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Mean-Quadratic Variation Portfolio Optimization: A Desirable Alternative to
Time-Consistent Mean-Variance Optimization?\ast 

Pieter M. van Staden\dagger , Duy-Minh Dang\dagger , and Peter A. Forsyth\ddagger 

Abstract. We investigate the mean-quadratic variation (MQV) portfolio optimization problem and its relation-
ship to the time-consistent mean-variance (TCMV) portfolio optimization problem. In the case of
jumps in the risky asset process and no investment constraints, we derive analytical solutions for the
TCMV and MQV problems. We study conditions under which the two problems are (i) identical
with respect to MV trade-offs, and (ii) equivalent, i.e., have the same value function and optimal con-
trol. We provide a rigorous and intuitive explanation of the abstract equivalence result between the
TCMV and MQV problems developed in [T. Bjork and A. Murgoci, A General Theory of Markov-
ian Time Inconsistent Stochastic Control Problems, working paper, 2010] for continuous rebalancing
and no-jumps in risky asset processes. We extend this equivalence result to jump-diffusion processes
(both discrete and continuous rebalancings). In order to compare the MQV and TCMV problems in
a more realistic setting which involves investment constraints and modeling assumptions for which
analytical solutions are not known to exist, using an impulse control approach we develop an effi-
cient partial integro-differential equation (PIDE) method for determining the optimal control for the
MQV problem. We also prove convergence of the proposed numerical method to the viscosity solu-
tion of the corresponding PIDE. We find that the MQV investor achieves essentially the same results
concerning terminal wealth as the TCMV investor, but the MQV-optimal investment process has
more desirable risk characteristics from the perspective of long-term investors with fixed investment
time horizons. As a result, we conclude that MQV portfolio optimization is a potentially desirable
alternative to TCMV.
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1. Introduction. Mean-variance (MV) portfolio optimization is popular in modern portfo-
lio theory due to the intuitive nature of the resulting investment strategies (Elton et al. (2014)).
Two main approaches to performing MV portfolio optimization can be identified. The first,
referred to as the precommitment MV approach, typically results in time-inconsistent optimal
strategies (Basak and Chabakauri (2010); Bjork and Murgoci (2014); Vigna (2016)). This
time-inconsistency phenomenon is due to the fact that the MV optimization problem fails to
admit the Bellman optimality principle, since the variance term is not separable in the sense
of dynamic programming (Li and Ng (2000); Zhou and Li (2000)).

The second approach to MV optimization, namely the time-consistent MV (TCMV) or

\ast Received by the editors October 24, 2018; accepted for publication (in revised form) July 1, 2019; published
electronically September 24, 2019.

https://doi.org/10.1137/18M1222570
\dagger School of Mathematics and Physics, The University of Queensland, St Lucia, Brisbane 4072, Australia

(pieter.vanstaden@uq.edu.au, duyminh.dang@uq.edu.au).
\ddagger Cheriton School of Computer Science, University of Waterloo, Waterloo, ON N2L 3G1, Canada

(paforsyt@uwaterloo.ca).

815

https://doi.org/10.1137/18M1222570
mailto:pieter.vanstaden@uq.edu.au
mailto:duyminh.dang@uq.edu.au
mailto:paforsyt@uwaterloo.ca


816 P. M. VAN STADEN, D.-M. DANG, AND P. A. FORSYTH

game theoretical approach, guarantees the time-consistency of the resulting optimal strategy
by imposing a time-consistency constraint (Basak and Chabakauri (2010); Bjork and Murgoci
(2014); Cong and Oosterlee (2016); Wang and Forsyth (2011)).1 This means that TCMV
problems can be solved using dynamic programming (Cong and Oosterlee (2016); Van Staden,
Dang, and Forsyth (2018)).

The TCMV problem is referred to in Bjork, Khapko, and Murgoci (2017); Bjork and
Murgoci (2014) as a ``nonstandard"" problem, in that, without imposing the time-consistency
constraint, the optimal control is time-inconsistent. It is further shown in Bjork, Khapko, and
Murgoci (2017); Bjork and Murgoci (2014) that for every ``nonstandard"" problem, there ex-
ists an equivalent ``standard"" optimal control problem which admits the Bellman optimality
principle, so that the resulting optimal control is time-consistent without the need to im-
pose a time-consistency constraint. Here, equivalence between two control problems is to be
understood that they both have the same value function and optimal control.

In the case of the TCMV problem with continuous rebalancing, Geometric Brownian
Motion (GBM) dynamics for the risky asset process, and no investment constraints, Bjork
and Murgoci (2010) show that the equivalent standard problem to the TCMV problem is in
fact the mean-quadratic variation (MQV) problem with a particular function of the quadratic
variation (QV) of wealth being used as the risk measure.2 From a numerical perspective, in the
same setting, but with realistic investment constraints, Wang and Forsyth (2012) show that
both TCMV and MQV problems result in a very similar MV trade-off in the optimal terminal
wealth. However, these two problems have quite different optimal controls and hence are not
equivalent. These theoretical and numerical results suggest that a similarly deep relationship
between the TCMV and MQV portfolio optimization may exist in a more general setting, such
as discrete rebalancing, jumps in the risky asset processes, and realistic investment constraints.
However, to the best of our knowledge, a systematic and rigorous study of such a relationship
is not available in the literature.

While MQV optimization is popular in optimal trade execution (Almgren and Chriss
(2001); Forsyth et al. (2012); Tse et al. (2013)), it is clearly not widely used in portfolio
optimization settings. In particular, QV (or some function of QV) is not even widely used
as a risk measure in portfolio optimization settings, and it is usually not mentioned when
popular risk measures are discussed (see, for example, Elton et al. (2014); McNeil, Frey, and
Embrechts (2015); Rockafellar and Uryasev (2002)). This contrasts with the considerable
popularity in the portfolio optimization literature of the TCMV approach (see, for example,
Alia, Chighoub, and Sohail (2016); Bensoussan et al. (2014); Cui, Xu, and Zeng (2016); Van
Staden, Dang, and Forsyth (2018), among many other published works on TCMV). We argue
that this is somewhat unfortunate for reasons listed below.

\bullet The MQV portfolio optimization problem retains many of the intuitive aspects of MV
optimization, including the clear trade-off between risk and return.

\bullet Measuring risk using the QV of the portfolio wealth over the investment period

1The time-consistency constraint should be distinguished from investment constraints, such as leverage or
solvency constraints, which do not affect the time-consistency of the resulting optimal control.

2Quadratic variation of the (stochastic) portfolio value was first proposed as a risk measure in Brugiere
(1996).
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arguably offers the investor more control over the risk throughout the investment pe-
riod, instead of just focusing on the risk at maturity, such as with the variance of
terminal wealth. As a result, QV is of potential interest especially to institutional
investors and portfolio managers who have to report regularly to stakeholders.

\bullet Most important, from the perspective of this paper, a deep connection exists between
TCMV and MQV portfolio optimizations, and it can be exploited to the MV investor's
advantage. For example, as shown in this paper, in a general setting with jumps in
the risky asset and realistic investment constraints, an MQV strategy typically retains
almost all of the terminal wealth characteristics of a TCMV strategy (with the terminal
wealth distributions being almost identical) but with a risky asset exposure profile over
time that is arguably more suitable for long-term investors with a fixed investment
time horizon.

\bullet Last but not least, the TCMV problem typically requires the solution of an extended
Hamilton--Jacobi--Bellman (HJB) equation, which falls outside the scope of the vis-
cosity solution theory of Crandall, Ishii, and Lions (1992). Therefore, existing conver-
gence results, e.g., those of Barles and Souganidis (1991), cannot be used to prove the
convergence of a proposed PDE numerical scheme. In contrast, the MQV portfolio
optimization problem does fall within the scope of the viscosity solution theory of
Crandall, Ishii, and Lions (1992). This is a significant advantage of MQV over TCMV
portfolio optimization because if convergence can be proved, then this will significantly
increase the investor's confidence in the numerical results provided by the method.

The main objective of this paper is to investigate the MQV portfolio optimization problem
and its relationship to TCMV in a general setting, namely jumps in the risky asset processes,
realistic investment constraints, and modeling assumptions. This relationship is examined at
two different levels, namely (i) MV trade-offs of terminal wealth; and (ii) equivalence, i.e., the
same value function and optimal control. In this work, we will not consider a wealth-dependent
risk aversion parameter, since it is shown in Van Staden, Dang, and Forsyth (2018) that the
objective function in this case performs poorly for accumulation problems. We will focus on
the constant risk aversion parameter case. Numerical methods for the TCMV problem are
discussed in Van Staden, Dang, and Forsyth (2018).

The main contributions of this paper are as follows.
\bullet We derive analytical solutions for the TCMV and MQV problems in the case of discrete
rebalancing, jumps in the risky asset processes, and no investment constraints. We
show that, with a commonly used QV risk measure and under the assumption of
no market frictions, the two problems result in identical MV trade-offs of terminal
wealth but with quite different investment strategies (controls), and hence they are not
equivalent. Typically, the MQV-optimal strategy would consistently call for a higher
investment in the risky asset. We then establish that, as the length of rebalancing
intervals approaches zero (continuous rebalancing), the TCMV and MQV problems
are indeed equivalent.
We construct a QV risk measure which guarantees equivalence between the TCMV
and MQV problems for both discrete and continuous rebalancings in the case of no
investment constraints.
These mathematical findings provide a rigorous and intuitive explanation of the
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abstract equivalence result between the TCMV and MQV problems developed in Bjork
and Murgoci (2010) for the case of continuous rebalancing, with no jumps in the risky
asset process and no investment constraints. Furthermore, these findings also extend
the equivalence result of Bjork and Murgoci (2010) to the case of jumps in the risky
asset process for both discrete and continuous rebalancings.

\bullet We formulate the MQV portfolio optimization problem as a two-dimensional impulse
control problem, with linear partial integro-differential equations (PIDEs) to be solved
between intervention times. This approach allows for the simultaneous application of
realistic investment constraints, including (i) discrete rebalancing, (ii) liquidation in
the event of insolvency, (iii) leverage constraints, (iv) different interest rates for bor-
rowing and for lending, and (v) transaction costs. A convergence proof of the numer-
ical PDE method for the viscosity solution of the associated quasi--integro-variational
inequality is sketched. This highlights the above-mentioned theoretical advantage of
MQV optimization relative to TCMV optimization, since the convergence of numerical
methods for solving TCMV problems typically cannot be proved.

\bullet We present a comprehensive comparison study of the MQV and TCMV optimization
results, including characteristics of the resulting optimal investment strategies, termi-
nal wealth distributions, MV outcomes, and the effect of the simultaneous application
of investment constraints. All numerical experiments are conducted using model pa-
rameters calibrated to inflation-adjusted, long-term US market data (for the years
1926--2014), enabling realistic conclusions to be drawn from the results.
We observe that in a setting involving realistic investment constraints and nonzero
transaction costs, (i) the MQV-optimal strategy often results in a better MV trade-off
for terminal wealth than that of the TCMV-optimal strategy; (ii) the MQV-optimal
strategy achieves a terminal wealth distribution outperforming the corresponding re-
sult for the TCMV-optimal strategy not only in terms of the downside outcomes (e.g.,
5th and 10th percentiles) but also for the three quartiles (25th, 50th, and 75th per-
centiles) of the distribution; and (iii) the MQV-optimal investment strategy calls for a
significantly larger reduction in risky asset exposure as the investment maturity is ap-
proached. This provides further evidence in support of considering MQV optimization
as a desirable alternative to TCMV portfolio optimization, especially for long-term
investors.

The remainder of the paper is organized as follows. Section 2 describes the underlying pro-
cesses and modeling approach, including a description of TCMV and MQV portfolio opti-
mization approaches. The relationship between TCMV and MQV optimization is analyzed in
section 3, and new analytical results are presented. In section 4, a numerical method for solv-
ing the MQV problem is presented, along with a convergence proof of the proposed method.
Numerical results are presented and discussed in section 5. Finally, section 6 concludes the
paper and outlines possible future work.

2. Formulation.

2.1. Underlying dynamics. Since we are concerned with investment problems with very
long time horizons, we consider portfolios consisting of two assets only---a risky asset and a
risk-free asset. For the risky asset, we consider a well-diversified index (see section 5) instead
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of a single stock, which allows us to focus on the primary question of the stocks vs. bonds mix
in the portfolio under different investment strategies, rather than secondary questions relating
to risky asset basket compositions.3

Let S (t) and B (t), respectively, denote the amounts invested in the risky and risk-free
assets at time t \in [0, T ], where T > 0 denotes the fixed investment time horizon/maturity.
In the absence of control (when there is no intervention by the investor according to some
control strategy), the dynamics of the amount B (t) is assumed to be given by

dB (t) = \scrR (B (t))B (t) dt, where \scrR (B (t)) = r\ell + (rb  - r\ell ) \BbbI [B(t)<0],(2.1)

where rb and r\ell , respectively, denote the positive, continuously compounded rates at which
the investor can borrow funds or earn on cash deposits (with rb > r\ell ), while \BbbI [A] denotes the
indicator function of the event A.

Realistic modeling of S (t) requires consideration of (i) jumps, and (ii) stochastic volatility
in the process dynamics. However, the results of Ma and Forsyth (2016) show that the effects
of stochastic volatility, with realistic mean-reverting dynamics, are not important for long-
term investors with time horizons greater than 10 years.4 We therefore consider jump-diffusion
processes for the risky asset using a constant volatility parameter.

For any functional f , let f (t - ) = lim\epsilon \rightarrow 0+ f (t - \epsilon ). Informally, t - denotes the instant
of time immediately before forward time t. Let \xi be a random variable denoting the jump
multiplier, which has probability density function (pdf) p (\xi ). If a jump occurs at time t, the
amount in the risky asset jumps from S (t - ) to S (t) = \xi S (t - ). We will consider two jump
distributions of \xi . In the case of the Merton (1976) model, log \xi is normally distributed with
mean \widetilde m and standard deviation \widetilde \gamma , so that p (\xi ) is the log-normal pdf

p (\xi ) =
1

\xi 
\sqrt{} 

2\pi \widetilde \gamma 2 exp
\Biggl\{ 
 - (log \xi  - \widetilde m)2

2\widetilde \gamma 2
\Biggr\} 
.(2.2)

In the case of the Kou (2002) model, log \xi has an asymmetric double-exponential distribution,
so that p (\xi ) is of the form

p (\xi ) = \nu \zeta 1\xi 
 - \zeta 1 - 1\BbbI [\xi \geq 1] (\xi ) + (1 - \nu ) \zeta 2\xi 

\zeta 2 - 1\BbbI [0\leq \xi <1] (\xi ) , \upsilon \in [0, 1] and \zeta 1 > 1, \zeta 2 > 0,(2.3)

where \nu denotes the probability of an upward jump (given that a jump occurs). For subsequent
reference, we define \kappa = \BbbE [\xi  - 1] and \kappa 2 = \BbbE [(\xi  - 1)2]. In the absence of control, the dynamics
of the amount S (t) is assumed to be given by

dS (t)

S (t - )
= (\mu  - \lambda \kappa ) dt+ \sigma dZ + d

\left(  \pi (t)\sum 
i=1

(\xi i  - 1)

\right)  ,(2.4)

3In the available analytical solutions for multi-asset TCMV problems (see, for example, Zeng and Li (2011))
as well as precommitment MV problems (see, for example, Li and Ng (2000)), the composition of the risky
asset basket remains relatively stable over time, which suggests that the primary question remains the overall
risky asset basket vs. the risk-free asset composition of the portfolio, instead of the exact composition of the
risky asset basket.

4While Ma and Forsyth (2016) consider the case of precommitment MV optimization, there is no reason to
suspect the findings would be materially different for either TCMV or MQV optimization.
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where \mu and \sigma are the real-world drift and volatility, respectively, Z denotes a standard
Brownian motion, \pi (t) is a Poisson process with intensity \lambda \geq 0, and \xi i are independent and
identically distributed (i.i.d.) random variables with the same distribution as \xi . It is further-
more assumed that \xi i, \pi (t), and Z are mutually independent. Note that GBM dynamics for
S (t) can be recovered from (2.4) by setting the intensity parameter \lambda to zero.

Since we consider one risky asset, which has real-world drift rate \mu assumed to be strictly
greater than r\ell , together with a constant parameter of risk aversion (see subsections 2.4 and
2.5 below), it is neither MV-optimal nor MQV-optimal to short stock,5 so we consider only
the case of S (t) \geq 0, t \in [0, T ]. We do allow for short positions in the risk-free asset; i.e., it
is possible that B (t) < 0, t \in [0, T ].

2.2. Portfolio rebalancing. Let X (t) = (S (t) , B (t)), t \in [0, T ], denote the multi-
dimensional controlled underlying process, and let x = (s, b) denote the state of the sys-
tem. The liquidation value of the controlled portfolio wealth, possibly including transaction
costs, is denoted by W (t), where

W (t) = W (s, b) = b+max [(1 - c2) s - c1, 0] , t \in [0, T ] .(2.5)

Here, c1 \geq 0 and c2 \in [0, 1) denote the fixed and proportional transaction costs, respectively.
Let (\scrF t)t\in [0,T ] be the natural filtration associated with the wealth process \{ W (t) , t \in [0, T ]\} .

We use \scrC t to denote the feedback control, representing an investment strategy as a function
of the underlying state, computed at time t \in [0, T ], i.e., \scrC t (\cdot ) : (X (t) , t) \mapsto \rightarrow \scrC t = \scrC (X (t) , t),
and applicable over the time interval [t, T ]. An impulse control \scrC t is defined ({\O}ksendal and
Sulem (2007)) as the double, possibly finite, sequence

\scrC t = (\widehat \tau 1, \widehat \tau 2, . . . , \widehat \tau n, . . . ; \eta 1, \eta 2, . . . , \eta n, . . .)n\leq M = (\{ \widehat \tau n, \eta n\} )n\leq M , M \leq \infty ,(2.6)

where the intervention times (\widehat \tau n)n\leq M are any sequence of (\scrF t)-stopping times satisfying t \leq \widehat \tau 1 < \cdot \cdot \cdot < \widehat \tau M < T , associated with a corresponding sequence of random variables (\eta n)n\leq M

denoting the impulse values, with each \eta n being \scrF \widehat \tau n-measurable for all \widehat \tau n. We denote by \scrZ 
and \scrA , respectively, the sets of admissible impulse values and impulse controls (defined in the
next subsection).

In our application, each intervention time \widehat \tau n corresponds to a rebalancing time of the
portfolio, and the associated impulse \eta n corresponds to the amount invested in the risk-free
asset at this time (see (2.10) below). While the definition (2.6) allows for \widehat \tau n to be any
(\scrF t)-stopping time, in practical settings, such as when formulating a numerical algorithm
(see section 4 below), we are of course limited to a discretization of (2.8), in the sense of
considering only a finite set of prespecified potential intervention times. By this we mean that
the following uniform partition of the time interval [0, T ] is considered:

\scrT m = \{ tn| tn = (n - 1)\Delta t, n = 1, . . . ,m\} , \Delta t = T/m.(2.7)

5For any finite time interval over which a position is held without rebalancing, the expected value of the
QV of portfolio wealth would be the same for either a short initial position or an otherwise identical long initial
position in the risky asset. A short position would therefore incur the same QV risk as an otherwise identical
long position, but with less return (since \mu > r\ell ), and therefore cannot be MQV optimal.
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Intervention can then be considered at each time tn \in \scrT m, but the investor can still choose
not to intervene at time tn if it is optimal to do so.

To simplify the subsequent discussion, we use (2.7) to introduce a discretization of an
impulse control (2.8) by making use of the following notational convention. Associated with
a fixed set of intervention times \scrT m as in (2.7), an impulse control \scrC \in \scrA will be written as
the set of impulses

\scrC = \{ \eta n \in \scrZ : n = 1, . . . ,m\} ,(2.8)

where the (potential) intervention times are implicitly understood to be the set \scrT m. Given an
impulse control \scrC of the form (2.8), and an intervention time tn \in \scrT m, we define \scrC n to be the
subset of impulses (and, implicitly, the corresponding intervention times) of \scrC applicable to
the time interval [tn, T ]:

\scrC n \equiv \scrC tn = \{ \eta n, \eta n+1, . . . , \eta m\} \subseteq \scrC = \scrC 1 = \{ \eta 1, . . . , \eta m\} .(2.9)

We emphasize that the discretization of an impulse control (2.6) as (2.7)--(2.8) is not at all
limiting, since we show (see section 4 and in particular Theorem 4.3) that the discretized
controls (2.8) converge to the impulse controls per the definition (2.6) as \Delta t \downarrow 0 in (2.7) (or,
equivalently, letting m \rightarrow \infty ).

In the subsequent discussion, ``discrete rebalancing"" of the portfolio will refer to the case
where a fixed \Delta t > 0 is considered, while ``continuous rebalancing"" will refer to the limiting
case as \Delta t \downarrow 0 in (2.7). For a more in-depth discussion of how the impulse control formulation
relates to portfolio rebalancing using the continuous-time feedback controls usually encoun-
tered in the literature, the reader is referred to Appendix A, where we also justify the use of
the term ``continuous rebalancing"" for the limiting case as \Delta t \downarrow 0 in (2.7).

For concreteness and clarity, we now focus on the case of discrete rebalancing (i.e., a given
fixed \Delta t > 0 and the associated set \scrT m in (2.7)), but we will return to continuously observed
impulse controls of the form (2.6) in section 4. Suppose that the investor considers applying
impulse \eta n \in \scrZ at time tn \in \scrT m and that the system is in state x = (s, b) at time t - n . Letting
(S (tn) , B (tn)) \equiv (S+ (s, b, \eta n) , B

+ (s, b, \eta n)) denote the state of the system immediately after
the application of the impulse \eta n, we define

B (tn) \equiv B+ (s, b, \eta n) = \eta n,

S (tn) \equiv S+ (s, b, \eta n) =

\Biggl\{ 
(s+ b) - \eta n  - c1  - c2 \cdot | S+ (s, b, \eta n) - s| if \eta n \not = b,

s if \eta n = b.
(2.10)

Between any two intervention times, i.e., for t \in [tn, tn+1), the amounts B and S evolve
according to the dynamics specified in (2.1) and (2.4), respectively.

2.3. Admissible portfolios. Fix an arbitrary intervention time tn \in \scrT m, and assume that
the system is in state x = (s, b) \in \Omega \infty at time t - n , where \Omega \infty = [0,\infty ) \times ( - \infty ,\infty ) denotes
the spatial domain. We consider enforcing a solvency constraint and a maximum leverage
constraint as described below.
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We define the solvency region \scrN and the bankruptcy region \scrB as follows:

\scrN = \{ (s, b) \in \Omega \infty : W (s, b) > 0\} ,(2.11)

\scrB = \{ (s, b) \in \Omega \infty : W (s, b) \leq 0\} .(2.12)

The solvency condition stipulates that if W (s, b) \leq 0, i.e., (s, b) \in \scrB , then the position in
the risky asset has to be liquidated, the total remaining wealth has to be placed in the debt
accumulating at the borrowing rate, and all subsequent trading activities must cease. In other
words,

if (s, b) \in \scrB at t - n \Rightarrow 

\Biggl\{ 
we require (S (tn) = 0, B (tn) = W (s, b)) ,

and remains so \forall t \in [tn, T ] .
(2.13)

The maximum leverage constraint is applied at each intervention time to ensure that the
leverage ratio S(tn)

S(tn)+B(tn)
, where (S (tn) , B (tn)) are computed by (2.10), satisfies

S (tn)

S (tn) +B (tn)
\leq q\mathrm{m}\mathrm{a}\mathrm{x}, n = 1, . . . ,m.(2.14)

Here, q\mathrm{m}\mathrm{a}\mathrm{x} is typically in the range q\mathrm{m}\mathrm{a}\mathrm{x} \in [1.0, 2.0].
The set of admissible impulse values \scrZ and admissible impulse controls \scrA are defined as

follows:

\scrZ =

\left\{             

\Bigl\{ 
\eta \equiv B \in ( - \infty ,+\infty ) : (S,B) via (2.10)

\Bigr\} 
no constraints,\left\{       

\Bigl\{ 
\eta \equiv B\in ( - \infty ,+\infty ) : (S,B) via (2.10) s.t. 0\leq S, and 0\leq S

S+B \leq q\mathrm{m}\mathrm{a}\mathrm{x}

\Bigr\} 
, (s, b)\in \scrN ,

\{ \eta = W (s, b)\} , (s, b)\in \scrB ,
solvency and maximum leverage,

(2.15)

\scrA =
\Bigl\{ 
(\{ \eta n\} )1\leq n\leq m : \eta n \in \scrZ 

\Bigr\} 
.

2.4. TCMV optimization. Let Ex,tn
\scrC n [W (T )] and V arx,tn\scrC n [W (T )] denote the mean and

variance of terminal wealth, respectively, given state x = (s, b) at time t - n (with tn \in \scrT m) and
using impulse control \scrC n \in \scrA over [tn, T ]. The TCMV problem can be formulated as follows
(Basak and Chabakauri (2010); Bjork and Murgoci (2014); Hu, Jin, and Zhou (2012)):

(2.16)

(2.17)
TCMV\itt \itn (\rho ) :

\left\{         
V c (s, b, tn) := sup

\scrC n\in \scrA 

\Bigl( 
Ex,tn

\scrC n [W (T )] - \rho \cdot V arx,tn\scrC n [W (T )]
\Bigr) 
, \rho > 0,

s.t. \scrC n =
\bigl\{ 
\eta n, \scrC c\ast 

n+1

\bigr\} 
:=
\bigl\{ 
\eta n, \eta 

c\ast 
n+1, . . . , \eta 

c\ast 
m

\bigr\} 
\in \scrA ,

where \scrC c\ast 
n+1 is optimal for problem

\bigl( 
TCMV tn+1 (\rho )

\bigr) 
.

The time-consistency constraint (2.17) ensures that the resulting TCMV optimal strategy \scrC c\ast 
n

is, in fact, time consistent, so that dynamic programming can be applied directly to (2.16)--
(2.17) to compute the associated optimal controls. The reader is referred to Van Staden,
Dang, and Forsyth (2018) for a discussion of numerical solutions of problem TCMV\itt \itn (\rho ).
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For subsequent use in the paper, we define the auxiliary function

U c (s, b, tn) = Ex,tn
\scrC c\ast 
n

[W (T )] ,(2.18)

where \scrC c\ast 
n is the TCMV-optimal control for (2.16)--(2.17). Using U c(\cdot ), the TCMV\itt \itn (\rho ) prob-

lem defined in (2.16)--(2.17) can be written more compactly as

(2.19)

(2.20) TCMV\itt \itn (\rho ) :

\left\{         
V c (s, b, tn) := sup

\eta n\in \scrZ 
Jc (\eta n; s, b, tn) , \rho > 0, where

Jc (\eta n; s, b, tn) = Ex,tn
\eta n [V c (Xn+1, tn+1)]

 - \rho \cdot V arx,tn\eta n [U c (Xn+1, tn+1)] .

Here, Xn+1 :=
\bigl( 
S
\bigl( 
t - n+1

\bigr) 
, B
\bigl( 
t - n+1

\bigr) \bigr) 
, while the notation Ex,tn

\eta n [\cdot ] and V arx,tn\eta n [\cdot ] refer to the
expectation and variance, respectively, using an arbitrary impulse \eta n \in \scrZ at time tn, to-
gether with the implied application of the optimal impulse control \scrC c\ast 

n+1 over the time interval
[tn+1, T ].

Given that the system is in state x0 = (s0, b0) at time t = 0, which corresponds to the
first rebalancing time t1 \in \scrT m (see (2.7)), for an arbitrary risk aversion parameter \rho > 0, we
denote by \scrY \mathrm{T}\mathrm{C}\mathrm{M}\mathrm{V}(\rho ) the corresponding MV ``efficient"" portfolio. This set is defined by

\scrY \mathrm{T}\mathrm{C}\mathrm{M}\mathrm{V}(\rho ) =

\biggl\{ \biggl( \sqrt{} 
V arx0,t=0

\scrC c\ast [W (T )], Ex0,t1=0
\scrC c\ast [W (T )]

\biggr) \biggr\} 
,(2.21)

where \scrC c\ast = \scrC c\ast 
1 solves the problem (TCMV\itt 1 (\rho )).

Definition 2.1 (TCMV efficient frontier). The TCMV efficient frontier, denoted by \scrY \itT \itC \itM \itV ,
is defined as \scrY \itT \itC \itM \itV =

\bigcup 
\rho >0 \scrY \itT \itC \itM \itV (\rho ), where \scrY \itT \itC \itM \itV (\rho ) is defined in (2.21).

2.5. MQV optimization. For given state x = (s, b) at time t - n (with tn \in \scrT m) and an
admissible impulse control \scrC n \in \scrA , we denote by \Theta x,tn

\scrC n the QV risk measure applicable to the
time interval [tn, T ]. It is defined as follows (Tse et al. (2013); Wang and Forsyth (2012)):

\Theta x,tn
\scrC n =

m\sum 
k=n

\int t - k+1

tk

e2\scrR (B(t))\cdot (T - t) \cdot d \langle W \rangle t ,(2.22)

with d \langle W \rangle t = \sigma 2S2
\bigl( 
t - 
\bigr) 
dt+

\int \infty 

0
S2
\bigl( 
t - 
\bigr) 
(\xi  - 1)2N (dt, d\xi ) ,(2.23)

where \langle W \rangle denotes the QV of the controlled wealth process using impulse control \scrC n, N (dt, d\xi )
denotes the Poisson random measure associated with the S-dynamics (Applebaum (2004)),
and the function \scrR (B (t)) is as defined in (2.1). Observe that definition (2.22) excludes the
QV contributed by transaction costs at rebalancing times;6 otherwise, the QV risk measure
would inappropriately penalize an investment strategy for any trading, regardless of whether
risky asset holdings are increased or decreased.

6If transaction costs are zero (c1 = c2 = 0 in (2.10)), the wealth of a self-financing portfolio remains
unchanged through a rebalancing event.
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Given state x = (s, b) at time t - n , we define the MQV value function problem as

(2.24)
MQV\itt \itn (\rho ) :

\left\{     
V q (s, b, tn) := sup

\scrC n\in \scrA 

\Bigl( 
Ex,tn

\scrC n

\Bigl[ 
W (T ) - \rho \cdot \Theta x,tn

\scrC n

\Bigr] \Bigr) 
, \rho > 0,

where \Theta x,tn
\scrC n is defined by (2.22).

We denote by \scrC q\ast 
n the optimal impulse control of problem MQV\itt \itn (\rho ) and define the following

auxiliary functions:

U q (s, b, tn) = Ex,tn
\scrC q\ast 
n

[W (T )] , Qq (s, b, tn) = Ex,tn
\scrC q\ast 
n

\bigl[ 
W 2 (T )

\bigr] 
.(2.25)

The functions U q and Qq can be used to calculate the variance of terminal wealth under
\scrC q\ast 
n as

V arx,tn\scrC q\ast 
n

[W (T )] = Qq (s, b, tn) - (U q (s, b, tn))
2 ,(2.26)

which is useful for comparing the results from implementing MQV and TCMV investment
strategies (see Definition 2.2 below). Furthermore, we follow Wang and Forsyth (2012) in
defining

Qstdx,tn\scrC q\ast 
n

[W (T )] =

\sqrt{} 
Ex,tn

\scrC q\ast 
n

\Bigl[ 
\Theta x,tn

\scrC q\ast 
n

\Bigr] 
=

\sqrt{} 
1

\rho 
[U q (s, b, tn) - V q (s, b, tn)],(2.27)

which can be compared to the standard deviation of terminal wealth in certain situations (see,
for example, Table 5.3 in subsection 5.2.1).

Using an arbitrary impulse \eta n \in \scrZ at time tn, followed by an application of the MQV-
optimal impulse control \scrC q\ast 

n+1 over the time interval [tn+1, T ], we define the following function:

Jq (\eta n; s, b, tn) = Ex,tn
\eta n [V q (Xn+1, tn+1)] - \rho \cdot Ex,tn

\eta n

\Biggl[ \int t - n+1

tn

e2\scrR (B(t))\cdot (T - t) \cdot d \langle W \rangle t

\Biggr] 
.(2.28)

Note that the function Jq corresponds to the objective function of the problem MQV\itt \itn (\rho ) in
the particular case where controls of the form \scrC n =

\bigl\{ 
\eta n \cup \scrC q\ast 

n+1

\bigr\} 
are used in (2.24).

Given that the system is in state x0 = (s0, b0) at time t = 0, which corresponds to the
first rebalancing time t1 \in \scrT m (see (2.7)), for an arbitrary risk aversion parameter \rho > 0, we
denote by \scrY \mathrm{M}\mathrm{Q}\mathrm{V}(\rho ) the set

\scrY \mathrm{M}\mathrm{Q}\mathrm{V}(\rho ) =

\biggl\{ \biggl( \sqrt{} 
V arx0,t=0

\scrC q\ast [W (T )], Ex0,t1=0
\scrC q\ast [W (T )]

\biggr) \biggr\} 
,(2.29)

where V arx0,t=0
\scrC q\ast [W (T )] is defined in (2.26), and \scrC q\ast = \scrC q\ast 

1 solves the problem (2.24). We
have the following definition.

Definition 2.2 (MQV frontier). The MQV frontier \scrY \itM \itQ \itV is defined as \scrY \itM \itQ \itV =
\bigcup 

\rho >0 \scrY \itM \itQ \itV (\rho ),
where \scrY \itM \itQ \itV (\rho ) is defined in (2.29).

We note that, while the definition of the MQV frontier \scrY \mathrm{M}\mathrm{Q}\mathrm{V} enables the like-for-like
comparison with the TCMV efficient frontier \scrY \mathrm{T}\mathrm{C}\mathrm{M}\mathrm{V} (Definition 2.1), MQV-optimal portfolios
are not designed to be ``MV efficient,"" since the variance of terminal wealth does not form
part of the objective function of the MQV problem. In this paper, we therefore use the term
MV efficient frontier exclusively for \scrY \mathrm{T}\mathrm{C}\mathrm{M}\mathrm{V}, and we refer to \scrY \mathrm{M}\mathrm{Q}\mathrm{V} as simply the MQV frontier,
without reference to MV efficiency.
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3. Relationship between problems \bfitT \bfitC \bfitM \bfitV \bfitt \bfitn (\bfitrho ) and \bfitM \bfitQ \bfitV \bfitt \bfitn (\bfitrho ). In this section, theo-
retical aspects of the relationship between the TCMV and MQV problems are investigated in
detail. In order to solve the problems analytically, all results in this section are derived under
the assumption of no market frictions, formalized in Assumption 3.1. Note that this assump-
tion is relaxed in sections 4 and 5. In particular, in section 5 we investigate the relationship
between the TCMV and MQV problems using numerical examples, since analytical solutions
are not known to exist in the case where we apply multiple realistic investment constraints
simultaneously, including different borrowing and lending rates and nonzero transaction costs.

Assumption 3.1 (no market frictions). Lending and borrowing rates are equal to the risk-
free rate (r\ell = rb = r), and transaction costs are zero (c1 = c2 = 0). Trading continues in the
event of insolvency, and no leverage constraint is applicable; i.e., \scrZ is given by (2.15).

For subsequent reference, we introduce the following definitions.

Definition 3.1 (identical frontiers). The TCMV and MQV problems are defined to have
identical frontiers if \scrY \itT \itC \itM \itV = \scrY \itM \itQ \itV , where \scrY \itT \itC \itM \itV and \scrY \itM \itQ \itV , respectively, are defined in Defi-
nitions 2.1 and 2.2. That is, for all (\scrV , \scrE ) \in \scrY \itT \itC \itM \itV , \exists \rho 

\prime 
> 0 such that (\scrV , \scrE ) = \scrY \itM \itQ \itV (\rho \prime ), and

vice versa.

We note that identical frontiers imply that the two problems result in an identical MV
trade-off in the optimal terminal wealth.

Definition 3.2 (equivalence). Problems TCMV\itt \itn (\rho ) defined in (2.16)--(2.17) and MQV\itt \itn (\rho )
defined in (2.24) are equivalent if, for any fixed value of \rho > 0, they result in (i) the same
optimal investment strategy or control, i.e., \scrC q\ast 

n = \scrC c\ast 
n ; and (ii) the same value function, i.e.,

V q (s, b, tn) = V c (s, b, tn) for all n = 1, . . . ,m and all x = (s, b).

Remark 3.3 (equivalence and identical frontiers). If the TCMV and MQV problems are
equivalent according to Definition 3.2, then, necessarily, they also have identical frontiers
(Definition 3.1). Conversely, if the frontiers are not identical, then the problems cannot be
equivalent. However, identical frontiers do not necessarily imply equivalence of the underlying
problems but only that the same relationship holds between the mean and variance of the
terminal wealth under the respective optimal strategies.

First, we investigate the two problems in the case of discrete rebalancing. We assume
a fixed, given set \scrT m of equally spaced rebalancing times as in (2.7), where \Delta t can remain
noninfinitesimal. The analytical solution of problems TCMV\itt \itn (\rho ) and MQV\itt \itn (\rho ) in the case
of discrete rebalancing of the portfolio are given by the following lemmas.

Lemma 3.4 (analytical solution: TCMV problem with discrete rebalancing). If the system
is in state x = (s, b) at time t - n , where tn \in \scrT m, n \in \{ 1, . . . ,m\} , then in the case of discrete
rebalancing under Assumption 3.1, the value function of problem TCMV\itt \itn (\rho ) in (2.16) is
given by

V c (s, b, tn) = U c (s, b, tn) - \rho (T  - tn)

\biggl( 
1

2\rho 
Kc

\biggr) 2

\cdot 1

\Delta t

\Bigl( 
e(2\mu +\sigma 2+\lambda \kappa 2)\Delta t  - e2\mu \Delta t

\Bigr) 
,(3.1)

where constant Kc, auxiliary function U c (see (2.18)), and the TCMV optimal impulse,
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respectively, are given by

(3.2)

Kc =

\bigl( 
e\mu \Delta t  - er\Delta t

\bigr) \bigl( 
e(2\mu +\sigma 2+\lambda \kappa 2)\Delta t  - e2\mu \Delta t

\bigr) ,
(3.3)

U c (s, b, tn) = (s+ b) er(T - tn) + (T  - tn)

\biggl( 
1

2\rho 
Kc

\biggr) 
1

\Delta t

\bigl( 
e\mu \Delta t  - er\Delta t

\bigr) 
,

(3.4)

\eta c\ast n = s+ b - 
\biggl( 

1

2\rho 
Kc

\biggr) 
e - r(T - tn)er\Delta t.

Proof. See Appendix A.

Lemma 3.5 (analytical solution: MQV problem with discrete rebalancing). If the system is
in state x = (s, b) at time t - n , where tn \in \scrT m, n \in \{ 1, . . . ,m\} , then in the case of discrete
rebalancing under Assumption 3.1, the value function of problem MQV\itt \itn (\rho ) in (2.24) is given
by

V q (s, b, tn) = (s+ b) er(T - tn) +
1

2
(T  - tn)

\biggl( 
1

2\rho 
Kq

\biggr) \bigl( 
e\mu \Delta t  - er\Delta t

\bigr) 1

\Delta t
e - 2r\Delta t,(3.5)

where the constant Kq, auxiliary functions U q and Qq (see (2.25)), and the MQV-optimal
impulse, respectively, are given by

Kq =

\bigl( 
2\mu  - 2r + \sigma 2 + \lambda \kappa 2

\bigr) 
(\sigma 2 + \lambda \kappa 2)

\bigl( 
e\mu \Delta t  - er\Delta t

\bigr) \bigl( 
e(2\mu  - 2r+\sigma 2+\lambda \kappa 2)\Delta t  - 1

\bigr) ,(3.6)

(3.7)

U q (s, b, tn) = (s+ b) er(T - tn) + (T  - tn)

\biggl( 
1

2\rho 
Kq

\biggr) \bigl( 
e\mu \Delta t  - er\Delta t

\bigr) 1

\Delta t
e - 2r\Delta t,

(3.8)

Qq (s, b, tn) = (U q (s, b, tn))
2 + (T  - tn)

\biggl( 
1

2\rho 
Kq

\biggr) 2 \Bigl( 
e(2\mu +\sigma 2+\lambda \kappa 2)\Delta t  - e2\mu \Delta t

\Bigr) 1

\Delta t
e - 4r\Delta t,

\eta q\ast n = s+ b - 
\biggl( 

1

2\rho 
Kq

\biggr) 
e - r(T - tn)e - r\Delta t.(3.9)

Proof. See Appendix A.

3.1. Identical frontiers (\bfscrY TCMV = \bfscrY MQV). The results from Lemmas 3.4 and 3.5 are used
to derive an important relationship between the TCMV and MQV problems given in the next
theorem.

Theorem 3.6 (\scrY TCMV = \scrY MQV). In the case of discrete rebalancing under Assumption 3.1,
we have \scrY \itT \itC \itM \itV = \scrY \itM \itQ \itV (Definition 3.1). Specifically, given x0 = (s0, b0) at time t = t1 = 0,
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with initial wealth w0 = s0+b0, both \scrY \itT \itC \itM \itV and \scrY \itM \itQ \itV coincide with a line with intercept w0e
rT

and slope Mf , where

Mf =

\bigl( 
e\mu \Delta t  - er\Delta t

\bigr) \sqrt{} \bigl( 
e(2\mu +\sigma 2+\lambda \kappa 2)\Delta t  - e2\mu \Delta t

\bigr) \cdot 
\sqrt{} 

T

\Delta t
.(3.10)

Proof. Combining (3.1) and (3.3) (resp., combining (3.7) and (3.8) with (2.26)), the
TCMV-optimal (resp., MQV-optimal) standard deviation of terminal wealth is given by

Stdevx0,t=0
\scrC c\ast [W (T )] =

\biggl( 
1

2\rho 
Kc

\biggr) 
\cdot 
\sqrt{} 

T

\Delta t

\bigl( 
e(2\mu +\sigma 2+\lambda \kappa 2)\Delta t  - e2\mu \Delta t

\bigr) 
,(3.11)

Stdevx0,t=0
\scrC q\ast [W (T )] =

\biggl( 
1

2\rho 
Kq

\biggr) 
e - 2r\Delta t

\sqrt{} 
T

\Delta t

\bigl( 
e(2\mu +\sigma 2+\lambda \kappa 2)\Delta t  - e2\mu \Delta t

\bigr) 
.(3.12)

Evaluating (3.3) at (s, b, tn) = (s0, b0, t = 0), substituting (3.11), and rearranging the result
gives \scrY \mathrm{T}\mathrm{C}\mathrm{M}\mathrm{V}. The same steps with (3.12) and (3.7) result in \scrY \mathrm{M}\mathrm{Q}\mathrm{V}. In both cases, using \scrC \ast to
denote either the TCMV-optimal control or the MQV-optimal control, we obtain

Et=0
\scrC \ast [W (T )] = w0e

rT +Mf \cdot 
\bigl( 
Stdevt=0

\scrC \ast [W (T )]
\bigr) 
.(3.13)

The results of Theorem 3.6 show that, in a realistic setting of jumps in the risky asset
process and discrete portfolio rebalancing, an MV investor who is only concerned with the
MV trade-off of optimal terminal wealth would therefore be indifferent to whether TCMV or
MQV optimization is performed. However, as discussed in Remark 3.3, Theorem 3.6 does not
imply the equivalence of problems TCMV\itt \itn (\rho ) and MQV\itt \itn (\rho ) in the sense of Definition 3.2.

As an illustration, in Figure 3.1 we plot, for different \rho values, the expected values and
standard deviations of optimal terminal wealth for the TCMV and MQV problems obtained
with a particular set of parameters. It is clear that for any fixed value of \rho , the MQV strategy
achieves both a higher expected value and a higher standard deviation of terminal wealth
compared to the corresponding TCMV strategy. That is, Ex,t1

\scrC c\ast 
1

[W (T )] < Ex,t1
\scrC q\ast 
1

[W (T )] and

V arx,t1\scrC c\ast 
1

[W (T )] < V arx,t1\scrC q\ast 
1

[W (T )].

Since the resulting optimal strategies/controls depend on the parameterization of the
underlying process dynamics, we cannot make completely general conclusions as to how the
TCMV-optimal and MQV-optimal controls are related. However, in typical applications,
where the risky asset represents a well-diversified stock index and the risk-free rate is based
on inflation-adjusted US Government bond data (see, for example, the parameters in Dang
and Forsyth (2016); Forsyth and Vetzal (2017) as well as Table 5.1 in subsection 5.1), the
conditions of the following theorem are satisfied, explaining that the results observed in Figure
3.1 are to be expected.

Theorem 3.7 (comparison of the TCMV- and MQV-optimal controls). Consider the case of
discrete rebalancing under Assumption 3.1, with a fixed rebalancing time interval \Delta t > 0, with
\Delta t \sim \scrO (1). Suppose that the parameters of the underlying asset dynamics (2.1)--(2.4) satisfy
0 < r \ll \mu \ll 1 and

\bigl( 
\sigma 2 + \lambda \kappa 2

\bigr) 
\ll 1. Then, for any fixed \rho > 0, we have that \eta c\ast n > \eta q\ast n ,

n = 1, . . . ,m, where \eta c\ast n and \eta q\ast n , respectively, are optimal impulse controls for TCMV\itt =0 (\rho )
and MQV\itt =0 (\rho ) at intervention time tn.
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Figure 3.1. Expected value and standard deviation of optimal terminal wealth as a function of the scalar-
ization parameter \rho . Discrete rebalancing (\Delta t = 1 year) under the conditions of Assumption 3.1, T = 20 years,
and Kou model with parameters in Table 5.1.

Proof. The difference between the TCMV-optimal investment (3.4) and the MQV-optimal
investment (3.9) in the risk-free asset at an arbitrary rebalancing time tn \in \scrT m is given by

\eta c\ast n  - \eta q\ast n =
1

2\rho 
e - r(T - tn)er\Delta t \cdot 

\bigl( 
Kqe - 2r\Delta t  - Kc

\bigr) 
.(3.14)

Define the function \varphi (\Delta t) =
\bigl( 
e2\mu \Delta t  - e2r\Delta t

\bigr) 
/
\Bigl( 
e(2\mu +\sigma 2+\lambda \kappa 2)\Delta t  - e2\mu \Delta t

\Bigr) 
. From (3.14), we can

see that
\bigl( 
\eta c\ast n  - \eta q\ast n

\bigr) 
> 0 if

\varphi (\Delta t) <
2 (\mu  - r)

(\sigma 2 + \lambda \kappa 2)
\forall \Delta t > 0.(3.15)

Under the stated conditions on the parameters of the underlying dynamics, the derivative
of \varphi (\Delta t) is negative, so that the limit lim\Delta t\downarrow 0 \varphi (\Delta t) = 2 (\mu  - r) /

\bigl( 
\sigma 2 + \lambda \kappa 2

\bigr) 
is approached

from below as \Delta t \downarrow 0. As a result, (3.15) holds, and the conclusion of the theorem follows.

We argue that the conclusion of Theorem 3.7 is not necessarily a concern for MV investors.
This is because, in practice, instead of making an abstract choice for a particular value of \rho ,
an MV investor is much more likely to make a concrete choice, such as a target expectation
or variance of terminal wealth. In this case, the investor would be indifferent to whether a
TCMV or an MQV objective is used.

The notion of equivalence has been defined (Definition 3.2) in terms of a fixed value of \rho 
in order to align with the definition of equivalent standard problems in, for example, Bjork,
Khapko, and Murgoci (2017), and to extend the known results regarding the equivalence
between the TCMV and MQV problems in subsection 3.2 below. However, since the TCMV
and MQV problems make use of different risk measures, it might be considered unnecessarily
restrictive to require identical values of \rho to be used when comparing these problems. To this
end, Lemma 3.8 establishes a weaker form of equivalence, namely that, under Assumption 3.1,
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a TCMV-optimal strategy associated with some \rho > 0 is simultaneously also MQV-optimal
for the MQV problem associated with a risk aversion parameter \rho \prime > \rho satisfying (3.16).

Lemma 3.8 (relationship between risk aversion parameters). Consider the case of discrete
rebalancing under Assumption 3.1, with a fixed rebalancing time interval \Delta t > 0. Given any
scalarization or risk aversion parameter \rho > 0, we can define another risk aversion parameter
\rho \prime > 0 as

\rho \prime =

\Biggl[ \biggl( 
1 +

2 (\mu  - r)

(\sigma 2 + \lambda \kappa 2)

\biggr) 
\cdot e

(2\mu +\sigma 2+\lambda \kappa 2)\Delta t  - e2\mu \Delta t

e(2\mu +\sigma 2+\lambda \kappa 2)\Delta t  - e2r\Delta t

\Biggr] 
\cdot \rho .(3.16)

Then problem TCMV\itt =0 (\rho ) and problem MQV\itt =0 (\rho 
\prime ) have the same value function and op-

timal control, implying that \scrY TCMV (\rho ) = \scrY MQV (\rho \prime ). Furthermore, under the conditions on the
underlying parameters as in Theorem 3.7 that are typically satisfied in practical applications,
we have \rho \prime > \rho .

Proof. The optimal control of problem TCMV\itt =0 (\rho ) is given by \eta c\ast n per (3.4). Re-
arranging (3.16), we can substitute \rho and recognize the resulting expression as \eta q\ast n given by
(3.9) using the scalarization parameter \rho \prime , which is the optimal control for problemMQV\itt =0 (\rho 

\prime ).
The conclusion that \rho \prime > \rho follows using arguments similar to those in the proof of Theorem
3.7.

We emphasize that the conclusion of Lemma 3.8, namely that \rho \prime > \rho , does not imply that a
higher level of risk aversion is required for the MQV investor compared to the TCMV investor
wishing to achieve identical investment results. This follows since the MQV investor and
the TCMV investor employ fundamentally different risk measures, so that the risk aversion
parameters \rho \prime and \rho in Lemma 3.8 are not directly comparable for the purpose of inferring
relative differences in investor risk preferences.

3.2. Equivalence between \bfitT \bfitC \bfitM \bfitV \bfitt \bfitn (\bfitrho ) and\bfitM \bfitQ \bfitV \bfitt \bfitn (\bfitrho ). We now study the equivalence
between the TCMV and MQV problems per Definition 3.2. The following lemma confirms
that the difference between the TCMV and MQV optimal controls vanishes in the limit as
\Delta t \downarrow 0. That is, in the case of continuous rebalancing, the two problems are equivalent.

Theorem 3.9 (equivalence of problems TCMV\itt \itn (\rho ) and MQVtn (\rho )---continuous rebalanc-
ing). Fix a value of the \rho > 0, assume we are given state x = (s, b) at time t - n , and assume
that the conditions of Assumption 3.1 are satisfied. In the case of continuous rebalancing
(\Delta t \downarrow 0), for both the TCMV and MQV problems, the optimal control at any rebalancing time
tn \in [0, T ] is given by

\eta \ast n = s+ b - (\mu  - r)

2\rho (\sigma 2 + \lambda \kappa 2)
e - r(T - tn).(3.17)

Furthermore, the mean and standard deviation of optimal terminal wealth at time t = 0 (with
initial wealth w0), respectively, are given by

Et=0
\scrC \ast [W (T )] = w0e

rT +

\biggl( 
\mu  - r\surd 
\sigma 2 + \lambda \kappa 2

\biggr) \surd 
T \cdot 
\Bigl( 
Stdevt=0

\scrC \ast 
0

[W (T )]
\Bigr) 
,(3.18)

Stdevt=0
\scrC \ast [W (T )] =

1

2\rho 

\biggl( 
\mu  - r\surd 
\sigma 2 + \lambda \kappa 2

\biggr) \surd 
T .(3.19)
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Proof. The result follows from taking limits in the results presented in Lemmas 3.4 and
3.5 and Theorem 3.6, observing that lim\Delta t\downarrow 0K

q = lim\Delta t\downarrow 0K
c = (\mu  - r) /

\bigl( 
\sigma 2 + \lambda \kappa 2

\bigr) 
.

We now highlight the significance of Theorem 3.9. First, by setting the jump intensity \lambda 
to zero, this theorem provides a rigorous and intuitive explanation of the abstract equivalence
result between the TCMV and MQV problems developed in Bjork and Murgoci (2010) in the
case of continuous rebalancing and no jumps in the risky asset process. Furthermore, with
\lambda > 0, Theorem 3.9 extends the above-mentioned equivalence result of Bjork and Murgoci
(2010) to the case of jumps in the risky asset process (assuming continuous rebalancing).
Finally, this theorem also recovers the known analytical solutions of the optimal control (3.17),
expectation, and standard deviation of optimal terminal wealth (3.18)--(3.19) for the TCMV
problem developed in Basak and Chabakauri (2010); Zeng, Li, and Lai (2013) for the case of
continuous rebalancing.

In the case of discrete rebalancing, the question of equivalence in the sense of Definition
3.2 remains. We now show that it is possible to construct a QV risk measure which guarantees
equivalence between the TCMV and MQV problems using this risk measure in both discrete
and continuous rebalancings. Given some state x = (s, b) at time t - n with tn \in \scrT m, we define
the adjusted mean-quadratic variation (aMQV) problem using an adjusted QV risk measure\widehat \Theta x,tn

\scrC n as

(3.20)

(3.21)

(3.22)

(3.23)

aMQVtn (\rho ) :

\left\{                             

\^V q (x, tn) = sup
\scrC n\in \scrA 

\Bigl( 
Ex,tn

\scrC n

\Bigl[ 
W (T ) - \rho \widehat \Theta x,tn

\scrC n

\Bigr] \Bigr) 
, \rho > 0, where

\widehat \Theta x,tn
\scrC n =

\int T

tn

f (t) d \langle W \rangle t ,

f (t) =
m\sum 
k=1

fk (t) \BbbI [tk,tk+1) (t) , t \in [0, T ] ,

fk (t) = e2r(T - t)

\biggl( 
1 +

2 (\mu  - r)

(\sigma 2 + \lambda \kappa 2)

\Bigl[ 
1 - e - (\sigma 

2+\lambda \kappa 2)(t - tk)
\Bigr] \biggr) 

.

We observe that the adjusted QV risk measure (3.21) is a generalization of the QV risk
measure (2.22) considered up to this point.7 Figure 3.2 illustrates some key properties of
the nonnegative function of time f : [0, T ] \rightarrow [0,\infty ), namely (i) in the limit as \Delta t \downarrow 0
(i.e., continuous rebalancing) with zero transaction costs, the original QV risk measure (2.22)
is recovered; and (ii) f (t) \geq e2r(T - t), t \in [0, T ], which implies that for any fixed \rho > 0,
the QV risk calculated using the adjusted QV risk measure would be higher compared to the
original QV risk. This should reduce the investment in the risky asset for problem aMQVtn (\rho )
compared to problem MQVtn (\rho ) for the same \rho value. This is a desirable outcome, given the
conclusion of Theorem 3.7.

Theorem 3.10 (equivalence of problems TCMV\itt \itn (\rho ) and aMQVtn (\rho )---discrete rebalancing).
In the case of discrete rebalancing under Assumption 3.1, the TCMV problem TCMV\itt \itn (\rho ) and

7In the case of r\ell = rb = r and zero transaction costs, this can be seen by rewriting the definition of the

original QV risk measure (2.22) as \Theta x,tn
\scrC n

=
\int T

tn

\Bigl( \sum m
k=n e2r(T - t)\BbbI [tk,tk+1) (t)

\Bigr) 
\cdot d \langle W \rangle t.
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Figure 3.2. Function f (t) defined in (3.22)--(3.23) compared to e2r(T - t) over t \in [0, 2.5], with T = 20 years
(Kou model, parameters as in Table 5.1). Note the same scale on the y-axis.

the adjusted MQV problem aMQVtn (\rho ) defined by (3.20)--(3.23) are equivalent in the sense of
Definition 3.2.

Proof. The proof relies on backward induction, using arguments similar to those in Appen-
dix A; therefore only a brief summary is given below. At time tm+1 = T , the value functions
of problems TCMVtm+1 (\rho ) and aMQVtm+1 (\rho ) are trivially equal. Fix a value of \rho > 0, and
an arbitrary rebalancing time tn \in \scrT m, with a given state x = (s, b) at t - n , and assume that
the value functions of problems TCMVtn+1 (\rho ) and aMQVtn+1 (\rho ) are equal. The objective
functional of TCMV\itt \itn (\rho ) satisfies the recursive relationship (2.20), and since Assumption 3.1
is satisfied, the auxiliary function U c is given by (3.3). If fn is given by (3.23), we obtain the
relationship

V arx,tn\eta n

\bigl[ 
U c
\bigl( 
S
\bigl( 
t - n+1

\bigr) 
, B
\bigl( 
t - n+1

\bigr) 
, tn+1

\bigr) \bigr] 
= Ex,tn

\eta n

\Biggl[ \int t - n+1

tn

fn (t) d \langle W \rangle t

\Biggr] 
, n = 1, . . . ,m,

(3.24)

which implies that the objective functionals of problems TCMV\itt \itn (\rho ) and aMQVtn (\rho ) are
equal, and the conclusions follow.

The significance of Theorem 3.10 is that it extends the TCMV-MQV equivalence result of
Bjork and Murgoci (2010) from (i) continuous rebalancing and without jumps in the risky asset
process to (ii) discrete rebalancing and with jumps in the risky asset process. Furthermore, if
a TCMV investor is concerned about switching to using an MQV objective, since the optimal
investment strategies may differ for a fixed value of \rho (Theorem 3.7), switching to an adjusted
MQV objective (3.20) eliminates this concern entirely.

Although all of the preceding results were proved under the conditions of Assumption
3.1, the results are also of great assistance when explaining the close correspondence between
TCMV and MQV investment outcomes when multiple realistic investment constraints are
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Figure 3.3. Mean and standard deviation of optimal terminal wealth as a function of \rho , subject to more
realistic investment constraints (liquidation in the event of bankruptcy, maximum leverage ratio q\mathrm{m}\mathrm{a}\mathrm{x} = 1.5).
Kou model, parameters as in Table 5.1, T = 20 years, annual rebalancing.

applied (see section 5). For example, we find that the resulting MV frontiers remain al-
most identical regardless of investment constraints, so that the main qualitative conclusion of
Theorem 3.6 holds even when its conditions are violated.

Of course, there is no reason to expect that problems TCMV\itt \itn (\rho ) and aMQVtn (\rho ) should
be equivalent (according to Definition 3.2) when realistic investment constraints are applied,
and Figure 3.3 shows that this is indeed the case,8 although the results of problem aMQVtn (\rho )
seem to be slightly closer to problem TCMV\itt \itn (\rho ), as expected. However, in experimental
results we found no discernible difference between the MV frontiers and terminal wealth dis-
tribution characteristics obtained from the MQV and adjusted MQV problems in the presence
of investment constraints. All subsequent results in this paper are therefore formulated and
presented in terms of the problem MQVtn (\rho ), with the construction of more general adjusted
QV risk measures being left for our future work.

4. Numerical methods for MQV optimization. In seeking analytical solutions to the
TCMV and MQV problems (see section 3), typically we are severely limited in terms of the
realistic investment constraints that can be applied, especially when multiple constraints are
to be applied simultaneously; see, for example, Van Staden, Dang, and Forsyth (2018) for a
discussion regarding the TCMV problem. For the purpose of a comprehensive comparison
study of the MQV and TCMV investment outcomes, we therefore have to solve the MQV
problem numerically to allow for the simultaneous application of multiple realistic investment
constraints, including (i) the discrete rebalancing of the portfolio, (ii) liquidation in the event
of insolvency, (iii) leverage constraints, (iv) different interest rates for borrowing and lending,
and (v) transaction costs.

With this objective in mind, we develop an efficient numerical method for solving the MQV

8The MQV and adjusted MQV results in Figure 3.3 were obtained using the algorithm developed in
section 4.
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value function problem (2.24). We initially focus on formulating and solving the problem
using impulse controls of the form (2.6), in other words the case of continuous rebalancing,
and discuss (see Remark 4.4 below) how the case of discrete rebalancing is handled by making
only a few small adjustments to the proposed numerical method.

Define \tau = T  - t, V (s, b, \tau ) = V q (s, b, T  - t), as well as the following operators:

\scrL f (s, b, \tau ) = (\mu  - \lambda \kappa ) sfs +\scrR (b) bfb +
1

2
\sigma 2s2fss  - \lambda f,(4.1)

\scrP f (s, b, \tau ) = (\mu  - \lambda \kappa ) sfs +
1

2
\sigma 2s2fss  - \lambda f,(4.2)

\scrJ f (s, b, \tau ) = \lambda 

\int \infty 

0
f (\xi s, b, \tau ) p (\xi ) d\xi ,(4.3)

\scrM f (s, b, \tau ) = sup
\eta \in \scrZ 

\bigl[ 
f
\bigl( 
S+ (s, b, \eta ) , B+ (s, b, \eta ) , \tau 

\bigr) \bigr] 
,(4.4)

where f is an appropriate test function, and the values of S+ (\cdot ) and B+ (\cdot ) in the definition of
the intervention operator9 (4.4) are calculated according to (2.10). Using standard arguments
(see {\O}ksendal and Sulem (2007)), the value function V (s, b, \tau ) of problem MQV\tau (\rho ) can
be shown to satisfy the following quasi--integro-variational inequality in domain (s, b, \tau ) \in 
\Omega \infty \times [0, T ]:

min
\Bigl\{ 
V\tau  - \scrL V  - \scrJ V + \rho 

\bigl( 
\sigma 2 + \lambda \kappa 2

\bigr) 
e2\scrR (b)\tau s2, V  - \scrM V

\Bigr\} 
= 0 if (s, b, \tau ) \in \scrN \times (0, T ] ,

min \{ V\tau  - \scrR (b) bVb, V  - \scrM V \} = 0 if s = 0,

V (s, b, \tau ) - V (0,W (s, b) , \tau ) = 0 if (s, b, \tau ) \in \scrB \times (0, T ] ,

V (s, b, 0) - W (s, b) = 0 if \tau = 0.(4.5)

4.1. Localization. For computational purposes, we localize the domain of (4.5), \Omega \infty \times 
[0, T ] = [0,\infty )\times ( - \infty ,\infty )\times [0, T ], to the set of points

(s, b, \tau ) \in \Omega \times [0, T ] := [0, smax)\times [ - bmax, bmax]\times [0, T ] ,(4.6)

where smax and bmax are sufficiently large and positive. Let s\ast < smax and rmax = max (rb, r\ell ).
Following Dang and Forsyth (2014), we introduce the following subcomputational domains:

\Omega s0 = \{ 0\} \times [ - bmax, bmax] ,(4.7)

\Omega s\ast = (s\ast , smax]\times [ - bmax, bmax] ,(4.8)

\Omega bmax = (0, s\ast ]\times 
\bigl[ 
 - bmaxe

rmaxT , - bmax

\bigr) 
\cup 
\bigl( 
bmax, bmaxe

rmaxT
\bigr] 
,(4.9)

\Omega \scrB = \{ (s, b) \in \Omega \setminus \Omega s\ast \setminus \Omega s0 : W (s, b) \leq 0\} ,(4.10)

\Omega in = \Omega \setminus \Omega s\ast \setminus \Omega s0 \setminus \Omega \scrB .(4.11)

Observe that \Omega \scrB is the localized insolvency region, and \Omega in is the interior of the localized
solvency region, while \Omega s0 is the boundary where s = 0. The buffer regions \Omega s\ast and \Omega bmax

9The intervention operator plays a fundamental role in impulse control problems; see {\O}ksendal and Sulem
(2007).
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ensure that the risky asset jumps and the risk-free asset interest payments, respectively, do
not take us outside the computational grid (see d'Halluin, Forsyth, and Vetzal (2005) and
Dang and Forsyth (2014)). Following the guidelines in d'Halluin, Forsyth, and Vetzal (2005),
s\ast and smax are chosen to minimize the effect of the localization error for the jump terms.
Operator \scrJ (4.3) is localized as

\scrJ \ell f (s, b, \tau ) = \lambda 

\int smax/s

0
f (\xi s, b, \tau ) p (\xi ) d\xi .(4.12)

Arguments similar to those in Dang and Forsyth (2014) result in the following localized
problem for V :

min
\Bigl\{ 
V\tau  - \scrL V  - \scrJ \ell V + \rho 

\bigl( 
\sigma 2 + \lambda \kappa 2

\bigr) 
e2\scrR (b)\tau s2, V  - \scrM V

\Bigr\} 
= 0, (s, b, \tau ) \in \Omega in \times (0, T ] ,

min
\Bigl\{ 
V\tau  - 

\bigl( 
\sigma 2+2\mu +\lambda \kappa 2

\bigr) 
V +\rho 

\bigl( 
\sigma 2+\lambda \kappa 2

\bigr) 
e2\scrR (b)\tau s2, V  - \scrM V

\Bigr\} 
=0, (s, b, \tau ) \in \Omega s\ast \times (0, T ] ,

min \{ V\tau  - \scrR (b) bVb, V  - \scrM V \} = 0, (s, b, \tau ) \in \Omega s0 \times (0, T ] ,

V (s, b, \tau ) - V (0,W (s, b) , \tau ) = 0, (s, b, \tau ) \in \Omega \scrB \times (0, T ] ,

V (s, b, \tau ) - | b| 
bmax

V (s, sgn (b) bmax, \tau ) = 0, (s, b, \tau ) \in \Omega bmax \times (0, T ] ,

V (s, b, 0) - W (s, b) = 0, (s, b) \in \Omega .(4.13)

We briefly highlight certain aspects of the derivation of (4.13). First, the localized problem
in \Omega s\ast is obtained as follows. Since the PIDE in the solvency region \scrN (see (4.5)) has a
source term of \scrO 

\bigl( 
s2
\bigr) 
, it is reasonable to assume as in Wang and Forsyth (2012) that V has

the asymptotic form V (s \rightarrow \infty , b, \tau ) = A1 (\tau ) s
2 for some function A1 (\tau ). Assuming that

s\ast in (4.8) is chosen sufficiently large so that this asymptotic form provides a reasonable
approximation to V in \Omega s\ast , substituting V (s, b, \tau ) \simeq A1 (\tau ) s

2 into the equation in (4.5) that
holds for (s, b, \tau ) \in \scrN \times (0, T ] leads to the corresponding equation that holds for \Omega s\ast \times (0, T ] in
(4.13). Similar reasoning applies to the region \Omega bmax , except that the initial condition of (4.5)
gives V (s, b \rightarrow \infty , \tau = 0) = b, which suggests that the asymptotic form V (s, | b| > | bmax| , \tau ) \simeq 
A2 (\tau , s) b be used in \Omega bmax . Substituting b = bmax and b =  - bmax allows for the solution in
\Omega to be used to approximate the solution in \Omega bmax . The details of this approach can be found
in Dang and Forsyth (2014).

Introducing the notation x = (s, b, \tau ), DV (x) = (Vs, Vb, V\tau ) , and D2V (x) = Vss, the
localized problem (4.13) for V can be written as the single equation

FV := F
\bigl( 
x, V (x) , DV (x) , D2V (x) ,\scrM V (x) ,\scrJ \ell V (x)

\bigr) 
= 0,(4.14)

where the operator F is defined componentwise for each subcomputational domain so that
all boundary conditions are included (see Dang and Forsyth (2014)). For example, if x \in 
\Omega in \times (0, T ],

(4.15)

FV = FinV := Fin

\bigl( 
x, V (x) , DV (x) , D2V (x) ,\scrM V (x) ,\scrJ \ell V (x)

\bigr) 
if x \in \Omega in \times (0, T ]

:= min
\Bigl\{ 
V\tau  - \scrL V  - \scrJ \ell V + \rho 

\bigl( 
\sigma 2 + \lambda \kappa 2

\bigr) 
e2\scrR (b)\tau s2, V  - \scrM V

\Bigr\} 
,x \in \Omega in \times (0, T ] .

We observe that F satisfies the degenerate ellipticity condition (Jakobsen (2010)).
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4.2. Discretization. To solve the localized problem (4.13) using finite differences, we
use (2.7) as the time grid, given in terms of \tau as \{ \tau n = T  - tm+1 - n : n = 0, 1, . . . ,m\} , with
\Delta \tau = T/m = K1 \cdot h, where K1 > 0 is some constant independent of the discretization
parameter h. We introduce nodes, which are not necessarily equally spaced, in the s-direction
\{ si : i = 1, . . . , imax\} and b-direction \{ bj : j = 1, . . . , jmax\} , where maxi (si+1  - si) = K2h and
maxj (bj+1  - bj) = K3h, withK2 andK3 positive and independent of h. Using the nodes in the
b-direction, we define \scrZ h = \{ bj : j = 1, . . . , jmax\} \cap \scrZ to be the discretization of the admissible
impulse space. The approximate solution of the value function at reference node (si, bj , \tau n)
is denoted by V n

i,j = Vh (si, bj , \tau n), where we use linear interpolation onto the computational
grid if the spatial point required does not correspond to any grid point. We use the semi-
Lagrangian timestepping scheme of Dang and Forsyth (2014) to handle the term \scrR (b) bfb in
\scrL f (s, b, \tau ).

Following Forsyth and Labahn (2008); Wang and Forsyth (2008), the operator \scrP is dis-
cretized as \scrP h, ensuring that a positive coefficient discretization is obtained. The localized
operator \scrJ \ell (4.12) is discretized as (\scrJ \ell )h using the method described in d'Halluin, Forsyth,

and Vetzal (2005), with quadrature weights \^wi,j
k at each (i, j)-node satisfying 0 \leq \^wi,j

k \leq 1 and\sum 
k \^wi,j

k \leq 1. We also define the quantities \widetilde V n
i,j , q

n
i,j , and ci,j , calculated at node (si, bj , \tau n), as

(4.16)\widetilde V n
i,j =

\Biggl\{ 
W (si, bj) , n = 0,

max
\bigl[ 
Vh

\bigl( 
si, bje

\scrR (bj)\Delta \tau , \tau n
\bigr) 
,max\eta \in \scrZ h

\bigl\{ 
Vh

\bigl( 
S+
\bigl( 
si, bje

\scrR (bj)\Delta \tau , \eta 
\bigr) 
, \eta , \tau n

\bigr) \bigr\} \bigr] 
, n=1, . . . ,m,

qni,j = \rho 
\bigl( 
\sigma 2 + \lambda \kappa 2

\bigr) 
e2\scrR (bj)\cdot \tau ns2i ,(4.17)

ci,j =
\rho 
\bigl( 
\sigma 2 + \lambda \kappa 2

\bigr) 
e2\scrR (bj)T

(\sigma 2 + 2\mu + \lambda \kappa 2  - 2\scrR (bj))
\cdot 
\Bigl[ 
1 - e(\sigma 

2+2\mu +\lambda \kappa 2 - 2\scrR (bj))\Delta \tau 
\Bigr] 
s2i .(4.18)

In Algorithm 4.1, we present the numerical scheme to solve problem MQV\itt \itn (\rho ), for a fixed \rho >
0, using fully implicit timestepping. The fixed point iteration method outlined in d'Halluin,
Forsyth, and Vetzal (2005) is used to solve the discrete equations at each b-grid node and
timestep, since it avoids a computationally expensive dense matrix solve resulting from jump
terms (4.12). The derivation of the discretized equation (4.19) in \Omega in employs arguments
similar to those outlined in Dang and Forsyth (2014), while (4.20) is based on an analytical
solution, over one timestep, of the PDE characterizing the continuation region in \Omega s\ast (see
(4.13)). Finally, calculating \widetilde V n

i,j per (4.16) is done using an exhaustive search over \scrZ h for the
maximum due to the reasons outlined in Dang and Forsyth (2014).

Remark 4.1 (solution of auxiliary problems). The optimal control \scrC q\ast 
n obtained from Al-

gorithm 4.1 is used to solve two PIDEs ({\O}ksendal and Sulem (2007)) for the two auxiliary
functions U q (s, b, tn) and Qq (s, b, tn) required in constructing the MQV frontier (Definition
2.2). This is computationally inexpensive since the optimal control is known; see, for example,
Wang and Forsyth (2012).

Remark 4.2 (complexity). Using the same reasoning as in Dang and Forsyth (2014), it can
be shown that the total complexity of constructing the entire MQV frontier using Algorithm
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Algorithm 4.1. Numerical scheme to solve problem MQV\itt \itn (\rho ) for a fixed \rho > 0.

set V 0
i,j = W (si, bj);

for n = 1, . . . ,m do
for j = 1, . . . , jmax do:\widetilde V n

i,j determined from (4.16).

Solve the following system of equations for
\Bigl\{ 
V n+1
i,j : i = 1, . . . , imax

\Bigr\} 
:

V n+1
i,j  - (\Delta \tau ) \cdot \scrP hV

n+1
i,j  - (\Delta \tau ) \cdot (\scrJ \ell )h V

n+1
i,j + (\Delta \tau ) \cdot qn+1

i,j  - \widetilde V n
i,j = 0, (si, bj) \in \Omega in,

(4.19)

V n+1
i,j  - \widetilde V n

i,j \cdot e(\sigma 
2+2\mu +\lambda \kappa 2)\Delta \tau  - ci,j = 0, (si, bj) \in \Omega s\ast ,(4.20)

V n+1
i,j  - \widetilde V n

i,j = 0, (si, bj) \in \Omega s0 ,(4.21)

V n+1
i,j  - Vh

\Bigl( 
0,W

\Bigl( 
si, bje

\scrR (bj)\Delta t
\Bigr) 
, \tau n+1

\Bigr) 
= 0, (si, bj) \in \Omega \scrB ,(4.22)

V n+1
i,j  - | bj | \cdot Vh (si, sgn (bj) bmax, \tau n+1) /bmax = 0, (si, bj) \in \Omega bmax .(4.23)

end for
end for

4.1 is \scrO 
\bigl( 
1/h5

\bigr) 
, which is the same as the complexity of constructing the entire TCMV efficient

frontier (Van Staden, Dang, and Forsyth (2018)).

4.3. Convergence to the viscosity solution. In general, since the solution of problems
involving quasi--integro-variational inequalities such as (4.14) cannot be expected to be suf-
ficiently smooth to admit a solution in the classical sense ({\O}ksendal and Sulem (2007)), we
seek a viscosity solution to (4.14). The convergence of the numerical solution of the numerical
scheme (4.19)--(4.23) to the viscosity solution of (4.14) is established in the following theorem.

Theorem 4.3 (convergence). Assume that (4.14) satisfies a strong comparison property
(see Dang and Forsyth (2014)) in \Omega in \cup \Gamma , where \Gamma \subseteq \partial \Omega in, with \partial \Omega in denoting the boundary
of \Omega in. The numerical scheme (4.19)--(4.23) is consistent, monotone, and \ell \infty -stable. The
numerical solution therefore converges to the unique, continuous viscosity solution of (4.14)
in \Omega in \cup \Gamma .

Proof. If the consistency, monotonicity, and \ell \infty -stability of the numerical scheme (4.19)--
(4.23) can be established, the conclusion follows from the results in Barles and Souganidis
(1991). The local consistency of the scheme can be established as in Dang and Forsyth (2014),
and this result is combined with the same steps as in Huang and Forsyth (2012) to conclude
that the scheme (4.19)--(4.23) is consistent in the viscosity sense with (4.14). Proving the
monotonicity and \ell \infty -stability of the scheme can be done using the same steps as in Forsyth
and Labahn (2008), which rely on the following properties of the proposed scheme: (i) fully
implicit timestepping, together with (ii) the positive coefficient condition in the discretization
of \scrP , (iii) the conditions on the quadrature weights in the discretization of \scrJ \ell , and (iv) the use
of linear interpolation if necessary to obtain Vh (\cdot ). Finally, for a detailed discussion regarding
the strong comparison assumption, see Dang and Forsyth (2014).



MEAN-QUADRATIC VARIATION PORTFOLIO OPTIMIZATION 837

Remark 4.4 (discrete rebalancing). Up to this point, this section has only been concerned
with rebalancing the portfolio at every timestep, providing an approximation of the case of
continuous rebalancing. Algorithm 4.1 can be modified easily to handle discrete rebalancing.
Specifically, multiple timesteps are introduced between any two rebalancing times \tau n and \tau n+1,
where the discretized equations (4.19)--(4.23) are still solved, but at these additional timesteps
only interest payments on the risk-free asset are made. This reduces the complexity of the
algorithm (Remark 4.2) to \scrO 

\bigl( 
1/h4 | log h| 

\bigr) 
for the construction of the MQV frontier.

5. Numerical results.

5.1. Empirical data and calibration. In order to parameterize the underlying asset dy-
namics, the same calibration data and techniques are used as detailed in Dang and Forsyth
(2016); Forsyth and Vetzal (2017). We briefly summarize the empirical data sources. The risky
asset data is based on daily total return data (including dividends and other distributions)
for the period 1926--2014 from the CRSP's VWD index,10 which is a capitalization-weighted
index of all domestic stocks on major US exchanges. The risk-free rate is based on three-
month US T-bill rates11 over the period 1934--2014 and has been augmented with the NBER's
short-term government bond yield data12 for 1926--1933 to incorporate the impact of the 1929
stock market crash. Prior to calculations, all time series were inflation-adjusted using data
from the US Bureau of Labor Statistics.13

In terms of calibration techniques, the calibration of the jump models is based on the
thresholding technique of Cont and Mancini (2011); Cont and Tankov (2004) using the ap-
proach of Dang and Forsyth (2016); Forsyth and Vetzal (2017) which, in contrast to maximum
likelihood estimation of jump model parameters, avoids problems such as ill-posedness and
multiple local maxima.14 In the case of GBM, standard maximum likelihood techniques are
used. The calibrated parameters are provided in Table 5.1.

5.2. Convergence analysis and validation. The convergence of Algorithm 4.1 to the vis-
cosity solution of the HJB quasi--integro-variational inequality (4.5) has been established in
Theorem 4.3. The objective of this subsection is twofold: (i) in the case of continuous rebal-
ancing with no constraints, we confirm that the numerical solution converges to the analytical

10Calculations were based on data from the Historical Indexes 2015 c\bigcirc Center for Research in Security Prices
(CRSP), The University of Chicago Booth School of Business. Wharton Research Data Services (WRDS)
was used in preparing this article. This service and the data available thereon constitute valuable intellectual
property and trade secrets of WRDS and/or its third party suppliers.

11Data obtained from http://research.stlouisfed.org/fred2/series/TB3MS.
12Obtained from the National Bureau of Economic Research (NBER) website, http://www.nber.org/

databases/macrohistory/contents/chapter13.html.
13The annual average CPI-U index, which is based on inflation data for urban consumers, was used; see

https://www.bls.gov/cpi/.
14If \Delta \^Xi denotes the ith inflation-adjusted, detrended log return in the historical risky asset index time

series, a jump is identified in period i if | \Delta \^Xi| > \alpha \^\sigma 
\surd 
\Delta t, where \^\sigma is an estimate of the diffusive volatility,

\Delta t is the time period over which the log return has been calculated, and \alpha is a threshold parameter used to
identify a jump. For both the Merton and Kou models, the parameters in Table 5.1 are based on a value of
\alpha = 3, which means that a jump is only identified in the historical time series if the absolute value of the
inflation-adjusted, detrended log return in that period exceeds three standard deviations of the ``geometric
Brownian motion change,"" which definitely is a highly unlikely event.

http://research.stlouisfed.org/fred2/series/TB3MS
http://www.nber.org/databases/macrohistory/contents/chapter13.html
http://www.nber.org/databases/macrohistory/contents/chapter13.html
https://www.bls.gov/cpi/
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Table 5.1
Calibrated risky and risk-free asset process parameters.

Models

Parameters GBM Merton Kou

\mu (drift) 0.0816 0.0817 0.0874

\sigma (diffusive volatility) 0.1863 0.1453 0.1452

\lambda (jump intensity) n/a 0.3483 0.3483\widetilde m (log jump multiplier mean) n/a --0.0700 n/a\widetilde \gamma (log jump multiplier stdev) n/a 0.1924 n/a

\nu (probability of up-jump) n/a n/a 0.2903

\zeta 1 (exponential parameter up-jump) n/a n/a 4.7941

\zeta 2 (exponential parameter down-jump) n/a n/a 5.4349

r (risk-free rate) 0.00623 0.00623 0.00623

Table 5.2
Grid and timestep refinement levels for convergence analysis to analytical solution.

Refinement level Timesteps s-grid nodes b-grid nodes

0 30 70 140

1 60 140 280

2 120 280 560

3 240 560 1120

4 480 1120 2240

solution, and we establish the rate of convergence; and (ii) we use Monte Carlo simulation to
verify the numerical results in cases where no analytical solutions are available.

5.2.1. Analytical solutions. Table 5.2 provides the timestep and grid information15 for
testing convergence of the numerical solution to the analytical solution (3.18)--(3.19).

Table 5.3 summarizes the numerical convergence analysis for a scalarization parameter
\rho = 0.0026, initial wealth w0 = 100, and maturity T = 2 years. While the results are only
shown for the Merton model, qualitatively similar results are obtained in the case of the Kou
and GBM models. The ``Error"" column gives the difference between the analytical solution16

obtained using (3.18)--(3.19) and the numerical solution provided in the ``PDE"" column, while
the ``Ratio"" column shows the ratio of successive errors with each increase in the refinement
level. As expected, we observe first-order (or slightly faster) convergence of the numerical
solution to the analytical solution as the mesh is refined.

5.2.2. Monte Carlo validation. Analytical solutions are not available for the MQV prob-
lem in the case where the portfolio is rebalanced monthly and liquidated in the event of
insolvency, interest is settled daily on the risk-free asset, and maximum leverage constraints
are applicable. For illustrative purposes, we assume the Kou model for the risky asset, initial
wealth w0 = 100, maturity T = 2 years, and \rho = 0.001, and we consider maximum leverage
values of both q\mathrm{m}\mathrm{a}\mathrm{x} = 1.5 and q\mathrm{m}\mathrm{a}\mathrm{x} = 1.0. At each timestep of the numerical PDE solution,

15Equal timesteps are used, while the grids in the s- and b-directions are not uniform.
16Due to the equivalence between the TCMV and MQV problems in the case of continuous rebalancing and

no investment constraints, the analytical solution of Qstdx0,t=0
\scrC q\ast [W (T )], calculated according to (2.27), is also

given by (3.19). This can be seen by simply rearranging the resulting (identical) value functions.
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Table 5.3
Convergence to the analytical solutions (see (3.18)--(3.19)).

Ref.
level

Expected value
(analytical soln. 165.08)

Standard deviation
(analytical soln. 110.00)

Qstdx0,t=0
\scrC q\ast [W (T )]

(analytical soln. 110.00)

PDE
soln.

Error Ratio PDE
soln.

Error Ratio PDE
soln.

Error Ratio

0 165.47 0.39 - 110.40 0.40 - 114.49 4.49 -

1 165.24 0.16 2.43 110.15 0.15 2.69 111.60 1.60 2.81

2 165.14 0.07 2.46 110.06 0.06 2.52 110.62 0.62 2.58

3 165.10 0.03 2.57 110.03 0.03 2.28 110.25 0.25 2.43

4 165.09 0.01 2.50 110.01 0.01 2.33 110.11 0.11 2.28

Table 5.4
Validating the numerical PDE solution using Monte Carlo simulation.

Max. leverage
Ex0,t=0

\scrC q\ast [W (T )] Qstdx0,t=0
\scrC q\ast [W (T )] Stdevx0,t=0

\scrC q\ast [W (T )]
PDE Simulation PDE Simulation PDE Simulation

q\mathrm{m}\mathrm{a}\mathrm{x} = 1.5 129.10 129.08 57.79 57.87 65.21 65.25

q\mathrm{m}\mathrm{a}\mathrm{x} = 1.0 119.11 119.11 35.93 35.97 39.16 38.81

computed using 560 s-grid nodes, 1120 b-grid nodes, and 720 timesteps in total, we output
and store the computed optimal strategy for each discrete state value. A total of 8 million
Monte Carlo simulations for the portfolio are carried out from t = 0 to t = T , using the same
investment parameters, with rebalancing occurring monthly in accordance with the stored
PDE-computed optimal strategy for the corresponding rebalancing time.17 Table 5.4 com-
pares the results from the numerical method (``PDE"" column) to the results calculated from
the Monte Carlo simulation, illustrating that the values of the mean and standard deviation
of terminal wealth, as well as the values of Qstdx0,t=0

\scrC q\ast [W (T )], agree.

5.3. MQV frontiers and MV efficient frontiers. In this subsection, we assess the impact
of investment constraints and other assumptions on MQV frontiers and compare the results
with the corresponding TCMV efficient frontiers. Table 5.5 outlines the assumptions under-
lying five experiments specifically constructed to highlight the impact of different investment
constraints. The interest rates and transaction costs used in Experiments 4 and 5 align with
those used in Van Staden, Dang, and Forsyth (2018), while a leverage constraint of q\mathrm{m}\mathrm{a}\mathrm{x} = 1.0,
used for Experiments 3 and 5, implies that leverage is not allowed (see (2.14)).

All frontier results in this subsection assume a maturity of T = 20 years, an initial wealth
of w0 = 100, and an annual rebalancing of the portfolio with approximately daily interest
payments (364 per year) on the risk-free asset. To ensure the accuracy of the results, each
point on a frontier is constructed using a very fine grid, namely 7280 equal timesteps, together
with 1105 b-grid and 561 s-grid nodes, respectively.

In all cases where numerical TCMV results are required for comparison purposes, these
results have been obtained using the numerical techniques outlined in Van Staden, Dang, and
Forsyth (2018).

17If required, interpolation is used to determine the optimal strategy for a given state value.
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Table 5.5
Details of experiments.

Experiment
Lending/borrowing

rates
If insolvent

Leverage
constraint

Transaction costs

r\ell rb Fixed (c1) Prop. (c2)

Experiment 1 0.00623 0.00623
Continue
trading

None 0 0

Experiment 2 0.00623 0.00623 Liquidate q\mathrm{m}\mathrm{a}\mathrm{x} = 1.5 0 0

Experiment 3 0.00623 0.00623 Liquidate q\mathrm{m}\mathrm{a}\mathrm{x} = 1.0 0 0

Experiment 4 0.00400 0.06100 Liquidate q\mathrm{m}\mathrm{a}\mathrm{x} = 1.5 0.001 0.005

Experiment 5 0.00400 0.06100 Liquidate q\mathrm{m}\mathrm{a}\mathrm{x} = 1.0 0.001 0.005
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Figure 5.1. MQV frontiers: Effect of model choice (GBM, Merton, Kou models).

5.3.1. Model choice. The impact of model choice on the MQV frontier is illustrated
in Figure 5.1. Since the assumption of daily interest payments used for the construction of
frontiers in this section approximates the continuous compounding of interest with reasonable
accuracy, the investment constraints of Experiment 1 align closely with Assumption 3.1.

The differences in Figure 5.1(a) can therefore be explained by referencing the slope of the
frontiers reported in Theorem 3.6, in conjunction with the model parameters in Table 5.1. We
observe that all models have similar \mu values. Furthermore, the combination of parameters\bigl( 
\sigma 2 + \lambda \kappa 2

\bigr) 
for the Merton model and \sigma 2 for the GBM model are closely aligned; in other

words, the higher diffusive volatility of the GBM model has an effect similar to incorporating
jumps using the Merton model, resulting in roughly equal MQV frontier slope values calculated
using (3.10). Since the jump multiplier has a significantly higher variance for the Kou model
as compared to the Merton model, when calibrated to the same data, the resulting higher
\kappa 2 value for the Kou model18 decreases the slope (3.10) of the associated MQV frontier. As
seen in Figure 5.1(b), even when investment constraints are present, the MQV frontiers of the

18For the Kou model, \kappa 2 = \BbbE 
\bigl[ 
(\xi  - 1)2

\bigr] 
\simeq 0.084, compared to the Merton model where \kappa 2 = 0.036.
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GBM and Merton models remain effectively indistinguishable and above the frontier based
on the Kou model. Qualitatively similar results also hold for the other experiments and are
therefore omitted.

5.3.2. Investment constraints. Figure 5.2 illustrates the effect of investment constraints
on the MQV frontiers for the GBM and Kou models (qualitatively similar results are obtained
for the Merton model). Regardless of model choice, we observe that introducing just two basic
constraints, namely liquidation in the event of insolvency and a maximum leverage constraint
(Experiment 2), has a significant impact on the MQV frontier. If we additionally introduce
more realistic interest rates and transaction costs (Experiment 4), the expected terminal
wealth that can be achieved is further reduced, especially for higher levels of risk. This
follows from the observation that a higher standard deviation of terminal wealth is achieved
only by increasing the investment in the risky asset, a strategy which is executed by borrowing
to invest. Since the borrowing costs are substantially higher and transaction costs are not zero
in Experiment 4, the expected value of the terminal wealth is reduced compared to Experiment
2 for any given value of the standard deviation.
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Figure 5.2. MQV frontiers: Relative effect of investment constraints (GBM and Kou model).

Figure 5.3 investigates the role of the maximum leverage ratio on the MQV frontiers.
Recall from (2.14) that a value of q\mathrm{m}\mathrm{a}\mathrm{x} = 1.0 means leverage is not allowed, which is common
in the case of many pension fund investments. In Figure 5.3(a) we observe that, for any given
standard deviation of terminal wealth, a strategy constrained by liquidation in the event of
bankruptcy and q\mathrm{m}\mathrm{a}\mathrm{x} = 1.5 (Experiment 2) is expected to significantly outperform a strategy
subject to otherwise similar constraints except that no leverage is allowed (Experiment 3).
However, once more realistic interest rates and transaction costs are introduced, Figure 5.3(b)
shows that this difference largely disappears. The reason is that in Experiments 4 and 5,
the cost of borrowing to invest is substantially higher than in the case of Experiments 2 and
3, thereby significantly increasing the cost of any strategy relying on leverage. The results
of Experiments 4 and 5 (Figure 5.3(b)) are therefore much less sensitive to the maximum
leverage ratio allowed.
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Figure 5.3. MQV frontiers: Effect of reducing the maximum leverage ratio, q\mathrm{m}\mathrm{a}\mathrm{x} (Kou model).

5.3.3. Comparison of frontiers. In this subsection, we compare MQV frontiers with
TCMV and precommitment MV19 efficient frontiers based on otherwise identical assump-
tions, parameters, and investment constraints. Results are illustrated for the Kou model only,
since other models yield qualitatively similar results.

Figure 5.4(a) shows that the MQV frontier and TCMV efficient frontier are indistinguish-
able in the case of Experiment 1. Based on Theorem 3.6, this is to be expected, since the
details of Assumption 3.1 are largely the same as the assumptions of Experiment 1 in combi-
nation with the use of daily interest payments in the semi-Lagrangian timestepping scheme,
which approximates continuous compounding. The precommitment MV efficient frontier lies
above the TCMV efficient frontier, since the TCMV problem, while having the same objective
function, is subject to the additional time-consistency constraint. This remains the case even
when investment constraints are introduced (Figure 5.4(b)), although the difference between
the efficient frontiers is substantially reduced.

More important, we observe that the MQV strategy is more MV efficient than the asso-
ciated TCMV strategy in that the MQV frontier is either indistinguishable from or slightly
above the corresponding TCMV efficient frontier. This has also been observed in the case
of no jumps and continuous rebalancing (Wang and Forsyth (2012)). In the present setting
of jumps in the risky asset process and discrete rebalancing, we note that this observation
remains true regardless of the investment constraints introduced, such as if liquidation in the
event of insolvency and a maximum leverage constraint is introduced (Figure 5.4(b)), if lever-
age is not allowed (Figure 5.5(a)), as well as if more realistic interest rates and transaction
costs are implemented (Figure 5.5(b)). The reasons for this are explored in more detail in the
subsequent sections.

Remark 5.1 (effect of parameters on the MQV vs. TCMV outcomes). While it is clear from
the results in this subsection that the MV investment outcomes for MQV and TCMV are

19The numerical precommitment MV efficient frontier results have been obtained using the algorithm of
Dang and Forsyth (2014).
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Figure 5.4. MQV frontiers vs. TCMV and precommitment MV efficient frontiers, Experiments 1 and 2
(Kou model).
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Figure 5.5. MQV frontiers vs. TCMV efficient frontiers, Experiments 3 and 4 (Kou model).

very similar regardless of experiment, the choice of investment parameters and constraints
can nevertheless have some impact on the comparative MV outcomes for these strategies. In
the following, we highlight the effect of maturity, transactions costs, and interest rates, as well
as the risk-aversion parameter \rho .

(i) Maturity: While the results are only shown for a maturity of T = 20 years, qualita-
tively similar results have been observed for shorter maturities. However, for maturities of
fewer than T = 10 years, the frontiers for MQV and TCMV effectively become entirely indis-
tinguishable regardless of experiment, suggesting that the comparatively small differences in
optimal controls (see subsection 5.5) require a substantial investment term to be consequential.

(ii) Transaction costs and interest rates: Comparing the frontiers from Experiment 2
(Figure 5.4(b)) and Experiment 4 (Figure 5.5(b)), we see that nonzero transaction costs
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combined with realistic interest rates have the effect of reducing the difference in MV outcomes
of the two strategies.

(iii) Risk-aversion parameter \rho > 0: In the limit as \rho \rightarrow \infty , all wealth is invested in
the risk-free asset regardless of investment strategy, so we would expect increasing similarity
between the MQV and TCMV investment outcomes as \rho increases. To obtain a reasonable
range of \rho values for tracing out efficient frontiers as in this section, a target standard deviation
of terminal wealth value (target x-axis value for the efficient frontier) can be obtained in the
special case of no market frictions (Assumption 3.1) by rearranging (3.11)--(3.12) for the value
of \rho achieving the targeted standard deviation. From (3.11)--(3.12), it is also clear that the
particular range of \rho values under consideration depends not only on the desired standard
deviation but also on, for example, the maturity T and underlying process dynamics. If
Assumption 3.1 is violated, (3.11)--(3.12) nevertheless still provides an approximate range of
reasonable \rho values for tracing out an efficient frontier.

5.4. Comparing terminal wealth distributions. A potential drawback of making conclu-
sions based only on the frontiers presented above (subsection 5.3.3), is that such conclusions
necessarily only consider the relation between the standard deviation and expected value of
terminal wealth. From the perspective of an investor, however, the overall distribution of
terminal wealth might be just as important.

To compare terminal wealth distributions for the MQV and TCMV strategies, we fix the
standard deviation of terminal wealth under the respective optimal strategies at a value of
400. This corresponds to fixing a value of 400 on the x-axis in Figures 5.4 and 5.5. When
solving the MQV and TCMV problems corresponding to these points on the frontiers, at each
timestep of the algorithm, we output and store the computed optimal strategy for each discrete
state value. We then carry out 10 million Monte Carlo simulations for the portfolio from t = 0
to t = T using investment parameters identical to those used in the numerical PDE solution
and rebalance the portfolio in accordance with the stored PDE-computed optimal strategy
at each rebalancing time. For each simulation, the resulting terminal wealth W (T ) value is
stored.

Figure 5.6 shows a comparison of the simulated distribution of terminal wealth W (T ) for
Experiments 3 and 4 under the MQV and TCMV optimal strategies achieving a standard
deviation of W (T ) equal to 400. Note that Experiments 2 and 5 yield qualitatively similar
results, so these distributions are not shown. In addition, Table 5.6 summarizes selected
percentiles from the simulated distributions obtained for Experiments 2, 3, 4, and 5, while
Table 5.7 provides an analysis of the same data but from the perspective of the simulated
cumulative distribution function of W (T ) evaluated at selected target terminal wealth values.

Based on Figure 5.6 and Tables 5.6 and 5.7, we conclude the following. The MQV and
TCMV distributions of terminal wealth are generally very similar, even in the presence of in-
vestment constraints. However, in all experiments, for the same standard deviation of terminal
wealth, the 25th percentile, median, and 75th percentile of the wealth distribution achieved
by the MQV strategy exceed that of the TCMV strategy. Furthermore, in Experiments 4 and
5, where more realistic interest rates and transaction costs are applied in addition to leverage
constraints and liquidation in the case of insolvency, the MQV strategy results in improved
downside outcomes (5th and 10th percentiles in Table 5.6), while only slightly underperform-
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Figure 5.6. Simulated distribution of terminal wealth W (T ) under the MQV-optimal and TCMV-optimal
strategies; standard deviation equal to 400; Experiments 3 and 4 (Kou model).

ing the TCMV strategy in terms of the extreme upside (95th percentile). In addition, Table
5.7 shows that for the realistic constraints of Experiments 4 and 5, the MQV strategy outper-
forms the TCMV strategy in terms of the cumulative terminal wealth distribution not only
for the downside wealth outcomes but also up to at least an eight-fold increase in the initial
wealth of 100, which corresponds to approximately the 80th percentile. While the extreme
downside outcomes using the MQV strategy are slightly worse than those associated with the
TCMV strategy in the case of Experiment 2, it should be kept in mind that Experiment 2
does not involve the realistic lending/borrowing rates and transaction costs of Experiments 4
and 5.

5.5. Comparison of optimal strategies. An investor facing a choice between an MQV
strategy and a TCMV strategy might reasonably observe that the terminal wealth outcomes
are very similar to, but perhaps slightly in favor of, the MQV strategy. However, many
investors, for example, institutional investors such as pension funds, have a keen interest in
how the risk exposure of an investment strategy evolves over time.

To compare the optimal investment strategy according to the MQV and TCMV ap-
proaches, we perform the same Monte Carlo simulation as described in subsection 5.4 and
used in the construction of Table 5.6. As in that case, we solve the MQV and TCMV prob-
lems corresponding to a standard deviation of terminal wealth equal to 400, output and store
the computed optimal strategy for each discrete state value, and rebalance the portfolio ac-
cording to the stored strategies in a Monte Carlo simulation of the portfolio. However, instead
of limiting our attention to just the terminal wealth obtained from each simulation, we con-
sider the fraction of wealth invested in the risky asset at each point in time in each simulation.
In this way, a distribution of the fraction of wealth invested in the risky asset at each point
in time, required by each strategy, can be constructed.

Figure 5.7 shows the median (50th percentile) as well as the 25th and 75th percentiles, of
the distribution of the fraction of wealth invested in the risky asset according to the MQV-
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Table 5.6
Experiments 2, 3, 4, and 5: Selected percentiles (rounded to nearest integer) from the simulated distribution

of the terminal wealth under the MQV-optimal and TCMV-optimal strategies. In each case, a standard deviation
of terminal wealth equal to 400 is obtained (Kou model).

Percentile
Experiment 2 Experiment 3 Experiment 4 Experiment 5

MQV TCMV MQV TCMV MQV TCMV MQV TCMV

5th 18 36 61 49 65 52 59 44

10th 58 83 97 88 106 100 95 86

25th 224 218 188 177 193 194 186 174

50th 521 480 374 350 372 368 370 340

75th 794 762 685 662 687 675 677 630

90th 1053 1049 986 991 1007 1018 980 972

95th 1226 1248 1183 1207 1216 1247 1178 1200

Table 5.7
Experiments 2, 3, 4, and 5: Selected values from the simulated cumulative distribution function of the ter-

minal wealth W (T ) under the MQV-optimal and TCMV-optimal strategies: The value displayed is an estimate
of \BbbP [W (T ) \leq a], where a is the value in column 1. In each case, a standard deviation of terminal wealth equal
to 400 is obtained (Kou model).

W (T ) value
Experiment 2 Experiment 3 Experiment 4 Experiment 5

MQV TCMV MQV TCMV MQV TCMV MQV TCMV

50 0.09 0.06 0.04 0.05 0.04 0.05 0.04 0.06

100 0.14 0.12 0.11 0.12 0.09 0.10 0.11 0.12

200 0.23 0.23 0.27 0.29 0.26 0.26 0.27 0.29

500 0.48 0.52 0.61 0.64 0.62 0.63 0.62 0.66

800 0.75 0.78 0.82 0.82 0.81 0.82 0.82 0.84

1000 0.88 0.88 0.90 0.90 0.90 0.89 0.91 0.91

1200 0.94 0.94 0.95 0.95 0.95 0.94 0.95 0.95

optimal and TCMV-optimal strategies. The results are only shown for the Kou model and
Experiment 2, with qualitatively similar results obtained for other models and experiments,
with the exception of Experiment 1, where the two strategies are effectively identical.20

Comparing Figure 5.7(a) and Figure 5.7(b), we observe that the MQV-optimal strategy
calls for a significantly higher investment in the risky asset (effectively the maximum invest-
ment possible, given a leverage constraint of q\mathrm{m}\mathrm{a}\mathrm{x} = 1.5 in Experiment 2) during the early
stages of the investment period. However, as time passes, the MQV strategy calls for a re-
duction in risky asset exposure, so that the MQV-optimal median fraction of wealth invested
in the risky asset drops below, and remains below, the corresponding median fraction for
the TCMV-optimal strategy from just after the middle of the investment time horizon until
maturity (i.e., after about 10 years). In the case of the 10th percentile, this effect is even
more dramatic, with the MQV-optimal fraction of wealth invested in the risky asset dropping
below the TCMV-optimal fraction after only about five years.

Intuitively, the results of Figure 5.7 can be explained as follows. The TCMV investor is

20Based on the results in section 3, the similarity between strategies in the case of Experiment 1 is to be
expected.
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Figure 5.7. MQV-optimal and TCMV-optimal fractions of wealth invested in the risky asset over time,
Experiment 2 (Kou model). Standard deviation of terminal wealth equal to 400.

only concerned with terminal wealth and acts consistently with MV risk preferences through-
out the investment time horizon (see, for example, Cong and Oosterlee (2016)). In contrast,
the MQV investor is concerned with the expected value of the (future-valued) QV of wealth
accumulated over the investment time horizon. For smaller wealth values, the presence of
a leverage constraint implies that the amount invested in the risky asset is necessarily also
smaller, which reduces the expected value of the QV of wealth (see, for example, (A.3) in
Appendix A). For a fixed level of \rho > 0, the MQV investor therefore places a relatively larger
weight on maximizing the expected value of terminal wealth if current wealth levels are low,
which results in a larger MQV-optimal fraction of wealth required to be invested in the risky
asset. However, as time passes and wealth increases, maintaining the same fraction of wealth
in the risky asset requires ever larger amounts invested in the risky asset, a strategy which is
costly in terms of QV. The MQV-optimal strategy therefore calls for a fairly rapid reduction
in exposure to the risky asset over time if past returns are favorable, in contrast with the
TCMV strategy.

A more rigorous explanation of the observed differences in optimal strategies follows from
a direct comparison of the optimal controls used in the Monte Carlo simulation to generate
Figure 5.7. To this end, Figure 5.8 presents the heatmaps of the MQV- and TCMV-optimal
controls (in terms of the fraction of wealth invested in the risky asset) as a function of time
and wealth. Compared to the TCMV strategy, the MQV strategy calls for a faster reduction
in risky asset exposure as wealth increases, while for a given level of wealth, the MQV-optimal
fraction of wealth invested in the risky asset is fairly stable over time.

Considering the particular case of an initial wealth of w0 = 100 used for constructing the
frontiers in subsection 5.3.3 and Figure 5.7, the MQV-optimal strategy calls for the maximum
possible investment in the risky asset given the leverage constraint, in contrast to the TCMV-
optimal strategy, which requires a much lower investment. If returns are favorable so that
wealth grows sufficiently over time, the MQV-optimal control calls for a significantly larger
reduction in the investment in the risky asset compared to the TCMV-optimal control. Finally,
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(a) MQV-optimal strategy (b) TCMV-optimal strategy

Figure 5.8. Optimal control expressed as a fraction of wealth in the risky asset, Experiment 2 (Kou model).
Standard deviation of terminal wealth equal to 400.

we observe that both of these strategies are contrarian in the sense that, all else being equal,
the investment in the risky asset is increased if past returns have been unfavorable.

6. Conclusions. In this paper, we investigate the relationship between the TCMV and
MQV portfolio optimization problems and derive analytical solutions under the assumption of
no market frictions for the case of jumps in the risky asset process and discrete rebalancing of
the portfolio, which leads to the following conclusions. First, both problems result in identical
trade-offs regarding the mean and variance of terminal wealth, so that an MV investor would
be indifferent as to which objective is used. Second, for a fixed level of risk aversion, the
MQV-optimal strategy would call for a larger investment in the risky asset compared to
the TCMV-optimal strategy. Third, an alternative QV risk measure can be constructed to
ensure the exact equivalence between the problems under more general conditions than those
currently known in the literature.

Furthermore, a numerical scheme, together with a convergence proof, is presented, en-
abling the solution of the MQV problem in the case where analytical solutions are not known.
Under realistic investment constraints, the MQV- and TCMV-optimal terminal wealth distri-
butions and investment strategies are compared and contrasted. We conclude that the MQV
investor achieves essentially the same terminal wealth outcomes as the TCMV investor, but
with an improved risk profile, since the MQV strategy calls for a reduction in risky asset
exposure over time. The MQV approach might therefore be especially attractive for investors
wishing to obtain TCMV outcomes but requiring more certainty regarding the portfolio value
as some target date is approached. MQV optimization is therefore a potentially desirable al-
ternative to TCMV optimization, particularly for long-term, institutional investors who may
find the resulting risk profile more attractive.

We leave further analysis of the relationship between TCMV and MQV strategies, in-
cluding the construction of alternative QV risk measures ensuring the equivalence of these
problems in even more general settings, for our future work.
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Appendix A. Proofs of Lemmas 3.4 and 3.5. In this appendix, we assume that
Assumption 3.1 (no market frictions) holds and that we are given a fixed set of rebalancing
times \scrT m as in (2.7).

First, we summarize some results that are useful for the subsequent proofs. Suppose the
system is in state x = (s, b) at time t - n , where tn \in \scrT m. Since there is no intervention over
the time interval (tn, tn+1), the underlying dynamics (2.1) and (2.4) imply (see, for example,
Bjork (2009); {\O}ksendal and Sulem (2007)) that

Ex,tn
\eta n

\bigl[ 
S
\bigl( 
t - n+1

\bigr) \bigr] 
= (s+ b - \eta n) e

\mu \Delta t,(A.1)

V arx,tn\eta n

\bigl[ 
S
\bigl( 
t - n+1

\bigr) \bigr] 
= (s+ b - \eta n)

2
\Bigl( 
e(2\mu +\sigma 2+\lambda \kappa 2)\Delta t  - e2\mu \Delta t

\Bigr) 
,(A.2)

Ex,tn
\eta n

\Biggl[ \int t - n+1

tn

e2r(T - t)d \langle W \rangle t

\Biggr] 
= (s+ b - \eta n)

2 e2r(T - tn)

\bigl( 
e\mu \Delta t  - er\Delta t

\bigr) 
Kq

,(A.3)

Ex,tn
\eta n

\bigl[ 
B
\bigl( 
t - n+1

\bigr) \bigr] 
= \eta ne

r\Delta t, V arx,tn\eta n

\bigl[ 
B
\bigl( 
t - n+1

\bigr) \bigr] 
= 0.(A.4)

First, we prove Lemma 3.4 using backward induction on k \in \{ 1, . . . ,m+ 1\} , with tk =
(k  - 1)\Delta t. Since tm+1 = T corresponds to the terminal time, the claims of Lemma 3.4
regarding the expressions for the value function V c and auxiliary function U c are trivially
true for k = m + 1. Assuming that Lemma 3.4 holds for k = n + 1 (at rebalancing time
tn+1 \in \scrT m), we now establish the validity of the claims of the lemma for k = n, in other
words, for rebalancing time tn \in \scrT m. We assume that the system is in the arbitrary state
x = (s, b) at time t - n and define Xn+1 :=

\bigl( 
S
\bigl( 
t - n+1

\bigr) 
, B
\bigl( 
t - n+1

\bigr) \bigr) 
. Recalling the formulation

of problem TCMV\itt \itn (\rho ) as (2.19), the investor's objective function Jc (\eta n; s, b, tn) is given by
(2.20) as

Jc (\eta n; s, b, tn) = Ex,tn
\eta n [V c (Xn+1, tn+1)] - \rho \cdot V arx,tn\eta n [U c (Xn+1, tn+1)] .(A.5)

Since the results of Lemma 3.4 are assumed to hold for k = n+1 (rebalancing time tn+1), we
are given that

U c (Xn+1, tn+1) =
\bigl( 
S
\bigl( 
t - n+1

\bigr) 
+B

\bigl( 
t - n+1

\bigr) \bigr) 
er(T - tn+1) + (T  - tn+1)

\biggl( 
1

2\rho 
Kc

\biggr) 
1

\Delta t

\bigl( 
e\mu \Delta t  - er\Delta t

\bigr) 
,

(A.6)

V c (Xn+1, tn+1) = U c (Xn+1, tn+1) - \rho (T  - tn+1)

\biggl( 
1

2\rho 
Kc

\biggr) 2

\cdot 1

\Delta t

\Bigl( 
e(2\mu +\sigma 2+\lambda \kappa 2)\Delta t  - e2\mu \Delta t

\Bigr) 
.

(A.7)

Substituting (A.6) and (A.7) into (A.5), we use the results (A.1), (A.2), and (A.4) and simplify
the resulting expression for Jc (\eta n; s, b, tn) to obtain the following quadratic function of \eta n:

Jc (\eta n; s, b, tn) = (s+ b) er(T - tn)e(\mu  - r)\Delta t  - \rho 
\Bigl[ 
(s+ b)2 + \eta 2n

\Bigr] \bigl( e\mu \Delta t  - er\Delta t
\bigr) 
e2r(T - tn)

e2r\Delta tKc

+
\bigl( 
e\mu \Delta t  - er\Delta t

\bigr) \Biggl[ \biggl( T  - tn
\Delta t

 - 1

\biggr) \biggl( 
1

4\rho 
Kc

\biggr) 
+ \eta n

\Biggl( 
2\rho (s+ b) er(T - tn)

e2r\Delta tKc
 - 1

er\Delta t

\Biggr) 
er(T - tn)

\Biggr] 
.

(A.8)
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Under Assumption 3.1 (no market frictions), maximizing (A.8) over \eta n \in \BbbR gives the optimal
value \eta c\ast n from the first-order condition as reported in Lemma 3.4 (see (3.4)). It now remains to
verify the expressions for the auxiliary function U c and value function V c at time tn reported
in Lemma 3.4. Observing that

U c (s, b, tn) = Ex,tn
\eta c\ast n

[U c (Xn+1, tn+1)] ,(A.9)

V c (s, b, tn) = Jc (\eta c\ast n ; s, b, tn) ,(A.10)

we can substitute \eta c\ast n (see (3.4)) into (A.1) and (A.4) and use the results, together with
(A.6), to obtain U c (s, b, tn) by means of (A.9) and simply substitute \eta c\ast n into (A.8) to obtain
V c (s, b, tn). After simplification, we obtain the expressions for the auxiliary function U c and
value function V c at time tn reported in Lemma 3.4, which proves the claims of the lemma
for k = n. As a result, Lemma 3.4 holds by backward induction.

Lemma 3.5 can be proved similarly using backward induction. The main difference is that
instead of (A.5), the investor's objective function at time tn satisfies the recursive relationship
(see (2.28))

Jq (\eta n; s, b, tn) = Ex,tn
\eta n

\bigl[ 
V q
\bigl( 
S
\bigl( 
t - n+1

\bigr) 
, B
\bigl( 
t - n+1

\bigr) 
, tn+1

\bigr) \bigr] 
 - \rho \cdot Ex,tn

\eta n

\Biggl[ \int t - n+1

tn

e2\scrR (B(t))\cdot (T - t) \cdot d \langle W \rangle t

\Biggr] 
,(A.11)

so that (A.3), together with the expression for V q
\bigl( 
S
\bigl( 
t - n+1

\bigr) 
, B
\bigl( 
t - n+1

\bigr) 
, tn+1

\bigr) 
given in Lemma

3.5 (which is assumed to hold for k = n+ 1 for the backward induction argument), simplifies
the objective to the following quadratic function of \eta n:

Jq (\eta n; s, b, tn) = (s+ b) er(T - tn)e(\mu  - r)\Delta t  - \rho 
\Bigl[ 
(s+ b)2 + \eta 2n

\Bigr] \bigl( e\mu \Delta t  - er\Delta t
\bigr) 
e2r(T - tn)

Kq

+
\bigl( 
e\mu \Delta t  - er\Delta t

\bigr) \Biggl[ \biggl( T  - tn
\Delta t

 - 1

\biggr) \biggl( 
1

4\rho 

Kq

e2r\Delta t

\biggr) 
+ \eta n

\Biggl( 
2\rho (s+ b) er(T - tn)

Kq
 - 1

er\Delta t

\Biggr) 
er(T - tn)

\Biggr] 
.

(A.12)

From the first-order condition, the optimal value \eta q\ast n maximizing (A.12) under Assumption
3.1 (no market frictions) is given by (3.9) per Lemma 3.5. Using \eta q\ast n , together with similar
arguments as in (A.9)--(A.10), we obtain the auxiliary functions U q and Qq as well as the
value function V q at time tn, giving the expressions reported in Lemma 3.5. We therefore
conclude that Lemma 3.5 holds by backward induction.

Appendix B: Relationship to continuous rebalancing in the literature. In this appendix,
we provide a brief summary of how portfolio rebalancing is typically modeled in the literature
using continuous-time feedback controls, subsequently referred to simply as ``continuous con-
trols."" We discuss how these continuous controls are, in the relevant practical applications,
by necessity also the limiting case (as \Delta t \downarrow 0) of piecewise constant control approximations.
We also illustrate the connection between the piecewise constant control approximations of
continuous controls and our discrete impulse control formulation, which motivates our use of
the term ``continuous rebalancing"" to describe the case where \Delta t \downarrow 0 in this paper, a scenario
which might also be described as ``continuously observed impulse control.""
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B.1. Rebalancing using a continuous control. We briefly describe the modelling of port-
folio rebalancing using continuous controls encountered in the literature. We omit most of the
technical details, instead referring the reader to, for example, Basak and Chabakauri (2010);
Bensoussan et al. (2014); Bjork, Murgoci, and Zhou (2014); Zeng, Li, and Lai (2013), among
many others.

We again consider a portfolio consisting of two assets, a risk-free asset paying a continu-
ously compounded risk-free rate r, and a risky asset. We assume that one unit of the risky
asset has dynamics given by

dSu (t) = (\mu  - \lambda \kappa )Su
\bigl( 
t - 
\bigr) 
dt+ \sigma Su

\bigl( 
t - 
\bigr) 
\cdot dZ + Su

\bigl( 
t - 
\bigr) 
\cdot d

\left(  \pi (t)\sum 
i=1

(\xi i  - 1)

\right)  ,(B.1)

where the interpretation of all terms is as in (2.4). Let u (t) = u (Su (t) , t) be the continuous-
time feedback control (see, for example, Bjork, Khapko, and Murgoci (2017)) denoting the
amount invested in the risky asset at time t, with \scrU denoting the set of admissible controls.
Then using control u, the controlled wealth process of a self-financing portfolio has dynamics
given by (see, for example, Bjork (2009))

dW u (t) = [rW u (t) + (\mu  - \lambda \kappa  - r)u (t)] dt+ \sigma u (t) dZ + u (t) d

\left(  \pi (t)\sum 
i=1

(\xi i  - 1)

\right)  ,(B.2)

with W u (0) = w0 > 0 being the initial wealth.
Using wealth dynamics (B.2), we can define a portfolio optimization problem to be solved

over all admissible continuous-time controls u \in \scrU . For example, in the case of the TCMV
objective, we follow Wang and Forsyth (2011) in defining TCMV u

t (\rho ) as

(TCMV u
t (\rho )) : V u (w, t) := sup

u\in \scrU 

\bigl( 
Ew,t

u [W u (T )] - \rho \cdot V arw,t
u [W u (T )]

\bigr) 
, \rho > 0,(B.3)

s.t. u\ast (t; y, v) = u\ast 
\bigl( 
t\prime ; y, v

\bigr) 
for v \geq t\prime , t\prime \in [t, T ] ,(B.4)

where u\ast (t; y, v) denotes the optimal control for problem TCMV u
t (\rho ) calculated at time t and

to be applied at some future time v \geq t\prime \geq t given future state W u (v) = y, while u\ast (t\prime ; y, v)
denotes the optimal control calculated at some future time t\prime \in [t, T ] for problem TCMV u

t\prime (\rho ),
also to be applied at the same later time v \geq t\prime given the same future state W u (v) = y. To
simplify notation, we will use u\ast (t) to denote the optimal control for problem (B.3)--(B.4).

In the case of no market frictions (Assumption 3.1), and if trading continues in the event
of insolvency, the solution to problem TCMV u

t (\rho ) is given by Basak and Chabakauri (2010)
and Zeng, Li, and Lai (2013) and corresponds to the limiting result reported in Theorem 3.9.

B.2. Piecewise-constant control approximation. From a practical perspective, there are
two significant challenges with the continuous-control formulation (B.2)--(B.4). First, the
introduction of realistic investment constraints requires the numerical solution, and therefore
discretization, of the problem, including the control u. Second, since trading does not occur
continuously in practice even if we ignore any market frictions, a continuous-time investment
strategy, even if it can be obtained analytically, presents a practical implementation challenge.
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A natural solution to these challenges is to use a piecewise-constant approximation to the
continuous control u (see Krylov (1999), where convergence is also discussed), of which we
give two examples.

Making use of a finite partition \scrT m (see (2.7)) of [0, T ], with \Delta t = tn+1 - tn, n = 1, . . . ,m,
we can, for example, approximate control u by

(B.5) u (t) \simeq up (t) :=
m\sum 

n=1

upn \cdot \BbbI [tn,tn+1) (t) , t \in [0, T ] ,

where upn, n = 1, . . . ,m, are constants. This results in an approximation to the controlled
wealth process (B.2) on subinterval [tn, tn+1) of

dW pu (t) = [rW pu (t) + (\mu  - \lambda \kappa  - r)upn] dt+ \sigma upn \cdot dZ + upn \cdot d

\left(  \pi (t)\sum 
i=1

(\xi i  - 1)

\right)  ,(B.6)

with W pu (tn) = w. Portfolio optimization problems can then be formulated and numerically
solved using the approximations (B.5)--(B.6). For MV optimization problems, see Wang and
Forsyth (2010, 2011), and see Wang and Forsyth (2012) for the MQV problem and for the
case where there are no jumps in the risky asset process.

We can solve problem TCMV u
t (\rho ) in (B.3)--(B.4) using the approximation (B.5)--(B.6)

analytically in the case of no market frictions (Assumption 3.1) and contrast the resulting
solution reported in Lemma B.1 with the solution reported in Lemma 3.4 using the impulse
control formulation.

Lemma B.1 (analytical solution: TCMV problem with piecewise-constant approximation (B.5)
to the continuous control). Suppose that we are given wealth w at time t - n , where tn \in \scrT m,
n \in \{ 1, . . . ,m\} , and that Assumption 3.1 is applicable. The piecewise-constant approximation
(B.5) using wealth dynamics (B.6) to the optimal control of problem TCMV u

tn (\rho ) in (B.3)--
(B.4) is given by

u\ast (t) \simeq up\ast (t) :=

m\sum 
n=1

up\ast n \cdot \BbbI [tn,tn+1) (t) , t \in [0, T ] ,(B.7)

where up\ast n =

\biggl( 
1

2\rho 
Kp

\biggr) 
e - r(T - tn)er\Delta t, and Kp =

(\mu  - r)

(\sigma 2 + \lambda \kappa 2)

2

(er\Delta t + 1)
.(B.8)

The optimal amount invested in the risk-free asset at time tn is therefore

\eta p\ast n = w  - 
\biggl( 

1

2\rho 
Kp

\biggr) 
e - r(T - tn)er\Delta t.(B.9)

Proof. The proof is similar to the strategy used to prove Lemma 3.4 and therefore
omitted.

Observe that while Lemma B.1 gives an approximate solution to problem TCMV u
tn (\rho ),

it also corresponds to the exact solution for finite \Delta t > 0 of the problem where the investor
(i) chooses the amount un in the risky asset at time tn, and (ii) continuously rebalances to
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the amount un over the interval [tn, tn+1). As a result, this approximation represents another
implementation challenge due to the implied continuous rebalancing requirement. Finally,
observe that since lim\Delta t\downarrow 0K

p = lim\Delta t\downarrow 0K
c = (\mu  - r) /

\bigl( 
\sigma 2 + \lambda \kappa 2

\bigr) 
, the results from Lemma

B.1 correspond with the results using the impulse control formulation reported in Lemma 3.4
in the limit as \Delta t \downarrow 0 (see Theorem 3.9).

Alternatively, we can write the continuous control as u (t) = q (t)Su (t), where q (t) is the
number of units invested in the risky asset at time t. Instead of fixing the amount invested in
the risky asset u (t) = un over [tn, tn+1) as in (B.5), we can fix the number of units q (t) = qn of
the risky asset invested at time tn over [tn, tn+1). In other words, we have another piecewise-
constant approximation to control u, given by

(B.10) u (t) = q (t)Su (t) \simeq 

\Biggl( 
m\sum 

n=1

qn \cdot \BbbI [tn,tn+1) (t)

\Biggr) 
Su (t) , t \in [0, T ] ,

so that the controlled wealth process (B.2) on subinterval [tn, tn+1) is approximated by

dW qu (t)= [rW qu (t) + (\mu  - \lambda \kappa  - r) qnS
u (t)] dt+ \sigma qnS

u (t) dZ + qnS
u
\bigl( 
t - 
\bigr) 
d

\left(  \pi (t)\sum 
i=1

(\xi i  - 1)

\right)  
(B.11)

with W qu (tn) = w and Su (tn) = sn. Solving problem TCMV u
t (\rho ) in (B.3)--(B.4) using the

approximation (B.10)--(B.11) analytically in the case of no market frictions (Assumption 3.1),
we have the following result.

Lemma B.2 (analytical solution: TCMV problem with piecewise-constant approximation (B.10)
to the continuous control). Suppose we are given wealth w and unit risky asset value sn at time
t - n , where tn \in \scrT m, n \in \{ 1, . . . ,m\} , and that Assumption 3.1 is applicable. The piecewise-
constant approximation (B.10) using wealth dynamics (B.11) to the optimal control of problem
TCMV u

tn (\rho ) in (B.3)--(B.4) is given by

u\ast (t) \simeq uq\ast (t) :=

\Biggl( 
m\sum 

n=1

q\ast n \cdot \BbbI [tn,tn+1) (t)

\Biggr) 
Su (t) , t \in [0, T ] ,(B.12)

where q\ast n =
1

sn
\cdot 
\biggl( 

1

2\rho 
Kc

\biggr) 
e - r(T - tn)er\Delta t,(B.13)

with Kc as in (3.2). The optimal amount invested in the risk-free asset at time tn is therefore
equal to the result for \eta c\ast n obtained in Lemma 3.4 using the discrete impulse control formulation
and is given by

\eta c\ast n = w  - snq
\ast 
n = w  - 

\biggl( 
1

2\rho 
Kc

\biggr) 
e - r(T - tn)er\Delta t.(B.14)

In addition, the value function of problem TCMV u
tn (\rho ) in (B.3)--(B.4) subject to the piecewise-

constant control approximation (B.10) corresponds to the value function of the TCMV problem
using the discrete impulse control formulation given by (3.1) in Lemma 3.4.
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Proof. The amount invested in the risk-free asset \eta n at time tn is \eta n = w  - qnsn, so
choosing qn = (w  - \eta n) /sn is equivalent to choosing \eta n. Since qn remains fixed over [tn, tn+1),
the dynamics (B.1) of Su implies that the amount invested in the risky asset at the end of
the time interval has mean and variance, respectively, given by

Ew,tn
\eta n

\bigl[ 
qnS

u
\bigl( 
t - n+1

\bigr) \bigr] 
=

(w  - \eta n)

sn
Ew,tn

\eta n

\bigl[ 
Su
\bigl( 
t - n+1

\bigr) \bigr] 
= (w  - \eta n) e

\mu \Delta t,

(B.15)

V arw,tn
\eta n

\bigl[ 
qnS

u
\bigl( 
t - n+1

\bigr) \bigr] 
=

(w  - \eta n)
2

s2n
V arw,tn

\eta n

\bigl[ 
Su
\bigl( 
t - n+1

\bigr) \bigr] 
= (w  - \eta n)

2
\Bigl( 
e(2\mu +\sigma 2+\lambda \kappa 2)\Delta t  - e2\mu \Delta t

\Bigr) 
,

(B.16)

which we observe to be identical to the results using our discrete impulse control formulation;21

see (A.1) and (A.2) in Appendix A. The rest of the proof follows the same strategy used to
prove Lemma 3.4 in Appendix A.

Lemma B.2, together with a similar set of results for the MQV problem, implies that all of
the analytical results of section 3 would hold if we were to formulate the portfolio optimization
problems using continuous controls in the wealth process (B.2) but were to model discrete
rebalancing using the piecewise-constant approximation (B.10) to the continuous control. Of
course, this also implies that as \Delta t \downarrow 0, the known analytical solutions will be recovered (per
Theorem 3.9) using the approximation (B.10).

Taken together, these considerations motivate our use of the terminology ``continuous
rebalancing"" to apply to the limiting case as \Delta t \downarrow 0 in our discrete impulse control formulation.
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