t→ T . What’s more, this increase in risk exposure over time is observed even if we impose847

additional downside risk constraints (Bi and Cai (2019)), allow for consumption (Kronborg and Steffensen848

(2014)), allow for T to be a random variable (Landriault et al. (2018)), impose a stochastic mortality process on849

investors (Liang et al. (2014)), include a model for reinsurance (Li and Li (2013)), allow for stochastic volatility850

(Li et al. (2016)), include a model of random wage income for the investor (Wang and Chen (2018)), or model851

the funding of a random liability over time from the portfolio (Zhang et al. (2017)). In other words, it appears852

that this increase is not a function of the constraints or modelling assumptions, but from the wealth-dependent853

ρ formulation itself, since this challenge is not observed in the case of a constant ρ.854

Specifically, in the case of a constant ρ, Figure 4.8 and Figure 4.9(a) show a much more desirable risk profile855

for a long-term investor with a fixed time horizon. As t→ T , provided previous returns were favorable, the cMV856

investor de-risks the portfolio over time (see e.g. 25th percentile in Figure 4.9(a)), with no such reduction of857

risk present in the wealth-dependent ρ case (Figure 4.9(b)). Furthermore, in the case of a wealth-dependent ρ,858

the fraction of wealth invested in the risky asset for Combination 1 of constraints shown in Figure 4.9(b) is the859

deterministic function of time tn → C (tn) := Cn reported in Lemma 3.4, so that the dMV investor faces this860

potentially undesirable risk profile (increasing risky asset exposure as t → T ) regardless of whether preceding861

returns were favorable or unfavorable.862

We again observe that the presence of the functional Hd
∆t in the dMV objective functional (3.46) is the863

source of this problem. Consider the final rebalancing time tm = T − ∆t. In this case, the cMV and dMV864

investors act similarly since Hd
∆t vanishes, and we specifically note that the dMV-optimal strategy is inversely865

proportional to γ, see (3.53). Suppose now that the dMV investor chooses a small value of γ, then this implies866

a large dMV-optimal position in the risky asset at time tm = T − ∆t. However, Lemmas 3.5 and 3.6 shows867

that at time tm−1 = T − 2∆t, a small value of γ might not translate into a large position in the risky asset.868

In fact, due to the role of Hd
∆t (see for example Lemma 3.15, or the general case in Lemma 3.13), there might869

be a significant incentive for the investor to make a very small investment in the risky asset at time tm−1, with870

similar observations holding for tn, n < m−1. As a result, if the dMV-investor sets a risk target for the standard871
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deviation of terminal wealth, then the positions in the risky asset has to be very large at later rebalancing times872

compared to earlier rebalancing times if this target is to be achieved, resulting in the increasing risk exposure873

as t→ T observed in Figures 4.8 and 4.9. These observations are also discussed rigorously in Bensoussan et al.874

(2019) for the case where analytical solutions are available.875

Observation 8 is closely connected to Observation 7, since it might be dMV-optimal to invest zero wealth in876

the risky asset at earlier times (see Figure 4.8(b)). It is clearly also closely connected to Observation 3, since877

the dMV investor might achieve the same overall risk as the cMV investor by taking large positions in the risky878

assets in later periods, resulting in the same or similar standard deviation of terminal wealth, but at a much879

lower level of expected wealth, since the low investment in the risky asset during early periods does not allow880

the wealth to grow sufficiently over time.881
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Figure 4.9: Illustration of the fraction of wealth invested in the risky asset over time for Combination 1 of
constraints, by rebalancing according to the optimal control achieving the desired standard deviation of terminal
wealth. In the case of a constant ρ, the optimal fraction is a random variable depending on wealth, so that
percentiles in subfigure (a) are obtained numerically using 1 million Monte Carlo simulations. In the case of
a wealth-dependent ρ, the fraction of wealth invested in the risky asset for Combination 1 of constraints is a
deterministic function of time, shown for different values of targeted standard deviation in subfigure (b). The
Kou model is assumed for the risky asset. The investment parameters include the discrete (annual) rebalancing
of the portfolio, an initial wealth of w0 = 100 and a maturity of T = 20 years. The same scale is used on the
y-axis of both figures for ease of comparison.

882

The final observation that we discuss is closely connected to Observation 7 and Observation 8.883

Observation 9. (dMV -optimal strategy can exhibit undesirable discontinuities) The optimal investment strat-884

egy using a wealth-dependent ρ can exhibit undesirable discontinuities or “cliff-effects” when economically rea-885

sonable constraints are applied. For example, as the investor’s wealth crosses a certain threshold in the case886

of Combination 2 of constraints, either all wealth or no wealth is invested in the risky asset, with effectively887

no transition between these extremes. This makes the resulting investment strategy not just economically888

unreasonable, but also impractical to implement.889

Observation 9 is illustrated by Figure 4.10, which illustrates the cMV- and dMV-optimal controls for Com-890

bination 2 expressed as a fraction of wealth invested in the risky asset over time. We observe the very fast891

transition from a zero investment in the risky asset to investing all wealth in the risky asset as the wealth892

increases above a certain level, especially pronounced as t → T . As observed in Observation 9, this makes893

the dMV-optimal strategy very challenging to implement, especially if wealth fluctuates over this region of894

discontinuity.895

The specific case of Combination 2 illustrated in Figure 4.10 is analyzed in detail in Van Staden et al.896

(2018). Here it is sufficient to give the following intuitive explanation of the discontinuity in Figure 4.10(b). As897

observed in discussing Observation 8, the dMV investor takes the largest positions in the risky asset as t→ T .898

However, for the dMV formulation to be meaningful (see discussion of Observation 1), any reasonable set of899

constraints should be such that the investment in the risky asset is zero if w ≡ 0, see for example (2.12). This900

implies that there should always be a “yellow strip” as at the bottom of Figure 4.10(b), the width of which901

is theoretically infinitesimal as t → T . However, any numerical scheme solving this problem in practice can902

only approximate this strip by a finite size (which shrinks as the mesh is refined). Since the problem is solved903
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recursively backwards, the transition from zero investment to non-zero investment in the risky asset is somewhat904

smoothed due to iterated conditioning, but remains unavoidable and economically undesirable.905

(a) Constant ρ (b) Wealth-dependent ρ

Figure 4.10: Illustration of the optimal control as a fraction of wealth invested in the risky asset using a constant
ρ and a wealth-dependent ρ, respectively, given Combination 2 of investment constraints. In both cases, the
controls achieve a standard deviation of terminal wealth equal to 400. The Kou model is assumed for the risky
asset. Investment parameters include the discrete (annual) rebalancing of the portfolio, an initial wealth of
w0 = 100, and a maturity of T = 20 years. The same color scale is used in both figures for ease of comparison.

906

5 Conclusion907

In this paper, we have discussed and compared the practical investment consequences of the two most popular908

formulations of the scalarization parameter ρ in dynamic TCMV optimization, namely (i) a constant ρ and (ii)909

a wealth-dependent ρ (inversely proportional to wealth). To this end, we have extended the known analytical910

results for the wealth-dependent ρ formulation reported in Bensoussan et al. (2014) to allow for the implementa-911

tion of any of the commonly used jump-diffusion models in finance as a model of the risky asset process. Where912

analytical solutions were not available, we made use of numerical solutions to obtain the necessary results.913

Since the connection between the scalarization parameter formulation and risk preferences is not trivial,914

we have performed the comparison from the perspective of an investor who is otherwise agnostic about the915

philosophical differences underlying the different scalarization parameter formulations and their relation to916

theoretical risk aversion considerations. We have showed that the wealth-dependent ρ, when used in conjunction917

with the time-consistency constraint in a dynamic MV optimization setting, can lead to a number of potentially918

undesirable investment outcomes which are not observed in the case of a constant ρ. While this does not imply919

that using a constant ρ ought to be preferred over a wealth-dependent ρ, we have illustrated that investors920

should be particularly cautious when using a wealth-dependent ρ in the MV objective. Furthermore, since the921

wealth-dependent ρ formulation enjoys such widespread popularity in the literature applying MV optimization922

in institutional settings, investors may benefit from the awareness of the practical challenges associated with923

the wealth-dependent scalarization parameter formulation that were highlighted in this paper.924
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Appendix A: Proofs of Theorems 3.8 and 3.9928

Proof of Theorem 3.8929

Let Lu and Hu be the following infinitesimal operators associated with the controlled wealth process (2.6),930

Luφ (w, t) =
∂φ

∂t
(w, t) + (rtw + αtu)

∂φ

∂w
(w, t) +

1

2
σ2
t u

2 ∂
2φ

∂w2
(w, t)931

−λφ (w, t) + λ

∫ ∞
0

φ (w + u (ξ − 1) , t) p (ξ) dξ, (A.1)932

Hugd (w, t) = 2ρ (w, t) · gd (w, t) · Lugd (w, t) , (A.2)933

where φ : R+ × [0, T ]→ R is a suitably smooth function. Define the following functions:

G (w, t, y) = ρ (w, t) y2,
(
G � gd

)
(w, t) = G

(
w, t, gd (w, t)

)
, fy,τ (w, t) = f (w, t, y, τ) . (A.3)

By the results derived in Björk et al. (2017), if V d, gd, f and ud∗ are sufficiently smooth functions that satisfy934

the following extended HJB system of equations,935

sup
u∈Uw,t

{
LuV d (w, t)− Lu

(
G � gd

)
(w, t) +Hugd (w, t)− Luf (w, t, w, t) + Lufw,t (w, t)

}
= 0, (A.4)936

Lu
d∗
gd (w, t) = 0, Lu

d∗
fy,τ (w, t) = 0, (A.5)937

V d (w, T ) = w, gd (w, T ) = w, fy,τ (w, T ) +
γ (τ)

2y
w2 = w, (A.6)938

where ud∗ := ud∗ (w, t) is the pointwise supremum attained for each (w, t) ∈ Uw,t in (A.4), then we can conclude939

the results of Theorem 3.8. Substituting the definitions (A.1)-(A.3) and ρ (t, w) = γ (t) / (2w) into the extended940

HJB system (A.4)-(A.6) and simplifying the resulting expressions, we obtain the extended HJB system (3.31)-941

(3.34) in Theorem 3.8. The probabilistic representations (3.35) of gd and f follows from the backward equations942

(A.5) (or equivalently (3.32)-(3.33)) and terminal conditions (A.6) together with standard results - see for943

example Applebaum (2004); Oksendal and Sulem (2005).944

Proof of Theorem 3.9945

Suppose that the optimal control is of the form ud∗ (w, t) = c (t)w, for some non-random function of time

c ∈ C [0, T ] that does not depend on w. At this stage, no other assumption is made regarding c (t). Let W d∗

denote the controlled wealth dynamics (2.6) using control ud∗. Define the auxiliary functions:

E (τ ;w, t) = Ew,t
ud∗

[
W d∗ (τ)

]
, Q (τ ;w, t) = Ew,t

ud∗

[(
W d∗ (τ)

)2]
, for τ ∈ [t, T ] . (A.7)

Using standard derivations (see for example Oksendal and Sulem (2005)), we obtain the following ODEs for946

E (τ ;w, t) and Q (τ ;w, t), respectively:947

dE
dτ

(τ ;w, t) = [rτ + (µτ − rτ ) c (τ)] E (τ ;w, t) , τ ∈ (t, T ] , (A.8)948

E (t;w, t) = w, and (A.9)949

950

dQ
dτ

(τ ;w, t) =
[
2rτ + 2 (µτ − rτ ) c (τ) +

(
σ2
τ + λκ2

)
c2 (τ)

]
Q (τ ;w, t) , τ ∈ (t, T ] , (A.10)951

Q (t;w, t) = w2. (A.11)952

Solving the ODEs (A.8)-(A.11), and evaluating the solution at τ = T , we have

E (T ;w, t) = eI1(t;c)w, Q (T ;w, t) = w2 · e2I1(t;c)+I2(t;c), (A.12)

where I1 (t; c) and I2 (t; c) are defined in (3.37). Using the probabilistic representations (3.35) of gd and f , the

ansatz ud∗ (w, t) = c (t)w therefore implies that

gd (w, t) = E (T ;w, t) , f (w, t, y, τ) = gd (w, t)− γτ
2y
Q (T ;w, t) , (A.13)
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with gd and f satisfying the backward equations (3.32) and (3.33) with terminal conditions (3.34), respectively,

a fact which can be verified by direct calculation. Using (A.13), we obtain the value function as

V d (w, t) = f (w, t, w, t) +
γt
2w

[
gd (w, t)

]2
. (A.14)

Consider now the HJB equation (3.31), which can be written more compactly as

∂V d

∂t
(w, t)− ∂f

∂τ
(w, t, w, t)−

(
γ′t
2w

+ λ
γt
2w

)(
gd (w, t)

)2 − λV d (w, t) + sup
u∈Uw,t

{
Φw,t (u)

}
= 0, (A.15)

where Φw,t : Uw,t → R is the objective function of the embedded local optimization problem in equation (3.31).953

If gd, f and V d is as in (A.13)-(A.14), then Φw,t simplifies to the following concave and quadratic function in u,954

Φw,t (u) = −
[ γt

2w

(
σ2
t + λκ2

)
e2I1(t;c)+I2(t;c)

]
· u2

955

+ (µt − rt)
[
eI1(t;c) − γte2I1(t;c)+I2(t;c) + γte

2I1(t;c)
]
· u956

+w (rt + λ)
[
eI1(t;c) + γte

2I1(t;c)
]
− γtw

(
rt +

1

2
λ

)
e2I1(t;c)+I2(t;c). (A.16)957

From the first order condition, the function u→ Φw,t (u) attains a maximum at u∗, where958

u∗ = Ft

(
µt − rt

γt (σ2
t + λκ2)

{
e−I1(t;c)−I2(t;c) + γte

−I2(t;c) − γt
})
· w, (A.17)959

with Ft given by (3.38). Comparing (A.17) with the anzatz ud∗ (w, t) = c (t)w, we see that c (t) satisfies the960

integral equation (3.36).961

It now only remains to verify that the HJB equation (A.15) is satisfied by ud∗ (w, t) = c (t)w. Using (A.13),962

(A.14) and (A.16), together with the fact that gd and f satisfy the backward equations (3.32) and (3.33), we963

obtain964

Φw,t
(
ud∗ (w, t)

)
= −∂f

∂t
(w, t, w, t) + λf (w, t, w, t) +

γt
w
gd (w, t)

[
−∂g

d

∂t
(w, t) + λgd (w, t)

]
965

= −
[
∂V d

∂t
(w, t)− ∂f

∂τ
(w, t, w, t)−

(
γ′t
2w

+ λ
γt
2w

)(
gd (w, t)

)2 − λV d (w, t)

]
, (A.18)966

so that the first equation (3.31) in the extended HJB system (3.31)-(3.34) is therefore satisfied. This completes967

the proof of Theorem 3.9.968
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