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Abstract5

We discuss a parsimonious neural network approach, which does not rely on dynamic programming6

techniques, to solve dynamic portfolio optimization problems subject to multiple investment constraints.7

The approach allows for objectives of a very general form encompassing both time-consistent and time-8

inconsistent objectives, as well as objectives requiring multi-level optimization. The number of parameters9

of the neural network remains independent of the number of portfolio rebalancing events. Compared to10

reinforcement learning, this technique avoids the computation of high-dimensional conditional expectations.11

The approach remains practical when considering large numbers of underlying assets, long investment time12

horizons or very frequent rebalancing events. We prove convergence of the numerical solution to the theoret-13

ical optimal solution of a large class of problems under fairly general conditions, and present ground truth14

analyses for a number of popular formulations, including mean-variance, mean-semi-variance, and mean-15

conditional value-at-risk problems. Numerical experiments show that if the investment objective functional16

is separable in the sense of dynamic programming, the correct time-consistent optimal investment strat-17

egy is recovered, otherwise we obtain the correct pre-commitment (time-inconsistent) investment strategy.18

This method is agnostic as to the underlying data generating assumptions, and results are illustrated using19

(i) parametric models for underlying asset returns, (ii) stationary block bootstrap resampling of empirical20

returns, and (iii) generative adversarial network (GAN)-generated synthetic asset returns.21
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1 Introduction24

We develop a parsimonious and flexible neural network approach to obtain the numerical solution of a large25

class of dynamic (i.e. multi-period) portfolio optimization problems, while allowing for multiple investment26

constraints.27

This method presents a significant generalization of our previous work (Li and Forsyth (2019)), and is also28

related to a large and growing existing literature on the use of neural networks to approximate the optimal29

control function directly in stochastic optimal control problems, avoiding use of dynamic programming methods30

(Buehler et al., 2019; Han et al., 2018; Han and Weinan, 2016; Reppen and Soner, 2023; Reppen et al., 2023;31

Tsang and Wong, 2020). In the taxonomy of Powell (2023), all of these methods are simply variations of32

the “policy function approximation” approach to stochastic optimal control, and upon cursory inspection are33

therefore expected to share many common properties.34

However, in basic formulation, Buehler et al. (2019); Han and Weinan (2016); Tsang and Wong (2020) rely35

on a “sub”-neural network to approximate the control at each rebalancing step. Consequently, the number of36

neural network parameters required increases linearly with the number of portfolio rebalancing events.37

Alternatively, a single neural network with time as an input feature can be used to approximate the optimal38

control (Buehler et al., 2019; Li and Forsyth, 2019; Reppen and Soner, 2023; Reppen et al., 2023)). In the39

taxonomy of Hu and Laurière (2023), these methods can be classified as “global-in-time” machine learning40

approaches to stochastic control problems. Such an approach implies that the optimal investment strategy at41
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each rebalancing event would simply involve evaluating the trained neural network by specifying the time and42

other relevant input features.43

Our technique in this paper is parsimonious, in the sense that the number of parameters does not scale44

with the number of rebalancing events. This ensures that our approach remains feasible even for problems45

with very long time horizons (see e.g. Forsyth et al. (2019)) or with a shorter time horizon but with frequent46

trading/rebalancing (Forsyth et al., 2011).47

Moreover, global-in-time techniques only require the solution of a single optimization problem to determine48

the parameters of the neural network. This avoids the error amplification problems associated with the backward49

time-recursion in techniques based on dynamic programming (DP), e.g. Q-learning (Dixon et al., 2020; Gao50

et al., 2020; Park et al., 2020), or other DP-based techniques (Bachouch et al., 2022; Van Heeswijk and Poutré,51

2019).52

Given the context of the existing literature, the contributions of this paper are as follows:53

• The existing literature focuses on objective functionals that are separable in the sense of dynamic pro-54

gramming, although this may not be required. In this paper, we consider a much larger class of objectives,55

with generalization along two dimensions:56

(i) We consider objectives of a very general form encompassing both time-consistent and time-inconsistent57

objectives (see Bjork et al. (2021)). We demonstrate how our method can be used to solve pre-58

commitment (time-inconsistent) problems to obtain the resulting induced time-consistent strategy59

(Bjork et al. (2021); Forsyth (2020); Strub et al. (2019a,b)) directly, without first requiring a theoret-60

ical derivation of the induced time-consistent problem. Additionally, we demonstrate the application61

of this method to objectives involving mean-semi-variance (e.g. Sortino ratio), for which no equivalent62

DP principle is known.63

(ii) We extend the class of objectives considered to include problems involving multi-level optimization64

such as Mean-CVaR in a dynamic setting (see for example Forsyth (2020); Miller and Yang (2017)).65

We also allow for a broader class of inner objectives which may not be separable in the sense of66

dynamic programming.67

• We present theoretical results establishing the convergence of the proposed approach for the general class68

of objectives as discussed above. We prove convergence to the optimal strategy (assuming it exists) in the69

limit as the number neural network parameters (nodes in each layer) increases, provided that the number70

of samples in the training data also increases at the appropriate rate.71

The broad outlines of our proofs follow along the lines of convergence analyses in the literature (Reppen and72

Soner, 2023; Tsang and Wong, 2020). However, the details of the convergence proofs differ, in particular73

due to the nested structure of the objectives and the precise form of the techniques used.74

• Numerical examples show that the computed solutions using our technique confirm the theoretical equiv-75

alence results regarding the original and embedded formulations of the dynamic Mean-Variance problem.76

On the other hand, if no equivalent time-consistent formulation exists, then we obtain the correct pre-77

commitment (time-inconsistent) investment strategy.78

The parsimonious neural network approach is also validated by comparing with analytical solutions which79

assume continuous rebalancing. This demonstrates that the global-in-time approach permits accurate80

solutions, even for the case of an infinite number of rebalancing times. As a result, our approach can81

be used without change for both frequent or infrequent rebalancing. We also verify that the approach82

generates comparable solutions to existing ground truth results for the Mean-CVaR problem.83

To emphasize that our approach is independent of any assumptions concering the underlying data gener-84

ation method, numerical examples are presented using:85

(i) parametric stochastic models for the underlying asset dynamics,86

(ii) stationary block bootstrap resampling of empirical asset returns,87

(iii) generative adversarial network (GAN)-generated synthetic asset returns.88

The remainder of the paper is organized as follows: Section 2 discusses the large class of portfolio optimization89

problems that can be solved using this methodology, along with issues related to time-consistency and time-90

inconsistency of the optimal strategies. Section 3 formalizes the problem formulation, while Section 4 provides a91
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summary of the proposed approach, with additional technical and practical details provided in Appendix A and92

Appendix B. Section 5 presents the convergence analysis of the proposed approach. Finally, Section 6 provides93

ground truth analyses, with Section 7 concluding the paper and discussing possible avenues for future research.94

2 Problem overview and selected applications95

The neural network approach and convergence analysis presented in this paper applies to the solutions of a96

large class of dynamic (i.e. multi-period) portfolio optimization problems that can be expressed in the following97

form,98

inf
ξ∈R

inf
P∈A

{
Et0,w0

P

[
F (W (T ) , ξ) +G

(
W (T ) , Et0,w0

P [W (T )] , w0, ξ
) ] }

. (2.1)99

While rigorous definitions and assumptions are discussed in subsequent sections, for introductory purposes we100

simply note that in general, F : R2 → R and G : R4 → R denote some continuous functions and ξ ∈ R some101

auxiliary variable, with T > 0 denoting the investment time horizon, W (t) , t ∈ [t0, T ], the controlled wealth102

process, and P representing the investment strategy (or control) implemented over [t0, T ]. Typically, P specifies103

the amount or fraction of wealth to invest in each of the underlying assets at each portfolio rebalancing event,104

which in practice occurs at some discrete subset of rebalancing times in [t0, T ]. A denotes the set of admissible105

investment strategies encoding the investment constraints faced by the investor. Finally, Et0,w0

P [·] denotes the106

expectation given control P and initial wealth W (t0) = w0.107

We make the following general observations regarding (2.1):108

• The function G forming part of the objective is allowed to be a nonlinear function of Et0,w0

P [W (T )], which109

could result in an optimal control that is not time-consistent (Bjork et al. (2021)). The theoretical and110

practical benefits of solving problems which might be time-inconsistent are discussed in more detail below.111

• For every fixed value of the auxiliary variable ξ ∈ R in the outer optimization problem of (2.1), the inner112

problem infP∈A {·} takes on the structure of a standard (if possibly time-inconsistent) stochastic optimal113

control problem. As discussed below, this problem structure arises in the case of Mean-Conditional Value-114

at-Risk (CVaR) optimization.115

• Although (2.1) is written for objective functions involving the terminal portfolio wealth W (T ), the ap-116

proach and convergence analysis could be generalized without difficulty to objective functions that are117

wealth path-dependent, i.e. functions of {W (t) : t ∈ T } for some subset T ⊆ [t0,T ] - see Forsyth et al.118

(2023); Van Staden et al. (2024) for examples. However, since a sufficiently rich class of problems are of119

the form (2.1), this will remain the main focus of this paper.120

For purposes of concreteness, we highlight some specific examples of problems of the form (2.1):121

(i) Utility maximization (see for example Vigna (2014)), in which case there is no outer optimization problem122

and G ≡ 0, while w → U (w) denotes the investor’s utility function, so that (2.1) therefore reduces to123

sup
P∈A

{
Et0,w0

P [U (W (T ))]
}
. (2.2)124

(ii) Mean-variance (MV) optimization (see e.g. Li and Ng (2000); Zhou and Li (2000)), with ρ > 0 denoting125

the scalarization (or risk aversion) parameter, where the problem126

sup
P∈A

{
Et0,w0

P [W (T )]− ρ · V art0,w0

P [W (T )]
}
, (2.3)127

can also be written in the general form (2.1).128

(iii) Mean-CVaR optimization, in which case we do have both an inner and an outer optimization problems129

(see e.g. Forsyth (2020); Miller and Yang (2017), resulting in a problem of the form130

inf
ξ∈R

inf
P∈A

{
Et0,w0

P [F (W (T ) , ξ)]
}
, (2.4)131

for a particular choice of the function F (see (3.15) below).132
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(iv) To illustrate the flexibility and generality of the proposed approach, we also consider a “mean semi-133

variance” portfolio optimization problem that is inspired by the popular Sortino ratio (Bodie et al. (2014))134

in the case of one-period portfolio analysis, where only the variance of downside outcomes relative to the135

mean is penalized. In the case of dynamic trading strategies, this suggests an objective function of the136

form137

sup
P∈A

{
Et0,w0

P

[
W (T )− ρ ·

(
min

{
W (T )− Et0,w0

P [W (T )] , 0
})2]}

, (2.5)138

where, as in the case of (2.3), the parameter ρ > 0 encodes the trade-off between risk and return. Note139

that (2.5) is not separable in the sense of dynamic programming, and in the absence of embedding results140

(analogous to those of Li and Ng (2000); Zhou and Li (2000) in the case of MV optimization (2.3)),141

problem (2.5) cannot be solved using traditional dynamic programming-based methods.142

However, we emphasize that (2.2)-(2.5) are only a selection of examples, and the proposed approach and143

theoretical analysis remains applicable to problems that can be expressed in the general form (2.1).144

Portfolio optimization problems of the form (2.1) can give rise to investment strategies that are not time-145

consistent due to the presence of the (possibly non-linear) function G (Bjork et al. (2021)). This gives rise to146

two related problems:147

(i) since (2.1) cannot be solved using a dynamic programming-based approach, some other solution method-148

ology has to be implemented, or some re-interpretation of the problem or the concept of “optimality”149

might be required (see for example Bjork and Murgoci (2014); Vigna (2022)),150

(ii) if the investment strategies are time-inconsistent, this can raise questions as to whether these strategies151

are feasible to implement as practical investment strategies.152

We make the following general observations:153

• It may be desirable to avoid using dynamic programming (DP) even if (2.1) can be solved using DP154

techniques. For example, it is well known that DP has an associated “curse of dimensionality”, in that as the155

number state variables increases linearly, the computational burden increases exponentially (Fernández-156

Villaverde et al. (2020); Han and Weinan (2016)). In addition, since DP techniques necessarily incur157

estimation errors at each time step, significant error amplification can occur which is further exacerbated158

in high-dimensional settings (Li et al., 2020; Tsang and Wong, 2020; Wang and Foster, 2020).159

Instead of relying on DP-based techniques and attempting to address the challenges of dimensionality using160

machine learning techniques (see for example Bachouch et al. (2022); Dixon et al. (2020); Fernández-161

Villaverde et al. (2020); Gao et al. (2020); Henry-Labordère (2017); Huré et al. (2021); Lucarelli and162

Borrotti (2020); Park et al. (2020)), the proposed method fundamentally avoids DP techniques altogether.163

This is especially relevant in our setting, since we have shown that in some cases, DP can be unnecessarily164

high-dimensional (see Van Staden et al. (2023)). This occurs since the objective functional (or performance165

criteria (Oksendal and Sulem (2019)) ) is typically high-dimensional while the optimal investment strategy166

remains relatively low-dimensional.167

The proposed method therefore forms part of the significant recent interest in developing machine learning168

techniques to solve multi-period portfolio optimization problems that avoids using DP techniques alto-169

gether (see for example Buehler et al. (2019); Ni et al. (2022); Reppen and Soner (2023); Reppen et al.170

(2023); Tsang and Wong (2020); Van Staden et al. (2023)).171

• Time-inconsistent problems naturally arise in financial applications (see Bjork et al. (2021)), and as a172

result their solution is often an area of active research. Examples include the mean-variance problem,173

which remained an open problem for decades until the solution using the embedding technique of Li and174

Ng (2000); Zhou and Li (2000). As a result, being able to obtain a numerical solution to problems of the175

form (2.1) directly is potentially useful.176

From a practical point of view, in many cases, time-inconsistent problems generate an induced time177

consistent objective function (Forsyth (2020); Strub et al. (2019a,b)). The optimal policy for this induced178

time consistent objective function is identical to the pre-commitment policy at time zero. The induced179

time consistent strategy is, of course implementable (Forsyth (2020)), in the sense that the investor has180

no incentive to deviate from the strategy determined at time zero, at later times.181
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An alternative approach to handling time-inconsistent problems is to search for the equilibrium control182

(Bjork et al. (2021)). A fascinating result obtained in Bjork and Murgoci (2010) is that for every equi-183

librium control, there exists a standard, time consistent problem which has the same control, under a184

different objective function.185

This essentially means that the question of time-consistency is a often matter of perspective, since there186

may be alternative objective functions which give rise to the same pre-commitment control, yet are time-187

consistent. In fact, other subtle issues arise in comparing pre-commitment and time consistent controls,188

see Vigna (2020, 2022) for further discussion.189

Furthermore, over very short time horizons such as those encountered in optimal trade execution, time190

consistency or its absence may not be of much concern to the investor or market participant (see for191

example Forsyth et al. (2011); Tse et al. (2013)).192

In addition, as noted by Bernard and Vanduffel (2014), if the strategy is realized in an investment product193

sold to a retail investor, then the optimal policy from the investor’s point of view is in fact of pre-194

commitment type, since the retail client does not herself trade in the underlying assets during the lifetime195

of the contract.196

As a result of these observations, we will consider problem (2.1) in its general form. As discussed in the197

Introduction, we present ground truth analyses confirming that the proposed approach is very effective in198

solving portfolio optimization problems of the form (2.1). The results illustrate numerically that if (2.1) is not199

separable in the sense of DP, our approach recovers the correct pre-commitment (time-inconsistent) optimal200

control, otherwise it recovers the correct time-consistent optimal control.201

3 Problem formulation202

We start by formulating portfolio optimization problems of the form (2.1) more rigorously in a setting of discrete203

portfolio rebalancing and multiple investment constraints. Throughout, we work on filtered probability space204 (
Ω,F , {F (t)}t∈[t0,T ] ,P

)
satisfying the usual conditions, with P denoting the actual (and not the risk-neutral)205

probability measure.206

Let T denote the set of Nrb discrete portfolio rebalancing times in [t0 = 0, T ], which we assume to be207

equally-spaced to lighten notation,208

T = { tm = m∆t|m = 0, ..., Nrb − 1} , ∆t = T/Nrb, (3.1)209

where we observe that the last rebalancing event occurs at time tNrb−1 = T −∆t.210

At each rebalancing time tm ∈ T , the investor observes the F (tm)-measurable vectorX (tm) = (Xi (tm) : i = 1, ..., ηX) ∈211

RηX , which can be interpreted informally as the information taken into account by the investor in reaching their212

asset allocation decision. As a concrete example, we assume below that X (tm) includes at least the wealth213

available for investment, an assumption which can be rigorously justified using analytical results (see for example214

Van Staden et al. (2023)).215

Given X (tm), the investor then rebalances a portfolio of Na assets to new positions given by the vector216

pm (tm,X (tm)) = (pm,i (tm,X (tm)) : i = 1, .., Na) ∈ RNa , (3.2)217

where pm,i (tm,X (tm)) denotes the fraction of wealth W (tm) invested in the ith asset at rebalancing time218

tm. The subscript “m” in the notation pm emphasizes that in general, each rebalancing time tm ∈ T could219

be associated with potentially a different function pm : RηX+1 → RNa , while the subscript is removed below220

when we consider a single function that is simply evaluated at different times, in which case we will write221

p : RηX+1 → RNa .222

For purposes of concreteness, we assume that the investor is subject to the constraints of (i) no short-selling223

and (ii) no leverage being allowed, although the proposed methodology can be adjusted without difficulty to224

treat different constraint formulations1. For illustrative purposes, we therefore assume that each allocation (3.2)225

1As discussed in Section 4 and Appendix A, adjustments to the output layer of the neural network may be required.

5



is only allowed to take values in (Na − 1)-dimensional probability simplex Z,226

Z =

{
(y1, ..., yNa) ∈ RNa :

Na∑
i=1

yi = 1 and yi ≥ 0 for all i = 1, ..., Na

}
. (3.3)227

In this setting, an investment strategy or control P applicable to [t0, T ] is therefore of the form,228

P = {pm (tm,X (tm)) = (pm,i (tm,X (tm)) : i = 1, .., Na) : tm ∈ T } , (3.4)229

while the set of admissible controls A is defined by230

A = {P = {pm (tm,X (tm)) : tm ∈ T }|pm (tm,X (tm)) ∈ Z,∀tm ∈ T } . (3.5)231

The randomness in the system is introduced through the returns of the underlying assets. Specifically, let232

Ri (tm) denote the F (tm+1)-measurable return observed on asset i over the interval [tm, tm+1]. We make no233

assumptions regarding the underlying asset dynamics, but at a minimum, we do require (P) integrability, i.e.234

E |Ri (tm)| <∞ for all i ∈ {1, ..., Na} and m ∈ {0, ..., Nrb − 1}. Informally, we will refer to the set235

Y =
{

(Yi (tm) := 1 +Ri (tm) : i = 1, ..., Na)
>

: m ∈ {0, ..., Nrb − 1}
}

(3.6)236

as the path of (joint) asset returns over the investment time horizon [t0, T ].237

To clarify the subsequent notation, for any functional ψ (t) , t ∈ [t0, T ] we will use the notation ψ (t−) and238

ψ (t+) as shorthand for the one-sided limits ψ (t−) = limε↓0 ψ (t− ε) and ψ (t+) = limε↓0 ψ (t+ ε), respectively.239

Given control P ∈ A, asset returns Y , initial wealthW
(
t−0
)

:= w0 > 0 and a (non-random) cash contribution240

schedule {q (tm) : tm ∈ T }, the portfolio wealth dynamics form = 0, ..., Nrb−1 are given by the general recursion241

W
(
t−m+1;P,Y

)
=

[
W
(
t−m;P,Y

)
+ q (tm)

]
·
Na∑
i=1

pm,i (tm,X (tm)) · Yi (tm) . (3.7)242

Note that we write W (u) = W (u;P,Y ) to emphasize the dependence of wealth on the control P and the243

(random) path of asset returns in Y that relates to the time period t ∈ [t0, u]. In other words, despite using244

Y in the notation for simplicity, W (u;P,Y ) is F (u)-measurable. Finally, since there are no contributions or245

rebalancing at maturity, we simply have W
(
t−Nrb

)
= W (T−) = W (T ) = W (T ;P,Y ).246

3.1 Investment objectives247

Given this general investment setting and wealth dynamics (3.7), our goal is to solve dynamic portfolio opti-248

mization problems of the general form249

inf
ξ∈R

inf
P∈A

J (P, ξ; t0, w0) , (3.8)250

where, for some given continuous functions F : R2 → R and G : R3 → R, the objective functional J is given by251

J (P, ξ; t0, w0) = Et0,w0

P

[
F (W (T ;P,Y ) , ξ) +G

(
W (T ;P,Y ) , Et0,w0

P [W (T ;P,Y )] , w0, ξ
) ]

. (3.9)252

Note that the expectations Et0,w0 [·] in (3.9) are taken over Y , given initial wealth W
(
t−0
)

= w0, control P ∈ A253

and auxiliary variable ξ ∈ R. In addition to the assumption of continuity of F and G, we will make only the254

minimal assumptions regarding the exact properties of J , including that ξ → F (·, ξ) and ξ → G (·, ·, w0, ξ) are255

convex for all admissible controls P ∈ A, and the standard assumption (see for example Bjork et al. (2021))256

that an optimal control P∗ ∈ A exists.257

For illustrative and ground truth analysis purposes, we consider a number of examples of problems of the258

form (3.8)-(3.9).259

As noted in the Introduction, the simplest examples of problems of the form (3.8) arise in the special260

case where G ≡ 0 and there is no outer optimization problem over ξ, such as in the case of standard utility261

maximization problems. As concrete examples of this class of objective functions, we will consider the quadratic262
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target minimization (or quadratic utility) described in for example Vigna (2014); Zhou and Li (2000),263

(DSQ (γ)) : inf
P∈A

{
Et0,w0

[
(W (T ;P,Y )− γ)

2
]}

, γ > 0, (3.10)264

as well as the (closely-related) one-sided quadratic loss minimization used in for example Dang and Forsyth265

(2016); Li and Forsyth (2019),266

(OSQ (γ)) : inf
P∈A

{
Et0,w0

[
(min {W (T ;P,Y )− γ, 0})2 − ε ·W (T ;P,Y )

]}
, γ > 0. (3.11)267

The term εW (·) in equation (3.11) ensures that the problem remains well-posed2 in the event that W (t)� γ.268

Observe that problems of the form (3.10) or (3.11) are separable in the sense of dynamic programming, so that269

the resulting optimal control is therefore time-consistent.270

As a classical example of the case where G is nonlinear and the objective functional (3.9) is not separable271

in the sense of dynamic programming, we consider the mean-variance (MV) objective with scalarization or272

risk-aversion parameter ρ > 0 (see for example Bjork et al. (2017)),273

(MV (ρ)) : sup
P∈A

{
Et0,w0 [W (T ;P,Y )]− ρ · V art0,w0 [W (T ;P,Y )]

}
, ρ > 0.274

= sup
P∈A

Et0,w0

P

[
W (T ;P,Y )− ρ ·

(
W (T ;P,Y )− Et0,w0

P [W (T ;P,Y )]
)2]

. (3.12)275

Note that issues relating to the time-inconsistency of the optimal control of (3.12) are discussed in Remark 3.1276

below, along with the relationship between (3.10) and (3.12).277

As an example of a problem involving both the inner and outer optimization in (3.8), we consider the Mean278

- Conditional Value-at-Risk (or Mean-CVaR) problem, subsequently simply abbreviated the MCV problem.279

First, as a measure of tail risk, the CVaR at level α, or α-CVaR, is the expected value of the worst α percent280

of wealth outcomes, with typical values being α ∈ {1%, 5%}. As in Forsyth (2020), a larger value of the CVaR281

is preferable to smaller value, since our definition of α-CVaR is formulated in terms of the terminal wealth, not282

in terms of the loss. Informally, if the distribution of terminal wealth W (T ) is continuous with PDF ψ̂, then283

the α-CVaR in this case is given by284

CVARα =
1

α

∫ w∗α

−∞
W (T ) · ψ̂ (W (T )) · dW (T ) , (3.13)285

where w∗α is the corresponding Value-at-Risk (VaR) at level α defined such that
∫ w∗α
−∞ ψ̂ (W (T )) dW (T ) = α.286

We follow for example Forsyth (2020) in defining the MCV problem with scalarization parameter ρ > 0 formally287

as288

sup
P∈A

{
ρ · Et0,w0 [W (T )] + CVARα

}
, ρ > 0. (3.14)289

However, instead of (3.13), we use the definition of CVaR from Rockafellar and Uryasev (2002) that is applicable290

to more general terminal wealth distributions, so that the MCV problem definition used subsequently aligns291

with the definition given in Forsyth (2020); Miller and Yang (2017)),292

(MCV (ρ)) : inf
ξ∈R

inf
P∈A

Et0,w0

[
−ρ ·W (T ;P,Y )− ξ +

1

α
max (ξ −W (T ;P,Y ) , 0)

]
, ρ > 0. (3.15)293

Finally, as noted in the Introduction, we apply the ideas underlying the Sortino ratio where the variance of294

returns below the mean are penalized, to formulate the following objective function for dynamic trading,295

(MSemiV (ρ)) : sup
P∈A

{
Et0,w0

P

[
W (T ;P,Y )− ρ ·

(
min

{
W (T ;P,Y )− Et0,w0

P [W (T ;P,Y )] , 0
})2]}

, (3.16)296

which we refer to as the “Mean- Semi-variance” problem, with scalarization (or risk-aversion) parameter ρ > 0.3297

The following remark discusses issues relating to the possible time-inconsistency of the optimal controls of298

2Although this is a mathematical necessity (see e.g. (Li and Forsyth, 2019)), in practice, if we use a very small value of ε, then
this has no perceptible effect on the summary statistics. In the numerical results of Section 6, we use ε = 10−6; see Appendix B
for a discussion.

3In continuous time, the unconstrained Mean-Semi-variance problem is ill-posed (Jin et al. (2005)). However, we will impose
bounded leverage constraints, which is, of course, a realistic condition. This makes problem (MSemiV (ρ)) well posed.
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(3.12) , (3.15) and (3.16).299

Remark 3.1. (Time-inconsistency and induced time-consistency) Formally, the optimal controls for problems300

MV (ρ), MCV (ρ) and MSemiV (ρ) are not time-consistent, but instead are of the pre-commitment type (see301

Basak and Chabakauri (2010); Bjork and Murgoci (2014); Forsyth (2020)). However, in many cases, there exists302

an induced time consistent problem formulation which has the same controls at time zero as the pre-commitment303

problem (see Forsyth (2020); Strub et al. (2019a,b)).304

As a concrete example of induced time-consistency, the embedding result of Li and Ng (2000); Zhou and Li305

(2000) establishes that the DSQ (γ) objective is the induced time-consistent objective function associated with306

the MV (ρ) problem, which is a result that we exploit for ground truth analysis purposes in Section 6.307

Similarly, there is an induced time consistent objective function for the Mean-CVAR problem MCV (ρ) in308

(3.15) - see Forsyth (2020).309

Consequently, when we refer to a strategy as optimal, for either the Mean-CVAR (MCV (ρ)) or Mean-310

Variance (MV (ρ)) problems, this will be understood to mean that at any t > t0, the investor follows the311

associated induced time-consistent strategy rather than a pre-commitment strategy.312

In the Mean-Semi-variance (MSemiV (ρ)) case as per (3.16), there is no obvious induced time consistent313

objective function. In this case, we seek the pre-commitment policy.314

For a detailed discussion of the many subtle issues involved in the case of time-inconsistency, induced time-315

consistency, and equilibrium controls, see for example Bjork et al. (2021); Bjork and Murgoci (2014); Forsyth316

(2020); Strub et al. (2019a,b); Vigna (2020, 2022).317

4 Neural network approach318

In this section, we provide an overview of the neural network (NN) approach. Additional technical details and319

practical considerations are discussed in Appendices A and B, while the theoretical justification via convergence320

analysis will be discussed in Section 5 (and Appendix B).321

Recall from (3.2) that X (tm) ∈ RηX denotes the information taken into account in determining the invest-322

ment strategy (3.2) at rebalancing time tm. Using the initial experimental results of Li and Forsyth (2019) and323

the analytical results of Van Staden et al. (2023) applied to this setting, we assume that X (tm) includes at324

least the wealth available for investment at time tm, so that325

W
(
t+m;P,Y

)
:= W

(
t−m;P,Y

)
+ q (tm) ∈ X (tm) , ∀tm ∈ T . (4.1)326

However, we emphasize that X (tm) may include additional variables in different settings. For example, in327

non-Markovian settings or in the case of certain solution approaches involving auxiliary variables, it is natural328

to “lift the state space” by including additional quantities in X such as relevant historical quantities related to329

market variables, or other auxiliary variables - see for example Forsyth (2020); Miller and Yang (2017); Tsang330

and Wong (2020).331

Let Dφ ⊆ RηX+1 be the set such that (tm,X (tm)) ∈ Dφ for all tm ∈ T . Let C (Dφ,Z) denote the set of all332

continuous functions from Dφ to Z ⊂ RNa (see (3.3)). We will use the notation X∗ to denote the information333

taken into account by the optimal control, since in the simplest case implied by (4.1), we simply haveX∗ = W ∗,334

where W ∗ denotes the wealth under the optimal strategy. We make the following assumption.335

Assumption 4.1. (Properties of the optimal control) Considering the general form of the problem (3.8), we336

assume that there exists an optimal feedback control P∗ ∈ A. Specifically, we assume that at each rebalancing337

time tm ∈ T , the time tm itself together with the information vector under optimal behavior X∗ (tm), which338

includes at least the wealth W ∗ (t+m) available for investment (see (4.1)), are sufficient to fully determine the339

optimal asset allocation p∗m (tm,X
∗ (tm)).340

Furthermore, we assume that there exists a continuous function p∗ ∈ C (Dφ,Z) such that p∗m (tm,X
∗ (tm)) =341

p∗ (tm,X
∗ (tm)) for all tm ∈ T , so that the optimal control P∗ can be expressed as342

P∗ = {p∗ (tm,X
∗ (tm)) : ∀tm ∈ T } , where p∗ ∈ C (Dφ,Z) . (4.2)343

We make the following observations regarding Assumption 4.1:344

(i) Continuity of p∗ in space and time: While assuming the optimal control is a continuous map in the345

state space X is fairly standard in the literature, especially in the context of using neural network ap-346

proximations (see for example Han and Weinan (2016); Huré et al. (2021); Tsang and Wong (2020)), the347
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assumption of continuity in time in (4.2) is therefore worth emphasizing, since it identifies this approach348

as a “global in time” approach in the taxonomy of Hu and Laurière (2023), and relates this approach to349

some specific applications of Buehler et al. (2019); Reppen and Soner (2023); Reppen et al. (2023). This350

assumption enforces the requirement that in the limit of continuous rebalancing (i.e. when ∆t → 0),351

the control remains a continuous function of time, which is a practical requirement for any reasonable352

investment policy. In particular, this ensures that the asset allocation retains its smooth behavior as the353

number of rebalancing events in [0, T ] is increased, which we consider a fundamental requirement ensuring354

that the resulting investment strategy is reasonable. In addition, in Section 6 we demonstrate how the355

known theoretical solution to a problem assuming continuous rebalancing (∆t→ 0) can be approximated356

very well using ∆t � 0 in the NN approach, even though the resulting NN approximation is only truly357

optimal in the case of ∆t� 0.358

(ii) The control is a single function for all rebalancing times; note that the function p∗ is not subscripted by359

time. If the portfolio is rebalanced only at discrete time intervals, the investment strategy can be found (as360

suggested in (4.2)) by evaluating this continuous function at discrete time intervals, i.e. (tm,X (tm)) →361

p∗ (tm,X (tm)) = (p∗i (tm,X (tm)) : i = 1, ..., Na), for all tm ∈ T . We discuss below how we solve for this362

(single) function directly, without resorting to dynamic programming, which avoids not only the challenge363

with error propagation due to value iteration over multiple timesteps, but also avoids solving for the364

high-dimensional conditional expectation (also termed the performance criteria by Oksendal and Sulem365

(2019)) if we are only interested in the relatively low-dimensional optimal control (see for example Van366

Staden et al. (2023)).367

These observations ultimately suggest the NN approach discussed below, while the soundness of Assumption368

4.1 is experimentally confirmed in the ground truth results presented in Section 6.369

Given Assumption 4.1 and in particular (4.2), we therefore limit our consideration to controls of the form370

P = {p (tm,X (tm)) : ∀tm ∈ T } , for some p ∈ C (Dφ,Z) . (4.3)371

To simplify notation, we identify an arbitrary control P of the form (4.3) with its associated function p =372

(pi : i = 1, ..., Na) ∈ C (Dφ,Z), so that the objective functional (3.9) is written as373

J (p, ξ; t0, w0) = Et0,w0

[
F (W (T ;p,Y ) , ξ) +G

(
W (T ) , Et0,w0 [W (T ;p,Y )] , w0, ξ

) ]
. (4.4)374

In (4.4), W (·;p,Y ) denotes the controlled wealth process using a control of the form (4.3), so that the wealth375

dynamics (3.7) for tm ∈ T (recall t−Nrb = T ) now becomes376

W
(
t−m+1;p,Y

)
=

[
W
(
t−m;p,Y

)
+ q (tm)

]
·
Na∑
i=1

pi (tm,X (tm)) · Yi (tm) . (4.5)377

Therefore, using Assumption 4.1 and (4.4)-(4.5), problem (3.8) is therefore expressed as378

V (t0, w0) = inf
ξ∈R

inf
p∈C(Dφ,Z)

J (p, ξ; t0, w0) . (4.6)379

We now provide a brief overview of the proposed methodology to solve problems of the form (4.6). This380

consists of two steps discussed in the following subsections, namely (i) the NN approximation to the control,381

and (ii) computational estimate of the optimal control.382

4.1 Step 1: NN approximation to control383

Let n ∈ N. Consider a fully-connected, feedforward NN fn with parameter vector θn ∈ Rνn and a fixed number384

Lh ≥ 1 of hidden layers, where each hidden layer contains ~ (n) ∈ N nodes. The NN has (ηX + 1) input nodes,385

mapping feature (input) vectors of the form φ (t) = (t,X (t)) ∈ Dφ to Na output nodes. For a more detailed386

introduction to neural networks, see for example Goodfellow et al. (2016).387

Additional technical and practical details can be found in Appendices A and B. For this discussion, we388

simply note that the index n ∈ N is used for the purposes of the analytical results and convergence analysis,389

where we fix a choice of Lh ≥ 1 while ~ (n) , n ∈ N is assumed to be a monotonically increasing sequence such390
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that limn→∞ ~ (n) = ∞ (see Section 5 and Appendix A). However, for practical implementation, a fixed value391

of ~ (n) ∈ N is chosen (along with Lh ≥ 1) to ensure the NN has sufficient depth and complexity to solve the392

problem under consideration (see Appendix B).393

Any NN considered is constructed such that fn : Dφ → Z ⊂ RNa . In other words, the values of the Na394

outputs are automatically in the set Z defined in (3.3) for any φ ∈ Dφ,395

fn (φ (t) ;θn) = (fn,i (φ (t) ;θn) : i = 1, ..., Na) ∈ Z. (4.7)396

As a result, the outputs of the NN fn in (4.7) can be interpreted as portfolio weights satisfying the required397

investment constraints. While a more detailed discussion of the structure can be found in Assumption A.1 in398

Appendix A, we summarize some key aspects of the NN structure illustrated in Figure 4.1:399

(i) We emphasize that the rebalancing time is an input into the NN as per the feature vector φ (t) =400

(t,X (t)) ∈ Dφ, so that the NN parameter vector θn itself does not depend on time.401

(ii) While we assume sigmoid activations for the hidden nodes for concreteness and convenience (see As-402

sumption A.1), any of the commonly-used activation functions can be implemented with only minor403

modifications to the technical results presented in Section 5.404

(iii) Since we are illustrating the approach using the particular form of Z in (3.3) because of its wide applica-405

bility (no short-selling and no leverage), a softmax output layer is used to ensure the NN output remains406

in Z ⊂ RNa for any φ (t) (see (4.7)). However, different admissible control set formulations can be handled407

without difficulty4.408

Figure 4.1: Illustration of the structure of the NN as per (4.7). Additional construction and implementation details
can be found in Appendix A.

409

For some fixed value of the index n ∈ N, let Nn denote the set of NNs constructed in the same way as fn for410

the fixed and given values of Lh and ~ (n). While a formal definition of the set Nn is provided in Appendix A,411

here we simply note that each NN fn (·;θn) ∈ Nn only differs in terms of the parameter values constituting its412

parameter vector θn (i.e. for a fixed n, each fn ∈ Nn has the same number of hidden layers Lh, hidden nodes413

~ (n), activation functions etc.).414

Observing that Nn ⊂ C (Dφ,Z), our first step is to approximate (4.6) by performing the optimization over415

fn (·;θn) ∈ Nn instead. In other words, we approximate the control p by a neural network fn ∈ Nn,416

p (φ (t)) ' fn (φ (t) ;θn) , where φ (t) = (t,X (t)) ,p ∈ C (Dφ,Z) ,fn ∈ Nn. (4.8)417

We identify the NN fn (·;θn) with its parameter vector θn, so that the (approximate) objective functional using418

4For example, position limits and limited leverage can be introduced using minor modifications to the output layer. Perhaps
the only substantial challenge is offered by unrealistic investment scenarios, such as insisting that trading should continue in the
event of bankruptcy, in which case consideration should be given to the possibility of wealth being identically zero or negative.
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approximation (4.8) is written as419

Jn (θn, ξ; t0, w0) = Et0,w0

[
F (W (T ;θn,Y ) , ξ) +G

(
W (T ;θn,Y ) , Et0,w0 [W (T ;θn,Y )] , w0, ξ

) ]
.(4.9)420

Combining (4.7) and (4.8), the wealth dynamics (4.5) is expressed as421

W
(
t−m+1;θn,Y

)
=

[
W
(
t−m;θn,Y

)
+ q (tm)

]
·
Na∑
i=1

fn,i (φ (tm) ;θn) · Yi (tm) , m = 0, ..., Nrb − 1.(4.10)422

Using (4.8) and (4.9), for fixed and given values of Lh and ~ (n), we therefore approximate problem (4.6) by423

Vn (t0, w0) = inf
ξ∈R

inf
fn(·;θn)∈Nn

Jn (θn, ξ; t0, w0) (4.11)424

= inf
ξ∈R

inf
θn∈Rνn

Jn (θn, ξ; t0, w0)425

= inf
(θn,ξ)∈Rνn+1

Jn (θn, ξ; t0, w0) . (4.12)426

We highlight that the optimization in (4.12) is unconstrained since, by construction, each NN fn (·;θn) ∈ Nn427

always generates outputs in Z.428

The notation (θ∗n, ξ
∗) and the associated NN f∗n (·;θ∗n) ∈ Nn are subsequently used to denote the values429

achieving the optimum in (4.12) for given values of Lh and ~ (n). Note however that we do not assume that430

the optimal control p∗ ∈ C (Dφ,Z) satisfying Assumption 4.1 is also a NN in Nn, since by the universal431

approximation results (see for example Hornik et al. (1989)), we would expect that the error in approximating432

(4.6) by (4.12) can be made arbitrarily small for sufficiently large ~ (n). These claims are rigorously confirmed433

in Section 5 below, where we consider a sequence of NNs fn (·;θn) ∈ Nn obtained by letting ~ (n) → ∞ as434

n→∞ (for any fixed value of Lh ≥ 1).435

4.2 Step 2 : Computational estimate of the optimal control436

In order to solve the approximation (4.12) to problem (4.6), we require estimates of the expectations in (4.9).437

For computational purposes, suppose we take as given a set Yn ∈ Rn×Na×Nrb , consisting of n ∈ N independent438

realizations of the paths of joint asset returns Y ,439

Yn =
{
Y (j) : j = 1, ..., n

}
. (4.13)440

We highlight that each entry Y (j) ∈ Yn consists of a path of joint asset returns (see (3.6)), and we assume that441

the paths are independent, we do not assume that the asset returns constituting each path are independent. In442

particular, both cross-correlations and autocorrelation structures within each path of returns are permitted.443

Constructing the set Yn in practical applications is further discussed in Appendix B. In the numerical444

examples in Section 6, we use examples where Yn is generated using (i) Monte Carlo simulation of parametric445

asset dynamics, (ii) stationary block bootstrap resampling of empirical asset returns, (Anarkulova et al. (2022))446

and (iii) generative adversarial network (GAN)-generated synthetic asset returns (Yoon et al. (2019)). While447

we let n→∞ in (4.13) for convergence analysis purposes, in practical applications (e.g. the results of Section448

6) we simply choose n sufficiently large such that we are reasonably confident that reliable numerical estimates449

of the expectations in (4.9) are obtained.450

Given a NN fn (·;θn) ∈ Nn and set Yn, the wealth dynamics (4.10) along path Y (j) ∈ Yn is given by451

W (j)
(
t−m+1;θn,Yn

)
=

[
W (j)

(
t−m;θn,Yn

)
+ q (tm)

]
·
Na∑
i=1

fn,i

(
φ(j) (tm) ;θn

)
· Y (j)

i (tm) , (4.14)452

for m = 0, ..., Nrb− 1. We introduce the superscript (j) to emphasize that the quantities are obtained along the453

jth entry of (4.13).454
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The computational estimate of Jn (θn, ξ; t0, w0) in (4.9) is then given by455

Ĵn (θn, ξ; t0, w0,Yn) =
1

n

n∑
j=1

F
(
W (j) (T ;θn,Yn) , ξ

)
456

+
1

n

n∑
j=1

G

(
W (j) (T ;θn,Yn) ,

1

n

n∑
k=1

W (k) (T ;θn,Yn) , w0, ξ

)
, (4.15)457

so that we approximate problem (4.12) by458

V̂n (t0, w0;Yn) = inf
(θn,ξ)∈Rνn+1

Ĵn (θn, ξ; t0, w0,Yn) . (4.16)459

The numerical solution of (4.16) can then proceed using standard (stochastic) gradient descent techniques (see460

Appendix B). For subsequent reference, let
(
θ̂
∗
n, ξ̂
∗
n

)
denote the optimal point in (4.16) relative to the training461

data set Yn in (4.16).462

In the case of sufficiently large datasets (4.13), in other words as n → ∞, we would expect that the error463

in approximating (4.12) by (4.16) can be made arbitrarily small. However, as noted above, as n→∞ and the464

number of hidden nodes ~ (n) → ∞ (for any fixed Lh ≥ 1), (4.12) is also expected to approximate (4.6) more465

accurately. As a result, we obtain the necessary intuition for establishing the convergence of (4.16) to (4.6)466

under suitable conditions, which is indeed confirmed in the results of Section 5.467

Note that since Yn is used in (4.16) to obtain the optimal NN parameter vector θ̂
∗
n, it is usually referred468

to as the NN “training” dataset (see for example Goodfellow et al. (2016)). Naturally, we can also construct469

a “testing” dataset Ytestn̂ , that is of a similar structure as (4.13), but typically based on a different implied470

distribution of Y as a result of different data generation assumptions. For example, Ytestn̂ can be obtained471

using a different time period of historical data for its construction, or different process parameters if there472

are parametric asset dynamics specified. The resulting approximation f∗n
(
·; θ̂
∗
n

)
∈ Nn to the optimal control473

p∗ ∈ C (Dφ,Z) obtained using the training dataset in (4.16) can then be implemented on the testing dataset474

for out-of-sample testing or scenario analysis. This is discussed in more detail in Appendix B.475

Remark 4.1. (Extension to wealth path-dependent objectives) As noted in the Introduction, the NN approach476

as well as the convergence analysis of Section 5 can be extended to objective functions that depend on the entire477

wealth path {W (t) : t ∈ T } instead of just the terminal wealth W (T ). This is achieved by simply modifying478

(4.15) appropriately and ensuring the wealth is assessed at the desired intervals using (4.14).479

4.3 Advantages of the NN approach480

The following observations highlight some advantages of the proposed NN approach:481

(i) The approach does not rely on dynamic programming (DP) methods for the solution of problem (4.16), and482

therefore does not require value iteration or backward time stepping. In particular, we observe that due to483

the explicit time-dependence of the NN feature vector, the optimization problem (4.16) itself only indirectly484

depends on the number of rebalancing events, while time recursion is limited to the (computationally485

inexpensive) wealth dynamics (4.14). As result, problems relating to the error amplification associated486

with DP methods (Li et al. (2020); Tsang and Wong (2020); Wang and Foster (2020)) are avoided, and487

only a single optimization problem that is independent of the number of portfolio rebalancing events is488

solved, in contrast to DP-based methods (see for example Bachouch et al. (2022); Van Heeswijk and Poutré489

(2019)).490

Not relying on DP techniques also makes the approach significantly more flexible, in that it can directly491

handle objective functions that are not separable in the sense of DP, without requiring theoretical results492

such as embedding in the case of MV optimization (see for example Li and Ng (2000); Zhou and Li (2000)).493

As an example of this, we present the solution of the mean - semi-variance problem (3.16) in Section 6.494

(ii) The proposed methodology is parsimonious, in the sense that the NN parameter vector remains indepen-495

dent of number of rebalancing events. Specifically, we observe that the NN parameter vector θn ∈ Rνn496

of the NN does not depend on the rebalancing time tm ∈ T or on the sample path j. This contrasts our497

approach with the approaches of for example Han and Weinan (2016); Tsang and Wong (2020),5 where498

5Tsang and Wong (2020) use a stacked NN approach, with a different NN at each rebalancing time.
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the number of parameters scale with the number of rebalancing events. As a result, the NN approach499

presented here can lead to potentially significant computational advantages in the cases of (i) long invest-500

ment time horizons or (ii) short trading time horizons with a frequent number of portfolio rebalancing501

events.502

A natural question might be whether the NNs in the proposed approach are required to be very deep, thus503

potentially exposing the training of the NN in (4.16) to problem of vanishing or exploding gradients (see for504

example Goodfellow et al. (2016)). However, the ground truth results presented in Section 6 demonstrate505

that we obtain very accurate results with relatively shallow NNs (at most two hidden layers). We suspect506

this might be due to the optimal control being relatively low-dimensional compared to the high-dimensional507

objective functionals in portfolio optimization problems with discrete rebalancing (see Van Staden et al.508

(2023) for a rigorous analysis), while in this NN approach approach the optimal control is obtained directly509

without requiring the solution of the (high-dimensional) objective functional at rebalancing times.510

Note that these advantages also contrast the NN approach with Reinforcement Learning-based algorithms511

to solve portfolio optimization problems, as the following remark discusses.512

Remark 4.2. (Contrast of NN approach to Reinforcement Learning). Reinforcement learning (RL) algorithms513

(for example, Q-learning) relies fundamentally on the DP principle for the numerical solution of the portfolio514

optimization problem (see for example Gao et al. (2020); Lucarelli and Borrotti (2020); Park et al. (2020)).515

This requires, at each value iteration step, the approximation of a (high-dimensional) conditional expectation.516

As a result, RL is associated with standard DP-related concerns related to error amplification and the curse of517

dimensionality discussed above, and also cannot solve general problems of the form (2.1) without relying on for518

example an embedding approach to obtain an associated problem that can be solved using DP methods.519

5 Convergence analysis520

In this section, we present the theoretical justification of the proposed NN approach as outlined in Section 4.521

We confirm that the numerical solution of (4.16) can be used to approximate the theoretical solution of (4.6)522

arbitrarily well (in probability) under suitable conditions. This section only summarizes the key convergence523

results which are among the main contributions of this paper, while additional technical details and proofs are524

provided in Appendix A.525

We start with Theorem 5.1, which confirms the validity of Step 1 (Subsection 4.1), namely using a NN526

fn (·;θn) ∈ Nn to approximate the control. Note that Theorem 5.1 relies on two assumptions, presented527

in Appendix A.2: We emphasize that Assumption A.3 is purely made for purposes of convenience, since its528

requirements can easily be relaxed with only minor modifications to the proofs (as discussed in Remark A.1),529

but at the cost of significant notational complexity and no additional insights. In contrast, Assumption A.2 is530

critical to establish the result of Theorem 5.1, and requires that the optimal investment strategy (or control)531

satisfies Assumption 4.1, places some basic requirements on F and G, and assumes that the sequence of NNs532

{fn (·;θn) , n ∈ N} is constructed such that the number of nodes in each hidden layer ~ (n)→∞ as n→∞ (no533

assumptions are yet required regarding the exact form of n→ ~ (n)).534

Theorem 5.1. (Validity of NN approximation) We assume that Assumption A.2 holds, and for ease of expo-535

sition, we also assume that Assumption A.3 holds. Then the NN approximation to the control in (4.8) is valid,536

in the sense that V (t0, w0) in (4.6) can be approximated arbitrarily well by Vn (t0, w0) in (4.12) for sufficiently537

large n, since538

lim
n→∞

|Vn (t0, w0)− V (t0, w0)| = lim
n→∞

∣∣∣∣ inf
(θn,ξ)∈Rνn+1

Jn (θn, ξ; t0, w0)− inf
ξ∈R

inf
p∈C(Dφ,Z)

J (p, ξ; t0, w0)

∣∣∣∣539

= 0. (5.1)540

Proof. See Appendix A.3.541

Having justified Step 1 of the approach, Theorem 5.2 now confirms the validity of Step 2 of the NN approach542

(see Subsection 4.2), namely using the computational estimate f∗n
(
·; θ̂
∗
n

)
∈ Nn from (4.16) as an approximation543

of the true optimal control p∗ ∈ C (Dφ,Z). Note that in addition to the assumptions of Theorem 5.1, Theorem544

5.2 also requires Assumption A.4, which by necessity includes computational considerations such as the structure545
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of the training dataset Yn, the rate of divergence of the number of hidden nodes ~ (n) → ∞ as n → ∞, and546

assumptions regarding the optimization algorithm used in solving problem (4.16).547

Theorem 5.2. (Validity of computational estimate) We assume that Assumption A.2, Assumption A.3 and548

Assumption A.4 hold. Then the computational estimate to the optimal control (4.2) obtained using (4.8) and549

(4.16) is valid, in the sense that the value function V (t0, w0) in (4.6) can be approximated arbitrarily well in550

probability by V̂n (t0, w0;Yn) in (4.16) for sufficiently large n, since551

∣∣∣V̂n (t0, w0;Yn)− V (t0, w0)
∣∣∣ =

∣∣∣∣ inf
(θn,ξ)∈Rηn+1

Ĵn (θn, ξ; t0, w0,Yn)− inf
ξ∈R

inf
p∈C(Dφ,Z)

J (p, ξ; t0, w0)

∣∣∣∣552

P−→ 0, as n→∞. (5.2)553

Proof. See Appendix A.3.554

Taken together, Theorem 5.1 and Theorem 5.2 establish the theoretical validity of the NN approach to solve555

problems of the form (2.1).556

6 Numerical results557

In this section, we present numerical results obtained by implementing the NN approach described in Section558

4. For illustrative purposes, the examples focus on investment objectives as outlined in Subsection 3.1, and we559

use three different data generation techniques for obtaining the training data set Yn of the NN: (i) parametric560

models for underlying asset returns, (ii) stationary block bootstrap resampling of empirical returns, and (ii)561

generative adversarial network (GAN)-generated synthetic asset returns.562

6.1 Closed-form solution: DSQ (γ) with continuous rebalancing563

Under certain conditions, some of the optimization problems in Subsection 3.1 can be solved analytically. In564

this subsection, we demonstrate how a closed-form solution of problem DSQ (γ) in (3.10), assuming continuous565

rebalancing (i.e. if we let ∆t → 0 in (3.1)), can be approximated very accurately using a very simple NN566

(1 hidden layer, only 3 hidden nodes) using discrete rebalancing with ∆t � 0 in (3.1). This simultaneously567

illustrates how parsimonious the NN approach is, as well as how useful the imposition of time-continuity is in568

ensuring the smooth behavior of the (approximate) optimal control.569

In this subsection as well as in Subsection 6.2, we assume parametric dynamics for the underlying assets.570

For concreteness, we consider the scenario of two assets, Na = 2, with unit values Si, i = 1, 2, evolving according571

to the following dynamics,572

dSi (t)

Si (t−)
=

(
µi − λiκ(1)i

)
· dt+ σi · dZi (t) + d

πi(t)∑
k=1

(
ϑ
(k)
i − 1

) , i = 1, 2. (6.1)573

Note that (6.1) takes the form of the standard jump diffusion models in finance - see e.g. Kou (2002);574

Merton (1976) for more information. For each asset i in (6.1), µi and σi denote the (actual, not risk-neutral)575

drift and volatility, respectively, Zi denotes a standard Brownian motion, πi (t) denotes a Poisson process with576

intensity λi ≥ 0, and ϑ(k)i are i.i.d. random variables with the same distribution as ϑi, which represents the jump577

multiplier of the ith risky asset with κ(1)i = E [ϑi − 1] and κ(2)i = E
[
(ϑi − 1)

2
]
. While the Brownian motions578

can be correlated with dZ1 (t) dZ2 (t) = ρ1,2 · dt, we make the standard assumption that the jump components579

are independent (see for example Forsyth and Vetzal (2022)).580

For this subsection only, we treat the first asset (i = 1 in (6.1)) as a “risk-free” asset, and set µ1 = r > 0

where r is the risk-free rate, so that we have λ1 = 0, σ1j = 0 ∀j, and Z1 ≡ 0, while the second asset (i = 2 in
(6.1)) is assumed to be a broad equity market index (the “risky asset”). In this scenario, if problem DSQ (γ)

in (3.10) is solved subject to dynamics (6.1) together with the assumptions of costless continuous trading,
infinite leverage, and uninterrupted trading in the event of insolvency, then the DSQ (γ)-optimal control can
be obtained analytically as

p∗ (t,W ∗ (t)) = [1− p∗2 (t,W ∗ (t)) , p∗2 (t,W ∗ (t))] ∈ R2, (6.2)
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Table 6.1: Closed-form solution - DSQ (γ) with continuous rebalancing: Percentiles of the simulated ( n = 2.56× 106)
terminal wealth distributions obtained by implementing the optimal strategies in Figure 6.1. In both cases, a mean
terminal wealth of 105 is obtained. Note that the NN approximation was obtained under the assumption of quarterly
rebalancing only, no leverage or short-selling, and therefore no trading in insolvency.

W (T ) percentiles
Solution approach Rebalancing 5th 20th 50th 80th 95th

Closed-form solution Continuous, ∆t→ 0 86.81 98.02 106.35 112.82 118.15
Shallow NN approximation Discrete, ∆t = 0.25, total of Nrb = 4 only 86.62 97.30 105.67 112.54 118.85

where the fraction of wealth in the broad stock market index (asset i = 2) is given by (Zweng and Li (2011))

p∗2 (t,W ∗ (t)) =
µ2 − r

σ2
2 + λ2κ

(2)
2

·
[
γe−r(T−t) −W ∗ (t)

W ∗ (t)

]
, w0 < γe−r(T−t). (6.3)

By design, the NN approach is not constructed to solve problems with unrealistic assumptions such as581

continuous trading, infinite leverage and short-selling, or trading in the event of bankruptcy, all of which are582

required to derive (6.3). However, if the implicit quadratic wealth target for the DSQ problem (i.e. the value of583

γ, see Vigna (2014)) is not too aggressive, the analytical solution (6.3) does not require significant leverage or584

lead to a large probability of insolvency. In such a scenario, we can use the NN approach to approximate (6.3).585

We select w0 = 100, T = 1 year and γ = 138.33, and simulate n = 2.56× 106 paths of the underlying assets586

using (6.1) and parameters as in Table C.1 (Appendix C). On this set of paths, the true analytical solution587

(6.3) is implemented using 7,200 time steps. In contrast, for the NN approach, we use only 4 rebalancing events588

in [0, T = 1], and therefore aggregate the simulated returns in quarterly time intervals to construct the training589

data set Yn. We consider only a very shallow NN, consisting of a single hidden layer and only 3 hidden nodes.590

Figure 6.1 compares the resulting optimal investment strategies by illustrating the optimal proportion of591

wealth invested in the the broad equity market index (asset i = 2) as a function of time and wealth. We592

emphasize that the NN strategy in Figure 6.1(b) is not expected to be exactly identical to the analytical593

solution in Figure 6.1(a), since it is based on fundamentally different assumptions such as discrete rebalancing594

and investment constraints (3.5).595

(a) Closed-form solution, ∆t→ 0 (w0 ∈ R) (b) Shallow NN, ∆t = 0.25 (w0 = 100)

Figure 6.1: Closed-form solution - DSQ (γ) with continuous rebalancing: Optimal proportion of wealth invested in
the broad equity market index as a function of time and wealth. The NN approximation is obtained for a specific initial
wealth of w0 =100, and only four rebalancing events in [0, T ].

596

However, requiring that the NN feature vector includes time in the proposed NN approach, together with597

a NN parameter vector that does not depend on time, we guarantee the smooth behavior in time of the NN598

approximation observed in Figure 6.1(b). As a result, Table 6.1 shows that the shallow NN strategy trained599

with ∆t � 0 results in a remarkably accurate and parsimonious approximation to the true analytical solution600

where ∆t→ 0, since we obtain nearly identical optimal terminal wealth distributions.601

602
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6.2 Ground truth: Problem MCV (ρ)603

In the case of the Mean-CVaR problem MCV (ρ) in (3.15), Forsyth and Vetzal (2022) obtain an MCV-optimal604

investment strategy subject to the same investment constraints as in Section 3 (namely discrete rebalancing, no605

short-selling or leverage allowed, and no trading in insolvency) using the partial (integro-)differential equation606

(PDE) approach of Forsyth (2020).607

For ground truth analysis purposes, we therefore consider the same investment scenario as in Forsyth and608

Vetzal (2022), where two underlying assets are considered, namely 30-day US T-bills and a broad equity market609

index (the CRSP VWD index) - see Appendix C for definitions. However, in contrast to the preceding section610

where one asset was taken as the risk-free asset, both assets are now assumed to evolve according to dynamics611

of the form (6.1), using the double-exponential Kou (2002) formulation for the jump distributions. The NN612

training data set is therefore constructed by simulating the same underlying dynamics. While further details613

regarding the context and motivation for the investment scenario can be found in Forsyth and Vetzal (2022),614

here we simply note that the scenario involves T = 5 years, quarterly rebalancing, a set of admissible strategies615

satisfying (3.5), and parameters for (6.1) as in Table C.2.616

As discussed in Appendix B, the inherently higher complexity of the Mean-CVaR optimal control requires617

the NN to be deeper than in the case of the problem considered in Subsection 6.1. As a result, we consider618

approximating NNs with two hidden layers, each with 8 hidden nodes, while relatively large mini-batches of619

2,000 paths were used in the stochastic gradient descent algorithm (see Appendix B) to ensure sufficiently620

accurate sampling of the tail of the returns distribution in selecting the descent direction at each step. Note621

that despite using a deeper NN, this NN structure is still very parsimonious and relatively shallow compared to622

the rebalancing time-dependent structures considered in for example Han and Weinan (2016), where a new set623

of parameters is introduced at each rebalancing event.624

Table 6.2 compares the PDE results reported in Forsyth and Vetzal (2022) with the corresponding NN results.625

Note that the PDE optimal control was determined by solving a Hamilton-Jacobi-Bellman PDE numerically.626

The statistics for the PDE generated control were computed using n = 2.56× 106 Monte Carlo simulations of627

the joint underlying asset dynamics in order to calculate the results of Table 6.2, while the NN was trained on628

n = 2.56 × 106 paths of the same underlying asset dynamics but which were independently simulated. While629

some variability of the results are therefore to be expected due to the underlying samples, the results in Table630

6.2 demonstrate the robustness of the proposed NN approach.631

Table 6.2: Ground truth - problemMCV (ρ): The PDE results are obtained from Forsyth and Vetzal (2022) for selected
points on the Mean-CVaR “efficient frontier”. The “Value function” column reports the value of the objective function
(3.14) under the corresponding optimal control, while “% difference” reports the percentage difference in the reported
value functions for the NN solution compared to the PDE solution.

ρ 5% CVaR Et0,w0 [W (T )] Value function %
difference

PDE NN PDE NN PDE NN
0.10 940.60 940.55 1069.19 1062.97 1047.52 1046.85 -0.06%
0.25 936.23 937.39 1090.89 1081.99 1208.95 1207.88 -0.09%
1.00 697.56 690.11 1437.73 1444.16 2135.29 2134.27 -0.05%
1.50 614.92 611.65 1508.10 1510.07 2877.07 2876.76 -0.01%

632

6.3 Ground truth: Problems MV (ρ) and DSQ (γ)633

In this subsection, we demonstrate that if the investment objective (2.1) is separable in the sense of dynamic634

programming, the correct time-consistent optimal investment strategy is recovered, otherwise we obtain the635

correct pre-commitment (time-inconsistent) investment strategy.636

To demonstrate this, the theoretical embedding result of Li and Ng (2000); Zhou and Li (2000), which637

establishes the equivalence of problems MV (ρ) and DSQ (γ) under fairly general conditions, can be exploited638

for ground truth analysis purposes as follows. Suppose we solved problems MV (ρ) and DSQ (γ) on the same639

underlying training data set. We remind the reader that in the proposed NN approach, problem MV (ρ) can640

indeed be solved directly without difficulty, which is not possible in dynamic programming-based approaches.641

Then, considering the numerical results, there should be values of parameters ρ ≡ ρ̃ and γ ≡ γ̃ such that the642

optimal strategy of MV (ρ ≡ ρ̃) corresponds exactly to the optimal strategy of DSQ (γ ≡ γ̃), with a specific643
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relationship holding between ρ̃ and γ̃. The NN approach can therefore enable us to numerically demonstrate644

the embedding result of Li and Ng (2000); Zhou and Li (2000) in a setting where the underlying asset dynamics645

are not explicitly specified and where multiple investment constraints are present. We start by recalling the646

embedding result.647

Proposition 6.1. (Embedding result of Li and Ng (2000); Zhou and Li (2000)) Fix a value ρ̃ > 0. If P∗ ∈648

A is the optimal control of problem MV (ρ ≡ ρ̃) in (3.12), then P∗ is also the optimal control for problem649

DSQ (γ = γ̃) in (3.10), provided that650

γ̃ =
1

2ρ̃
+ Et0,w0 [W ∗ (T ;P∗,Y )] . (6.4)651

Proof. See Li and Ng (2000); Zhou and Li (2000). We also highlight the alternative proof provided in Dang and652

Forsyth (2016), which shows that this result is valid for any admissible control set A.653

Since (6.4) is valid for any admissible control set A, we consider a factor investing scenario where portfolios654

are constructed using popular long-only investable equity factor indices (Momentum, Value, Low Volatility,655

Size), a broad equity market index (the CRSP VWD index), 30-day T-bills and 10-year Treasury bonds (see656

Appendix C for definitions). For illustrative purposes in the case of an investor primarily concerned with657

long-run factor portfolio performance, we use a horizon of T = 10 years, w0 = 120, annual contributions of658

q (tm) = 12, and annual rebalancing.659

Given historical returns data for the underlying assets, we construct training and testing (out-of-sample)660

data sets for the NN, Yn and Ytestn̂ , respectively, using stationary block bootstrap resampling of empirical661

historical asset returns (see Appendix C), which is popular with practitioners (Anarkulova et al. (2022); Cavaglia662

et al. (2022); Cogneau and Zakalmouline (2013); Dichtl et al. (2016); Scott and Cavaglia (2017); Simonian and663

Martirosyan (2022)) and is designed to handle weakly stationary time series with serial dependence. See Ni et al.664

(2022) for a discussion concerning the probability of obtaining a repeated path in block bootstrap resampling665

(which is negligible for any realistic number of samples). Due to availability of historical data we use inflation-666

adjusted monthly empirical returns from 1963:07 to 2020:12. The training data set (n = 106) is obtained using667

an expected block size of 6 months of joint returns from 1963:07 to 2009:12, while the testing data set (n = 106)668

uses an expected block size of 3 months and returns from 2010:01 to 2020:12. We consider NNs with two hidden669

layers, each with only eight hidden nodes.670

Choosing two values of ρ̃ > 0 to illustrate different levels of risk aversion (see Table 6.3), we solve problem671

MV (ρ = ρ̃) in (3.12) directly using the proposed approach to obtain the optimal investment strategy f
(
·; θ̂
∗
mv

)
.672

Note that since we consider a fixed NN structure in this setting rather than a sequence of NNs, we drop the673

subscript “n” in the notation f
(
·; θ̂
∗
mv

)
. Using this result together with (6.4), we can approximate the associated674

value of γ̃ by675

γ̃ ' 1

2ρ̃
+

1

n

n∑
j=1

W ∗(j)
(
T ; θ̂

∗
mv, ,Yn

)
, (6.5)676

and solve problem DSQ (γ = γ̃) independently using the proposed approach on the same training data set Yn.677

According to Proposition 6.1, the resulting investment strategy f
(
·; θ̂
∗
dsq

)
should be (approximately) iden-678

tical to the strategy f
(
·; θ̂
∗
mv

)
if the proposed approach works as required. Note that the parameter vectors are679

expected to be different (i.e. θ̂
∗
dsq 6= θ̂

∗
mv) due to a variety of reasons (multiple local minima, optimization using680

SGD, etc.), but the resulting wealth distributions and asset allocation should agree, i.e. f
(
·; θ̂
∗
dsq

)
' f

(
·; θ̂
∗
mv

)
.681

Figure 6.2 demonstrates the investment strategies f
(
·; θ̂
∗
mv

)
and f

(
·; θ̂
∗
dsq

)
obtained by training the NNs682

on the same training data set using values of ρ̃ = 0.017 and γ̃ = 429.647, respectively. Note that the values ρ̃683

and γ̃ are rounded to three decimal places, and Figure 6.2 corresponds to Results set 1 in Table 6.3. In this684

example, only four of the underlying candidate assets have non-zero investments, which is to be expected due685

to the high correlation between long-only equity factor indices.686

687

Table 6.3 confirms that the associated optimal terminal wealth distributions ofMV (ρ = ρ̃) andDSQ (γ = γ̃)688

indeed correspond, both in-sample (training data set) and out-of-sample (testing data set).689

690
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(a) MV (ρ = ρ̃) - Momentum (b) MV (ρ = ρ̃) - Value (c) MV (ρ = ρ̃) - B10 (d) MV (ρ = ρ̃) - T30

(e) DSQ (γ = γ̃) - Momentum (f) DSQ (γ = γ̃) - Value (g) DSQ (γ = γ̃) - B10 (h) DSQ (γ = γ̃) - T30

Figure 6.2: Ground truth - problems MV (ρ = ρ̃) and DSQ (γ = γ̃): investment strategies f
(
·; θ̂

∗
mv

)
and f

(
·; θ̂

∗
dsq

)
obtained by training the NNs using values of ρ̃ = 0.017 and γ̃ = 429.647 (rounded to three decimal places), respectively.
Each figure shows the proportion of wealth invested in the asset as a function of the minimal NN features, namely time
and available wealth. Zero investment under the optimal strategies in the broad market index and the Size factor.

Table 6.3: Ground truth - problems MV (ρ = ρ̃) and DSQ (γ = γ̃): Terminal wealth results obtained using n = 106

joint paths for the underlying assets. Note that the values of ρ̃ and γ̃ are rounded to three decimal places, .

Results set 1: ρ̃ = 0.017, γ̃ = 429.647 Results set 2: ρ̃ = 0.0097, γ̃ = 493.196

W (T ) Training data Testing data Training data Testing data
distribution MV DSQ MV DSQ MV DSQ MV DSQ

Mean 400.2 400.3 391.2 391.6 441.5 441.8 441.8 441.5
Stdev 55.4 55.4 26.2 25.7 79.6 79.7 39.4 39.5

5th percentile 276.5 276.4 346.6 347.5 255.2 254.6 367.8 367.1
25th percentile 391.8 392.3 382.4 382.8 422.4 423.6 430.9 430.7
50th percentile 416.1 416.3 396.5 396.8 469.8 470.1 451.3 451.2
75th percentile 429.9 429.8 406.4 406.7 487.7 489.6 465.0 464.8
95th percentile 452.1 452.1 418.9 419.0 516.1 516.5 480.9 480.2

The proposed NN approach therefore clearly works as expected, in that we demonstrated that the result691

of Proposition 6.1 in a completely model-independent way in a portfolio optimization setting where no known692

analytical solutions exist. In particular, we emphasize that no assumptions were made regarding parametric693

underlying asset dynamics, the results are entirely data-driven. As a result, we can interpret the preceding694

results as showing that the approach correctly recovers the time-inconsistent (or pre-commitment) strategy695

without difficulty if the objective is not separable in the sense of dynamic programming, such as in the case of696

the MV (ρ) problem, whereas if the objective is separable in the sense of dynamic programming, such as in the697

case of the DSQ (γ) problem, the approach correctly recovers the associated time-consistent strategy.698

6.4 Mean - Semi-variance strategies699

Having demonstrated the reliability of the results obtained using the proposed NN approach with the preceding700

ground truth analyses, we now consider the solution of the Mean - Semi-variance problem (3.16). To provide the701

necessary context to interpret the MSemiV (ρ)-optimal results, we compare the results of the optimal solutions702

of the MCV (ρ = ρmcv), MSemiV (ρ = ρmsv), and OSQ (γ = γosq) problems, where the values of ρmcv, ρmsv703

and γosq are selected to obtain the same expected value of terminal wealth on the NN training data set. This704

is done since the MCV- and OSQ-optimal strategies have been analyzed in great detail (Dang and Forsyth705
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(2016); Forsyth (2020)), and are therefore well understood. Note that since all three strategies are related to706

the maximization of the mean terminal wealth and while simultaneously minimizing some risk measure (which707

is implicitly done in the case of the OSQ problem, see Dang and Forsyth (2016)), it is natural to compare the708

strategies on the basis of equal expectation of terminal wealth.709

To highlight the main qualitative features of the MSemiV (ρ)-optimal results, we consider a simple invest-710

ment scenario of two assets, namely 30-day T-bills and a broad equity market index (the VWD index) - see711

Appendix C for definitions. We choose T =5 years, w0 = 1000, and zero contributions to demonstrate a lump712

sum investment scenario with quarterly rebalancing.713

To illustrate the flexibility of the NN approach to underlying data generating assumptions, the NN training714

data sets are constructed using generative adversarial network (GAN)-generated synthetic asset returns obtained715

by implementing the TimeGAN algorithm proposed by Yoon et al. (2019). In more detail, using empirical716

monthly asset returns from 1926:01 to 2019:12 for the underlying assets (data sources are specified in Appendix717

C), the TimeGAN is trained with default parameters as in Yoon et al. (2019) using block sizes of 6 months to718

capture both correlation and serial correlation aspects of the (joint) time series.6 Once trained, the TimeGAN719

is then used to generate a set of n = 106 paths of synthetic asset returns, which is used as the training data set720

to train the NNs corresponding to the MCV, MSemiV and OSQ-optimal investment strategies.721

Figure 6.3 illustrates the resulting optimal investment strategies, and we observe that the MSemiV-optimal722

strategy is fundamentally different from the MCV and OSQ-optimal strategies, while featuring elements of723

both. Specifically, Figure 6.4, which illustrates the resulting optimal terminal wealth distributions (with the724

same expectation), demonstrates that the MSemiV strategy, like the MCV strategy, can offer better downside725

protection than the OSQ strategy, while the MSemiV strategy retains some of the qualitative elements of the726

OSQ distribution such as the left skew.727

Having illustrated that the MSemiV problem can be solved in a dynamic trading setting using the proposed728

NN approach to obtain investment strategies that offer potentially valuable characteristics, we leave a more729

in-depth investigation of the properties and applications of MSemiV-optimal strategies for future work.730

(a) MCV (ρ = ρmcv) (b) MSemiV (ρ = ρmsv) (c) OSQ (γ = γosq)

Figure 6.3: Optimal investment strategies for the MCV (ρ = ρmcv), MSemiV (ρ = ρmsv), and OSQ (γ = γosq) strate-
gies, obtaining identical expectation of terminal wealth on the training data set. Each figure shows the proportion of
wealth invested in the broad equity market index as a function of the minimal NN features, namely time and available
wealth.

731

732

7 Conclusion733

In this paper, we presented a flexible NN approach, which does not rely on dynamic programming techniques, to734

solve a large class of dynamic portfolio optimization problems. We considered objectives of a very general form,735

6It appears that the actual code in Yoon et al. (2019) implements the following steps: (i) takes as input actual price data,
(ii) forms rolling blocks of price data and (iii) forms a single synthetic price path (which is the same length as the original path)
by randomly sampling (without replacement) from the set of rolling blocks. Step (iii) corresponds to the non-overlapping block
bootstrap using a fixed block size. This should be contrasted with stationary block bootstrap resampling of Politis and Romano
(1994). Step (i) does not make sense as input to a bootstrap technique, since the data set is about 10 years long, with an initial
price of $50 and a final price of $1200. We therefore changed Step (i), so that all data was converted to returns prior to being used
as input.

19



400 600 800 1000 1200 1400 1600 1800 2000 2200 2400

Terminal wealth

0

0.005

0.01

0.015

0.02

0.025

0.03
P

D
F

MCV

OSQ

MSemiV

E[W(T)] = 1345

(a) PDFs of W ∗ (T )

400 600 800 1000 1200 1400 1600 1800 2000 2200 2400

Terminal wealth

0

0.2

0.4

0.6

0.8

1

C
D

F

E[W(T)] = 1345

MSemiV

MCV

OSQ

(b) CDFs of W ∗ (T )

Figure 6.4: PDFs and CDFs of optimal terminal wealth obtained under the MCV (ρ = ρmcv), MSemiV (ρ = ρmsv),
and OSQ (γ = γosq) strategies, where the values of ρmcv, ρmsv and γosq are selected to obtain the same expected value
of optimal terminal wealth on the NN training data set.

encompassing both time-consistent and time-inconsistent objectives, as well as objectives requiring multi-level736

optimization. In the proposed approach, a single optimization problem is solved, issues of instability and error737

propagation involved in estimating high-dimensional conditional expectations are avoided, and the resulting738

NN is parsimonious in the sense that the number of parameters does not scale with the number of rebalancing739

events.740

We also presented theoretical convergence analysis results which show that the numerical solution obtained741

using the proposed approach can recover the optimal investment strategy, provided it exists, regardless of742

whether the resulting optimal investment strategy is time-consistent or (formally) time-inconsistent.743

Numerical results confirmed the advantages of the NN approach, and showed that accurate results can be744

obtained in ground truth analyses in a variety of settings. The numerical results also highlighted that the745

approach remains agnostic as to the underlying data generating assumptions, so that for example empirical746

asset returns or synthetic asset returns can be used without difficulty.747

We conclude by noting that the NN approach is not necessarily limited to portfolio optimization problems748

such a those encountered during the accumulation phase of pension funds, and could be extended to address749

the significantly more challenging problems encountered during the decumulation phase of defined contribution750

pension funds (see for example Forsyth (2022)). We leave this extension for future work.751
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Appendix A: NN approach: technical details and analytical results914

In this appendix, additional analytical results, relating to the convergence analysis presented in Section 5, are915

presented.916

A.1: NN structural assumptions917

In this section, we discuss the NN structural assumptions. First, we introduce the necessary notation - for a918

more detailed treatment of NNs, see for example Goodfellow et al. (2016). Consider a fully-connected, feed-919

forward NN fn with Lh ≥ 1 hidden layers. The NN layers are indexed by ` ∈ {0, ...,L}, where ` = 0 and920

` = Lh + 1 ≡ L denote the input and output layers, respectively. Let ηn,` ∈ N denote the number of nodes921

in layer ` of fn. With the exception of the input layer, each layer ` ∈ {1, ...,L} is associated with a weights922

matrix x[`]
n ∈ Rηn,`×ηn,`−1 into the layer, an optional bias vector b[`]n ∈ Rηn,` , as well as an activation function923

a
[`]
n : Rη` → Rη` which is applied to the weighted inputs into the layer.924

The parameter vector of the NN fn, which consists of all weights and biases, is denoted by θn ∈ Rνn , where925

νn ∈ N denotes the total number of weights and biases. In other words, the weights matrices
{
x
[`]
n : ` = 1, ...,L

}
926

and optional bias vectors
{
b[`]n : ` = 1, ...,L

}
are transformed into a single vector θn = (θ1, ..., θνn), where each927

θn,i ∈ θn can be uniquely mapped to a single weight or bias in some layer.928

Note that no activation function is applied at the input layer (` = 0), so that the η0 ≡ ηn,0 output values of929

the input layer corresponds to feature (input) vector of the NN, which will be denoted by φ ∈ Rη0 . Recalling930

that ηL ≡ ηn,L is the number of nodes in the output layer (` = L) and setting the bias vectors b[`]n ≡ 0 for931

convenience, the NN can therefore be written as a single function fn (φ;θn) : Rη0 → RηL , where932

fn (φ;θn) := (fn,1 (φ;θn) , ..., fn,ηL (φ;θn)) , φ ∈ Rη0 ,θn ∈ Rνn (A.1)933

We highlight that the output of the ith node in the output layer is given by fn,i (φ;θn) = a
[L]
n,i.934
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Given this standard fully-connected, feedforward NN formulation, we introduce the following NN structural935

assumption.936

Assumption A.1. (NN structure) Let fn (·;θn) , n ∈ N, be a sequence of fully-connected feedforward neural937

networks, and let ~ (n) , n ∈ N be a monotonically increasing sequence (i.e. ~ (n) < ~ (n+ 1), ∀n ∈ N) such that938

limn→∞ ~ (n) =∞. For each n ∈ N, the NN fn is constructed to satisfy the following structural assumptions.939

(i) The number of hidden layers Lh ≥ 1 (Lh ∈ N) remains fixed for all n ∈ N. For notational simplicity, we940

assume that each of the Lh hidden layers of the NN fn has the same number ~ (n) of hidden nodes,941

ηn,` ≡ ~ (n) , ∀` = 1, ...,L − 1, for some ~ (n) ∈ N. (A.2)942

(ii) For convenience, we assume that the sigmoid activation function σh is applied at each hidden node,943

σh (y) =
1

1 + e−y
≡ a

[`]
n,i (y) , where y =

(ηn,`−1∑
k=1

x
[`]
n,ika

[`−1]
n,k

)
+ b

[`]
n,i, (A.3)944

for all ` = 1, ...,Lh and i = 1, ..., ~ (n). Note that in principle, any of the popular activation functions can945

be used instead of (A.3), with minor modifications to the theoretical analysis presented in this paper.946

(iii) The NN fn has η0 = ηX +1 ≡ ηn,0 input nodes (i.e. the number of input nodes are independent of n ∈ N),947

with feature (input) vectors φ ∈ Rη0 of the form948

φ := φ (t) := (t,X (t)) ∈ Dφ ⊆ RηX+1, with X (t) =
(
W
(
t+
)
, X̂ (t)

)
, (A.4)949

where W (t+) denotes the wealth available for investment at time t after any contributions to the portfolio950

at time t, while X̂ (t) denotes a vector of additional information taken into account by the investment951

strategy. We emphasize that (A.4) clarifies that at time t ∈ [t0, T ], at least time t itself and W (t+) are952

always assumed to be inputs into the NN.953

(iv) The NN fn has Na = ηn,L output nodes (i.e. the number of output nodes are independent of n ∈ N), with954

the output of node i, denoted by fn,i (φ (t) ;θn), being associated with the proportion of available wealth955

W (t+) invested in asset i ∈ {1, ..., Na} after rebalancing the portfolio at time t.956

(v) The output layer (` = L = Lh + 1) of each NN fn uses the softmax activation function (see for example957

Gao and Pavel (2018)). Therefore we have a
[L]
n = ψ : RNa → RNa , where the ith component of ψ =958

(ψi : i = 1, .., Na) is given by959

ψi = a
[L]
n,i =

exp
{
z
[L]
n,i

}
∑Na
m=1 exp

{
z
[L]
n,m

} , where z[L]n,i =

Na∑
k=1

x
[L]
n,ika

[L−1]
n,k + b

[L]
n,i, i = 1, ..., Na. (A.5)960

For a given n ∈ N, we define the set Nn as the set of all neural networks satisfying Assumption (A.1),961

Nn = {fn : Dφ → Z|fn (·;θn) satisfies Assumption A.1 with ~ (n) nodes in each hidden layer} . (A.6)962

In other words, each fn (·;θn) ∈ Nn has the same number of hidden nodes ~ (n) in each hidden layer, but a963

potentially different parameter vector θn (i.e. different values associated with the weights and biases).964

We make the following observations regarding Assumption A.1:965

• Any NN constructed to satisfy Assumption A.1 will, for any input vector φ (t), automatically generate966

an output in the set Z, hence the definition (A.6) noting that fn : Dφ → Z. In other words, the given967

constraints are automatically satisfied. However, different sets of constraints simply requires modifications968

to the output activation, or post-processing of NN outputs, without affecting the technical results.969

• Note that further assumptions regarding the rate of at which the sequence ~ (n) increases relative to that970

of the sequence {n}n∈N will be introduced in the convergence analysis of Section 5 (see Assumption A.4.971
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• In practical applications, it is not necessary to consider a sequence of NNs; instead, we will use a single972

NN f ñ with ~ (ñ) hidden nodes in each of the hidden layers to get a reasonable trade-off between accuracy973

and computational efficiency. However, we emphasize that any such f ñ is still constructed to satisfy974

Assumption A.1.975

A.2: Assumptions for convergence analysis976

Assumption A.2 introduces the main assumptions used in rigorously justifying the approximation (4.8) and977

therefore to prove Theorem 5.1.978

Assumption A.2. (Convergence analysis: NN approximation to control) To establish the validity of the NN979

approximation to the control, we make the following assumptions:980

(i) The optimal investment strategy (or control) satisfies Assumption 4.1.981

(ii) The functions F and G in the objective functional J (p, ξ; t0, w0) (see (4.4)) are continuous, and ξ →982

F (·, ξ) and ξ → G (·, ·, ·, ξ) are convex for any admissible strategy p ∈ C (Dφ,Z). Note that in for example983

the Mean - Conditional Value-at-Risk problem (3.15) where there is an inner and outer optimization984

problem, this assumption is standard in computational settings (Forsyth (2020)).985

(iii) The NN approximation (4.8) of the investment strategy p ∈ C (Dφ,Z) is implemented by a NN fn (·;θn) ∈986

Nn, where Nn is given by (A.6). In other words, each approximating NN in the sequence of NNs fn, n ∈ N987

is constructed according to Assumption A.1.988

Note that Assumption A.2(iii) specifically requires that Assumption A.1 is satisfied, so each fn, n ∈ N, has989

~ (n) nodes in each hidden layer, where we recall that the sequence ~ (n) , n ∈ N, is monotonically increasing and990

satisfies ~ (n)→∞ as n→∞. However, we make no further assumptions yet regarding the form of n→ ~ (n).991

For ease of exposition, we introduce Assumption A.3 below. We emphasize that Assumption A.3 is purely for992

the sake of convenience, with Remark A.1 below discussing briefly how each component of Assumption A.3 can993

be relaxed with only minor (but tedious and notationally demanding) modifications to the subsequent proofs.994

Assumption A.3. (Convergence analysis: Assumptions for ease of exposition) For convenience, we introduce995

the following assumptions which can be relaxed without difficulty, as discussed in Remark A.1 below.996

(i) We assume that the optimal control p∗ as per Assumption 4.1 is a function of time and wealth only, i.e.997

X∗ (tm) = W ∗ (t+m) for each tm ∈ T in (4.2). As a result, we work with the minimal form of the NN998

feature vector satisfying Assumption A.1. Specifically, in the subsequent results we will always assume that999

X (t) = W (t+), so that we will consider feature vectors (A.4) of the form1000

φ (t) =
(
t,W

(
t+;θn,Y

))
∈ Dφ ⊆ R2. (A.7)1001

(ii) The wealth process with dynamics given by (4.10) remains bounded. In other words, we assume that there1002

exists a value wmax > 0 such that1003

0 ≤W (t;θn,Y ) ≤ wmax a.s. for all t ∈ [t0, T ] ,θn ∈ Rνn , (A.8)1004

so that Dφ in (A.7) satisfies1005

Dφ = [t0, T ]× [0, wmax] . (A.9)1006

The following remark discusses how Assumption A.3 can be relaxed.1007

Remark A.1. (Relaxing Assumption A.3) As noted above, Assumption A.3 has been introduced for ease of1008

exposition. We therefore briefly describe how each element of element of Assumption A.3 can be relaxed without1009

difficulty.1010

(i) In the case where the state X∗ (tm) depends on variables in addition to the portfolio wealth, for example1011

historical returns or additional variables (see for example Forsyth (2020); Tsang and Wong (2020)), it is1012

straightforward to incorporate these extra values without materially impacting the key aspects of the con-1013

vergence analysis. However, it is essential that portfolio wealth is included in X∗ (tm) as per Assumption1014

4.1.1015
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(ii) The assumption of bounded wealth (A.8) is clearly practical, in that while it is undoubtedly true that the1016

entire wealth of the world is very large, it remains finite. However, from a theoretical perspective, the1017

only reason we introduce (A.8) is to ensure that, given the minimal form of the feature vector (A.7), the1018

controls take inputs in a compact domain (A.9). While boundedness assumptions can be relaxed without1019

theoretical difficulty using straightforward localization arguments (see for example Huré et al. (2021);1020

Tsang and Wong (2020)), this simply introduces yet further notational complexity without providing1021

additional insights into the fundamental arguments underlying the subsequent proofs.1022

1023

In the convergence analysis of Step 2 of the proposed approach, namely the computational estimate of the1024

optimal control obtained using (4.16), we need to introduce some additional assumptions (Assumption A.41025

below) since this step involves the training dataset Yn of the NN and numerical solution of problem (4.16).1026

Assumption A.4. (Convergence analysis: Computational estimate of optimal control) We introduce the fol-1027

lowing assumptions:1028

(i) The training data set Yn =
{
Y (j) : j ∈ {1, ..., n}

}
used for training the NN (see (4.13) and associated1029

discussion) is constructed with independent joint asset return paths Y (j) ∈ Yn. As noted before, this does1030

not assume that the joint asset returns along a given path are independent or serially independent.1031

(ii) Number of nodes in each hidden layer ~ (n),n ∈ N: As n → ∞ (n ∈ N), in the case of one hidden layer1032 (
Lh = 1

)
, we assume that ~ (n) = o

(
n1/4

)
. For deeper NNs

(
Lh > 1

)
, we assume that ~ (n) = o

(
n1/6

)
.1033

(iii) For each n ∈ N, the optimization algorithm used in solving problem (4.16) attains the minimum
(
θ̂
∗
n, ξ̂
∗
n

)
∈1034

Rνn+1 corresponding to a given training data set Yn.1035

Since stochastic gradient descent (SGD) is used in training the NN, Assumption A.4(iii) is very strong;1036

however, it is a standard assumption in convergence analyses in the literature (see for example Huré et al.1037

(2021); Tsang and Wong (2020)) in order to focus on the key aspects of a proposed approach. For detailed1038

treatments of theoretical aspects regarding optimization errors (i.e. the differences between the attained values1039

and the true minima) arising when training NNs, the reader is referred to for example Beck et al. (2022); Jentzen1040

et al. (2021). Note that Assumption A.4(ii), which can also be found in Tsang and Wong (2020), is used to1041

establish a version of the law of large numbers that is applicable to our setting.1042

Remark A.2 (Increase in number of training samples as ~ increases). Informally, Assumption A.4(ii) requires1043

that the number of training samples n grows faster than O(~4) for Lh = 1 and O(~6) for Lh > 1, where ~1044

is the number of nodes in each hidden layer. Since we require a large ~ (number of nodes in each layer) for1045

good function approximation, this would suggest that convergence in terms of both function approximation1046

and sampling error requires a very large number of sample paths. This would appear to result in a barrier1047

to obtaining accurate results, for practical numbers of samples. However, our numerical examples seem to1048

produce solutions with reasonable errors, hence the requirements of Assumption A.4(ii) are probably not sharp.1049

Regardless, we can certainly expect that the number of samples should be significantly increased as we increase1050

~.1051

A.3: Proof of Theorem 5.11052

Before presenting the proof of Theorem 5.1, we first prove some auxiliary results that are preliminary require-1053

ments for the proof.1054

We start with Lemma A.5, which combines and applies selected universal approximation results to our1055

setting. The use of the notation f∗n (·,θ∗n) ∈ Nn in Lemma A.5, which has been defined in Subsection 4.1 as1056

the NN using the optimal parameter vector consistent with problem (4.11)-(4.12), will be become clear in the1057

subsequent results.1058

Lemma A.5. (Convergence to optimal control) Suppose that Assumption A.2 and Assumption A.3 hold. As1059

per (4.2), let p∗ = (p∗i : i = 1, ..., Na) ∈ C (Dφ,Z) denote the optimal control associated with problem (4.6).1060

Then there exists a sequence of neural networks, f∗n ∈ Nn, n ∈ N, where each f∗n =
(
f∗n,i : i = 1, ..., Na

)
has1061

parameter vector θ∗n ∈ Rνn ,such that1062

lim
n→∞

sup
φ∈Dφ

∣∣f∗n,i (φ;θ∗n)− p∗i (φ)
∣∣ = 0, ∀i = 1, ..., Na, (A.10)1063
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Proof. For ease of reference, recall that we have defined Nn as the set of NNs with ~ (n) hidden nodes in each1064

of the (fixed number of) Lh ≥ 1 hidden layers, constructed according to Assumption A.1,1065

Nn = {fn : Dφ → Z|fn (·;θn) satisfies Assumption A.1 with ~ (n) nodes in each hidden layer} . (A.11)1066

Consider another sequence of NNs,
◦
fn, n ∈ N, where each

◦
fn : Dφ → RNa is structurally identical to the1067

corresponding fn ∈ Nn in terms of Assumption A.1, except that
◦
fn uses the identity as the (linear) output1068

activation function. Specifically, we assume that
◦
fn does not apply the activation (A.1) at its output layer, but1069

instead replaces (A.1) with
◦
a
[L]
n =

(
◦
a
[L]
n,i : i = 1, ..., Na

)
: RNa → RNa where1070

◦
a
[L]
n,i

(
z[L]n

)
= z

[L]
n,i =

Na∑
k=1

x
[L]
n,ika

[L−1]
n,k + b

[L]
n,i, ∀i = 1, ..., Na. (A.12)1071

For any given n ∈ N, the relationship between fn and
◦
fn are illustrated in Figure A.1. Note that the entire1072

parameter vector θn of fn is inherited by
◦
fn, since all the weights, biases, and hidden layers and nodes of

◦
fn1073

and fn are identical. As a result, we define the set
◦
Nn1074

◦
Nn =

{
◦
fn : Dφ → RNa

∣∣∣∣ ◦fn (·;θn) satisfies Assumption A.1, except1075

output activation (A.5) is replaced by (A.12).} , (A.13)1076

where we note that the outputs of
◦
fn take values which are no longer in Z ⊂ RNa , but instead merely in RNa .1077

The main benefit of working with
◦
fn ∈

◦
Nn instead of fn ∈ Nn, is that the linear output layer (A.12) means1078

that each
◦
fn ∈

◦
Nn is in the standard form used by most universal approximation theorems for NNs (see for1079

example Funahashi (1989); Hornik (1991); Hornik et al. (1989); Leshno et al. (1993)).1080

Recalling for convenience the definition of the softmax function ψ = (ψi : i = 1, .., Na) : RNa → RNa in1081

(A.5),1082

ψi (y) =
exp {yi}∑Na
i=1 exp {yj}

, ∀y = (yi : i = 1, .., Na) ∈ RNa , (A.14)1083

we therefore observe that for any n ∈ N, the NN fn (·;θn) ∈ Nn can be expressed as a transformation of the

corresponding NN
◦
fn (·;θn) ∈

◦
Nn, provided both NNs use the same parameter vector θn ∈ Rνn :

fn (·;θn) =ψ ◦
◦
fn (·;θn) , where

◦
fn (·;θn) ∈

◦
Nn. (A.15)

As per Assumption A.1, recall that ~ (n) , n ∈ N satisfies ~ (n) < ~ (n+ 1) ,∀n ∈ N such that limn→∞ ~ (n) =1084

∞. Inspired by the notation of Hornik (1991), we define the sets N∞ and
◦
N∞ as the sets of NNs constructed1085

according to (A.11) and (A.13), respectively, but with an arbitrarily large number of hidden nodes,1086

N∞ =
⋃
n∈N
Nn, and

◦
N∞ =

⋃
n∈N

◦
Nn. (A.16)1087

Since Dφ ⊂ RηX+1 is compact by (A.9) as per Assumption A.3 (note that this requirement can be relaxed1088

without difficulty as discussed in Remark A.1), we know by the results of Hornik (1991); Hornik et al. (1989)1089

that
◦
N∞ is uniformly dense in C

(
Dφ,RNa

)
. In other words, for any function

◦
g =

(
◦
gi : i = 1, ..., Na

)
∈1090

C
(
Dφ,RNa

)
and any ε > 0, there exists a value of n = nε sufficiently large such that the corresponding NN1091

◦
fnε =

(
◦
fnε,i : i = 1, ..., Na

)
∈
◦
Nnε such that1092

sup
φ∈Dφ

∣∣∣∣◦fnε,i (φ;θn(ε)
)
− ◦gi (φ)

∣∣∣∣ < ε, ∀i = 1, ..., Na. (A.17)1093
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Note that (A.17) holds for any given number Lh ≥ 1 of hidden layers (see for example Corollary 2.7 in Hornik1094

et al. (1989)).1095

Using the results of Gao and Pavel (2018) , the softmax (A.14) is (Lipschitz) continuous and surjective,1096

since ψi (y) = ψi (y + c) for any y ∈ RNa and c ∈ R, where y + c := (yi + c : i = 1, .., Na). In addition, it has1097

a continuous right-inverse; as an example, we can simply consider the function
←−
ψ (z) = (log (zi) : i = 1, ..., Na)1098

where each zi ∈ (0, 1) and that
∑
i zi = 1. Furthermore, by Assumption A.1, no activation function is applied1099

at the input layer (i.e. the “input activation” is trivially injective and continuous). Using these properties of1100

the input and output layers of any fn ∈ Nn together with the results (A.15) and (A.17), we can conclude by1101

the results of Kratsios and Bilokopytov (2020) that the set N∞ is uniformly dense in C (Dφ,Z).1102

Applying this result specifically to the optimal control p∗ ∈ C (Dφ,Z) as per Assumption 4.1, we can1103

conclude that, for any ε > 0, there exists a value n = nε sufficiently large such that the corresponding NN1104

f∗nε
(
·;θ∗nε

)
∈ Nnε satisfies1105

sup
φ∈Dφ

∣∣f∗nε,i (φ;θ∗nε
)
− p∗i (φ)

∣∣ < ε, ∀i = 1, ..., Na. (A.18)1106

Note that the exact output of the NN f∗nε ∈ Nnε , which we recall has ~ (nε) hidden nodes in each hidden layer,1107

can be attained by a NN with ~ (nε + k), k ∈ N hidden nodes, since we can always set the weights and biases1108

corresponding to the additional ~ (nε + k) − ~ (nε) nodes identically to zero. In other words, (A.18) implies1109

the existence of a sequence of NNs f∗n (·;θ∗n) , n ∈ N, where each f∗n (·;θ∗n) ∈ Nn, such that for any ε > 0 and1110

sufficiently large nε ∈ N, we have1111

sup
φ∈Dφ

∣∣f∗n,i (φ;θ∗n)− p∗i (φ)
∣∣ < ε, ∀n ≥ nε, i = 1, ..., Na, (A.19)1112

completing the proof of (A.10).1113

Figure A.1: Illustration of the interpretation of the NN fn (·;θn) as a composition of the softmax ψ and the NN
◦
fn (·;θn) as per equation (A.15).

1114

If Assumption 4.2 and Assumption A.3 are applicable, the wealth dynamics (4.5) using the optimal control1115

is given by1116

W ∗
(
t−m+1;p∗,Y

)
= W ∗

(
t+m;p∗,Y

)
·
Na∑
i=1

p∗i
(
tm,W

∗ (t+m;p∗,Y
))
· Yi (tm) , tm ∈ T , (A.20)1117

where we recall that W ∗ (t+m;p∗,Y ) = W ∗ (t−m;p∗,Y ) + q (tm), X∗ (tm) = W ∗ (t+m;p∗,Y ) and W ∗
(
t−Nrb

)
:=

W ∗ (T ). Furthermore, associated with every NN in the sequence f∗n (·,θ∗n) ∈ Nn identified in Lemma A.5, we
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have the corresponding wealth dynamics as per (4.10) that satisfies

W ∗
(
t−m+1;θ∗n,Y

)
= W ∗

(
t+m;θ∗n,Y

)
·
Na∑
i=1

f∗n,i
(
tm,W

∗ (t+m;θ∗n,Y
)

;θ∗n
)
· Yi (tm) , tm ∈ T , n ∈ N. (A.21)

The following lemma justifies the use of the notation W ∗ in the wealth dynamics (A.21).1118

Lemma A.6. (Convergence to optimal wealth) Suppose that Assumption A.2 and Assumption A.3 hold. Let1119

f∗n (·,θ∗n) ∈ Nn be the sequence identified in Lemma A.5 such that (A.10) holds. Then the wealth dynamics1120

W ∗ (t;θ∗n,Y ) associated with each f∗n, obtained as per (A.21), converges to the true optimal wealth dynamics1121

W ∗ (t;p∗,Y ) as n→∞ almost surely. In more detail, we have1122

lim
n→∞

W ∗
(
t−m;θ∗n,Y

)
= W ∗

(
t−m;p∗,Y

)
a.s., ∀tm ∈ T , (A.22)1123

and1124

lim
n→∞

W ∗ (T ;θ∗n,Y ) = W ∗ (T ;p∗,Y ) a.s. (A.23)1125

Proof. Note that (A.23) is stated separately since the terminal time T is not a rebalancing time (see (3.1)) and1126

the terminal wealth is critical in the evaluation of the objective functional.1127

At the start of the time horizon [t0, T ], we are given the initial wealth W
(
t−0
)

= w0 > 0. Therefore, at the1128

first rebalancing time t0 ∈ T , the wealth available for investment does not depend on the control, so that1129

w+
0 := w0 + q (t0) = W ∗

(
t+0 ;θ∗n,Y

)
= W ∗

(
t+0 ;p∗,Y

)
, ∀n ∈ N. (A.24)1130

Using dynamics (A.20) and (A.21) to compare the wealth at time t0 + ∆t = t1 ∈ T , we have1131

lim
n→∞

W ∗
(
t−1 ;θ∗n,Y

)
−W ∗

(
t−1 ;p∗,Y

)
= w+

0 ·
Na∑
i=1

[
lim
n→∞

f∗n,i
(
t0, w

+
0 ;θ∗n

)
− p∗i

(
t0, w

+
0

)]
· Yi (t0)1132

= 0 a.s., (A.25)1133

which follows from Lemma A.5 and the fact that Yi (t0) <∞ a.s. by assumption (see definition (3.6)).1134

For purposes of induction, assume that at some tm ∈ T , we have1135

lim
n→∞

W ∗
(
t−m;θ∗n,Y

)
= W ∗

(
t−m;p∗,Y

)
a.s. (A.26)1136

If (A.26) holds, then we have1137

lim
n→∞

W ∗
(
t+m;θ∗n,Y

)
= lim
n→∞

[
W ∗

(
t−m;θ∗n,Y

)
+ q (tm)

]
= W ∗

(
t+m;p∗,Y

)
a.s., (A.27)1138

as well as1139

lim
n→∞

∣∣f∗n,i (tm,W ∗ (t+m;θ∗n,Y
)

;θ∗n
)
− p∗i

(
tm,W

∗ (t+m;p∗,Y
))∣∣1140

≤ lim
n→∞

∣∣f∗n,i (tm,W ∗ (t+m;θ∗n,Y
)

;θ∗n
)
− p∗i

(
tm,W

∗ (t+m;θ∗n,Y
))∣∣1141

+ lim
n→∞

∣∣p∗i (tm,W ∗ (t+m;θ∗n,Y
))
− p∗i

(
tm,W

∗ (t+m;p∗,Y
))∣∣1142

≤ lim
n→∞

sup
φ∈Dφ

∣∣f∗n,i (φ;θ∗n)− p∗i (φ)
∣∣1143

= 0 a.s., ∀i = 1, ..., Na, (A.28)1144

which is a consequence of Lemma A.5 and the continuity of p∗ ∈ C (Dφ,Z). From (A.27) and (A.28), we1145

therefore conclude that1146

lim
n→∞

∣∣W ∗ (t+m;θ∗n,Y
)
· f∗n,i

(
tm,W

∗ (t+m;θ∗n,Y
)

;θ∗n
)
−W ∗

(
t+m;p∗,Y

)
· p∗i

(
tm,W

∗ (t+m;p∗,Y
))∣∣

=0 a.s., ∀i = 1, ..., Na. (A.29)
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Using dynamics (A.20) and (A.21) to compare the wealth at time tm + ∆t = tm+1, we have1147

lim
n→∞

W ∗
(
t−m+1;θ∗n,Y

)
−W ∗

(
t−m+1;p∗,Y

)
= lim

n→∞
W ∗

(
t+m;θ∗n,Y

)
·
Na∑
i=1

f∗n,i
(
tm,W

∗ (t+m;θ∗n,Y
)

;θ∗n
)
· Yi (tm)1148

−W ∗
(
t+m;p∗,Y

)
·
Na∑
i=1

p∗i
(
tm,W

∗ (t+m;p∗,Y
))
· Yi (tm)1149

= 0 a.s., (A.30)1150

which follows from (A.29) and Yi (tm) < ∞ a.s. By induction, we therefore conclude that (A.22) holds if1151

tm+1 ∈ T (i.e. if m < Nrb − 1), and (A.23) holds in the case where tm+1 = tNrb = T (i.e. m = Nrb − 1).1152

The following lemma establishes the convergence of the sequence of objective functionals using the NN1153

approximations identified in Lemma A.5.1154

Lemma A.7. (Convergence of objective functionals) Suppose that Assumption A.2 and Assumption A.3 hold.1155

Let f∗n (·,θ∗n) ∈ Nn be the sequence identified in Lemma A.5 such that (A.10) holds. Then1156

lim
n→∞

Jn (θ∗n, ξ; t0, w0) = J (p∗, ξ; t0, w0) , ∀ξ ∈ R, (A.31)1157

where Jn is defined in (4.9), and J is defined in (4.4).1158

Proof. Let ξ ∈ R be arbitrary. By Lemma A.6 and the continuity of F , we have1159

lim
n→∞

F (W ∗ (T ;θ∗n,Y ) , ξ) = F (W ∗ (T ;p∗,Y ) , ξ) a.s. (A.32)1160

Therefore, by using the boundedness of wealth as per Assumption A.3, the dominated convergence theorem1161

gives1162

lim
n→∞

Et0,w0 [F (W ∗ (T ;θ∗n,Y ) , ξ)] = Et0,w0 [F (W ∗ (T ;p∗,Y ) , ξ)] . (A.33)1163

Similarly, by the continuity of G, Lemma A.6, the boundedness of wealth and the dominated convergence1164

theorem, we have1165

lim
n→∞

Et0,w0
[
G
(
W ∗ (T ;θ∗n,Y ) , Et0,w0 [W ∗ (T ;θ∗n,Y )] , w0, ξ

)]
1166

= Et0,w0
[
G
(
W ∗ (T ;p∗,Y ) , Et0,w0 [W ∗ (T ;p∗,Y )] , w0, ξ

)]
. (A.34)1167

Finally, using the definitions of J in (4.4) and Jn in (4.9), we combine (A.33) and (A.34) to conclude (A.31).1168

Proof of Theorem 5.11169

Using the preceding results, we are finally in the position to prove Theorem 5.1. Note that this proof also1170

motivates the use of the notation f∗n (·,θ∗n) and its associated wealth W ∗ (T ;θ∗n,Y ) for the sequence of NNs1171

identified in Lemma A.5 and subsequently used in Lemmas A.6 and A.7 above.1172

Since ξ → F (w, ξ) and ξ → G (w, x,w0, ξ) are convex by Assumption A.2, and the convexity is preserved1173

by taking the expectation of F , we have the result that ξ → Jn (θn, ξ; t0, w0) and ξ → J (p, ξ; t0, w0) are also1174

convex, so that the infimum over ξ ∈ R in each case can be attained and is unique. With p∗ still denoting the1175

optimal control, define ξ∗ as the value1176

ξ∗ := inf
ξ∈R

J (p∗, ξ; t0, w0) . (A.35)1177

Since Nn ⊂ C (Dφ,Z), we have, for all ξ ∈ R and all n ∈ N,1178

inf
θn∈Rνn

Jn (θn, ξ; t0, w0) = inf
fn(·;θn)∈Nn

J (fn, ξ; t0, w0) ≥ inf
p∈C(Dφ,Z)

J (p, ξ; t0, w0) . (A.36)1179
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Taking the infimum in (A.36) over ξ ∈ R, and exchanging the order of minimization, we therefore have1180

inf
(θn,ξ)∈Rνn+1

Jn (θn, ξ; t0, w0) = inf
θn∈Rνn

inf
ξ∈R

Jn (θn, ξ; t0, w0)1181

≥ inf
p∈C(Dφ,Z)

inf
ξ∈R

J (p, ξ; t0, w0) , ∀n ∈ N. (A.37)1182

Taking limits in (A.37), we obtain1183

lim
n→∞

inf
(θn,ξ)∈Rνn+1

Jn (θn, ξ; t0, w0) ≥ inf
ξ∈R

inf
p∈C(Dφ,Z)

J (p, ξ; t0, w0) . (A.38)1184

Now consider specifically the sequence f∗n (·,θ∗n) identified in Lemma A.5 and the value ξ∗ in (A.35). Since1185

f∗n (·,θ∗n) ∈ Nn (so that θ∗n ∈ Rνn) and ξ∗ ∈ R, we have1186

inf
(θn,ξ)∈Rνn+1

Jn (θn, ξ; t0, w0) ≤ Jn (θ∗n, ξ
∗; t0, w0) , ∀n ∈ N. (A.39)1187

By Lemma A.7, we have1188

lim
n→∞

Jn (θ∗n, ξ
∗; t0, w0) = J (p∗, ξ∗; t0, w0) , where ξ∗ is given by (A.35). (A.40)1189

Therefore, taking limits in (A.39) and using (A.40), we obtain the inequality1190

lim
n→∞

inf
(θn,ξ)∈Rνn+1

Jn (θn, ξ; t0, w0) ≤ lim
n→∞

Jn (θ∗n, ξ
∗; t0, w0)1191

= J (p∗, ξ∗; t0, w0)1192

= inf
ξ∈R

inf
p∈C(Dφ,Z)

J (p, ξ; t0, w0) . (A.41)1193

Combining (A.38) and (A.41), we therefore have equality in both (A.38) and (A.41), and obtain1194

lim
n→∞

inf
(θn,ξ)∈Rνn+1

Jn (θn, ξ; t0, w0) = inf
ξ∈R

inf
p∈C(Dφ,Z)

J (p, ξ; t0, w0) , (A.42)1195

which concludes the proof of Theorem 5.1. Finally, the notation f∗n (·,θ∗n) in Lemma A.5 is motivated by the1196

fact that equality holds in (A.41).1197

A.4: Proof of Theorem 5.21198

We start with the following auxiliary result, which is essentially a version of the law of large numbers applicable1199

to the current setting.1200

Lemma A.8. (Applicable version of the law of large numbers) Suppose that Assumption A.2, Assumption A.31201

and Assumption A.4 hold. Then1202

sup
θn∈Rνn

∣∣∣∣∣∣ 1n
n∑
j=1

W (j) (T ;θn,Yn)− Et0,w0 [W (T ;θn,Y )]

∣∣∣∣∣∣ P−→ 0, as n→∞, (A.43)1203

and1204

sup
(θn,ξ)∈Rνn+1

∣∣∣∣∣∣ 1n
n∑
j=1

F
(
W (j) (T ;θn,Yn) , ξ

)
− Et0,w0 [F (W (T ;θn,Y ) , ξ)]

∣∣∣∣∣∣ P−→ 0, as n→∞. (A.44)1205

Proof. Since for any fixed number of hidden layers, our NN formulation also requires O (~n) evaluations of the1206

exponential function, exactly the same steps as in Tsang and Wong (2020) (specifically, see Corollary 7.4 and1207

Theorem 4.3 in Tsang and Wong (2020)) can be used to establish (A.43) and (A.44).1208

The following lemma establishes a required auxiliary result involving the function G.1209

Lemma A.9. (Convergence of G in probability) Suppose that Assumption A.2, Assumption A.3 and Assumption1210
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A.4 hold. Then1211

sup
(θn,ξ)∈Rνn+1

∣∣∣∣∣∣ 1n
n∑
j=1

G

(
W (j) (T ;θn,Yn) ,

1

n

n∑
k=1

W (k) (T ;θn,Yn) , w0, ξ

)
1212

−Et0,w0
[
G
(
W (T ;θn,Y ) , Et0,w0 [W (T ;θn,Y )] , w0, ξ

)] ∣∣∣∣ P−→ 0, (A.45)1213

as n→∞.1214

Proof. For given values of ξ ∈ R, w0 > 0 and w ∈ R, consider the function x → G (x,w,w0, ξ). By the results1215

of Lemma A.8, we have1216

sup
(θn,ξ)∈Rνn+1

∣∣∣∣∣∣ 1n
n∑
j=1

G
(
W (j) (T ;θn,Yn) , w, w0, ξ

)
− Et0,w0 [G (W (T ;θn,Y ) , w, w0, ξ)]

∣∣∣∣∣∣ P−→ 0, (A.46)1217

as n → ∞. Keeping x fixed, consider the function w → G (x,w,w0, ξ) : [0, wmax] → R. Since G is continuous,
there exists a sequence of functions (Gm)m∈N, where for each m ∈ N, the function w → Gm (x,w,w0, ξ) :

[0, wmax]→ R is Lm-Lipschitz, such that (Gm) converges uniformly to G on [0, wmax] - see for example Miculescu
(2000). Therefore, for an arbitrary value of ε > 0, there exists a sufficiently large value m̃ ∈ N such that

|Gm̃ (x,w,w0, ξ)−G (x,w,w0, ξ)| <
ε

2
, ∀w ∈ [0, wmax] . (A.47)

Observing that 1
n

∑n
j=1W

(j) (T ;θn,Yn) ∈ [0, wmax] and by the monotonicity of expectation we also have1218

Et0,w0 [W (T ;θn,Y )] ∈ [0, wmax], we use (A.47) to obtain1219 ∣∣∣∣∣∣Gm̃
x, 1

n

n∑
j=1

W (j) (T ;θn,Yn) , w0, ξ

−G
x, 1

n

n∑
j=1

W (j) (T ;θn,Yn) , w0, ξ

∣∣∣∣∣∣1220

+

∣∣∣∣Gm̃ (x,Et0,w0 [W (T ;θn,Y )] , w0, ξ
)
−G

(
x,Et0,w0 [W (T ;θn,Y )] , w0, ξ

) ∣∣∣∣1221

< ε, (A.48)1222

for any given values of ξ ∈ R and w0 > 0. In addition, since Gm̃ is Lm̃-Lipschitz, we have1223 ∣∣∣∣∣∣Gm̃
x, 1

n

n∑
j=1

W (j) (T ;θn,Yn) , w0, ξ

−Gm̃ (x,Et0,w0 [W (T ;θn,Y )] , w0, ξ
)∣∣∣∣∣∣1224

≤ Lm̃ ·

∣∣∣∣∣∣ 1n
n∑
j=1

W (j) (T ;θn,Yn)− Et0,w0 [W (T ;θn,Y )]

∣∣∣∣∣∣ . (A.49)1225

Using (A.48) and (A.49) as well as the triangle inequality, we therefore have1226 ∣∣∣∣∣∣G
x, 1

n

n∑
j=1

W (j) (T ;θn,Yn) , w0, ξ

−G (x,Et0,w0 [W (T ;θn,Y )]
)
, w0, ξ

∣∣∣∣∣∣1227

< ε+ Lm̃ ·

∣∣∣∣∣∣ 1n
n∑
j=1

W (j) (T ;θn,Yn)− Et0,w0 [W (T ;θn,Y )]

∣∣∣∣∣∣ , (A.50)1228

for any given values of ξ ∈ R and w0 > 0. Taking the supremum over (θn, ξ) ∈ Rνn+1 in (A.50), using the result1229

(A.43) from Lemma A.8 as well as the fact that ε > 0 was arbitrary, we therefore have1230

sup
(θn,ξ)∈Rνn+1

∣∣∣∣∣G
(
x,

1

n

n∑
k=1

W (k) (T ;θn,Yn) , w0, ξ

)
−G

(
x,Et0,w0 [W (T ;θn,Y )] , w0, ξ

)∣∣∣∣∣ P−→ 0. (A.51)1231
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The results (A.46) and (A.51), together with the triangle inequality, therefore gives1232

sup
(θn,ξ)∈Rνn+1

∣∣∣∣∣∣ 1n
n∑
j=1

G

(
W (j) (T ;θn,Yn) ,

1

n

n∑
k=1

W (k) (T ;θn,Yn) , w0, ξ

)
1233

−Et0,w0
[
G
(
W (T ;θn,Y ) , Et0,w0 [W (T ;θn,Y )] , w0, ξ

)] ∣∣∣∣1234

≤ 1

n

n∑
j=1

sup
(θn,ξ)∈Rνn+1

∣∣∣∣∣∣ 1n
n∑
j=1

G

(
W (j) (T ;θn,Yn) ,

1

n

n∑
k=1

W (k) (T ;θn,Yn) , w0, ξ

)
1235

−G
(
W (j) (T ;θn,Yn) , Et0,w0 [W (T ;θn,Y )] , w0, ξ

) ∣∣∣∣1236

+ sup
(θn,ξ)∈Rνn+1

∣∣∣∣∣∣ 1n
n∑
j=1

G
(
W (j) (T ;θn,Yn) , Et0,w0 [W (T ;θn,Y )] , w0, ξ

)
1237

−Et0,w0
[
G
(
W (T ;θn,Y ) , Et0,w0 [W (T ;θn,Y )] , w0, ξ

)] ∣∣∣∣1238

P−→ 0 as n→∞. (A.52)1239

1240

Proof of Theorem 5.21241

The expression in (5.2), together with the triangle inequality, imply that1242

∣∣∣∣ inf
(θn,ξ)∈Rνn+1

Ĵn (θn, ξ; t0, w0,Yn)− inf
ξ∈R

inf
p∈C(Dφ,Z)

J (p, ξ; t0, w0)

∣∣∣∣1243

≤
∣∣∣∣ inf
(θn,ξ)∈Rνn+1

Ĵn (θn, ξ; t0, w0,Yn)− inf
(θn,ξ)∈Rηn+1

Jn (θn, ξ; t0, w0)

∣∣∣∣ (A.53)1244

+

∣∣∣∣ inf
(θn,ξ)∈Rνn+1

Jn (θn, ξ; t0, w0)− inf
ξ∈R

inf
p∈C(Dφ,Z)

J (p, ξ; t0, w0)

∣∣∣∣ . (A.54)1245

Using the definitions of Ĵn (θn, ξ; t0, w0,Yn) in (4.15) and Jn (θn, ξ; t0, w0) in (4.9), the expression (A.53)1246

gives1247 ∣∣∣∣ inf
(θn,ξ)∈Rνn+1

Ĵn (θn, ξ; t0, w0,Yn)− inf
(θn,ξ)∈Rηn+1

Jn (θn, ξ; t0, w0)

∣∣∣∣1248

≤ sup
(θn,ξ)∈Rνn+1

∣∣∣∣Ĵn (θn, ξ; t0, w0,Yn)− Jn (θn, ξ; t0, w0)

∣∣∣∣1249

≤ sup
(θn,ξ)∈Rνn+1

∣∣∣∣∣∣ 1n
n∑
j=1

F
(
W (j) (T ;θn,Yn) , ξ

)
− Et0,w0 [F (W (T ;θn,Y ) , ξ)]

∣∣∣∣∣∣ (A.55)1250

+ sup
(θn,ξ)∈Rνn+1

∣∣∣∣∣∣ 1n
n∑
j=1

G

(
W (j) (T ;θn,Yn) ,

1

n

n∑
k=1

W (k) (T ;θn,Yn) , w0, ξ

)
1251

−Et0,w0
[
G
(
W (T ;θn,Y ) , Et0,w0 [W (T ;θn,Y )] , w0, ξ

)] ∣∣∣∣ . (A.56)1252

As per Lemma A.8 and Lemma A.9, (A.55) and (A.56) converge to zero in probability as n→∞. As a result,1253

since (A.53) therefore converges to zero in probability as n→∞ and, by Theorem 5.1, (A.54) converges to zero1254

as n→∞, we conclude that the result (5.2) of Theorem 5.2 holds.1255
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Appendix B: NN approach: Selected practical considerations1256

We summarize some practical considerations with respect to the NN approach:1257

(i) Constructing training and testing datasets Yn and Ytestn̂ : Since these sets correspond to finite samples of1258

Y and Y test, any data generation technique generating paths of underlying asset returns can be used for1259

the construction of training and testing data sets. As illustrated in Section 6, data generation techniques1260

like (i) Monte Carlo simulation of parametric asset dynamics, (ii) block bootstrap resampling of empirical1261

returns, or for example (iii) GAN-generated synthetic returns can all be employed without difficulty, but1262

we emphasize that the approach remains agnostic regarding the underlying data generation methodology.1263

Note that the underlying data generation assumptions typically differ for Yn and Ytestn̂ , respectively,1264

depending on for example the time periods of empirical data considered for in-sample and out-of-sample1265

testing.1266

As for the number of paths n in each of Yn and Ytestn̂ , experiments show that in the case of measures of1267

tail risk in the objectives such as CVaR (see (3.15)), a significantly larger number of paths are required1268

in order to obtain a sufficiently large sample of tail outcomes in the training and testing data, than for1269

example in cases where variance is the risk measure. To give a concrete examples, at least 2 million paths1270

in the training set of the NN in Subsection 6.2 is required to produce reliable results for the CVaR, whereas1271

1 million paths in the training set of the NN in Subsection 6.1 are more than sufficient to obtain reliable1272

results.1273

(ii) Depth (number of hidden layers Lh) and width (number of nodes in each hidden layer ~ (n)) of the NN: As1274

the examples in Section 6 show, remarkably accurate can be obtained with NNs no deeper than 2 hidden1275

layers and a relatively small number of nodes in each hidden layer. For objectives involving more complex1276

investment strategies such as MCV and Mean - Semi-variance (where, even in the case of two assets, the1277

behavior of the optimal strategy is clearly more complex than in the case of for example the MV-optimal1278

strategy), experiments show that two hidden layers lead to stable and reliable results, with the number1279

of hidden nodes in each hidden layer chosen to be slightly more than the number of assets, for example1280

~ (n) = Na + 2. For objectives such as DSQ and MV, a single hidden layer is often sufficient.1281

(iii) Activation functions: As highlighted in Assumption A.1, we use logistic sigmoid activations as a concrete1282

example for convergence analysis purposes, but that these theoretical results can be modified for any of1283

the commonly-used activations (see for example Sonoda and Murata (2017)). Note that since NNs of one1284

or two hidden layers were found to be very effective in solving the problems under consideration, we did1285

not encounter any problems related to vanishing or exploding gradients in the case of logistic sigmoid1286

activations. However, if deeper NNs are required, activation functions could be changed to e.g. ReLU or1287

ELU without affecting the theoretical foundations for the proposed approach.1288

(iv) For the solution of (4.16) by gradient descent, we used the Gadam algorithm of Granziol et al. (2021).1289

This is simply a combination of the Adam algorithm (Kingma and Ba (2015)) with tail iterate averaging1290

for improved convergence properties and variance reduction (Mucke et al. (2019); Neu and Rosasco (2018);1291

Polyak and Juditsky (1992)). For the Adam algorithm component, the default algorithm parameters of1292

Kingma and Ba (2015) performed well in our setting, typically with no more than 50,000 SGD steps. Note1293

that the mini-batch size selected depends on the problem to be solved: we found that mini-batch sizes1294

of at least 1,000 paths of the training data set Yn are required for measures of tail risk in the objective1295

(such as CVaR), since smaller batch sizes typically means that the tail of the returns distribution is not1296

sufficiently well represented in choosing the descent direction, leading to unreliable results in ground truth1297

analyses.1298

While the technical results of Section 6 formally do not require continuous differentiability (in addition1299

to continuity) of the functions F and G, improved convergence properties of the SGD algorithm can1300

be obtained if the objective is at least continuously differentiable (see for example Shapiro and Wardi1301

(1996)). For implementation purposes, we can therefore smooth objectives like (3.15) in a straightforward1302

way, by for example replacing max (x, 0) in (3.15) with a continuously differentiable approximation used1303
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in Alexander et al. (2006),1304

max (x, 0) '


x, if x > λmcv,

1
4λmcv

x2 + 1
2x+ 1

4λmcv, if − λmcv ≤ x ≤ λmcv
0, otherwise,

, (B.1)1305

where λmcv is some small smoothing parameter (e.g. λmcv = 10−3).1306

In addition to considering the smoothing of certain objectives, minor modifications to objective functions1307

to avoid (mathematical) ill-posedness may be desirable in certain situations. For example, in the case1308

of the OSQ objective (3.11), the term εW (·) is added to ensure the problem remains well-posed even1309

if W (t) � γ. In this case, when implementing the numerical solution, small values of ε (for example1310

ε = 10−6 was chosen in the numerical results of Section 6) do not have a noticeable effect on either the1311

summary statistics or the optimal controls.1312

Appendix C: Additional parameters for numerical results1313

In this appendix, additional parameters related to the numerical results of Section 6 are discussed.1314

The historical returns data for the basic assets such as the T-bills/bonds and the broad market index were1315

obtained from the CRSP 7, whereas factor data for Size and Value (see Fama and French (2015, 1992)) were1316

obtained from Kenneth French’s data library8 (KFDL). The detailed time series sourced for each asset is as1317

follows:1318

(i) T30 (30-day Treasury bill): CRSP, monthly returns for 30-day Treasury bill.1319

(ii) B10 (10-year Treasury bond): CRSP, monthly returns for 10-year Treasury bond.91320

(iii) Market (broad equity market index): CRSP, monthly returns, including dividends and distributions, for a1321

capitalization-weighted index consisting of all domestic stocks trading on major US exchanges (the VWD1322

index).1323

(iv) Size (Portfolio of small stocks): KFDL, “Portfolios Formed on Size”, which consists of monthly returns1324

on a capitalization-weighted index consisting of the firms (listed on major US exchanges) with market1325

value of equity, or market capitalization, at or below the 30th percentile (i.e. smallest 30%) of market1326

capitalization values of NYSE-listed firms.1327

(v) Value (Portfolio of value stocks): KFDL, “Portfolios Formed on Book-to-Market”, which consists of1328

monthly returns on a capitalization-weighted index of the firms (listed on major US exchanges) con-1329

sisting of the firms (listed on major US exchanges) with book-to-market value of equity ratios at or above1330

the 70th percentile (i.e. highest 30%) of book-to-market ratios of NYSE-listed firms.1331

The historical asset returns time series are inflation-adjusted using inflation data from the US Bureau of Labor1332

Statistics10.1333

For the purposes of obtaining the parameters for (6.1) in Subsections (6.1) and (6.2), we use the same1334

calibration methodology as outlined in Dang and Forsyth (2016); Forsyth and Vetzal (2017), and assume the1335

jump dynamics of the Kou (2002) model.1336

In particular, we assume that in the dynamics (6.1), log ϑi has a asymmetric double-exponential distribution,1337

fϑi (ϑi) = νiζi,1ϑ
−ζi,1−1
i I[ϑi≥1] (ϑi) + (1− νi) ζi,2ϑ

ζi,2−1
i I[0≤ϑi<1] (ϑi) , (C.1)1338

where υi ∈ [0, 1] and ζi,1 > 1, ζi,2 > 0. In (C.1), νi denotes the probability of an upward jump given that a1339

jump occurs. The resulting parameters are obtained using the filtering technique for the calibration of jump1340

diffusion processes - see Dang and Forsyth (2016); Forsyth and Vetzal (2017) for the relevant methodological1341

7Calculations were based on data from the Historical Indexes 2020©, Center for Research in Security Prices (CRSP), The
University of Chicago Booth School of Business. Wharton Research Data Services was used in preparing this article. This service
and the data available thereon constitute valuable intellectual property and trade secrets of WRDS and/or its third party suppliers.

8See https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
9The 10-year Treasury index was constructed from monthly returns from CRSP back to 1941. The data for 1926-1941 were

interpolated from annual returns in Homer and Sylla (2015)
10The annual average CPI-U index, which is based on inflation data for urban consumers, were used - see http://www.bls.gov.cpi
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details. For calibration purposes, a jump threshold equal to 3 has been used in the methodology of Dang and1342

Forsyth (2016).1343

Table C.1 and Table C.2 summarize the parameters for the asset dynamics for Subsections (6.1) and (6.2),1344

respectively.1345

Table C.1: Calibrated, inflation-adjusted parameters for asset dynamics in Subsection 6.1: Ground truth - DSQ (γ)
with continuous rebalancing. In this example, the first asset is assumed to be a risk-free asset, so we set µ1 = r, while
the second asset follows jump dynamics. The parametric asset returns are (trivially) uncorrelated, and parameters are
based on the inflation-adjusted returns of the T30 and VWD time series, respectively, over the period 1926:01 to 2019:12

Parameter µi σi λi υi ζi,1 ζi,2

Asset 1 (T30) 0.0043 - - - - -
Asset 2(VWD) 0.0877 0.1459 0.3191 0.2333 4.3608 5.504

1346

Table C.2: Calibrated, inflation-adjusted parameters for asset dynamics in Subsection 6.2: Ground truth - problem
MCV (ρ). In this example, there are two assets with jump dynamics (see Forsyth and Vetzal (2022)), with parameters
based on the inflation-adjusted returns of the T30 and VWD time series over the period 1926:01 to 2019:12. The
Brownian motions in (6.1) have correlation dZ1dZ2 = ρ1,2dt.

Parameter µi σi λi υi ζi,1 ζi,2 ρ1,2

Asset 1 (T30) 0.0045 0.0130 0.5106 0.3958 65.85 57.75 0.08228
Asset 2(VWD) 0.0877 0.1459 0.3191 0.2333 4.3608 5.504 0.08228

1347
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