
Linking Alloy with SMT-based
Finite Model Finding

by

Khadija Tariq

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2020

c© Khadija Tariq 2020

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Alloy is a well-known declarative language for modelling systems early in the develop-
ment process. Currently, it uses the Kodkod library as its back-end for finite model finding
(finding instances of the model by determining satisfiability for finite sets). Alloy’s tool,
the Alloy Analyzer, converts the Alloy model to an equivalent Kodkod problem, which
is translated to boolean logic and analyzed using an off-the-shelf SAT solver by Kodkod.
However, this method can often handle only problems of fairly small size sets.

We present Portus, a tool for translating Alloy into an equisatisfiable many-sorted
finite model finding (MSFMF) problem of first-order logic. The MSFMF problem is eval-
uated by an SMT-based finite model finding method implemented in the Fortress solver,
creating an alternative back-end to the Alloy Analyzer. Fortress converts the MSFMF
problem into (mostly) the logic of equality with uninterpreted functions (EUF), a decid-
able fragment of first-order logic that is well-supported in many SMT solvers.

Portus is presented as a two-fold approach. First, we discuss the basic translation of
all Alloy constructs in detail. Second, we suggest optimizations applicable to some Alloy
models to improve the performance of Portus. We evaluate the effect of each optimization
on Portus.

Finally, we compare the performance of Portus with Kodkod, the current solver of
the Alloy Analyzer, on a corpus of Alloy models over various scopes. We classify these
Alloy models based on certain characteristics and provide a hypothesis regarding the class
of Alloy models Portus performs better on.

iii

Acknowledgements

First of all, I would like to thank my supervisor, Dr. Nancy A Day, for her continuous
guidance and support throughout my Master’s programme. I have learned a lot from her
about formal methods and academic research. I would also like to thank my readers,
Joanne Atlee and Derek Rayside, for their valuable feedback.

I would also like to express my gratitude towards my colleagues without whom this
journey would not have been complete. I would like to thank Ali Abbassi for his work
on Astra which was the main inspiration for Portus, Dr. Amirhossein Vakili for his
work on the first version of Fortress and Joseph Poremba on his work on the new version
of Fortress. I would also like to thank Elias Eid for his help on profiling Alloy models
to provide motivation for the optimizations in Portus and Michelle Zheng on her help
in integrating Portus in the Alloy Analyzer. I would also like to thank Amin Bandali,
Joesph Poremba, Elias Eid and Tamjid Hossain for their discussions on Alloy and Portus.

Finally I would like to thank my family and friends for their love and support all these
years. I would not be where I am without their help and encouragement.

iv

Table of Contents

List of Tables viii

List of Figures ix

1 Introduction 1

1.1 Contributions . 3

1.2 Thesis Organization . 3

2 Background 4

2.1 Finite Model Finding . 4

2.2 Alloy and Kodkod . 7

2.3 Fortress . 8

2.4 SMT-LIB2 . 13

2.5 Astra . 13

2.6 Summary . 14

3 Interfacing with Fortress 15

3.1 Experimental Setup . 15

3.2 Fortress Model Finders . 16

3.3 Comparison with Kodkod . 22

3.4 Conclusion . 22

v

4 Basic Translation 24

4.1 Overview . 24

4.2 Step 1 - Translate signatures . 26

4.3 Step 2 - Translate scopes . 29

4.4 Step 3 - Translate formulas . 31

4.5 Step 4 - Solve using Fortress . 40

4.6 Step 5 - Return instances . 40

4.7 Summary . 41

5 Optimizations 42

5.1 Optimization of Join . 44

5.2 Optimization of Exact Scopes . 46

5.3 Optimization of Signature Hierarchy . 48

5.4 Optimization of Signatures . 50

5.5 Optimization of Relations . 54

5.6 Optimization of Ordering Module . 57

5.7 Optimization of Transitive Closure . 60

5.8 Optimization of Cardinality . 66

5.9 Optimization of Integers . 66

5.10 Conclusion . 69

6 Experimental Results 71

6.1 Implementation . 71

6.2 Experimental Setup . 71

6.3 Performance Testing . 72

6.4 Correctness Testing . 77

6.5 Summary . 77

vi

7 Related Work 79

7.1 Astra . 79

7.2 Other Alloy translations . 82

7.3 Other model finding libraries . 83

8 Conclusion 85

8.1 Future Work . 85

References 88

APPENDICES 95

A Tool versions 96

B BNF operators 97

C Optimizations 98

vii

List of Tables

3.1 TPTP problems available in Kodkod and/or included in Ptptp 16

3.2 Fortress model finder v3si with Z3 and CVC4 on Ptptp 17

3.3 Fortress model finders on Ptptp . 17

3.4 Fortress model finders with simplifications on Ptptp 20

3.5 Effect of simplifications on Fortress model finders on Ptptp 21

3.6 Comparison between Fortress and Kodkod on Ptptp 23

5.1 Optimization of the join operator in Portus 45

5.2 Optimization of exact scopes on top-level signatures in Portus 48

5.3 Optimization of signature heirarchy in Portus 50

5.4 Optimization of signatures using constants in Portus 53

5.5 Optimization of relations using functions in Portus 56

5.6 Optimization of ordering module in Portus 60

5.7 Comparison of closure translations in Portus 65

5.8 Optimization of cardinality in Portus . 68

5.9 Optimization of integers in Portus . 69

6.1 Comparison between Portus and Kodkod on Palloyr 74

6.2 Comparison between Portus and Kodkod on Palloyi 75

6.3 Comparison between Portus and Kodkod on Palloyf 76

C.1 Profiling characteristics for comparison of closure translations in Portus 99

viii

List of Figures

4.1 Abstract syntax for an Alloy model . 25

4.2 Abstract syntax for Alloy signatures . 26

4.3 Alloy Signatures . 27

4.4 Abstract syntax for Alloy commands . 30

4.5 Abstract syntax for Alloy formulas . 32

4.6 Translation of Logical Operators . 33

4.7 Translation of Quantified Formulas . 33

4.8 Translation of Quantified Expressions . 34

4.9 Translation of Set Predicates . 35

4.10 Translation of Set Operators . 36

4.11 Translation of Relational Operators . 36

4.12 Translation of Leaf Expressions . 38

4.13 Translation of Integer Operators . 39

5.1 Ordering Module in Alloy . 57

5.2 Optimization of ordering module in Portus 58

5.3 Optimization of cardinality in Portus . 67

7.1 Translation of Kodkod formulas in Astra 80

ix

Chapter 1

Introduction

Finite model finding is becoming an important tool to enable automated analysis in formal
verification of models. Finite model finding means searching for satisfying instances of
a model within a finite scope, thus making it a decidable problem. The popular Alloy
language and its Alloy Analyzer tool [30, 31] have shown the value that users find in writing
models and quickly learning about their models via finite model finding analysis. Alloy has
been used for analyzing the designs of high-level systems including file systems [32, 45],
security [53, 69] and network configurations [59]. A comprehensive list of examples is
provided in [27].

Alloy is a declarative modelling language where the model is described using sets,
relations, and constraints over these relations. It is a simple, yet flexible language. Because
it uses modelling elements that are very abstract (sets, relations, functions, predicates), it
is suitable for describing models very early in the development process. Feedback at an
early stage can help find bugs prior to a huge investment of time in a particular design
direction. Recent examples of the value of early modelling are discussed in Zave [70] who
modelled the CHORD protocol in Alloy and Newcombe et al. [44] who used TLA+ at
Amazon.

Critical to the value of early modelling is the quick feedback from finite model find-
ing. The Alloy Analyzer currently translates its problems into boolean logic satisfiability
problems via its Kodkod [62] package and uses a variety of SAT solvers (e.g. MiniSat [56],
SAT4J [36] etc.). While this method gives quick feedback for very small scopes, it reaches
capacity limitations as scopes increase. Recently, Vakili and Day [65] showed that the finite
model finding problem for first-order logic can be expressed in EUF, the logic of uninter-
preted functions with equality [5], which is a decidable subset of many-sorted first-order

1

logic. The advantage of encoding finite model finding in EUF is that off-the-shelf SMT
(satisfiable module theories) solvers [10] can be used to solve the problem. Vakili and Day
showed that these solvers can often solve a finite model finding problem more quickly than
a SAT solver likely because the structure of functions and predicates is maintained in EUF
and exploited in an EUF solver. Vakili and Day implemented their approach in a solver
called Fortress, which accepts problems in MSFOL as input and currently uses Z3 [20] as
its underlying SMT solver. Fortress has been completely re-factored into a more powerful
and robust tool by Poremba et al. [46] which provides support for integers and bit-vectors
as built-in sorts. There are two options for integers in the new version of Fortress: modular
arithmetic and unbounded. Although the modular arithmetic option is decidable, it can
produce counterintuitive instances.

We present a tool for translating Alloy models into many-sorted first-order logic (MS-
FOL), which we call Portus. This method allows us to connect the Alloy Analyzer with
Fortress. The translation is non-trivial because Alloy uses a relational logic over sets and
includes second-order operators such as transitive closure and set cardinality, and it in-
cludes special modules such as the ordering module, which forces the elements of a set to
be in a linear order. A key element in our approach is use of set membership predicates
in addition to sorts to capture the set hierarchy. In addition, this method allows us to
handle non-exact scopes and set cardinality. We have provided support for all of the Alloy
constructs except the bit shifting operators and higher-order quantifications. Our solver is
directly integrated into the Alloy Analyzer in a clone of the Analyzer repository1. Because
we link to an SMT solver via Fortress, we investigated both a bit-vector interpretation for
integers and leaving integers unbounded. We evaluated our new solver on a large corpus of
Alloy models and compared its performance to Kodkod. We found that Portus performs
better than Kodkod on models containing unbounded integers and relations with a range of
multiplicity one (functions). Our work opens the door to gradually moving from bounded
scopes to unbounded scopes within the SMT solver.

There have been a few efforts to link Alloy with SMT solvers before our work [23, 24,
27, 41]. However, most of these are with the goal of providing unbounded analysis of Alloy
models, which is, in general, an undecidable problem. Astra [3] is a previous effort to
translate Alloy to Fortress for finite model finding, but this work did not support the more
interesting Alloy language features (transitive closure, set cardinality, etc.) and used a
bottom-up approach to translation rather than top-down. It also was not fully integrated
into the Alloy Analyzer so instances returned by Fortress were not mapped back to Alloy
for visualization.

1Available at https://github.com/WatForm/portus.

2

https://github.com/WatForm/portus

1.1 Contributions

The main contributions of our work are as follows:

1. A translation from an Alloy model to a many-sorted finite model finding problem
that covers all Alloy constructs (except the bit-shifting operators and higher-order
quantifications) implemented in a tool called Portus;

2. A novel method of handling set cardinality, which utilizes the built-in sort for integers;

3. A method of checking the satisfiability of the problem at multiple finite scopes all
within one solver problem;

4. Several optimizations to improve performance and analysis of their effect on Portus;

5. An extensive analysis of the performance of our tool against the state-of-the art in
the Alloy Analyzer;

6. A method of checking the correctness of Portus and Kodkod interpretations via
cross-checking;

7. Implementation of a simplification method for many-sorted first-order logic formulas
in Fortress.

1.2 Thesis Organization

We start by providing a brief background about the Alloy language, the Fortress library
and the Astra library in Chapter 2. In Chapter 3, we compare the different possibilities
provided in Fortress and evaluate its performance against Kodkod. We introduce the basic
translation of an Alloy model to Fortress in Chapter 4 and explore different optimizations
and their effect on our library, Portus, in Chapter 5. Next in Chapter 6, we extensively
evaluate the performance of Portus with Kodkod on Alloy models and test its correctness.
Chapter 7 talks about related work. Finally, in Chapter 8, we conclude this thesis with a
discussion about future work.

3

Chapter 2

Background

In this chapter, we introduce the terminology used in finite model finding and provide a
brief background on the Alloy language, the Fortress library, the SMT-LIB2 language and
the Astra library.

2.1 Finite Model Finding

First-order logic (FOL) or predicate logic is an extension of boolean logic. The basic
building blocks of first-order logic consist of the truth values > (true), ⊥ (false), the
logical connectives ∧ (and), ∨ (or), ¬ (not), ⇒ (implies), the equality symbol =, the
quantifiers ∀ (for all), ∃ (there exists) plus an infinite sequence of variables x, y, z, . . . and
some parantheses to make formulas more readable [11]. The quantifiers ∀ and ∃ range over
elements of the domain M of discourse.

For the domain M of discourse, a first-order language1 is defined as:

(i) a finite set of n-ary function symbols of the form f : Mn →M ,

(ii) a finite set of n-ary predicate symbols of the form P : Mn → Bool, and

(iii) a finite set of constant symbols of the form c ∈M .

1The literature of FOL typically uses the term signature instead of language but we avoid that due to
the conflicting meaning of the term signature in Alloy.

4

An interpretation is an assignment of meaning to the symbols of a first-order language.

The terms of first-order logic are the smallest set of expressions containing the variables
x, y, z, . . . , all constant symbols and closed under the formation rule: if t1, . . . , tn are terms
and f is an n-ary function symbol, then the expression f(t1, . . . , tn) is a term. An atomic
formula is either the expression t1 = t2, where t1 and t2 are terms, or the expression
P (t1, . . . , tn) where P is an n-ary predicate symbol and t1, . . . , tn are terms. The first-
order formulas form the smallest set of expressions containing the atomic formulas and
closed under the following formation rules:

(i) If ϕ, ψ are formulas, so are the expressions

¬ ϕ, (ϕ ∧ ψ), (ϕ ∨ ψ), (ϕ ⇒ ψ);

(ii) If ϕ is a formula and v is a variable, then (∀ v : M • ϕ) and (∃ v : M • ϕ) are
formulas.

The problem of finite model finding means finding a satisfying interpretation for a first-
order language, a finite set of first-order formulas and a finite set of elements in the domain
M of discourse.

Many-sorted first-order logic (MSFOL) partitions the domain M of discourse into dis-
joint subsets, one for every sort. A language in MSFOL is defined as:

(i) a finite set of symbols called sorts,

(ii) a finite set of n-ary function symbols of the form f : A1 × · · · × An → B,

(iii) a finite set of n-ary predicate symbols of the form P : A1 × · · · × An → Bool, and

(iv) a finite set of constant symbols of the form c ∈ A

where A,A1, . . . , An, B are all sorts in the language. The formulas in MSFOL must be well-
sorted, which means that function and predicate symbols can only be applied to terms of
the corresponding sorts and equalities can only be between terms of the same sort. The
quantifiers ∀ and ∃ range over elements of sorts in the language. The formulas in MSFOL
include (∀ v : A • ϕ) and (∃ v : A • ϕ) if ϕ is an MSFOL formula, v is a variable and A is
a sort in the language.

A domain assignment for a language is a function mapping each sort to a non-empty,
finite set of domain elements. The scope of a sort is the size of its domain. By convention,

5

we refer to the elements of a sort by an integer and the name of that sort. For a sort A
with scope k, the domain elements can be defined as 1A, 2A, . . . , kA.

A many-sorted finite model finding (MSFMF) problem means finding a satisfying in-
terpretation for an MSFOL language, a finite set of MSFOL formulas and a domain as-
signment. We include integers as the only built-in sort in our MSFMF problem. Integers
are assigned a scope in terms of bitwidth. For instance, a scope of 6 for integers maps all
integer values from −32 to +31 to the integer sort in the domain assignment.

Numerous efforts have been made to convert MSFMF problems to SAT [16, 40, 49, 60,
62] and SMT [41, 50, 57, 65] problems and solve them using their respective solvers to
determine if there is an interpretation that satisfies all the formulas. A boolean satisfia-
bility problem (SAT) is a problem defined using propositional logic. On the other hand,
satisfiability modulo theories (SMT) formulas provide a much richer modelling language
than SAT by defining a problem with a combination of theories in first-order logic with
equality [10].

Here is some terminology used in later sections:

• The logic of equality with uninterpreted functions (EUF) is a subset of FOL with
equality and without quantifiers and variables over uninterpreted sorts [5].

• The logic of fixed-size bit-vectors with uninterpreted functions (UFBV) represents
the theory with the standard bit-vector operators <, >, =, +, . . . , quantifiers over
variables of bit-vector sort and uninterpreted functions over bit-vectors [33]. A bit-
vector is a vector of bits of a given size [35]. By convention, we express all bit-vector
operators by including a subscript of the size of the bit-vector. For instance, for a
bit-vector of length n, the bit-vector operators can be represented as <[n], +[n] and
so on. Arithmetic for bit-vectors, also known as modular arithmetic, results in a
wraparound effect where the bits that overflow are truncated.

• A formula is in negation normal form if the negation operator is applied only to
atomic formulas and the only other logical operators it contains are conjunctions and
disjunctions. Every formula can be converted into an equivalent formula in negation
normal form.

• Skolemization is the process of replacing each existentially quantified variable y with
f(x1, . . . , xn) where f is a new function symbol introduced and x1, . . . , xn are all the
universally quantified variables preceding y in the formula. The resulting formula
is not necessarily equivalent to the original one, but is equisatisfiable with it: it is
satisfiable if and only if the original formula is satisfiable.

6

2.2 Alloy and Kodkod

Alloy [30, 31] is a flexible declarative language, based on first-order logic combined with
relational logic, to model aspects of systems very early in the development process. It
represents models using sets and relations, and constraints on these relations are expressed
using relational calculus and navigation expressions (implemented via a join operator).
The simplicity behind the Alloy language is that it does not distinguish between sets and
scalars and treats all of them as relations. Sets are expressed as unary relations and scalars
as singleton sets. This uniformity makes it easier to write constraints by using the same
operator for scalars, sets and relations.

Basic sets are declared using signatures. We use the terms set and signature inter-
changeably. A set hierarchy can be created using the extends keyword in Alloy. Subsets
can be declared to be mutually disjoint or not. Relations are declared as fields of signatures
as in:

1 sig A {

2 f1: B,

3 f2: B -> C

4 }

which means there are two relations: f1: A -> B and f2: A -> B -> C. We call A
-> B a compound type expression even though Alloy is largely untyped. A -> B means A
is the domain of the relation and B is the range of the relation. Relations are flat, meaning
f2 is a ternary relation. More details about the Alloy modelling language are provided in
later chapters as needed.

An instance (or counterexample) comprises of the elements in sets associated with
the signatures and the tuples in relations associated with the fields. An instance also
might contain an interpretation for any skolem constants or functions produced during
skolemization. The Alloy Analyzer can be used either to find sample instances of a model
using the run command or to check if the model violates a given property and produce a
counterexample using the check command. This analysis is fully automated but it only
checks for solutions consisting of sets of finite scope.

Kodkod [61, 62] is a library for finite model finding for a more basic relational logic
than Alloy. Given an Alloy model, the Alloy Analyzer converts it to an untyped Kodkod
problem consisting of a universe made up of all the elements, a set of relation declarations,
each with a lower and upper bound on its tuples, and a formula. A technique, called
atomization, is used to refactor the set heirarchy into a flat collection of disjoint atomic
types [22]. Relations and constraints are refactored and broken down to use these types

7

appropriately. Compared to lifting subtypes to supertypes, which would result in inflation
of relation size, this approach results in minimizing the size of relations and formulas.

An n-ary relation in Kodkod is encoded using an n-dimensional boolean matrix. Kod-
kod translates formulas to propositional logic by applying operators on these matrices,
skolemizing the existential quantifiers and expanding the universal quantifiers before feed-
ing the final constraint over boolean constants to an off-the-shelf SAT solver for evaluation.
Second-order operators such as transitive closure and cardinality are expressed by fully ex-
panding their meaning for the finite scope. Kodkod provides support for many SAT solvers
including MiniSAT [56], SAT4J [36], Glucose [7] and (P)Lingeling [13]. Particular effort
has been made in Kodkod to do symmetry reductions [61]. Kodkod (although not the
Alloy language) provides special support for partial instances, which are instances where
part of the solution is already known. A partial instance can be specified by setting the
lower bound of a relation to include only the tuples in the partial instance.

2.3 Fortress

Fortress is a library that takes an MSFMF problem and checks its satisfiability by invoking
an SMT solver. The first version of Fortress, presented as Vakili and Day’s work in [65],
has been completely re-factored to a more powerful and robust tool by Poremba et al. [46].
Unlike the first version of Fortress, the new version includes domain elements as terms and
provides support for the built-in sorts integers and bit-vectors. Domain elements can be
used in MSFOL formulas to specify a partial instance.

The MSFMF problem provided as input to Fortress may include the built-in sort for
integers. Fortress provides two options for handling integers: modular arithmetic and
unbounded. For the modular arithmetic option, Fortress converts an MSFMF problem
containing integers to a combination of the logic of EUF and UFBV, which we denote
as EUFBV. For the unbounded option, Fortress does not use the scope for integers and
converts an MSFMF problem to an MSFOL problem because it may contain quantification
over unbounded integers. An MSFMF problem not containing the built-in sort for integers
or bit-vectors is translated to EUF by Fortress regardless of which option for integers is
chosen.

Fortress translates an MSFMF problem to the logic of EUFBV through a series of
transformations. We use a small example to illustrate the five steps performed by Fortress
during this translation. Consider the following set of formulas:

8

1. ∃x : A • ¬ (R(x) ∨ ∃y : A • f(x) 6= f(y))

2. ∀x : Int • g(x) > 3

where R : A → Bool is a predicate symbol, f : A → A and g : Int → Int are function
symbols, the scope of sort A is 3 and the scope (or bit-width) of the built-in integer sort
Int is 3.

Step 1 - Finitize Integers. For the modular arithmetic option, Fortress replaces all
occurrences of the built-in integer sort Int with the built-in bit-vector sort BitV ec. All
integer operators are replaced with their corresponding bit-vector operators. Applying
these changes to the formulas above results in:

1. ∃x : A • ¬ (R(x) ∨ ∃y : A • f(x) 6= f(y))

2. ∀x : BitV ec[3] • g′(x) >[3] 3[3]

where g′ : BitV ec[3] → BitV ec[3] is the function symbol used to replace g in the MSFMF
problem. If the option for unbounded integers is chosen or if there are no integers in the
MSFMF problem, this step is skipped. The complexity of this step is linear with respect
to the size of the FOL formulas.

Step 2 - Normalize. Each formula is converted to negation normal form and then skolem-
ized to remove existential quantifiers. Applying these transformations to the formulas in
Step 1 results in:

1. ¬R(sk) ∧ ∀y : A • f(sk) = f(y)

2. ∀x : BitV ec[3] • g′(x) >[3] 3[3]

where sk ∈ A is a constant symbol introduced as the result of skolemization. The com-
plexity of this step is linear with respect to the size of the FOL formulas.

Step 3 - Ground Formulas. Each universally quantified formula is instantiated with
the domain elements corresponding to the sort of each quantified variable. The variables
in quantified formulas ranging over the built-in sorts are not expanded regardless of which
option for integers is chosen. Given the domain elements of A as 1A, 2A and 3A, grounding
the formulas from Step 2 results in:

1. ¬R(sk) ∧ f(sk) = f(1A) ∧ f(sk) = f(2A) ∧ f(sk) = f(3A)

2. ∀x : BitV ec[3] • g′(x) >[3] 3[3]

The complexity of this step is exponential with respect to the number of nested universal
quantifiers.

9

Step 4 - Add Range Formulas. Range formulas are added for all constant and function
symbols constraining their values to the domain elements of their respective sorts. No
range formulas are added for the symbols containing the built-in sorts for integers and
bit-vectors. This step is the key contribution of Fortress. We add the constraints:

sk = 1A ∨ sk = 2A ∨ sk = 3A

f(1A) = 1A ∨ f(1A) = 2A ∨ f(1A) = 3A

f(2A) = 1A ∨ f(2A) = 2A ∨ f(2A) = 3A

f(3A) = 1A ∨ f(3A) = 2A ∨ f(3A) = 3A

The complexity of adding range formulas is exponential with respect to the arity of the
function symbols.

Step 5 - Add Domain Element Formulas. The last step asserts that the domain
elements are mutually distinct2.

The logic of EUF is a decidable fragment of first-order logic and its complexity is NP-
complete [5, 35]. The theory of UFBV with quantification over bit-vector sort is decidable
and its complexity is NEXPTIME-complete [67, 68]. EUFBV is not known to be decidable
because it may include uninterpreted functions that map bit-vectors to uninterpreted sorts
or vice versa. However, since the original problem provided as input to Fortress is an
MSFMF problem, the problem that results from Fortress with the bit-vector interpretation
for integers is decidable i.e. there is a finite set of possible satisfying interpretations for an
MSFMF problem. For the unbounded integers option in Fortress, the resulting MSFOL
problem is not necessarily decidable.

In the new version of Fortress, each action in the translation to EUFBV as mentioned
above is represented as an independent transformer, which grants the user freedom to
modify or change the order of these transformations. Fortress has also added a new feature
of creating an interactive process to communicate with the SMT solver. It provides support
for two SMT solvers, Z3 and CVC4, and support for any other solver can be added with very
little effort. If the MSFMF problem is satisfiable, Fortress can retrieve an interpretation
for the constants, function and predicate symbols, find another interpretation and count
the number of interpretations of an MSFMF problem.

The new Fortress applies new symmetry breaking schemes and sort inference in order
to increase the efficiency of the solver. Model finders exploit symmetries in the problem
by adding symmetry breaking formulas [18], that disallow redundant interpretations of the
problem as solutions to reduce the search space. Symmetry breaking has been used by

2In SMT-LIB, this constraint is written simply as (distinct 1A 2A 3A).

10

numerous model finders [16, 49, 55, 62]. Sort inference is the process of finding a more
generally sorted problem. It is well known that sort information helps improve the efficiency
of the solver by allowing symmetry breaking formulas to be stronger. It is shown to be
beneficial by Claessen and Sörensson [16] and used by Reger et al. [49] in the Vampire
theorem prover.

In the context of finite model finding, Claessen and Sörensson first introduced a sym-
metry breaking technique by assuming an ordering on the domain elements [16]. This
technique applies symmetry reduction on constants first and subsequent constant and
function symbols have gradually more freedom in their possible values. The first and the
new version of Fortress both use this technique to optimize the range formulas generated
in Step 4. The constraints in the example mentioned above can be reduced to:

sk = 1A

f(1A) = 1A ∨ f(1A) = 2A

f(2A) = 1A ∨ f(2A) = 2A ∨ f(2A) = 3A

f(3A) = 1A ∨ f(3A) = 2A ∨ f(3A) = 3A

However, Claessen and Sörensson’s symmetry breaking technique [16] considers sorts
in isolation and is applicable for constants and mono-sorted functions only. A mono-sorted
function has all input sorts equal to the result sort and is of the form f : A×· · ·×A→ A. In
the new Fortress, Poremba et al. [46] introduced symmetry breaking schemes for functions
by classifying them into two categories – range-domain independent and range-domain
dependent. A function f : A1 × · · · × An → B is range-domain independent if the result
sort B is distinct from each of its input sorts A1, . . . , An. Otherwise, the function is range-
domain dependent. A ladder symmetry breaking scheme is also introduced for predicates.

Consider sorts A and B with scopes of 3 each. For a range-domain independent function
f : A → B, f(1A), . . . , f(3A) can be considered as constants from the perspective of B
since the range and domain of the function are independent from each other resulting in
the following symmetry breaking formulas:

f(1A) = 1B

f(2A) = 1B ∨ f(2A) = 2B

f(3A) = 1B ∨ f(3A) = 2B ∨ f(3A) = 3B

For a range-domain dependent function f : A × B → A, the possible values in the range
of the function are dependent on the values used in the domain of the function. A value
for B is held constant resulting in the following symmetry breaking formulas:

11

f(1A, 1B) = 1A ∨ f(1A, 1B) = 2A

f(2A, 1B) = 1A ∨ f(2A, 1B) = 2A ∨ f(2A, 1B) = 3A

f(3A, 1B) = 1A ∨ f(3A, 1B) = 2A ∨ f(3A, 1B) = 3A

For a predicate P : A → Bool, the ladder scheme results in the following symmetry
breaking formulas:

P (2A)⇒ P (1A)
P (3A)⇒ P (2A)

because a predicate represents a set and all sets of the same size can be considered equiv-
alent.

The new Fortress provides a choice of six model finders differing from each other in
their symmetry breaking schemes and the order in which symmetry breaking is applied:

• v0 contains no symmetry breaking optimizations;

• v1 applies symmetry breaking on constants and then mono-sorted functions same as
the Claessen and Sörensson’s symmetry breaking technique [16] discussed above;

• v2 applies symmetry breaking on constants, then on all functions and then on all
predicates;

• v2si is similar to v2 with sort inference;

• v3 applies symmetry breaking on constants, then on all mono-sorted functions, then
on all other functions and then on all predicates;

• v3si is similar to v3 with sort inference;

The previous Fortress shows promising results when comparing against Kodkod [65].
The new version of Fortress has been more thoroughly tested both for its performance and
correctness. The next chapter compares the performance of new Fortress with Kodkod.
Moreover, it also compares the performance of all the model finders and SMT solvers
provided by the new Fortress library. From now onwards, any mention of Fortress in the
thesis refers to the new version of Fortress.

12

2.4 SMT-LIB2

Fortress translates the MSFMF problem to SMT-LIB2 – the SMT-LIB standard, version
2.0 [48]. Example of theories supported by the SMT language include the theory of real
numbers, integers and various data structures like arrays, lists, bit-vectors and so on. The
SMT solvers supported by the Fortress library are Z3 and CVC4.

Z3 is an efficient SMT solver, with an integrated CDCL-based SAT solver, developed by
Microsoft Research [20]. CVC4 is an automated theorem prover for SMT problems devel-
oped by NYU and U Iowa [9]. Both solvers provide support for rational and integer linear
arithmetic, fixed-size bit-vectors, uninterpreted functions and quantifiers. Sorts defined in
Z3 and CVC4 are mutually disjoint and there is no subtyping.

2.5 Astra

A previous effort to translate Alloy to SMT called Astra [3] translates a Kodkod (not
Alloy) problem to an MSFMF problem with the previous version of Fortress as its solver.
It traverses the Kodkod formula in a bottom-up manner. Since Kodkod is untyped and
atomized to the signatures at the lowest level of the signature heirarchy, Astra has to
reverse-engineer the sets, set hierarchies and relations from the provided formulas.

Astra does not provide support for:

1. the binary relational operators: override (++) and product (->);

2. the unary relational operators: transpose (~), transitive closure (^) and reflexive
transitive closure (*);

3. the integer comparison operators (=, >=, <=, >, <);

4. the integer arithmetic operators (+, -, *, /, %);

5. the cardinality operator (#);

6. multiplicity formulas: some e, no e, lone e and one e where e can be any
expression representing a set or relation;

7. negated quantifier formulas (explained in Section 7.1.1);

8. the use of the ordering module;

13

9. non-exact scopes;

10. retrieving an instance in the case of satisfiability.

Astra shows promising results when comparing against Kodkod [3] on TPTP bench-
marks. However, it lacks extensive testing for performance against Kodkod on Alloy bench-
marks and for its correctness. Our approach is significantly different from Astra and has
been extensively tested for its performance and correctness. Our library, Portus, also
provides support for each missing functionality listed above. Moreover, Portus is fully
integrated with the Alloy GUI including the option to visualize the returned instance and
get the next instance.

2.6 Summary

An MSFMF problem means finding a satisfying interpretation for a language, a finite set of
MSFOL formulas and a domain assignment. Alloy is a language used to verify properties
of a system. The Alloy Analyzer uses the Kodkod library as its back-end, which uses a
SAT solver to analyze a given problem. Fortress is a finite model finder that takes an
MSFMF problem, translates it to (mostly) EUF and solves using an SMT solver. Since
previous results show that Fortress is comparable to Kodkod, we propose that Fortress be
used as an alternative back-end to Alloy. A previous effort to translate Alloy models to
Fortress called Astra has missing functionality and has not been thoroughly tested.

14

Chapter 3

Interfacing with Fortress

This chapter explores the different options available in Fortress in order to choose the
settings for the evaluation of our library, Portus, in later chapters. We compare the
performance of Fortress to Kodkod on selected benchmarks similar to what was done for
the previous version of Fortress [65].

3.1 Experimental Setup

The problems used to compare the performance of Fortress model finders to Kodkod are
taken from the TPTP library [58] for automated theorem provers. TPTP problems are
categorized into seven main fields with a total of forty-six domains. Although TPTP
benchmarks are not a priority in our case, it is the only input format readily available to
be tested on both Fortress and Kodkod. Fortress can accept TPTP as input. Torlak and
Jackson manually translated some TPTP problems to Kodkod in [61] – these mostly come
from a single field.

We choose a small representative subset of TPTP problems, which we call Ptptp
1, span-

ning multiple fields. There is at most one problem per domain and we evaluate each
problem on increasing scopes. All problems are in unsorted first-order logic and are un-
satisfiable. The TPTP problems in our set Ptptp are shown in Table 3.1. As shown in
the table, some of the problems from Torlak et al. have been excluded from our analysis
because of our limit of only one problem per domain. We are limited in our comparison
by which problems are available in the Kodkod format.

1Available at https://github.com/WatForm/portus-tests.

15

https://github.com/WatForm/portus-tests

Field / Domain Available in Kodkod Included in Ptptp

alg195 Maths / Gen Algebra 3

alg197 Maths / Gen Algebra 3

alg212 Maths / Gen Algebra 3 3

com008 CS / Computing Theory 3 3

geo091 Maths / Geometry 3 3

geo092 Maths / Geometry 3

geo115 Maths / Geometry 3

geo158 Maths / Geometry 3

med007 Science & Eng. / Medicine 3

med009 Science & Eng. / Medicine 3 3

mgt036 Social Sciences / Management 3

num374 Maths / Number Theory 3 3

num378 Maths / Number Theory 3

Table 3.1: TPTP problems available in Kodkod and/or included in Ptptp

All experiments were run on Intel R©Xeon R©CPU E3-1240 v5 @ 3.50 GHz with Ubuntu
16.04 64-bit with up to 64GB of user memory. The scope is chosen such that at least one
tool takes more than 30 seconds. We repeat each experiment five times and report the
average with a time limit of 30 minutes on each process. Each timeout is assigned a value
of 1800 during the total time calculation for each tool. Information about the version of
each tool we used is available in Appendix A.

3.2 Fortress Model Finders

Fortress provides users with a choice of six model finders and two SMT solvers as discussed
in Section 2.3. This section compares these possibilities on the problems in Ptptp in order
to choose a model finder and an SMT solver to continue with our evaluation.

Table 3.2 compares the results of the v3si model finder with Z3 and CVC4 on the
problems in Ptptp. The results demonstrate that Z3 performs significantly better on all
benchmarks. As a result, we choose Z3 as the SMT solver in Fortress for the rest of our
experiments and our evaluation in later chapters.

Using Z3 as the SMT solver, the time taken (in seconds) by each Fortress model finder

16

alg212 com008 geo091 med009 mgt036 num374

Scope 8 12 6 19 13 6

Z3 (s) 2.39 37.06 4.82 20.28 6.32 7.25

CVC4 (s) 1391.83 t/o t/o t/o 23.85 t/o

Table 3.2: Fortress model finder v3si with Z3 and CVC4 on Ptptp

Scope v0 v1 v2 v2si v3 v3si

8 t/o 4.43 4.39 4.42 4.42 2.39

alg212 9 t/o 27.96 27.94 28.11 27.96 28.05

10 t/o 184.84 183.98 183.27 185.19 183.32

12 t/o 37.34 37.16 37.17 37.08 37.06

com008 13 t/o 41.40 41.24 41.29 41.35 41.51

14 t/o 67.24 66.89 66.77 67.34 66.75

6 32.79 15.27 15.17 3.82 15.15 4.82

geo091 7 157.83 197.59 197.83 47.91 198.12 35.82

8 t/o 780.69 785.81 224.26 786.48 138.43

19 84.21 20.58 20.18 20.23 20.24 20.28

med009 21 108.07 38.49 37.71 37.57 37.53 37.69

23 234.18 45.47 44.91 44.75 44.78 44.58

13 37.65 6.58 6.50 8.91 6.59 6.32

mgt036 14 71.86 32.92 32.99 20.55 33.05 34.26

15 83.63 40.04 39.72 38.85 39.77 27.34

5 48.82 0.91 0.90 0.90 0.91 0.90

num374 6 t/o 7.23 7.26 7.22 7.25 7.25

7 t/o 40.70 40.26 40.55 40.55 40.58

Best out of 18 0 0 5 5 1 9

Total Time (s) 17 059.04 1589.68 1590.84 856.55 1593.76 757.35

Table 3.3: Time taken (in seconds) by Fortress model finders on Ptptp

(The highlighted cell indicates the best result in each row. t/o = timed out after 1800s.)

17

to solve our set of TPTP benchmarks, Ptptp, is shown in Table 3.3 where the highlighted
cells indicate the lowest time for each benchmark. The results demonstrate that the v0

Fortress model finder performs the worst on all benchmarks with a total of 9 timeouts.
This result is to be expected since v0 does not have any symmetry breaking optimizations.
The other three model finders, v1, v2 and v3 have similar performance to each other on
all benchmarks. However, the sort inference model finders, v2si and v3si have slightly
better performance on all benchmarks and the best overall performance compared to the
other model finders. One notable result is the performance of the sort inference model
finders on geo091 , where both v2si and v3si are able to infer one extra sort in the
given problem. No extra sorts are inferred by v2si or v3si on the other benchmarks.

3.2.1 Contributions to Fortress

We investigate the effect of some additional simplifications on formulas after grounding
within Fortress, similar to what has been done in [65]. Fortress simplifies logical connectives
if the truth value of any of its operands is known e.g. >∨ t is simplified to > and ⊥∨ t to
t. In addition to that, we introduce two key simplifications:

Learned literals simplification: A literal is defined as an atomic formula or its negation:

t1 = t2, ¬ (t1 = t2), R(t1, . . . , tn), ¬R(t1, . . . , tn)

where t1, t2, . . . , tn are terms and R is an n-ary predicate symbol. If a formula in an MSFMF
problem is a literal, its truth value can be learned or discovered, i.e. atomic formulas are
learned as > and their negations as ⊥. A syntactic ordering is applied on formulas so t1 =
t2 is equivalent to t2 = t1. All instances of a learned literal can be replaced by its learned
truth value in all formulas of the MSFMF problem.

Domain elements simplification: As mentioned in Section 2.3, all domain elements are
mutually distinct. Equality comparison between domain elements can be simplified e.g.
1A = 1A can be simplified to > and 1A = 2A to ⊥.

Conjunctions in the MSFMF problem are split into separate formulas recursively prior
to simplification in order to maximize the number of literals that can be discovered. Sim-
plification is done in multiple passes until no new literals are discovered.

18

We illustrate these simplifications using a simple example. Consider the following set of
formulas after grounding:

1. ¬ R(x) ∨ (x = 1A ∨ x = 2A)

2. R(x) ∨ 1A = 2A

where R : A → Bool is a predicate symbol, 1A and 2A are the domain elements of sort
A, and x : A is a constant symbol. We start with an empty set of learned literals. In the
first pass, there is no possible simplification to be done on 1 and no literal can be learned.
1A = 2A is simplified to ⊥ in the formula on 2 using the domain elements simplification
and further simplified to R(x) using the simplifications over logical connectives. R(x) is
then added to our set of learned literals. In the second pass, formula 1 is simplified to ¬
> ∨ (x = 1A ∨ x = 2A) using the learned literals simplification and further simplified to
x = 1A ∨ x = 2A using the simplifications over logical connectives. No other simplification
is done and no new literals are discovered in the third pass. The result is the following set
of formulas after simplification:

1. x = 1A ∨ x = 2A

2. R(x)

The time taken (in seconds) by each model finder to solve our set of TPTP benchmarks,
Ptptp, after including these simplifications is shown in Table 3.4 where the highlighted cells
indicate the lowest time for each benchmark. Table 3.5 shows the results representing the
percentage change in performance after simplifications as compared to the results before
simplifications in Table 3.3. An improvement in performance resulting in lower time and
hence, a value less than 100, is indicated by a blue entry. The v3si column for com008

and scope 13, for example, shows that the total time after simplifications is 85% of the
time before simplifications. The red entries indicate when the model finders take more
time with simplification than without.

The results demonstrate that the effect of simplifications on the performance of model
finders seems to be dependent on the problem. For some of the benchmarks like com008

and geo091 , the additional simplifications clearly produce a significant positive effect
whereas, for alg212 , none of the scopes or model finders show a positive effect. One
notable result is the performance of all model finders on geo091 for scope 8, especially v0

which timed out before simplifications. Given the results, we choose the v2si model finder
with simplifications for our evaluation against Kodkod. From now onwards in the thesis,
we use the versions of Fortress model finders to refer to the versions with simplifications.

19

Scope v0 v1 v2 v2si v3 v3si

8 t/o 5.01 5.02 5.03 5.00 5.01

alg212 9 t/o 31.61 31.80 31.51 31.60 31.59

10 t/o 198.94 197.48 198.07 198.59 197.62

12 t/o 32.17 32.08 32.12 32.37 32.20

com008 13 t/o 35.06 34.81 35.10 39.45 35.03

14 t/o 66.52 66.58 66.76 67.78 66.72

6 51.53 14.58 14.49 3.1 14.52 2.91

geo091 7 136.43 161.79 162.13 26.96 162.38 24.85

8 624.00 374.69 380.81 73.26 383.48 334.13

19 184.11 20.85 20.73 20.58 20.57 20.65

med009 21 126.17 37.46 37.17 37.11 37.46 37.32

23 311.28 50.34 50.38 49.84 50.91 50.16

13 16.99 22.87 22.81 11.14 22.88 15.57

mgt036 14 30.03 18.9 18.98 14.74 18.92 14.97

15 43.17 27.00 27.24 20.75 27.07 21.07

5 9.10 0.84 0.83 0.84 0.84 0.84

num374 6 t/o 6.81 6.82 6.83 6.81 6.82

7 t/o 43.67 43.70 43.90 43.82 43.90

Best out of 18 0 3 4 7 3 2

Total Time (s) 15 932.81 1149.11 1153.86 677.64 1163.45 941.36

Table 3.4: Time taken (in seconds) by Fortress model finders with simplifications on Ptptp

(The highlighted cell indicates the best result in each row. t/o = timed out after 1800s.)

20

Scope v0 v1 v2 v2si v3 v3si

8 t/o 113 114 114 113 210

alg212 9 t/o 113 114 112 113 113

10 t/o 108 107 108 107 108

12 t/o 86 86 86 87 87

com008 13 t/o 85 84 85 95 84

14 t/o 99 99 99 99 99

6 157 95 96 81 96 60

geo091 7 86 82 82 56 82 69

8 35 48 48 33 49 241

19 219 101 103 102 102 102

med009 21 117 97 98 98 99 99

23 133 111 112 111 114 112

13 45 358 351 125 347 246

mgt036 14 42 57 58 72 57 44

15 52 67 69 53 68 77

5 19 92 92 93 92 93

num374 6 t/o 94 94 95 94 94

7 t/o 107 109 108 108 108

Total Difference (%) 93 72 73 79 73 124

Table 3.5: Percentage effect of simplifications on Fortress model finders on Ptptp

(The blue entries indicate an improvement in performance compared to Table 3.3 by
percentage. The red entries indicate percentage decrease in performance. t/o = timed

out after 1800s.)

21

3.3 Comparison with Kodkod

Table 3.6 presents the comparison results for Kodkod, Fortress and Alloy on the problems
in Ptptp where the highlighted cells indicate the lowest time for each benchmark. The
Fortress column represents the results of the v2si model finder (with simplifications).
The Kodkod column represents the results for the hand-crafted problems included in
the Kodkod library. These problems are manually translated by Torlak and have been
optimized to work best with Kodkod’s infrastructure whereas, Fortress uses the problems
without any modifications. As an alternative to the customized Kodkod problems, we used
a translator from the previous Fortress library to convert the problems in Ptptp to Alloy.
The Alloy GUI is then used to convert these problems to Kodkod for each scope and the
results are provided in the Alloy column. The time taken to convert a TPTP problem
to Kodkod is not included in the calculation. In order to ensure the diversity of problems
in Ptptp, we have included an extra problem from a new field and a new domain. Since
it is not available in the Kodkod format, we have included its results separately for the
Fortress and Alloy columns only.

The results indicate that Fortress performs best overall, with the lowest time on 9 out
of 18 benchmarks with only one timeout. Kodkod performs best on 7 benchmarks with two
timeouts and 3 benchmarks are not available to be tested because they are not included
in the set of manually translated TPTP problems in the Kodkod library. Alloy performs
best on only 2 of the benchmarks with a total of 4 timeouts. Another observation from our
results is the significant gap in performance between the hand-crafted Kodkod problems
and the Kodkod problems generated directly from the TPTP problems via the Alloy GUI.
Taking a closer look at the customized Kodkod problems shows that the formulas have been
simplified and the context of the problem used to specify partial instances for each problem,
giving Kodkod unfair advantage over the other tools. In the comparison between the
Fortress and Alloy columns, Fortress performs better than the direct uncustomized
translation to Kodkod on 12 out of 18 benchmarks.

3.4 Conclusion

Based on our evaluation, we choose to continue with the sort inference model finder v2si

with simplifications and the Z3 SMT solver. Comparing the performance of Fortress to
Kodkod gives promising results. However, more extensive testing is needed, particularly
on Alloy models, in order to gauge if Fortress can be an alternative back-end to Alloy.

22

Scope
Fortress

Kodkod Alloy
(v2si)

8 5.03 172.45 670.09

alg212 9 31.51 1482.91 t/o

10 198.07 t/o t/o

12 32.12 2.01 17.73

com008 13 35.10 2.75 52.67

14 66.76 2.84 113.16

7 26.96 1.14 22.92

geo091 8 73.26 2.60 121.23

9 t/o 16.31 90.87

19 20.58 0.37 0.39

med009 21 37.11 0.70 0.54

23 49.84 1.07 0.84

5 0.84 11.65 96.47

num374 6 6.83 206.53 t/o

7 43.9 t/o t/o

No. of timeouts 1 2 4

Best out of 15 6 7 2

Total Time (s) 2427.91 5503.33 8386.91

×1 ×2.26 ×3.45

13 11.14 n/a 29.68

mgt036 14 14.74 n/a 49.27

15 20.75 n/a 76.98

Best out of 18 9 n/a 2

Total Time (s) 2474.54 n/a 8542.84

Table 3.6: Time taken (in seconds) by Fortress and Kodkod on Ptptp

(The highlighted cell indicates the best result in each row. t/o = timed out after 1800s.
The upper table contains the results for the problems provided with the Kodkod library.

The lower table contains the results for the problems not available in the Kodkod
format.)

23

Chapter 4

Basic Translation

This chapter outlines the approach taken by our library, Portus1, to translate an Alloy
model to an MSFMF problem, solve it using an appropriate solver and produce an instance
or counterexample if needed. Portus uses the Fortress library to represent the MSFMF
problem.

4.1 Overview

This chapter introduces the basic rules for translating an Alloy model to an MSFMF
problem and provides a baseline for the optimizations presented in the next chapter. The
abstract syntax for an Alloy model is included in Figure 4.1. An Alloy model consists of
imported modules, signature declarations, facts (formulas or constraints on the model) and
command declarations. The abstract syntax for Alloy signatures, commands and formulas
is included in Figure 4.2, Figure 4.4 and Figure 4.5 respectively and discussed in further
detail in the later sections.

The Alloy Analyzer provides convenient methods to parse an Alloy model in various
forms, thus allowing Portus to process the input in an intermediary format. For an
Alloy model, Portus extracts the signature declarations and the list of commands using
the Alloy Analyzer. Each command includes an Alloy formula and a mapping from each
signature to its scope. For the analysis of a command, Portus conjoins the signature
facts, the facts of the model and the formula of the command. As discussed in Section 2.2,

1The name is inspired from the charm incantation to transform objects into Portkeys in the famous
fantasy novel series Harry Potter by J. K. Rowling [52].

24

alloyModel ::= import∗ paragraph∗

import ::= open identifier [as identifier]

paragraph ::= sigDecl | factDecl | cmdDecl

factDecl ::= fact { formula∗ }

Figure 4.1: Abstract syntax for an Alloy model (taken from Jackson [31])
(Operators for this BNF notation are defined in Appendix B)

the Alloy language provides a choice of two commands: run and check . For an Alloy
formula f, the run command checks for the satisfiability of f and the check command
checks for the satisfiability of not f. For simplicity, we describe the translation in later
sections under the assumption of one run or check command per file.

The correctness of our method is determined by extensive testing and the details are
mentioned in Chapter 6. The methodology of Portus is decomposed into five steps:

Step 1 - Translate Signatures. The first step extracts the list of Alloy signatures,
a signature hierarchy and relation declarations and translates them into a language in
MSFOL. A finite set of MSFOL formulas might also be produced during this stage.

Step 2 - Translate Scopes. In the second step, the scope of each signature is used to
either set a scope for a sort or add an MSFOL formula.

Step 3 - Translate Formulas. The third step performs a top-down traversal of the
abstract syntax tree (AST) for the Alloy formula which results in a finite set of MSFOL
formulas.

Step 4 - Solve using Fortress. In the fourth step, Portus uses a Fortress model
finder to convert the MSFMF problem to SMT-LIB2 and use an SMT solver to check its
satisfiability.

Step 5 - Return Instances. If the problem is satisfiable, the last step takes the Fortress
interpretation and converts it to an Alloy instance or counterexample.

As we present our translation, we describe the meaning of the relevant parts of the
Alloy language. We define our translation operator as J·K, which takes in an Alloy formula
and returns an MSFOL formula. In our description of the translation, we use the following
auxiliary functions:

25

• sorti(e) takes an Alloy expression e of compound type T1 × · · ·× Ti × · · ·× Tn and
returns the MSFOL sort representing the top-level signature of type Ti. For example,
for the type expression A -> B in Alloy, where A is a top-level signature and B is
a subsignature of the top-level signature C, sort1(A -> B) returns the MSFOL sort
representing A and sort2(A -> B) returns the MSFOL sort representing C.

• arity(e) returns the size of a tuple in the set or relation representing expression e in
Alloy.

• scope(s) returns the size of signature s in the Alloy model.

sigDecl ::= [abstract] [mult] sig identifier,+ [sigExt] { formula∗ }
sigExt ::= extends sig | in sig [+ sig]∗

Figure 4.2: Abstract syntax for Alloy signatures (taken from Jackson [31])
(Operators for this BNF notation are defined in Appendix B)

4.2 Step 1 - Translate signatures

The abstract syntax for signature declarations is shown in Figure 4.2 and an example of
each type of signature declaration is demonstrated in Figure 4.3. A signature in Alloy
introduces a set. For example, the signature on line 1 of Figure 4.3 introduces a set named
A. Since A is declared independently of any other signature, it is called a top-level signature.
Portus translates all top-level signatures to sorts in Fortress.

Each signature has a scope associated with it, which usually sets an upper bound on
the size of that set2. An instance or counterexample produced can have any number of
elements from zero to the scope value for that set. To handle these non-exact scopes (as
well as scopes of size 0 since a sort in MSFOL must have a domain size of at least one as
defined in Section 2.1), for every signature, we introduce a predicate for set membership.
More details on how to handle scopes will be discussed in Section 4.3. For set A, we
introduce a predicate in MSFOL:

inA : A → Bool
2It is possible for a signature to have an exact scope.

26

1 sig A {

2 f : e

3 }

4 sig A1 in A { }

5 sig A2 , A3 extends A {}

6

7 abstract sig B { }

8 sig B1 extends B { }

9 sig B2 extends B { }

Figure 4.3: Alloy Signatures

where A is the sort representing set A.

A subset signature can be declared as shown on line 4 of Figure 4.3. For each subset
signature, we introduce a predicate to represent set membership for that set, similar to the
one created for top-level signatures. For set A1, we create a predicate in MSFOL:

inA1 : A → Bool

To relate A and A1, we introduce the formula:

∀x : A • inA1(x) ⇒ inA(x)

to make sure that any element included in set A1 is also included in A.

A subsignature or extension of a set introduces one or more mutually disjoint subsets
of that set. The declaration on line 5 of Figure 4.3 introduces two sets named A2 and
A3 that are subsets of A. For each subsignature, we introduce a predicate to represent
set membership for that set, similar to the one created for top-level signatures and subset
signatures. To relate A2 and A3 to A, we introduce the following formulas, similar to the
one created for subset signature:

∀x : A • inA2(x) ⇒ inA(x)
∀x : A • inA3(x) ⇒ inA(x)

If there are multiple subsignatures at the same level in the set hierarchy, we include a
formula that they must be disjoint:

∀x : A • ¬ (inA2(x) ∧ inA3(x))

27

An abstract signature in Alloy has no elements besides those belonging to its extensions.
Therefore, we add the formula in MSFOL that everything in the superset must be in one
of the subsets. For the declarations on lines 7 to 9 in Figure 4.3, we include the formula:

∀x : B • inB(x) ⇒ (inB1(x) ∨ inB2(x))

If a signature is not abstract, it is possible for it to have elements that are not in any of
its extensions so the above formula is not added.

A signature declaration can also have a multiplicity associated with it. Set multiplicity
in Alloy is expressed with a multiplicity keyword as in:

M sig A { }

where M can be any of:

– one : A has exactly one element.

– lone : A can have zero or one element.

– some : A can have one or more elements.

These multiplicity restrictions are equivalent to formulas of the form M A, which we show
how to translate in Section 4.4.2. If a multiplicity keyword is not included in the signature
declaration, A can have any number of elements.

Relations are declared as fields of signatures in Alloy. The declaration on line 2 of
Figure 4.3 introduces a relation f whose domain is A and range is given by the expression
e. The expression e can be a signature, a field or a combination of two or more signatures
or fields joined by the operator ->. In general, for any expression e of arity n in a relation
declaration, we declare a predicate in MSFOL as:

f : sort1(A) × sort1(e) × . . . × sortn(e) → Bool

If any of the signatures in the type expression of f are subsignatures, they are lifted to
their top-level signature according to the set hierarchy of the model (using our auxiliary
function sort). Recall that MSFOL does not support a sort hierarchy.

In an Alloy instance, the tuples of a relation are constrained to contain elements from
the corresponding sets in its type expression. For example, for relation f: A1 -> B

where A1 is the subsignature of the top-level signature A, f contains elements from A×B
depending on the set membership of A1 and B. In an instance, any elements not included

28

in A1 cannot be in the domain of f. We need to restrict the values of each parameter in
the function declaration. For relation f: A -> e where e can be any expression with
arity n, we can express this constraint in Portus as:

∀x1 : A, x2 : sort1(e), . . . , xn+1 : sortn(e)•
f(x1, . . . , xn+1) ⇒ (inA(x1) ∧ J(x2, . . . , xn+1) ∈eK)

The translation of Alloy formulas of the form J(x1, . . . , xn) ∈ eK is described in Section 4.4.

The expression declaring a relation can be prefixed with a multiplicity keyword as in:
sig A { f: M e }

This multiplicity constraint is equivalent to the following Alloy fact:
all x : A | M x.f

Similarly, if e is an expression denoting a relation of arity two or more, it may contain
multiplicity keywords within it. For instance, the declaration:

sig A { f : e1 M -> N e2 }

results in adding the translation of the following two Alloy formulas (in addition to the
declaration of f):

all x : A | all y : e1 | N y.x.f

all x : A | all y : e2 | M x.f.y

where e1 and e2 can be Alloy expressions of any arity. The possible multiplicity keywords
for M and N are one, lone or some with similar meanings as discussed above. We describe
the translation of Alloy formulas in Section 4.4.

4.3 Step 2 - Translate scopes

The abstract syntax for the command declarations specifying a scope for signatures is
included in Figure 4.4. In an Alloy command, finite scopes must be chosen for at least the
top-level signatures3. The scopes can be exact or non-exact. For non-exact scopes, the
analysis explores all instances where the number of elements in each signature can be any
value between zero and the scope for that signature. The scope of abstract signatures can
be expressed implicitly by assigning a scope to all of its subsignatures. The Alloy Analyzer
passes the scope information for each signature to Portus including the signatures whose
scope is derived implicitly or specified using multiplicity keywords. An error is thrown
by the Alloy Analyzer if only some subsignatures have a scope assigned to them or if the
scopes are conflicting, thus Portus does not need to handle these cases. In this section, we
discuss how to handle non-exact and exact scopes of top-level signatures and subsignatures.

3If the user does not specify a scope, a default scope of 3 is assigned.

29

cmdDecl ::= [run | check] { formula∗ } [scope]

scope ::= for number [but typescope,+] | for typescope,+

typescope ::= [exactly] number sig

Figure 4.4: Abstract syntax for Alloy commands (taken from Jackson [31])
(Operators for this BNF notation are defined in Appendix B)

In Section 4.2, we discussed how Portus creates sorts for each top-level signature
and membership predicates for every signature. These membership predicates not only
allow for the expression of set hierarchy but these are key to handling non-exact scopes.
The maximum scope of each top-level signature is passed to Fortress as the scope for
the sort representing that signature. The number of elements that satisfy the membership
predicate in the Fortress interpretation is equal to the number of elements in that signature
in the Alloy instance (which may be less than the maximum scope size). If an exact scope
is chosen for a top-level signature A, we add the following constraint to its membership
predicate:

∀x : A • inA(x)

where A is the sort representing set A.

If a scope is specified for the subsignatures, we have to add extra constraints to ensure
that these sets stay within their possible scope sizes. We enforce these limits by adding
formulas on the set membership predicates. For example, for the declarations on lines 7
and 8 of Figure 4.3 on page 27, if the modeller chooses a scope of n for subsignature B1,
we add the following formula to ensure that B1 never contains more than n elements:

∀x1 : B, . . . , xn+1 : B •
inB1(x1) ∧ . . . ∧ inB1(xn+1) ⇒

(x1 = x2 ∨ . . . ∨ x1 = xn+1 ∨ x2 = x3 ∨ . . . ∨ x2 = xn+1 ∨ . . . ∨ xn = xn+1)

30

If an exact scope of n is chosen for subsignature B1, Portus translates it as:

∃x1 : B, . . . , xn : B • ∀xn+1 : B •
¬(x1 = x2) ∧ . . . ∧ ¬(x1 = xn) ∧
¬(x2 = x3) ∧ . . . ∧ ¬(x2 = xn) ∧
. . . ∧ ¬(xn−1 = xn) ∧
(inB1(xn+1) ⇐⇒ (xn+1 = x1 ∨ . . . ∨ xn+1 = xn))

The scope for integers in Alloy is specified in terms of bitwidth4. Portus retrieves the
bitwidth information from the Alloy Analyzer and passes it to Fortress. If the modular
aithmetic option is chosen for integers, Fortress uses this bitwidth to set the size of bit-
vectors when finitizing integers.

4.4 Step 3 - Translate formulas

In order to translate an Alloy formula to MSFOL, the AST of the formula is traversed
in a top-down order. The abstract syntax for formulas in the Alloy language is shown
in Figure 4.5. Our translation operator J·K is defined in this section. In our description
of the translation, we divide the operators into subsections of similar operators. In some
cases, we convert one Alloy formula into another equivalent Alloy formula. The only Alloy
operators we do not cover are the bit shifting operators (>> and <<) which are rarely used
in Alloy models.

To proceed in a top-down manner, we often have to pass down contextual information
to the lower expression(s). This information may be broken down and passed by the lower
expression to the expressions further down the tree. The result of J·K is always a formula.
For example, a translation of:

(x, y) ∈ (e1 + e2)

is converted to a translation of:
(x, y) ∈ e1 ∨ (x, y) ∈ e2

In the following subsections, we represent Alloy formulas using f, f1 and f2 and Alloy
expressions with contextual information passed down by larger formulas using e, e1 and
e2.

4If the user does not specify a scope for integers, a default bitwidth of 3 is assigned.

31

formula ::= logFormula | quantFormula | elemFormula

logFormula ::= not formula | formula logOp formula

logOp ::= and | or | implies | iff

quantFormula ::= quantifier varDecl ||| formula

quantifier ::= all | no | mult

mult ::= some | lone | one
varDecl ::= var : expr

elemFormula ::= (mult | no) expr | expr compOp expr

compOp ::= in | = | > | < | >= | <=

expr ::= unOp expr | expr binOp expr | expr intOp expr |
sig | field | var | constant

unOp ::= ~ | ^ | * | #
binOp ::= + | & | - | -> | . | <: | :> | ++
intOp ::= + | - | * | / | % | >> | <<

sig ::= identifier

field ::= identifier : sig [-> sig]+

var ::= identifier

constant ::= none | univ | iden

Figure 4.5: Abstract syntax for Alloy formulas (taken from Jackson [31])
(Operators for this BNF notation are defined in Appendix B)

4.4.1 Logical Operators

Alloy uses the common logical operators to combine formulas into larger constraints. The
straightforward translation of these operators into MSFOL is shown in Figure 4.6.

32

Jnot fK := ¬JfK
Jf1 and f2K := Jf1K ∧ Jf2K
Jf1 or f2K := Jf1K ∨ Jf2K

Jf1 implies f2K := Jf1K ⇒ Jf2K
Jf1 iff f2K := Jf1K ⇔ Jf2K

Figure 4.6: Translation of Logical Operators

Jall x : e | fK := ∀x : sort1(e) • Jx ∈ eK ⇒ JfK
Jsome x : e | fK := ∃x : sort1(e) • Jx ∈ eK ∧ JfK

Jno x : e | fK := Jall x : e | not fK
Jlone x : e | fK := ∀x, x′ : sort1(e) •

Jx ∈ eK ∧ Jx′ ∈ eK ∧ JfK ∧ Jf[x′/x]K ⇒ x = x′

Jone x : e | fK := ∃x : sort1(e) • Jx ∈ eK ∧ JfK ∧
∀x′ : sort1(e) • Jx′ ∈ eK ∧ Jf[x′/x]K ⇒ x = x′

Figure 4.7: Translation of Quantified Formulas
(arity(e) = 1, f[x′/x] is the formula f with all instances of x replaced with x′)

4.4.2 Quantified Formulas and Expressions

A quantified formula in Alloy is of the form:
Q x : e | f

where f is a formula containing variable x, e is any expression bounding x, and Q is a
quantifier. Alloy supports the following quantifiers: all, some , no, lone , one. The
translation for formulas with quantified variables is shown in Figure 4.7 and is discussed
below.

Quantified variables in first-order logic range over variables that represent a single el-
ement of a sort in the language but quantified variables in Alloy don’t have to be scalars
– they can be sets or relations. Although the Alloy language allows higher-order quan-
tification, generally the Alloy Analyzer cannot handle such formulas unless higher-order
quantifiers can be eliminated by skolemization. Since higher-order quantifications are rarely
used in Alloy models, we chose not to include them in our translation.

The all quantifier means that f holds for every x in e. Since e can be any expression
representing a set, we include a predicate to make sure x is a member of set e as antecedent
of the translation of formula f. The some quantifier means that f holds for at least one

33

x in e. Similar to the quantifier all, we include the antecedent conjuncted with the
translation of formula f. The quantifiers no, lone and one mean that the quantified
formula is true for no, at most one, and exactly one x in e respectively and their translation
is shown in Figure 4.7.

Quantifiers can be applied to expressions also. The Alloy expression:
M e

constrains the number of tuples in the relation e based on quantification M. The possible
quantifiers are: some , no, lone , and one with similar meanings as discussed above.
Portus translates these to MSFOL as shown in Figure 4.8. Since e may be a compound
type in this case, it is decomposed to its basic sorts with a variable representing each tuple
element.

Jsome eK := ∃x1 : sort1(e), . . . , xn : sortn(e) • J(x1, . . . , xn) ∈ eK
Jno eK := ∀x1 : sort1(e), . . . , xn : sortn(e) • ¬J(x1, . . . , xn) ∈ eK

Jlone eK := ∀x1 : sort1(e), . . . , xn : sortn(e) • J(x1, . . . , xn) ∈ eK ⇒
∀y1 : sort1(e), . . . , yn : sortn(e) •

J(y1, . . . , yn) ∈ eK ⇒ x1 = y1 ∧ . . . ∧ xn = yn
Jone eK := ∃x1 : sort1(e), . . . , xn : sortn(e) • J(x1, . . . , xn) ∈ eK ∧

∀y1 : sort1(e), . . . , yn : sortn(e) •
J(y1, . . . , yn) ∈ eK ⇒ x1 = y1 ∧ . . . ∧ xn = yn

Figure 4.8: Translation of Quantified Expressions (arity(e) = n)

4.4.3 Set Predicates

There are two predicates on sets in Alloy: subset (e1 in e2) and equality (e1 = e2).
These are translated to MSFOL as shown in Figure 4.9. Because there are no scalars
in Alloy, in is used to denote set membership between an expression that looks like a
scalar (e.g. a quantified variable) and a set in the conventional sense and also to express
the subset relationship between two sets or relations. The operands to these two binary
predicates must be of equivalent arity.

4.4.4 Set Operators

Set operators produce sets and thus are not an Alloy formula themselves – they are always
part of a larger formula. To properly translate a set operator in an expression, such

34

Je1 in e2K := ∀x1 : sort1(e1), . . . , xn : sortn(e1) •
J(x1, . . . , xn) ∈ e1K ⇒ J(x1, . . . , xn) ∈ e2K

Je1 = e2K := ∀x1 : sort1(e1), . . . , xn : sortn(e1) •
J(x1, . . . , xn) ∈ e1K ⇔ J(x1, . . . , xn) ∈ e2K

Figure 4.9: Translation of Set Predicates (arity(e1) = arity(e2) = n)

as set union (e1 + e2), the top-down translation passes down contextual information
regarding the tuple that must be in the set so that the expression can be decomposed
into its components as individual formulas. Therefore, instead of translating e directly, we
translate (x1, . . . , xn) ∈ e where arity(e) = n. The translation for the set operators union
(e1 + e2), intersection (e1 & e2), and difference (e1 - e2) are shown in Figure 4.10
where e1 and e2 have equivalent arities.

4.4.5 Relational Operators

Similar to set operators, relational operators are always part of a larger Alloy formula.
Therefore, instead of translating e directly, we translate (x1, . . . , xn) ∈ e where arity(e)
= n. The translation of the relational operators is shown in Figure 4.11.

Alloy’s relational product operator (e1 -> e2) results in the relation constructed by
taking the product of all tuples in e1 with all tuples in e2 where e1 and e2 can have
different arities.

The join operator in Alloy (e1 . e2) is the relation constructed by taking the join of
each tuple of e1 with each tuple of e2. Taking the join of a pair of tuples

(x1, . . . , xn) . (y1, . . . , ym)

is equal to

(x1, . . . , xn−1, y2, . . . , ym)

if xn = y1 and empty otherwise. e1 and e2 can have different arities but at least one of
them needs to have an arity of more than one.

The transpose operator in Alloy (~) is a unary operator on a binary relation that
reverses the order of the elements in the pairs of the relation.

35

J(x1, . . . , xn) ∈ (e1 + e2)K := J(x1, . . . , xn) ∈ e1K ∨ J(x1, . . . , xn) ∈ e2K
J(x1, . . . , xn) ∈ (e1 & e2)K := J(x1, . . . , xn) ∈ e1K ∧ J(x1, . . . , xn) ∈ e2K
J(x1, . . . , xn) ∈ (e1 - e2)K := J(x1, . . . , xn) ∈ e1K ∧ ¬J(x1, . . . , xn) ∈ e2K

Figure 4.10: Translation of Set Operators (arity(e1) = arity(e2) = n)

J(x1, . . . , xn) ∈ (e1 -> e2)K := J(x1, . . . , xm) ∈ e1K ∧ J(xm+1, . . . , xn) ∈ e2K
where m < n, arity(e1) = m and
arity(e2) = n−m.

J(x1, . . . , xn) ∈ (e1 . e2)K := ∃y : sort1(e2) • J(x1, . . . , xm, y) ∈ e1K ∧
J(y, xm+1 . . . , xn) ∈ e2K

where m < n, arity(e1) = m+ 1 and
arity(e2) = n−m+ 1.

J(x1, x2) ∈ ∼eK := J(x2, x1) ∈ eK where arity(e) = 2.

J(x1, x2) ∈ ^eK := J(x1, x2) ∈ (e + e2 + . . . +ek)K
J(x1, x2) ∈ *eK := J(x1, x2) ∈ (^e + iden)K

where arity(e) = 2, scope(sort1(e)) = k and
ei is the join of e i times.

J(x1, . . . , xn) ∈ (e1 <: e2)K := Jx1 ∈ e1K ∧ J(x1, . . . , xn) ∈ e2K
where arity(e1) = 1 and arity(e2) = n.

J(x1, . . . , xn) ∈ (e1 :> e2)K := J(x1, . . . , xn) ∈ e1K ∧ Jxn ∈ e2K
where arity(e1) = n and arity(e2) = 1.

J(x1, . . . , xn) ∈ (e1 ++ e2)K := J(x1, . . . , xn) ∈ e2K ∨
¬ (∃y2 : sort2(e2), . . . , yn : sortn(e2) •

J(x1, y2, . . . , yn) ∈ e2K) ∧
J(x1, . . . , xn) ∈ e1K)
where arity(e1) = arity(e2) = n.

Figure 4.11: Translation of Relational Operators

36

A binary relation is transitive if, whenever it contains the tuples a -> b and b -> c,
it also contains a -> c. The transitive closure ^r of a binary relation r is the smallest
relation that contains r and is transitive. It can be computed as:

^r = r + r.r + r.r.r + ...

A binary relation is reflexive if it contains the tuple a -> a for every element a. The
reflexive transitive closure *r of a binary relation r is the smallest relation that contains
r and is both transitive and reflexive. It can be computed as:

*r = ^r + iden

The closure operators are not axiomatizable in first-order logic unless the domain is
finite. For a scope of k, the computation of closure converges in at most k steps [29]. For
instance, for a scope of 3 for Alloy expression e of arity 2, we can translate closure as:

J(x1, x2) ∈ ^eK := J(x1, x2) ∈ (e + e.e + e.e.e)K

Transitive closure is one of the operators where the scope of a set is used in the basic
translation (In the optimizations, where we move to axiomatized versions of transitive
closure for finite sets, we do not require the scope in the translation.). Other approaches to
translate closure operators are discussed in detail and compared to each other in Section 5.7.

The restriction operators in Alloy are used to filter relations to a given domain or range.
The domain restriction operator (e1 <: e2) contains all tuples in relation e2 which start
with an element in set e1. Similarly, the range restriction operator (e1 :> e2) contains
all tuples in relation e1 which end with an element in set e2.

Alloy’s override (e1 ++ e2) operator is similar to the union of e1 and e2 except that
tuples in e2 replace tuples in e1 if they start with the same element.

4.4.6 Leaf Expressions

All the previous translations eventually reduce to a translation of an Alloy formula of the
form (x1, ..., xn) ∈ R as shown in Figure 4.12 where R can be an Alloy signature, field,
variable or constant.

For the case of x ∈ A where A is a signature in Alloy, it is translated directly to the
corresponding set membership predicate inA in MSFOL. For (x1, ..., xn) ∈ R, where R is
a relation in Alloy, we use the corresponding predicate R in MSFOL. For a variable v in
Alloy, we can translate x ∈ v as x = v where JvK = v.

Alloy has three constants: none , univ and iden . none and univ are the sets
containing no and all elements respectively. The Alloy constant iden represents the

37

identity binary relation over the entire universe. However, iden is usually restricted in
some way to take the identity of a particular set in Alloy, not the entire universe, as in:

A <: iden

Portus translates (x1, x2) ∈ iden as x1 = x2. Portus’s translation for iden takes
into account the relevant elements based on the context of the formula. Since Kodkod
is untyped and Fortress is sorted, one of the advantages of using Portus over Kodkod
in Alloy is that sort information about the elements in iden is retained as the Alloy
formula is traversed in a top-down manner and the restriction operators are not needed.
For instance, the constraint

iden in f

to check if the relation f is reflexive5 would be inconsistent in Alloy when using Kodkod
as back-and but when using Portus, this is translated to:

∀x1 : sort1(f), x2 : sort2(f) • x1 = x2 ⇒ f(x1, x2)

which is exactly what the user had in mind when writing that constraint. Using this
approach, both the Alloy expressions A <: iden in f and A in f translate to an
equivalent meaning in Portus.

Jx ∈ AK := inA(x)
J(x1, . . . , xn) ∈ fK := f(x1, . . . , xn)

Jx ∈ vK := x = v

Jx ∈ noneK := ⊥
Jx ∈ univK := >

J(x1, x2) ∈ idenK := x1 = x2

Figure 4.12: Translation of Leaf Expressions

5This example is taken from [31] when mentioning the drawbacks of forgetting to apply the restriction
operator on iden .

38

4.4.7 Integer Operators

The only non second-order built-in operators in Alloy besides logical, set and relational
operators are ones for integers. There are two possible semantics for finite-size integers
in Alloy: modular arithmetic and no overflow. Modular arithmetic results in wraparound
in case of overflow but can lead to spurious counterexamples. No overflow semantics were
introduced to suppress instances which result in overflows [42]. Portus uses the modular
arithmetic option for integers in Fortress which corresponds to the modular arithmetic se-
mantics in Alloy. Currently Portus does not provide support for the no overflow semantics
in Alloy.

Since Fortress provides support for integers as a built-in sort, Portus translates Alloy
integer operators to their equivalent integer operators in Fortress as shown in Figure 4.13.
Recall that if the modular arithmetic option for integers is chosen in Fortress, all integer
operators are converted to their equivalent bit-vector operators i.e. for a bitwidth of n, >
is converted to >[n], + is converted to +[n] and so on.

Je1 = e2K := Je1K = Je2K
Je1 < e2K := Je1K < Je2K
Je1 > e2K := Je1K > Je2K

Je1 <= e2K := Je1K ≥ Je2K
Je1 >= e2K := Je1K ≤ Je2K

Je1 + e2K := Je1K + Je2K
Je1 - e2K := Je1K − Je2K
Je1 * e2K := Je1K ∗ Je2K
Je1 / e2K := Je1K / Je2K
Je1 % e2K := Je1K % Je2K

Figure 4.13: Translation of Integer Operators

The set cardinality operator # returns the number of elements contained in a set as
an integer value. Portus introduces a novel approach to handle set cardinality using the
built-in sort for integers. For the translation of #e where the Alloy expression e has arity
n, we introduce an auxiliary function:

countR : sort1(e) × . . . × sortn(e) → Int

and a formula limiting countR:

∀x1 : sort1(e) , . . . , xn : sortn(e) •
(R(x1, . . . , xn) ⇒ countR(x1, . . . , xn) = 1) ∧
(¬R(x1, . . . , xn) ⇒ countR(x1, . . . , xn) = 0)

where each tuple in the relation e is mapped to an integer value in countR. As a result,
the cardinality of e can be determined by adding all the values in countR.

39

Given an Alloy expression e of the type expression A -> B where scope(A) = a and
scope(B) = b, the set cardinality operator is translated as:

J#eK := countR(1A, 1B) + countR(2A, 1B) + . . . + countR(aA, 1B) +
countR(1A, 2B) + countR(2A, 2B) + . . . + countR(aA, 2B) +
. . .
countR(1A, bB) + countR(2A, bB) + . . . + countR(aA, bB)

4.4.8 Modules

The Alloy language allows a modeller to split their model into several modules, and import
these into a main module. A module may take sets as parameters and add specific relations
and assertions on its parameters to the model. Within the Analyzer, these modules are
loaded and relevant substitutions are performed prior to our translation step, so our process
does not need any special support for modules. Alloy also provides built-in modules for
common operations including the ordering module and modules for integers, booleans,
binary and ternary relations. The built-in modules are treated the same as user-defined
modules and translated as normal formulas. The ordering module is discussed in more
detail later in Section 5.6.

4.5 Step 4 - Solve using Fortress

After translating the Alloy problem to an equivalent MSFMF problem, Portus invokes
an appropriate model finder from Fortress to check the satisfiability of the MSFOL formu-
las. The modular arithmetic option for integers is chosen in Fortress. The model finder
from Fortress translates the given problem to the logic of EUFBV through a series of
transformations as discussed in Section 2.3 and feeds the resulting formulas to an SMT
solver.

4.6 Step 5 - Return instances

If the MSFMF problem is satisfiable, Fortress returns interpretations for all constant,
function and predicate symbols in addition to the domain for each sort. Portus converts
this interpretation into an Alloy instance. Portus uses the set membership predicates,

40

as defined in Section 4.2, to determine the membership of the basic sets and subsets. It
uses the predicates representing Alloy relations to determine the tuples in each relation. In
addition, interpretations for skolem constants or functions introduced during skolemization
in Fortress are mapped back to corresponding skolem constants or functions in Alloy.

To utilize the existing infrastructure of the Alloy code base, Portus converts the
Fortress interpretation to an equivalent Kodkod instance so Alloy can process the solution
the same way it would have done if any of the SAT solvers were used for analysis. Because
Kodkod is a lower-level language than Alloy, Portus first defines the mapping from all
Fortress domain elements to Kodkod elements, finds the appropriate Kodkod relation for
each signature and field and finally, adds the relevant tuples for each Kodkod relation to
the solution instance. The correctness of this mapping is determined by testing and the
details are mentioned in Chapter 6.

4.7 Summary

In this chapter, we introduced the basic rules for translating an Alloy model to an MSFMF
problem in Portus with each step discussed in detail. We cover all Alloy constructs except
the bit-shifting operators and higher-order quantification. We present a novel method to
translate the set cardinality operator using the built-in sort for integers. Since there is
more than one way to translate an Alloy model, there is room for optimization in certain
cases, which will be discussed in the next chapter.

41

Chapter 5

Optimizations

This chapter identifies opportunities for optimizations in the approach discussed in the
previous chapter. For each optimization, we start by specifying the criteria needed to apply
the optimization and then describe the optimized translation. Keeping the translation in
the previous chapter as baseline, we evaluate the effect of each optimization on Alloy
models using:

– the performance of Portus, and
– the profiling characteristics of the generated MSFMF problem.

Each optimization is tested using three Alloy models with increasing scopes. The
Alloy models used for analysis in this chapter1 are taken either from the models provided
with the Alloy Analyzer or models used for evaluation in the research papers related to
Alloy [27, 31, 41, 57]. The models are chosen to isolate the effect of the optimization as
much as possible. The scopes are set to be non-exact unless stated otherwise. Each model
has only one check command and is unsatisfiable, unless stated otherwise. Unsatisfiable
models and non-exact scopes are better for the evaluation of any optimization because they
are usually harder to analyze since the possible number of instances to check are greater.
All experiments were run on Intel R©Xeon R©CPU E3-1240 v5 @ 3.50 GHz with Ubuntu 16.04
64-bit with up to 64GB of user memory. We repeat each experiment five times and report
the average with a time limit of 30 minutes on each process. Information about the version
of each tool we used is available in Appendix A.

Section 2.3 mentioned the five steps performed by Fortress to translate a problem to
EUFBV: 1) finitize integers 2) normalize 3) ground formulas 4) add range formulas and 5)

1Available at https://github.com/WatForm/portus-tests.

42

https://github.com/WatForm/portus-tests

add domain element formulas. Keeping the complexity of each step in mind, we apply a
combination of one or more of the following in each optimization:

• Remove a predicate resulting in fewer range formulas.

• Replace an n-ary predicate with a function of arity n − 1 or replace a unary predi-
cate with a constant resulting in fewer and smaller range formulas. Constants and
functions also have better symmetry breaking techniques as compared to predicates.

• Remove an existentially quantified variable resulting in fewer skolem constants or
functions created during normalization and consequently, fewer range formulas added.

• Remove a universally quantified variable so grounding formulas takes exponentially
less time.

• Add symmetry breaking for a predicate.

As mentioned above, in addition to performance, we also compare certain profiling
characteristics of the MSFMF problem created by Portus for each model. These charac-
teristics include:

• the number of sorts, function, predicate and constant symbols in the language of the
MSFMF problem,

• the maximum arity of function and predicate symbols in the language of the MSFMF
problem,

• the maximum depth of quantification in the set of MSFOL formulas in the MSFMF
problem,

• the number of skolem constant and function symbols created during skolemization
by Fortress,

• the total number of terms in the set of MSFOL formulas in the MSFMF problem
before and after conversion to EUFBV logic, and

• the total time in seconds taken by Fortress to convert the MSFMF problem to EUFBV
logic, which we call the transform time.

We only report the characteristics that are affected for each optimization. Since the term
count is very large for all models, we instead report the factor by which the total term
count changes after applying the optimized translation.

43

5.1 Optimization of Join

As discussed in Section 4.4.5, the join operator (e1 . e2) in Alloy is translated to the
MSFOL formula:

J(x1, ..., xn) ∈ e1 . e2K := ∃y : sort1(e2) •
J(x1, . . . , xm, y) ∈ e1K ∧ J(y, xm+1, . . . , xn) ∈ e2K

where m < n, arity(e1) = m+1 and arity(e2) = n−m+1. However, if we know that one
of e1 or e2 is an Alloy variable, this translation can be simplified to a formula without
quantifiers.

5.1.1 Change in Step 3 - Translate Formulas

If e1 is an Alloy variable, it is translated to a variable in MSFOL and we can use this
variable directly in our translation of the join operator as in:

J(x1, ..., xn) ∈ (e1 . e2)K := J(v, x1, ..., xn) ∈ e2K

where Je1K = v and arity(e1 . e2) = arity(e2) − 1 = n. Similarly, if e2 is an Alloy
variable:

J(x1, ..., xn) ∈ (e1 . e2)K := J(x1, ..., xn, v) ∈ e1K

where Je2K = v and arity(e1 . e2) = arity(e1) − 1 = n. e1 and e2 both cannot be
variables.

5.1.2 Evaluation

The join operator is one of the most common operators used in Alloy models. The re-
sults of applying the optimization of the join operator are demonstrated in Table 5.1.
The ceilingsAndFloors model contains simple joins of a variable and a relation.
The lights and addressBook1h models contain nested joins of variables and the
addressBook1h model also contains a set heirarchy.

44

ceilingsAndFloors lights addressBook1h

Scope 7 8 9 20 30 40 12 15 18

w/o opt 8.68 25.75 593.42 4.54 18.25 56.56 3.82 13.11 43.11

w opt 0.43 1.13 3.15 0.34 0.71 1.18 0.39 0.64 1.08

(a) Performance Results (in seconds)

ceilingsAndFloors lights addressBook1h

Scope = 8 Scope = 30 Scope = 15

w/o opt w opt w/o opt w opt w/o opt w opt

Quant Depth 4 3 8 6 8 7

Skolem Constants 1 1 10 8 9 7

Skolem Functions 14 6 21 6 4 0

Initial Term Count ×1 ×0.68 ×1 ×0.66 ×1 ×0.64

Final Term Count ×1 ×0.38 ×1 ×0.05 ×1 ×0.57

Transform Time (s) 0.02 0.02 15.38 0.12 12.10 0.18

(b) Profiling Characteristics

Table 5.1: Optimization of the join operator in Portus

Based on the results in Table 5.1a, this optimization has a huge impact on solving time
and scales well with increasing scopes. Table 5.1b presents the profiling characteristics
for one of the scopes of each Alloy model. As predicted, the join optimization results in
less quantifier depth and less number of skolem constants and functions. This effect is
particularly noticeable when comparing the term counts before and after translation to
EUFBV. Another observation is the transform time for the models addressBook1h and
lights is equal to 92% and 84% of the solving time respectively. Since the join operator
is used quite frequently in Alloy models and the unoptimized translation makes the analysis
infeasible even on small scopes because of its effect on the transform time for Fortress, we
choose to include this optimization to our baseline (and to the optimized translation) when
comparing against further optimizations.

45

5.2 Optimization of Exact Scopes

As discussed in Section 4.2, Portus translates top-level signatures to sorts in MSFOL
along with a predicate for set membership to handle non-exact scopes. If an exact scope is
chosen for a top-level signature, the membership predicate for the top-level signature can
be removed since it is not needed anymore. In addition, the formulas for each step in the
translation process can be simplified in certain cases as mentioned below.

5.2.1 Change in Step 1 - Translate signatures

In addition to the membership predicate being removed for top-level signatures with exact
scopes, the constraints on any subsets or fields associated with that top-level signature
are also simplified. The constraint to relate a subset signature or subsignature A1 to the
top-level signature A:

∀x : A • inA1(x)⇒ inA(x)

is removed if the scope of A is of an exact size. The translation of an abstract top-level
signature A with an exact scope and subsignatures A1 and A2:

∀x : A • inA(x)⇒ inA1(x) ∨ inA2(x)

is simplified to:

∀x : A • inA1(x) ∨ inA2(x)

where inA1 and inA2 are the membership predicates for A1 and A2. Similarly, the formula
to relate a field f to its type expression A -> e:

∀x1 : A, x2 : sort1(e), . . . , xn+1 : sortn(e)•
f(x1, . . . , xn+1) ⇒ (inA(x1) ∧ J(x2, . . . , xn+1) ∈eK)

is simplified to:

∀x1 : A, x2 : sort1(e) , . . . , xn+1 : sortn(e) • f(x1, . . . , xn+1) ⇒ J(x2, . . . , xn+1) ∈ eK

if A is a top-level signature with an exact scope.

46

5.2.2 Change in Step 2 - Translate scopes

The constraints for exact scopes are removed for top-level signatures.

5.2.3 Change in Step 3 - Translate formulas

The translation for the leaf expression for a top-level signature A:

Jx ∈ AK := inA(x)

is modified to:

Jx ∈ AK := >

if A is a top-level signature with an exact scope. The translation for the quantifier formulas
of the form:

Q x : e | f

where the quantifier Q is equal to all, some , lone or one is simplified if e is a top-level
signature with an exact scope. The antecedent Jx ∈ eK is removed for the quantifiers
mentioned above since it is true for all values of x.

5.2.4 Change in Step 5 - Return instances

The instance for the top-level signature is obtained by including all elements mapped to
the corresponding sort in the domain assignment.

5.2.5 Evaluation

Exact scopes are quite common in Alloy models. The use of the ordering module on a
signature adds an implicit constraint for that signature to have an exact scope. Table 5.2
demonstrates the effect of removing the membership predicate for top-level signatures on
the performance of Portus. The models filesystem , lights and addressBook1h

have one, three and three signatures with scopes of an exact size respectively and the
filesystem and addressBook1h models contain a set hierarchy. All models are
assigned exact scopes as is required by the optimization criteria.

47

filesystem lights addressBook1h

Scope 16 18 20 45 65 85 25 35 45

w/o opt 13.44 50.38 78.22 1.99 5.96 12.45 3.34 21.05 114.85

w opt 9.89 33.04 157.98 1.62 4.51 11.53 3.93 15.75 55.47

(a) Performance Results (in seconds)

filesystem lights addressBook1h

Scope = 18 Scope = 65 Scope = 35

w/o opt w opt w/o opt w opt w/o opt w opt

Predicates 5 4 9 6 4 1

Initial Term Count ×1 ×0.98 ×1 ×0.89 ×1 ×0.68

Final Term Count ×1 ×0.99 ×1 ×0.89 ×1 ×0.93

Transform Time (s) 0.09 0.09 0.43 0.37 2.65 2.46

(b) Profiling Characteristics

Table 5.2: Optimization of exact scopes on top-level signatures in Portus

The results in Table 5.2a demonstrate that removing the membership predicate and
simplifying formulas results in a slight improvement in performance for these models. Ta-
ble 5.2b shows the number of predicates removed due to exact scopes for each model and
the effect on term counts before and after translation to EUFBV. One unexpected result is
the performance of the model filesystem for scope 20 with the optimization where the
performance was much worse. We repeated this experiment multiple times but the same
result was observed which is attributed to the SMT solver’s unpredictable behavior.

5.3 Optimization of Signature Hierarchy

For each signature, Portus introduces a predicate for set membership as discussed in
Section 4.2. Given an abstract, top-level signature A in Alloy with an exact scope and
exactly two subsignatures, A1 and A2, we can remove the membership predicate for one
of the subsignatures. If the predicate for A2 is removed, its membership can be deduced
by the expression A - A1 i.e. all elements included in set A and not included in set A1.

48

5.3.1 Change in Step 1 - Translate signatures

In addition to removing the membership predicate for one of the subsignatures, the con-
straints to ensure that the subsignatures are disjoint and every element in the superset is
a part of one of the subsets are removed.

5.3.2 Change in Step 3 - Translate formulas

The translation for the leaf expression:

Jx ∈ A2K := inA2(x)

is modified to:

Jx ∈ A2K := ¬ inA1(x)

where A1 and A2 are subsignatures and membership predicate for A2 is removed.

5.3.3 Change in Step 5 - Return instances

Portus uses the membership of the parent signature and the subsignature to determine
the elements belonging to the subsignature with its membership predicate removed.

5.3.4 Evaluation

Table 5.3 demonstrates the effect of removing the membership predicate for one of the
subsignatures of a top-level signature of an exact scope. All models are assigned exact
scopes as is required by the optimization criteria. Although the effect on term count is
not that significant as shown in Table 5.3b, Table 5.3a shows that 5 out of 9 models have
improved performance, particularly noticeable for the last model, grandpa , where the
solver times out for the unoptimized translation. Unexpected results are observed for the
addressBook2e model where increasing the scope does not have the predicted effect
and larger scopes take less time to solve than smaller scopes. These results are attributed
to the SMT solver’s unpredictable behavior.

49

addressBook2e filesystem grandpa

Scope 9 11 13 12 15 18 16 22 28

w/o opt 1.53 228.65 15.71 10.35 35.89 114.76 1.06 929.64 t/o

w opt 68.77 32.04 13.66 10.25 41.70 123.60 3.35 3.13 7.31

(a) Performance Results (in seconds)

(t/o = timed out after 30 minutes)

addressBook2e filesystem grandpa

Scope = 11 Scope = 15 Scope = 22

w/o opt w opt w/o opt w opt w/o opt w opt

Predicates 12 11 9 8 12 11

Initial Term Count ×1 ×0.95 ×1 ×0.87 ×1 ×0.95

Final Term Count ×1 ×1 ×1 ×1 ×1 ×1

Transform Time (s) 0.38 0.37 0.07 0.07 0.47 0.35

(b) Profiling Characteristics

Table 5.3: Optimization of signature heirarchy in Portus

5.4 Optimization of Signatures

For each signature, Portus introduces a predicate for set membership as mentioned in
Section 4.2. If the scope for a signature is set to one and to be of an exact size, we can
replace the set membership predicate with a constant. Another way to specify such a scope
is by adding the multiplicity one before the signature declaration:

one sig A { }

5.4.1 Change in Step 1 - Translate signatures

A top-level signature A with a scope of exactly one is translated to a sort A with a scope
of one and a constant symbol cA ∈ A. A subset signature A1 with a scope of exactly one
is translated to a constant cA1 ∈ A where sort1(A) = A and A is the parent signature of
A1. The formula to relate A and A1:

∀x : A • inA1(x) ⇒ inA(x)

50

is modified to:

inA(cA1)

where inA is the membership predicate for A. Similarly, a subsignature A2 (of A) with a
scope of exactly one is translated to a constant cA2 ∈ A and related to A by the formula:

inA(cA2)

If there is another subsignature A3 at the same level in the set heirarchy as A2, the
constraint added to ensure that they are disjoint:

∀x : A • ¬(inA2(x) ∧ inA3(x))

is modified to:

¬ inA3(cA2)

if set A3 is translated to a membership predicate, or:

cA2 6= cA3

if A3 has a scope of exactly one and is translated to a constant cA3 ∈ A. If an abstract
signature B has subsignatures B1 and B2 with B1 having a scope of exactly one, the
formula to relate B1 and B2 to B:

∀x : B • inB(x) ⇒ inB1(x) ∨ inB2(x)

is modified appropriately:

∀x : B • inB(x) ⇒ x = cB1 ∨ inB2(x)

5.4.2 Change in Step 2 - Translate scopes

The constraint for exact scopes is removed for top-level signatures, subset signatures and
subsignatures if any of them are translated to a constant.

51

5.4.3 Change in Step 3 - Translate formulas

The translation of the leaf expression for set memebership:

Jx ∈ AK := inA(x)

is modified to:

Jx ∈ AK := x = cA

The translation of the subset predicate:

Je1 in e2K := ∀x : sort1(e1) • Jx ∈ e1K ⇒ Jx ∈ e2K

is modified to:

Je1 in e2K := Jce1 ∈ e2K

where e1 is a signature representing a constant ce1 in MSFOL, thus, removing a universally
quantified variable. The join operator is simplified using the optimization discussed in
Section 5.1 if one of the operands is translated to a constant in MSFOL.

5.4.4 Change in Step 5 - Return instances

Portus uses the interpretation of the constant instead of the membership predicate to
determine the elements belonging to a signature.

5.4.5 Evaluation

Table 5.4 demonstrates the effect of using constants instead of predicates on the perfor-
mance of Portus. The models filesystem , lights and sudoku have one, three and
nine signatures that are translated to constants respectively. The sudoku models are the
representation of a Sudoku puzzle in Alloy where the hints are encoded using additional
constraints. The template for the Sudoku puzzles in Alloy is taken from [61]. For the
evaluation of our optimization, we drew Sudoku problems of varying difficulty from [2].
Each of the sudoku models has a run command, a scope of exactly 9 and is satisfiable

52

filesystem lights sudoku

Scope 14 20 26 50 75 100 easy med hard

w/o opt 3.21 163.24 t/o 2.68 7.10 14.33 11.28 12.48 10.38

w opt 1.93 139.04 471.44 1.54 5.10 14.33 5.07 5.34 5.62

(a) Performance Results (in seconds)

(t/o = timed out after 30 minutes)

filesystem lights sudoku

Scope = 20 Scope = 75 Diff = med

w/o opt w opt w/o opt w opt w/o opt w opt

Predicates 5 4 9 6 14 5

Constants 0 1 0 3 0 9

Quant Depth 21 20 6 6 5 5

Skolem Constants 2 1 8 5 9 0

Skolem Functions 191 190 6 3 65 1

Initial Term Count ×1 ×0.99 ×1 ×0.81 ×1 ×0.59

Final Term Count ×1 ×0.99 ×1 ×0.96 ×1 ×0.99

Transform Time (s) 0.13 0.14 0.55 0.54 1.72 1.61

(b) Profiling Characteristics

Table 5.4: Optimization of signatures using constants in Portus

with a unique solution. All other models have a check command, non-exact scopes and
are unsatisfiable.

The results in Table 5.4a demonstrate that using constants instead of predicates im-
proves the performance of Portus. As shown in Table 5.4b, even replacing one predicate
with a constant has a significant effect on performance especially for larger scopes, as in the
case of the benhcmark filesystem . The total term count before and after translation
to EUFBV shows a clearly positive effect on applying the optimization. One notable result
is the effect of constants on the number of skolem constants and functions created during
skolemization by Fortress, particulary for the sudoku models.

53

5.5 Optimization of Relations

As mentioned in Section 4.2, relations are declared as fields of signatures in Alloy which
are translated to predicates in Portus. These field declarations can contain multiplicity
keywords in them. If the declaration has a range of multiplicity one, such as:

sig A { f: one B }

or:
sig A { f: e -> one C }

where A, B and C are signatures and e is an Alloy expression, we can represent f as a
function instead of a predicate in Portus. Since functions in MSFOL are total, all elements
in the domain of the relation are part of the instance. As a result, this optimization can
only be applied when all the signatures in the domain of f have scopes of an exact size
and are top-level signatures. This condition ensures that all elements in the domain of f
are also part of the instance which is not possible for subsignatures and signatures with
non-exact scopes.

5.5.1 Change in Step 1 - Translate signatures

The translation of the relation declaration f: e -> one B:

f : sort1(e)× · · · × sortn(e)× sort1(B)→ Bool

is modified to a function declaration in MSFOL:

f : sort1(e)× · · · × sortn(e)→ sort1(B)

where arity(e) = n. The Alloy formula representing the range multiplicity of f is excluded
from the translation.

5.5.2 Change in Step 3 - Translate formulas

The translation of the set membership expression:

J(x1, . . . , xn) ∈ fK := f(x1, . . . , xn)

is modified to:

J(x1, . . . , xn) ∈ fK := f(x1, . . . , xn−1) = xn

where f is translated to a function f in MSFOL.

54

The translation of the subset predicate:

Je1 in e2K := ∀x1 : sort1(e1), . . . , xn : sortn(e1) •
J(x1, . . . , xn) ∈ e1K ⇒ J(x1, . . . , xn) ∈ e2K

is modified to:

Je1 in e2K := ∀x1 : sort1(e1), . . . , xn−1 : sortn−1(e1) •
J(x1, . . . , xn−1, f(x1, . . . , xn−1)) ∈ e2K

if Je1K is of the form f(x1, . . . , xn−1) = xn, thus, removing the universally quantified
variable xn. There is no simplification to be done for e1 in e2 if Je2K is of the form
f(x1, . . . , xn−1) = xn. If e1 and e2 are both translated to applications of functions f1 and
f2 respectively, the subset predicate is translated as:

Je1 in e2K := ∀x1 : sort1(e1), . . . , xn−1 : sortn−1(e1) •
f1(x1, . . . , xn−1) = f2(x1, . . . , xn−1)

and the equals predicate as:

Je1 = e2K := ∀x1 : sort1(e1), . . . , xn−1 : sortn−1(e1) •
f1(x1, . . . , xn−1) = f2(x1, . . . , xn−1)

Note that the formula for subset and equals operators is identical if e1 and e2 are both
translated to applications of functions. If Je1K represents the application of function f ,
the translation for the join operator:

J(x1, ..., xn) ∈ e1 . e2K := ∃y : sort1(e2) •
J(x1, . . . , xm, y) ∈ e1K ∧ J(y, xm+1, . . . , xn) ∈ e2K

is modified to:

J(x1, . . . , xn) ∈ (e1 . e2)K := J(f(x1, . . . , xm), xm+1, . . . , xn) ∈ e2K

where m < n, arity(e1) = m+ 1 and arity(e2) = n−m+ 1.

5.5.3 Change in Step 5 - Return instances

Portus uses the interpretation of the function to determine the tuples in the relation. A
tuple is formed by combining the arguments of the function with the output value.

55

ceilingsAndFloors lights lists

Scope 10 15 20 60 90 120 15 20 25

w/o opt 0.83 9.58 79.75 4.62 19.43 33.45 1.30 17.00 78.99

w opt 0.03 0.04 0.06 1.20 2.90 7.38 0.10 0.24 0.45

(a) Performance Results (in seconds)

ceilingsAndFloors lights lists

Scope = 15 Scope = 90 Scope = 20

w/o opt w opt w/o opt w opt w/o opt w opt

Functions 0 2 0 1 0 2

Predicates 4 2 9 8 6 4

Max Arity 2 1 3 2 2 1

Quant Depth 3 2 6 6 20 20

Skolem Functions 6 1 6 2 3 1

Initial Term Count ×1 ×0.61 ×1 ×0.87 ×1 ×0.95

Final Term Count ×1 ×0.21 ×1 ×0.42 ×1 ×0.46

Transform Term (s) 0.05 0.02 0.89 0.45 0.26 0.17

(b) Profiling Characteristics

Table 5.5: Optimization of relations using functions in Portus

5.5.4 Evaluation

Table 5.5 demonstrates the effect of using functions instead of predicates on the perfor-
mance of Fortress. The models lights , ceilingsAndFloors and lists have one,
two and two relations that are translated to functions respectively and the lists model
contains a set hierarchy. All models are assigned exact scopes as is required by the opti-
mization criteria.

Based on the results in Table 5.5a, functions have a very significant impact on solving
time especially on greater scopes. Another observation is the total term count before and
after translation to EUFBV decreases by a significant factor after applying the optimization
in Table 5.5b.

56

A in first.*next

no next.first

all v2 : A | v2 = first or one next.v2

all v2 : A | v2 = A - next.A or one v2.next

all v2 : A | not (v2 in v2.^next)

(a) Facts

first() : Ord.First

next() : Ord.Next

last() : A - next.A

prev() : ~(Ord.Next)

prevs(e) : e.^(~(Ord.Next))

nexts(e) : e.^(Ord.Next)

max(e) : e - e.^(~(Ord.Next))

min(e) : e - e.^(Ord.Next)

lt(e1,e2) : e1 in prevs.e2

gt(e1,e2) : e1 in nexts.e2

lte(e1 ,e2) : e1 = e2 or lt(e1,e2)

gte(e1 ,e2) : e1 = e2 or gt(e1,e2)

(b) Relations

Figure 5.1: Ordering Module in Alloy

5.6 Optimization of Ordering Module

The ordering module is used to impose a linear ordering on the elements of a signature.
It also implicitly sets the scope of that signature to be exact. The ordering module on
signature A includes the following declarations:

1 sig Ord {

2 First: set A,

3 Next: A -> A

4 }

with the facts mentioned in Figure 5.1a. Alloy also provides several relations for the
ordering module as listed in Figure 5.1b.

Since the elements of a set are interchangeable in Alloy, we can apply symmetry breaking
restrictions to select one ordering of the domain elements. Calls to any of the relations
mentioned above by the model can be appropriately replaced by an MSFOL formula or an
application of an MSFOL predicate.

57

Jx ∈ firstK := x = 1A

J(x1, x2) ∈ nextK := next(x1, x2)
Jx ∈ lastK := x = kA

J(x1, x2) ∈ prevK := prev(x1, x2)
Jx ∈ prevs[e]K := ∃ v : A • Jv ∈ eK ∧ prevs(x, v)
Jx ∈ nexts[e]K := ∃ v : A • Jv ∈ eK ∧ nexts(x, v)

Jx ∈ max[e]K := Jx ∈ eK ∧ ¬ Jx ∈ prevs[e]K
Jx ∈ min[e]K := Jx ∈ eK ∧ ¬ Jx ∈ nexts[e]K
Jlt[e1,e2]K := ∃ v1, v2 : A • Jv1 ∈ e1K ∧ Jv2 ∈ e2K ∧ prevs(v1, v2)
Jgt[e1,e2]K := ∃ v1, v2 : A • Jv1 ∈ e1K ∧ Jv2 ∈ e2K ∧ nexts(v1, v2)

Jlte[e1 ,e2]K := Je1 = e2K ∨ Jlt[e1,e2]K
Jgte[e1 ,e2]K := Je1 = e2K ∨ Jgt[e1,e2]K

Figure 5.2: Optimization of ordering module in Portus for sig A with scope k

5.6.1 Change in Step 1 - Translate signatures

The signature Ord and the fields First and Next are ignored during the first step of
translation. No sorts or predicate symbols are introduced during this stage.

5.6.2 Change in Step 3 - Translate formulas

Figure 5.2 illustrates the translation for all relations provided by the ordering module for
signature A with scope k.

The ordering on domain elements can be used to apply symmetry breaking opti-
mizations on the binary MSFOL predicates, next, prev, nexts and prevs, of the form
A×A→ Bool introduced by the translation of ordering module functions. Unfortunately,
we cannot replace the relations next and prev with functions instead of predicates in MS-
FOL because they are not total. The symmetry breaking formulas for a set whose elements
are required to be in a linear order force only the following interpretations to be considered:

next := {(1A, 2A), (2A, 3A), . . . , (k − 1A, kA)}
prev := {(2A, 1A), (3A, 2A), . . . , (kA, k − 1A)}
nexts := {(1A, 2A), . . . , (1A, kA), (2A, 3A), . . . , (2A, kA), . . . , (k − 1A, kA)}
prevs := {(2A, 1A), (3A, 2A), (3A, 1A), . . . , (kA, k − 1A), . . . , (kA, 1A)}

The symmetry breaking formulas limit the interpretations for the predicates more strongly

58

than what is done by Fortress’s symmetry breaking. The following formulas are added to
the MSFMF problem to restrict the interpretation of next:

¬ next(1A, 1A) ¬ next(2A, 1A) . . . ¬ next(k − 1A, 1A) ¬ next(kA, 1A)
next(1A, 2A) ¬ next(2A, 2A) . . . ¬ next(k − 1A, 2A) ¬ next(kA, 2A)
¬ next(1A, 3A) next(2A, 3A) . . . ¬ next(k − 1A, 3A) ¬ next(kA, 3A)

.
¬ next(1A, kA) ¬ next(2A, kA) . . . next(k − 1A, kA) ¬ next(kA, kA)

Similar formulas are added for the other predicates based on their interpretations. Note
that these predicates and formulas are only introduced when they are required.

5.6.3 Evaluation

The ordering module is the most widely used built-in module in Alloy models. Table 5.6
demonstrates the effect of using symmetry breaking for the translation of the ordering
module. The models addressBook3d , hotel2 and ringElection1 have one, two
and two signatures with ordering respectively. These models contain calls to the following
Alloy constants and functions:

– addressBook3d : first , last , next
– hotel2 : last , next , nexts
– ringElection1 : first , last , next , prev , prevs

resulting in the following auxiliary predicates introduced by Portus during the translation:

– addressBook3d : next
– hotel2 : next, nexts
– ringElection1 : next, prev, prevs

For each model, all signatures except the ones with ordering have non-exact scopes.

The results in Table 5.6b show that even if total terms in the set of MSFOL formulas
in the generated MSFMF problem is more than the unoptimized MSFMF problem, as in
model ringElection1 , the ordering module optimization has a significant impact on
the performance of Portus as shown in Table 5.6a and on the number of skolem functions
because of the join operators avoided.

59

addressBook3d hotel2 ringElection1

Scope 5 6 7 3 5 7 6 8 10

w/o opt 0.63 5.86 67.02 4.01 35.94 99.63 2.78 10.78 68.09

w opt 0.35 3.44 65.34 1.78 11.04 57.83 1.48 3.30 7.86

(a) Performance Results (in seconds)

addressBook3d hotel2 ringElection1

Scope = 6 Scope = 5 Scope = 8

w/o opt w opt w/o opt w opt w/o opt w opt

Sorts 3 2 7 5 4 2

Predicates 11 9 16 12 12 9

Depth Quant 12 12 10 8 8 7

Skolem Functions 33 24 312 115 65 26

Initial Term Count ×1 ×0.98 ×1 ×0.58 ×1 ×1.16

Final Term Count ×1 ×0.99 ×1 ×0.35 ×1 ×0.45

Transform Time (s) 1.17 1.23 2.15 0.82 0.13 0.07

(b) Profiling Characteristics

Table 5.6: Optimization of ordering module in Portus

5.7 Optimization of Transitive Closure

The basic approach to translate transitive closure and reflexive transitive closure for finite
domains is mentioned in Section 4.4.5. In the following subsections, we discuss four more
approaches in detail and compare the performance of all techniques on increasing scopes.

5.7.1 Change in Step 3 - Translate Formulas

Unlike the basic approach, the approaches discussed below introduce auxiliary predicate
or function symbols along with a set of MSFOL formulas.

60

Approach 1 - Iterative Squaring

The iterative squaring technique introduced by Burch et al. [14] translates the transitive
closure of binary relation R of type A -> A, where A is an Alloy signature with scope k,
into dlog(k)e formulas.

R0 = R

Ri+1 = Ri.Ri + Ri

Given an Alloy expression e of type A -> A, where A is an Alloy signature with scope
k, Portus introduces:

– auxiliary binary predicates R1, R2, . . . , Rc : A× A→ Bool, where c = dlog(k)e − 1.

To limit these auxiliary predicates, Portus adds the following formulas:

∀x, y : A • R1(x, y) ⇔ J(x, y) ∈ eK ∨ ∃z : A • J(x, z) ∈ eK ∧ J(z, y) ∈ eK
∀x, y : A • R2(x, y) ⇔ R1(x, y) ∨ ∃z : A • R1(x, z) ∧ R1(z, y)

. . .

∀x, y : A • Rc(x, y) ⇔ Rc−1(x, y) ∨ ∃z : A • Rc−1(x, z) ∧ Rc−1(z, y)

and translates the closure operators as:

J(x, y) ∈ ^eK := Rc(x, y) ∨ ∃z : A • Rc(x, z) ∧ Rc(z, y)
J(x, y) ∈ *eK := x = y ∨ J(x, y) ∈ ^eK

Approach 2 - Claessen’s Axiomatisation

The axiomatisation of reflexive transitive closure in first-order logic over finite domains
was first introduced by Claessen [15]. Given an Alloy expression e of type A -> A, where
A is an Alloy signature with scope k, Claessen introduces:

– an auxiliary binary function s : A × A → A where s(x, y) = z indicates that z is a
next step in the path from x towards y,

– an auxiliary ternary predicate C : A×A×A→ Bool where C(x, y, z) indicates that
y is closer to z than x,

61

– a binary predicate *R : A×A→ Bool representing the reflexive transitive closure of
e,

– and optionally, a binary predicate ˆR : A × A → Bool representing the transitive
closure of e.

The function and predicate symbols are limited by the following formulas:

∀x, y, z, u : A • C(x, y, u) ∧ C(y, z, u) ⇒ C(x, z, u)

∀x, y : A • ¬ C(x, x, y)

∀x, y : A • *R(x, y) ∧ ¬(x = y) ⇒ C(x, s(x, y), y)

∀x, y : A • *R(x, y) ∧ ¬(x = y) ⇒ *R(s(x, y), y)

∀x, y : A • *R(x, y) ∧ ¬(x = y) ⇒ J(x, s(x, y)) ∈ eK
∀x, y, z : A • *R(x, y) ∧ *R(y, z) ⇒ *R(x, z)

∀x, y : A • J(x, y) ∈ eK ⇒ *R(x, y)

∀x : A • *R(x, x)

The transitive closure of expression e is defined using the formula:

∀x, y : A • ˆR(x, y) ⇔ ∃z : A • J(x, z) ∈ eK ∧ *R(z, y)

Using this approach, Portus introduces function s and predicates C and *R, adds the
formulas above limiting the auxiliary symbols and translates the closure operators as:

J(x, y) ∈ ^eK := ∃z : A • J(x, z) ∈ eK ∧ *R(z, y)
J(x, y) ∈ *eK := *R(x, y)

Approach 3 - Eijck’s Axiomatisation

Inspired by Claessen’s work [15], an alternative axiomatisation of reflexive transitive clo-
sure in first-order logic over finite domains was introduced by Eijck [66]. Given an Alloy
expression e of type A -> A, where A is an Alloy signature with scope k, Eijck introduces:

– an auxiliary ternary predicate C : A×A×A→ Bool where C(x, y, z) indicates that
y is at some finite non-zero distance from the shortest path from x to z,

62

– a binary predicate *R : A×A→ Bool representing the reflexive transitive closure of
e,

– and optionally, a binary predicate ˆR : A × A → Bool representing the transitive
closure of e.

The auxiliary predicate C is limited by the following formulas:

∀x, y, z, u : A • C(x, y, u) ∧ C(y, z, u) ⇒ C(x, z, u)

∀x, y : A • ¬ C(x, x, y)

∀x, y, z : A • C(x, y, y) ∧ C(y, z, z) ∧ ¬(x = z) ⇒ C(x, z, z)

∀x, y, z : A • C(x, y, z) ∧ ¬(y = z) ⇒ C(y, z, z)

∀x, y : A • J(x, y) ∈ eK ∧ ¬(x = y) ⇒ C(x, y, y)

∀x, y : A • C(x, y, y) ⇒ ∃z : A • J(x, z) ∈ eK ∧ C(x, z, y)

The reflexive transitive closure of expression e is defined using the formula:

∀x, y : A • *R(x, y) ⇔ C(x, y, y) ∨ x = y

Similar to Claessen’s approach, the transitive closure of e is defined using the formula:

∀x, y : A • ˆR(x, y) ⇔ ∃z : A • J(x, z) ∈ eK ∧ *R(z, y)

Unlike Claessen’s approach, Eijck’s approach separates the definition of reflexive tran-
sitive closure from the formulas defining the auxiliary predicates. This fact combined with
the top-down approach introduced by Portus allows us to remove the predicates for the
closure operators (along with their formulas). Portus introduces predicate C, adds the
formulas above limiting C and translates the closure operators as:

J(x, y) ∈ ^eK := ∃z : A • J(x, z) ∈ eK ∧ (C(z, y, y) ∨ z = y)
J(x, y) ∈ *eK := C(x, y, y) ∨ x = y

Approach 4 - Liu et al.’s Axiomatisation

Inspired by Claessen’s work [15], another axiomatisation of reflexive transitive closure in
first-order logic over finite domains using integers was introduced by Liu et al [39]. Given
an Alloy expression e of type A -> A, where A is an Alloy signature with scope k, Liu et
al. introduces:

63

– an auxiliary binary function P : A× A→ Int where P (x, y) represents the smallest
number of steps as an integer value required to reach y from x.

The auxiliary function P is limited by the following formulas:

∀x, y : A • J(x, y) ∈ eK ⇔ P (x, y) = 1

∀x, y, z : A • P (x, y) > 0 ∧ P (y, z) > 0 ⇒ P (x, z) > 0

∀x, y : A • P (x, y) > 1 ⇒ ∃z : A • P (x, z) = 1 ∧ P (x, y) = P (z, y) + 1

The transitive closure of expression e is defined using the formula:

∀x, y : A • ˆR(x, y) ⇔ P (x, y) > 0

Using this approach, Portus introduces function P , adds the formulas above limiting P
and translates the closure operators as:

J(x, y) ∈ ^eK := P (x, y) > 0
J(x, y) ∈ *eK := P (x, y) > 0 ∨ x = y

Since integers in Portus are bounded by a scope or bit-width, the scope for integers
must be large enough to include the maximum value of P i.e. the scope of A.

5.7.2 Evaluation

Table 5.7 compares the closure approaches mentioned above with the basic approach dis-
cussed in Section 4.4.5 and with each other. The models filesystem , addressBook2e
and grandpa use one of the closure operators on a binary relation, join of a variable and
ternary relation and an Alloy expression of the form e1+e2 with arity 2 respectively. In
the interest of space, we only show the profiling characteristics for one of the models in Ta-
ble 5.7b. The profiling characteristics for the other two models are included in Appendix C.
None of the models used transitive closure on integers (which are allowed to be unbounded
as described in Section 5.9).

The performance results for each approach on increasing scopes are shown in Table 5.7a.
Although the term count of the basic approach after translation to EUFBV is the smallest,
as shown in Table 5.7b, it is not the best approach in performance as compared to the
others. The basic approach performs considerably well on the model filesystem but

64

filesystem addressBook2e grandpa

Scope 9 12 15 9 7 11 16 20 24

basic 0.23 3.57 10.52 63.53 oom oom oom oom oom

Burch et al. 1.91 7.67 37.13 1.75 2.50 206.64 1.04 1.76 951.43

Claessen 0.33 23.51 t/o 0.70 2.42 10.29 2.10 9.67 15.66

Eijck 0.29 1.73 5.89 0.78 2.86 15.59 2.17 17.12 27.42

Liu et al. 3.24 t/o t/o 0.35 0.97 1.70 0.58 1.52 2.52

(a) Performance Results (in seconds)

(t/o = timed out after 30 minutes, oom = out of memory)

filesystem

Scope = 12

basic Burch et al. Claessen Eijck Liu et al.

Functions 0 0 1 0 1

Predicates 5 9 7 6 5

Max Arity 2 2 3 3 2

Depth Quant 13 3 4 4 3

Skolem Constants 2 2 2 2 2

Skolem Functions 67 6 1 2 2

Initial Term Count ×1 ×0.34 ×0.36 ×0.36 ×0.29

Final Term Count ×1 ×2.53 ×7.93 ×8.3 ×1.09

Transform Time (s) 0.28 0.26 0.36 0.41 0.23

(b) Profiling Characteristics

Table 5.7: Comparison of closure translations in Portus

the solver runs out of memory on the other two models. The approach by Burch et al.
gives great performance on smaller scopes but does not scale well as the scope increases.
Although the approach by Claessen performs slightly better than the similar approach by
Eijck on two of the models, Claessen’s approach times out on the filesystem model.
The approach by Liu et al. performs the best on two of the models but times out for the

65

filesystem model. Based on the results, we choose the approach by Eijck to translate
the closure operators since it performs well on all three models.

5.8 Optimization of Cardinality

Any expressions using the cardinality operator to compare with an integer constant in
Alloy can be axiomatised in first-order logic without the use of integers.

5.8.1 Change in Step 3 - Translate Formulas

The translation for all integer comparison operators in Alloy is given in Figure 5.3. A
syntactic ordering is applied on the expressions containing comparison operators with car-
dinality where #e = n is equivalent to n = #e, #e >= n is equivalent to n <= #e, and so
on.

5.8.2 Evaluation

Table 5.8 presents the results of applying the optimization on set cardinality compared
with an integer constant. The models addressBook1c , filesystem and mercurial

use the comparison operators >1, =6 and <=2 on relations of arity three, one and two
respectively. The scope of integers for the unoptimized translation is set appropriately to
include the maximum value for cardinality.

Although the optimization may result in a higher term count, as shown in Table 5.8b
for filesystem before and after translation to EUFBV and for mercurial after trans-
lation to EUFBV, the results in Table 5.8a show that removing the function introduced to
represent cardinality of a relation and using quantifiers to express the cardinality constraint
has a significant impact on the performance of Portus.

5.9 Optimization of Integers

As mentioned in Section 2.3, Fortress provides two options for integers: modular arithmetic
and unbounded. The modular arithmetic option is included in the basic translation in
Chapter 4. The modular arithmetic option can produce spurious counterexamples. Since

66

J#e = cK := ∃x1:1, . . . , x1:c : sort1(e) • . . . • ∃xn:1, . . . , xn:c : sortn(e) •
∀x1:c+1 : sort1(e), . . . , xn:c+1 : sortn(e) •

(¬(x1:1 = x1:2) ∨ . . . ∨ ¬(xn:1 = xn:2)) ∧
. . .

(¬(x1:1 = x1:c) ∨ . . . ∨ ¬(xn:1 = xn:c)) ∧
(¬(x1:2 = x1:3) ∨ . . . ∨ ¬(xn:2 = xn:3)) ∧

. . .
(¬(x1:2 = x1:c) ∨ . . . ∨ ¬(xn:2 = xn:c)) ∧

. . .
(¬(x1:c−1 = x1:c) ∨ . . . ∨ ¬(xn:c−1 = xn:c)) ∧
(J(x1:c+1, . . . , xn:c+1) ∈ eK ⇔

(x1:1 = x1:c+1 ∧ . . . ∧ xn:1 = xn:c+1) ∨
. . .

(x1:c = x1:c+1 ∧ . . . ∧ xn:c = xn:c+1))
J#e <= cK := ∀x1:1, . . . , x1:c+1 : sort1(e) • . . . • ∀xn:1, . . . , xn:c+1 : sortn(e) •

J(x1:1, . . . , xn:1) ∈ eK ∧ . . . ∧ J(x1:c+1, . . . , xn:c+1) ∈ eK ⇒
(x1:1 = x1:2 ∧ . . . ∧ xn:1 = xn:2) ∨

. . .
(x1:1 = x1:c+1 ∧ . . . ∧ xn:1 = xn:c+1) ∨
(x1:2 = x1:3 ∧ . . . ∧ xn:2 = xn:3) ∨

. . .
(x1:1 = x2:c+1 ∧ . . . ∧ xn:2 = xn:c+1) ∨

. . .
(x1:c = x1:c+1 ∧ . . . ∧ xn:c = xn:c+1)

J#e < cK := J#e <= c-1K
J#e >= cK := ¬ J#e < cK
J#e > cK := J#e >= c+1K

Figure 5.3: Optimization of cardinality in Portus

SMT solvers support integers as one of their built-in theories, we investigated the other
option by employing a hybrid approach where all uninterpreted sorts are bounded by scopes
but the integers are left unbounded.

Portus creates an MSFOL problem using unbounded integers, which is not necessarily
decidable. If the integer expressions in the resulting MSFOL problem use only linear
arithmetic, the problem is decidable since the combination of EUF and linear arithmetic
is decidable using the Nelson-Oppen method [35, 43]. The Z3 SMT solver uses the Nelson-

67

addressBook1c filesystem mercurial

Scope 20 25 30 9 12 15 9 12 15

w/o opt 8.42 14.62 61.22 4.58 21.78 226.20 1.94 14.56 63.10

w opt 1.65 4.18 8.21 2.65 15.50 77.30 2.01 10.76 54.23

(a) Performance Results (in seconds)

addressBook1c filesystem mercurial

Scope = 25 Scope = 12 Scope = 12

w/o opt w opt w/o opt w opt w/o opt w opt

Functions 1 0 1 0 1 0

Depth Quant 4 5 3 7 4 4

Skolem Constants 2 8 2 8 4 4

Initial Term Count ×1 ×0.02 ×1 ×1.15 ×1 ×0.79

Final Term Count ×1 ×0.85 ×1 ×1.01 ×1 ×2.59

Transform Time (s) 1.04 0.98 0.26 0.26 0.12 0.24

(b) Profiling Characteristics

Table 5.8: Optimization of cardinality in Portus

Oppen method to incrementally solve a combination of theories [19].

As discussed in Section 4.4.7, Portus defines cardinality over finite relations using
integers. Since we use only equality and addition in our translation of the cardinality oper-
ator, the basic translation of set cardinality stays within Presburger arithmetic theory [47],
a subset of linear arithmetic theory, which is decidable in combination with EUF.

5.9.1 Change in Step 2 - Translate Scopes

Portus does not specify a scope for integers in the MSFOL problem.

5.9.2 Change in Step 4 - Solve using Fortress

The unbounded option for integers is chosen in Fortress.

68

magicSquare account handshake

Scope 3 4 5 5 5 5 12 14 16

Bitwidth 5 7 8 20 30 40 5 7 7

bounded 2.41 32.63 t/o 1.12 32.61 62.80 31.35 68.12 534.92

unbounded 3.42 19.35 469.32 0.76 2.34 3.69 31.05 67.60 482.79

Table 5.9: Performance Results (in seconds) for optimization of integers in Portus
(t/o = timed out after 30 minutes)

5.9.3 Evaluation

Table 5.9 demonstrates the results for leaving integers unbounded compared to the mod-
ular arithmetic option for bounded integers in Fortress. The models magicSquare and
account contain integers in relation declarations and the handshake model indirectly
uses integers via the cardinality operator. These models contain formulas that include the
following Alloy integer operators:

– magicSquare : +, =
– account : +, -, =, <=
– handshake : =

Since Fortress only replaces the integer sorts and operators with bit-vector sorts and op-
erators, there are no significant differences in any model characteristics and the profiling
results are not shown.

The results show that although the difference in the performance of Portus is not that
noticeable for the model containing cardinality, the performance for unbounded integers
is improved significantly as compared to bounded integers on the models using integers
directly, particularly noticeable for the magicSquare model where the solver times out
for bounded integers.

5.10 Conclusion

This chapter discussed the possible optimizations for some common cases in Alloy. The
optimized translation is discussed in detail and compared to the basic translation provided
in Chapter 4. For the final evaluation of our library Portus against Kodkod, we choose

69

to apply all of the optimizations, use the approach by Eijck [66] to translate the closure
operators and leave integers unbounded.

70

Chapter 6

Experimental Results

In this chapter, we evaluate the performance of our library Portus integrated with the
Alloy Analyzer, with the optimizations discussed in Chapter 5, compared to the Alloy Ana-
lyzer using Kodkod. We determine the correctness of Portus by extensive testing on Alloy
models. We start by briefly discussing the implementation details and the experimental
setup for our performance and correctness testing.

6.1 Implementation

Portus is implemented in Java as an extension of the main Alloy code base1. As a result,
it is fully integrated with the Alloy Analyzer. We use the Fortress library implemented by
Poremba et al. [46] in Scala to represent our problem in MSFOL. Portus includes Fortress
as a submodule so that any upgrades to the Fortress library in the future can be easily
updated in the Alloy tool. We utilize a cache in our implementation to identify similar
expressions so any auxiliary functions created by our translation can be re-used.

6.2 Experimental Setup

We use a collection of 190 Alloy models scraped from public Github repositories2 to evaluate
the performance and correctness of our library Portus. All experiments were run on

1Available at https://github.com/WatForm/portus.
2These models were collected by Amin Bandali.

71

https://github.com/WatForm/portus

Intel R©Xeon R©CPU E3-1240 v5 @ 3.50 GHz with Ubuntu 16.04 64-bit with up to 64GB of
user memory. The basic translation in Chapter 4 is combined with all the optimizations
discussed in Chapter 5 and Eijck’s closure axiomatisation for the evaluation of Portus.
We use the v2si model finder with the Z3 SMT solver [20] and unbounded integers option
in Fortress. We use the MiniSat solver [56] in Kodkod, same as what was used by Torlak
et al. in their initial evaluation of Kodkod [62]. Information about the version of each tool
we used is available in Appendix A.

Our performance testing is done in two stages. The first stage finds appropriate starting
scope(s) for each command of an Alloy model. The scopes are chosen such that at least
one tool takes between 30 seconds and 15 minutes. Since the choice of scope for each
individual signature in an Alloy model is very complicated, we used the default scopes
specified in each command as initial scopes. We started by doubling the default overall
scope and the individual scope for each signature except ones with implicit scopes until
at least one tool takes between the specified time range to solve the model. If both of
the tools exceed the specified time range, we switch to using binary search between the
latest run and the previous run to find the optimal starting scopes. The second stage
runs Portus and Kodkod on each model starting from the scopes chosen in the first
stage and incrementally increasing the scopes by an appropriate amount. We repeat each
experiment 5 times and report the average with a time limit of 15 minutes on each process.
Each timeout is assigned a value of 900 seconds during the total time calculation for each
tool.

Our correctness testing uses the starting scopes chosen during our first stage of per-
formance testing for each command of an Alloy model and checks the satisfiability of the
models and the correctness of a predetermined number of finite interpretations. Each
experiment is run only once and any anomalies are noted.

6.3 Performance Testing

The performance of Portus is tested using the 190 Alloy models scraped from public
Github repositories. After the first stage of performance testing where an appropriate
scope is chosen for each command of an Alloy model, we run Portus and Kodkod on
these scopes five times and record the average. From the 190 Alloy models, 37 models
timed out on the default scopes for Portus, three models timed out for Kodkod and eight
models used constructs not supported in Portus (bit-shifting operators and higher-order
quantifications). Of the remaining 142 models, 85 (60%) were satisfiable and 57 (40%)
were unsatisfiable. From these 142 models, Portus performed better than Kodkod on

72

only 7% of the models where the total time taken by Portus was 132 times more than the
total time taken by Kodkod. Of the 85 satisfiable and 57 unsatisfiable models, Portus
outperforms Kodkod on 3.5% of the satisfiable and 12.3% of the unsatisfiable models (2%
and 5% of all models respectively).

In order to analyze these results, we attempted to classify Alloy models using certain
characteristics in order to identify the subset of problems Portus performs better on as
compared to Kodkod. The 190 Alloy models were profiled based on the criteria mentioned
in Chapter 5 for each optimization. Each model is tagged based on if it contains any
signatures with exact scopes, a signature hierarchy or if any signature uses the ordering
module. In addition, those models are tagged that contain signatures with a scope of
exactly one or relations with a range of multiplicity one. The models that use the closure,
cardinality and integer operators are tagged as well. A model can have multiple tags at
the same time. An analysis of the profiling results indicates that although Kodkod wins
over Portus on Alloy models primarily containing relational constraints (join, product,
closure and so on), Portus seems to win on the models containing integers or relations
with a range of multiplicity one (functions).

To test our hypothesis that Portus outperforms Kodkod on models with the criteria
mentioned above, we use a smaller collection of 51 frequently used Alloy models. This
collection of models includes the models provided with the Alloy Analyzer and models
used for evaluation in the research papers related to Alloy [27, 31, 41, 57]. From this
collection, we pick the models based on if they primarily contain relational operators,
integers or relations with a range of multiplicity one. For the category of models with
relational operators, the models containing functions and integer and cardinality operators
are removed. For the category of models with integers, models containing formulas with a
heavy use of relational operators are removed. For the category of models with functions,
models containing formulas using complicated operators, such as closure and cardinality,
are removed and the scopes for appropriate signatures are set to be exact. We further
narrow down the models in these three categories to ensure that the models that are
chosen are as diverse as possible.

We choose a small subset of problems containing only relational constraints, which we
call Palloyr

3, and evaluate each problem on increasing scopes. All models in Palloyr are
unsatisfiable and have non-exact scopes. Unsatisfiable models and non-exact scopes are
better for the evaluation of any tool because they are usually harder to analyze since the
possible number of instances to check are greater. Further information about each model
is mentioned below:

3Available at https://github.com/WatForm/portus-tests.

73

https://github.com/WatForm/portus-tests

Command Scope Portus Kodkod

ceilingsAndFloors BelowToo′′
11 10.48 28.35

12 10.99 601.82

filesystem fileInDir
18 18.79 0.03

19 t/o 0.34

initOk 40 244.63 60.22

checkFixedSize readOk 40 254.20 38.08

writeOk 48 239.59 252.23

addressBook2e
delUndoesAdd 15 55.55 0.46

addIdempotent 15 41.66 0.55

ringElection1 atMostOneElected
15 73.46 0.13

25 t/o 1.28

Best out of 11 3 8

Total Time (s) 2749.35 983.49

Table 6.1: Time taken (in seconds) by Portus and Kodkod on Palloyr

(The highlighted cell indicates the best result in each row. t/o = timed out after 900s.)

– The ceilingsAndFloors model contains the join operator.
– The filesystem model contains a signature hierarchy and the relational operators

(., *).
– The checkFixedSize model contains the relational operators (-, ., ->, ++).
– The addressBook2e model contains a signature hierarchy and the relational op-

erators (+, &, -, ->, ., ^).
– The ringElection1 model contains two signatures with ordering and the rela-

tional operators (., -, ^).

As a whole, the models in Palloyr contain signature hierarchy, the ordering module and
most of the relational operators (except ~, <:, :>) including both the closure operators.

Table 6.1 demonstrates the time taken (in seconds) by each tool to solve the problems
in Palloyr. With the exception of a few models, Kodkod performs significantly better than
Portus. Portus times out for two of the models whereas, Kodkod does not time out for
any of the models in Palloyr.

Next, we choose a small subset of problems containing integers including the cardinal-

74

Command Scope Bitwidth Portus Kodkod

handshake Puzzle
12 5 31.05 0.07

14 7 67.60 0.08

square show
2 14 0.13 39.02

2 15 0.17 152.16

magicSquare solve
4 7 19.35 26.85

5 8 469.32 t/o

account checkBalance
5 11 0.12 72.83

5 12 0.14 302.94

Best out of 8 6 2

Total Time (s) 587.88 1493.95

Table 6.2: Time taken (in seconds) by Portus and Kodkod on Palloyi

(The highlighted cell indicates the best result in each row. t/o = timed out after 900s.)

ity operator, which we call Palloyi
4, and we evaluate each problem on increasing scopes.

All models in Palloyi are satisfiable with unique solutions. The models handshake and
magicSquare have exact scopes and the models square and account have non-exact
scopes. Further information about each model is mentioned below:

– The handshake model contains integers indirectly via the cardinality operator, the
relational operators (+, &, -, .) and the integer operator (=).

– The square model contains a binary relation ranging over integers, the relational
operators (-, .) and the integer operators (=, >, *). This model contains non-linear
arithmetic.

– The magicSquare model contains a ternary relation ranging over integers, the join
operator and the integer operators (=, +).

– The account model contains two binary relations ranging over integers, the join
operator and the integer operators (=, +, -, <=, >).

As a whole, the models in Palloyi contain integers in relation declarations of different arities
and contain both arithmetic and comparison operators for integers. The models contain
examples of both linear and non-linear arithmetic and a model that uses integers indirectly
via the cardinality operator.

Table 6.2 demonstrates the time taken (in seconds) by each tool to solve the problems

4Available at https://github.com/WatForm/portus-tests.

75

https://github.com/WatForm/portus-tests

Command Scope Portus Kodkod

120 3.42 28.72

ceilingsAndFloors BelowToo′′ 150 7.56 76.67

180 11.46 132.13

75 4.14 25.74

lists FalseAssertion 95 8.71 66.15

115 14.93 t/o

200 42.04 21.93

lights Safe 225 71.60 47.89

250 80.19 41.75

Best out of 9 6 3

Total Time (s) 244.05 1340.98

Table 6.3: Time taken (in seconds) by Portus and Kodkod on Palloyf

(The highlighted cell indicates the best result in each row. t/o = timed out after 900s.)

in Palloyi. As expected, Portus performs significantly better than Kodkod except on
the model containing the cardinality operator. Kodkod times out for one of the models
whereas, Portus does not time out for any of the models in Palloyi.

Finally, we choose a small subset of problems containing relations with a range of
multiplicity one, which we call Palloyf

5, and evaluate each problem on increasing scopes.
All models in Palloyf are unsatisfiable and have exact scopes. Further information about
each model is mentioned below:

– The ceilingsAndFloors model contains two binary relations that are translated
to functions by Portus and the join operator.

– The lists model contains two binary relations that are translated to functions by
Portus, a signature hierarchy and the join operator.

– The lights model contains a ternary relation that is translated to a function by
Portus and the relational operators (+, -, ., ->).

As a whole, the models in Palloyf contain relations with a range of multiplicity one of
different arities and signature hierarchy.

Table 6.3 demonstrates the time taken (in seconds) by each tool to solve the problems in

5Available at https://github.com/WatForm/portus-tests.

76

https://github.com/WatForm/portus-tests

Palloyf . Portus performs better than Kodkod on the Alloy models where the optimization
to replace predicates with functions is triggered. Kodkod times out for one of the models
whereas, Portus does not time out for any of the models in Palloyf .

6.4 Correctness Testing

The correctness of our approach is determined using extensive testing on the collection of
190 Alloy models scraped from public Github repositories. In addition to checking that
Portus and Kodkod agree on the satisfiability of the models, the correctness of Portus
on satisfiable models is confirmed in two ways:

– Each interpretation produced by Portus is also an instance of Kodkod.
– Each instance produced by Kodkod is also an interpretation of Portus.

In Section 4.6, we discussed the translation of a Fortress interpretation to an equivalent
Kodkod instance. The Alloy Analyzer is used to translate an Alloy model to a Kodkod
problem with the lower and upper bound on each relation set to exactly the tuples in the
translated Kodkod instance. In order to prove that the instance is valid, Kodkod is used
to solve the problem and confirm if it is satisfiable using the MiniSat SAT solver. Fortress
is used to retrieve the next interpretation and the whole process is repeated again.

Similary, we map each element in Kodkod to a domain element in Fortress, reverse-
engineer the predicates corresponding to each relation and add formulas for each predicate
constraining its value. In order to prove that the interpretation is valid, Fortress is used
to solve the problem and confirm if it is satisfiable using the Z3 SMT solver. Kodkod is
used to retrieve the next instance and the whole process is repeated again.

Since proving the correctness of all interpretations of a satisfiable model is infeasible,
we set a limit of five Portus interpretations and five Kodkod instances for each command
of an Alloy model. Excluding the models that throw an error or timed out for either tool,
Portus currently passes the correctness check on 85 satisfiable models and 57 unsatisfiable
models.

6.5 Summary

This chapter evaluates the performance and correctness of Portus on a large corpus of
Alloy models. The performance results demonstrate that Kodkod performs better than

77

Portus on models overall. After an analysis of the Alloy models, we observe that Kodkod
performs better on models using relational constraints but Portus performs better on
models containing integers or relation declarations with a range of multiplicity one (func-
tions). The correctness of unsatisfiable models is determined by comparing the result from
Portus with Kodkod. For satisfiable models, Portus cross-checks five interpretations of
Portus and Kodkod.

78

Chapter 7

Related Work

In this chapter, we discuss previous efforts to translate Alloy to another language and
relevant work that uses SMT-LIB2 to solve MSFMF problems. We start by providing
details about the difference in approach compared to a previous effort to translate Alloy
to Fortress called Astra. To the best of our knowledge, Portus is the only library that
performs a bounded analysis with SMT-LIB2, translates all common Alloy constructs with
their potential optimizations and is integrated fully with the Alloy Analyzer, along with
the option to retrieve and visualize instances (or counterexamples) of satisfiable models
and get the next instance.

7.1 Astra

Compared to Portus, the previous effort to translate Alloy to Fortress, Astra, uses Kod-
kod as an intermediary language and performs a bottom-up traversal of the Kodkod for-
mula. In addition, Astra had many missing functionalites as mentioned in Section 2.5.

The Alloy Analyzer translates sets to unary relations and other functions and relations
to n-ary relations in Kodkod using the atomization technique. Astra translates each unary
relation to a sort and relations with arity greater than two to predicates or functions in
Fortress. Since sets are represented by sorts and there are no membership predicates in-
troduced, Astra can only do analysis for exact scopes. Astra introduces auxiliary functions
and predicates as it traverses the formula in a bottom-up manner.

79

[A ∪ B] ::= Rnew : TYPE(A) → Bool

add ∀x : TYPE(A) • Rnew(x) ⇔ [A](x) ∨ [B](x)

[A ∩ B] ::= Rnew : TYPE(A) → Bool

add ∀x : TYPE(A) • Rnew(x) ⇔ [A](x) ∧ [B](x)

[A − B] ::= Rnew : TYPE(A) → Bool

add ∀x : TYPE(A) • Rnew(x) ⇔ [A](x) ∧ ¬[B](x)

[A . B] ::= Rnew : TYPE(dom(A)) × TYPE(ran(B)) → Bool

add ∀x : TYPE(dom(A)), y : TYPE(ran(B)) •
Rnew(x, y) ⇔ ∃z : TYPE(ran(A)) • [A](x, z) ∧ [B](z, y)

[∀x : t • A] ::= ∀x : t • A

[v : t] ::= v : t

Figure 7.1: Translation of Kodkod formulas in Astra (taken from [3])

This section discusses the motivation behind two main changes in the infrastructure of
Portus:

1. traverse formulas in a top-down manner instead of bottom up, and

2. translate directly from Alloy to Fortress.

7.1.1 Formula Traversal

Figure 7.1 shows the translation for some set and relational operators, the universal quanti-
fier and variables in Astra. The translation of these operators introduces auxiliary relations
with additional formulas. During the bottom-up translation of quantified formulas, any
relational operators generate these additional formulas, which might have an occurrence
of the quantified variable in them. For instance, given a relation R of type T1 → T2 and a
quantified variable x of type T2 in Kodkod, the set expression R.x is translated as:

[R.x] ::= Rnew : T1 → Bool
add ∀y : T1 • Rnew(x) ⇔ ∃z : B • [A](y, z) ∧ z = x

80

Since the auxiliary formula contains the quantified variable x, it must be combined with
the translation of the quantified formula in place. Putting this in general terms, for the
universal quantifier, the translation of the formula results in an MSFOL formula of the
form:

∀x : t • [A] ∧ f(x)

where f(x) represents the conjunction of all auxiliary formulas containing an occurrence of
x in them. The issue with this approach is that if Astra encounters a formula of the form:

¬ (∀ x : t • A)

where A contains set operators, it would translate it to:

¬ (∀ x : t • [A] ∧ f(x))

which is equivalent to:

∃ x : t • ¬ [A] ∨ ¬ f(x)

resulting in erroneous results. The negation cannot be detected easily since the quantified
formula can be nested and the negation may occur at any point in the bottom-up traversal.

In order to avoid this error, a possible solution is to eliminate bound variables in the
resulting formulas by adding extra parameters to the auxiliary function. For the example
mentioned above, R.x can be translated as:

[R.x] ::= Rnew(x) where Rnew : T2 × T1 → Bool
add ∀x1 : B, x2 : A • Rnew(x1, x2) ⇔ ∃z : B • [A](x2, z) ∧ z = x1

For each Kodkod expression with n bound variables, the arity of the auxiliary relation and
the depth of the nested universal quantification both increase by n during bound variable
elimination. As we discussed in Section 2.3, the complexity of generating range formulas
is exponential with respect to the arity of functions and the complexity of grounding is
exponential with respect to the depth of quantification leading to an exponential increase in
the solving time. In order to avoid this bottleneck in performance, the number of auxiliary
functions have to be reduced which is why a top-down approach is more suitable than
bottom-up.

In addition to that, the interface changes in the new Fortress make the bottom-up
approach infeasible. For instance, unlike the previous version of Fortress, the new Fortress
does not keep track of the sort of each term. Since Kodkod is untyped, Astra relies on
Fortress to calculate the sort of a term.

81

7.1.2 Alloy vs. Kodkod

In our approach, we translate directly from an Alloy model to an MSFMF problem in
Fortress whereas, Astra converts from Kodkod to Fortress. Since Kodkod is untyped and
Fortress is sorted, Astra has to reverse-engineer the sets, set heirarchy and relations of
the original model. This retrieval of information requires two passes over each Kodkod
formula. We save time by acquiring this information directly from Alloy.

7.2 Other Alloy translations

El Ghazi et al. [23] reported on a case study where the assertions in a handful of Alloy
models are proved using the Yices SMT solver [21] over unbounded scopes. Partial finiti-
zation is done only for the Alloy constructs using the closure operators. The translation of
top-level signatures to sorts is similar to what has been done by Portus but no member-
ship predicates are needed since the analysis is performed over unbounded domains. Since
Yices allows subsorts, subsignatures are expressed using a combination of predicates and
subsorts. The translation of other Alloy operators is slightly different from what is done by
Portus. For instance, multiplicity keywords are expressed using auxiliary function sym-
bols and lambda expressions as opposed to the quantified formula approach adopted by
Portus. The iterative squaring approach introduced by Burch et al. [14] is used to trans-
late the closure operators. The case study only describes the translation of limited Alloy
constructs and is not complete. Although the results of the experiments seem promising,
the analysis can be unsound due to the arbitrary use of quantifiers, i.e. it may produce
false counterexamples.

In [24], El Ghazi et al. presented an approach to translate Alloy models to SMT-
LIB2 and prove their properties using the Z3 SMT solver [20] over unbounded scopes.
This approach has the most similarities with the approach discussed in Chapter 4 for
Portus. Most of the Alloy operators are covered except a few including the quantified
expressions, the relational operators ++, <: and :> and the Alloy constants univ and
iden . Their translation approach differs significantly in the handling of multiplicities,
closure and cardinality. Multiplicity keywords in relation declarations are handled using
auxiliary functions and formulas. Closure and cardinality are expressed using quantification
over unbounded integers. The experimental results seem promising. However, since the
Alloy logic is undecidable and there is an extensive use of quantifiers in the translation,
the analysis can be unsound due to the arbitrary use of quantifiers, i.e. it may produce
false counterexamples.

82

AlloyPE is a dual-engine framework capable of providing both counterexamples and
proofs for the analysis of Alloy models [27]. AlloyPE provides three strategies: SMT-based
bounded verification, SMT-based unbounded verification and ITP-based full verification
using the KeY theorem prover [12]. For the SMT-based bounded and unbounded verifi-
cation, the translation of an Alloy model is the same as what is shown in their previous
work [24]. As discussed above, their translation, although missing a few operators, is similar
to Portus except in their handling of multiplicities, closure and cardinality. For bounded
verification, AlloyPE converts to quantified bit-vector formula (QBVF) logic where each
sort is represented by a fixed-size bit-vector and is decidable. As shown in later work [41],
AlloyPE cannot handle many specifications and fails on a considerable number of Alloy
models due to unsupported Alloy constructs or internal errors during solving or translation.

A few other attempts to represent Alloy specifications in other languages include Al-
loy2B [34] and Alloy2JML [28] which translate Alloy specifications to the B language [4]
and to the Java Modelling Language [37] respectively.

Alloy has also been paired with theorem provers to prove the properties of models.
Ulbrich et al. introduced Kelloy [63], the back-engine of AlloyPE [27], which uses the KeY
theorem prover [12] to provide proofs for Alloy models. Previous such tools that proved
Alloy properties over unbounded scopes include Dynamite [26] which uses the PVS theorem
prover [54] and Prioni [6] which uses the Athena theorem prover [1]. However, these tools
are not fully automatic and require user interaction.

Alternative approaches to handle the closure and cardinality operators not explored in
this thesis are mentioned here. El Ghazi et al. introduces an approach that uses invariant
injections to express closure over unbounded scopes [25]. Another approach to translate
closure operators on CTL-live models is introduced by Vakili et al. in [64]. Cardinality can
be expressed using first-order formulas for comprehensions introduced by Leino et al. [38].

7.3 Other model finding libraries

Finite model finding libraries can be typically categorized into two classes: the MACE-
style [40] and the SEM-style [71]. The MACE-style approach translates the problem to
boolean logic and uses a SAT solver whereas, the SEM-style approach uses a back-tracking
algorithm to explicitly search for a satisfiable interpretation. Kodkod [62, 61] is an example
of a MACE-style solver that uses a SAT solver. Fortress [46, 65] is another example of a
MACE-style solver. It reduces a problem to EUFBV and uses an SMT solver.

Another finite model finding library is introduced by Reynolds et al. in [51] which

83

converts to EUF logic to perform SEM-style model finding using an SMT solver. This
library is implemented as an extension of CVC4’s EUF solver [9]. However, when compared
to Fortress in [65], it does not perform well.

Bansal et al. [8] introduced a new decision procedure for deciding the satisfiability
of quantifier-free formulas in the theory of finite sets with membership constraints and
cardinality constraints. This library is implemented in the SMT solver CVC4 [9] but is not
expressive enough to be comparable to other model finding libraries discussed here.

Meng et al. [41] extends the theory of finite sets with cardinality introduced by Bansal et
al. [8] to relations and relational operators including transpose, join and transitive closure.
This library is also implemented in the SMT solver CVC4 [9] but cardinality constraints
are left as future work. The results seem promising as compared to the AlloyPE tool [27].

AlleAlle [57] is a MACE-style relational model finding library, similar to Kodkod [62],
that combines first-order logic with Codd’s relational algebra [17], containing projection,
restriction and join, and uses the Z3 SMT solver [20] to find solutions. Although AlleAlle
provides promising results on models containing integers and cardinality compared to Kod-
kod, it does not perform well on models with relational operators. AlleAlle does not apply
any symmetry breaking optimizations and has not been linked to Alloy yet.

84

Chapter 8

Conclusion

In this thesis, we presented our library, called Portus, as an alternative back-end to the
Alloy Analyzer to solve Alloy models using an SMT solver. We discussed the basic rules
to translate an Alloy model to an MSFMF problem in Fortress in detail. A key element in
our approach is the use of set membership predicates in addition to sorts to capture the
set hierarchy and to handle multiple finite scopes all within one solver problem. Portus
provides support for all Alloy constructs except the bit-shifting operators and higher-order
quantifications. For integers, we matched the modular arithmetic semantics in Alloy.

We identified common expressions and cases in Alloy models and suggested optimiza-
tions to improve translation in those cases. We presented a novel method to translate
the cardinality operator that utilizes the built-in sort for integers and is decidable if the
integers are left unbounded.

We did an extensive analysis of the performance of Portus against Kodkod. Based
on our results, we have shown that Portus performs better than Kodkod on the models
containing integers and relations with a range of multiplicity one. We determined the
correctness of our method by cross-checking the instances of Portus and Kodkod. We
implemented a method to simplify MSFOL formulas in the Fortress solver which improved
performance.

8.1 Future Work

Although bit-shifting operators and higher-order quantifications are rarely used in Alloy
models, we can add support for them in the future to make sure any models solvable by

85

Kodkod can also be solved by Portus. Since the modular arithmetic option for integers
can produce spurious counterexamples, we plan to add support for the no overflow seman-
tics in Fortress. Other approaches to translate cardinality and closure operators can be
explored [25, 38, 64].

In the future, we plan to add more optimizations to improve the performance of Portus
including the following:

1. An approach to support partial functions in SMT to increase the cases where pred-
icates can be replaced with functions. Based on the results in Section 6.3, this
particular optimization may prove very useful. This optimization will not only allow
for the use of functions with non-exact scopes but will also allow us to convert Alloy
relations with a range defined using multiplicity lone to functions in MSFOL. In
addition, the predicates for next and prev, as used in the optimization of the ordering
module in Section 5.6, can be represented by functions instead. Two ways to express
partial functions in SMT-LIB include:

• the use of dummy variables to handle out-of-domain values of a function, similar
to what is done by Ghazi et al. in [23], but this raises the problem of adding
guards on quantified variables and handling range formulas in Fortress, and

• the use of predicates along with functions, similar to what is done by Ghazi et
al. in [24], but there is doubt as to how efficient it would be.

2. Add additional symmetry breaking optimizations based on the context of the model.
Examples of such optimizations include:

• the use of domain elements to simplify constraints on the scope of subsignatures,
and

• assigning a domain using constants instead of a scope to a sort, representing a
signature which has all subsignatures of multiplicity one.

3. Identify and remove unnecessary signatures during translation. For instance, the
signatures with multiplicity one that are never used to bind a quantified variable can
be excluded from the MSFMF problem generated by Portus. Such signatures are
usually declared to introduce relations and can be identified easily by the expressions
of the form A.f where A is the unnecessary signature and f is the relation associated
with A. This optimization allows us to remove a sort, decrease the arity of any
relations associated with that signature by one and simplify formulas. Examples of
such signatures include:

86

• the Ord signature introduced by the ordering module, as mentioned in Sec-
tion 5.6, and

• the FrontDesk signature introduced by the hotel problem to represent the
relations of a single hotel in the Alloy book [31].

We plan to try other SMT solvers in Fortress. One particular solver that might give
better performance is Yices [21] which allows for subtyping and lambda expressions. Since
Portus provides general rules for translation from an Alloy model to an MSFMF problem,
other finite model finding libraries can be connected and tried out as the backend of
Portus. A few such libraries are mentioned in Section 7.3. In that direction, we also
propose that Alloy should be modified to allow for easy integration of other libraries like
Portus. More specifically, the dependence of the Alloy instance on the Kodkod instance
can be removed by introducing a general data structure in Alloy to handle interpretations
in terms of arbitrary domain elements.

87

References

[1] Athena. http://people.csail.mit.edu/kostas/dpls/athena/. Accessed: 2020-
11-10.

[2] Web Sudoku. https://www.websudoku.com. Accessed: 2020-11-10.

[3] Ali Abbassi. Astra: Evaluating Translations from Alloy to SMT-LIB. Master’s thesis,
University of Waterloo, 2018.

[4] Jean-Raymond Abrial. The B-book: Assigning Programs to Meanings. Cambridge
University Press, 2005.

[5] Wilhelm Ackermann. Solvable cases of the decision problem. North-Holland, Amster-
dam, 1956.

[6] Konstantine Arkoudas, Sarfraz Khurshid, Darko Marinov, and Martin Rinard. Inte-
grating Model Checking and Theorem Proving for Relational Reasoning. In Interna-
tional Conference on Relational Methods in Computer Science, pages 21–33. Springer,
2003.

[7] Gilles Audemard and Laurent Simon. Glucose: a solver that predicts learnt clauses
quality. SAT Competition, pages 7–8, 2009.

[8] Kshitij Bansal, Andrew Reynolds, Clark Barrett, and Cesare Tinelli. A New Decision
Procedure for Finite Sets and Cardinality Constraints in SMT. In International Joint
Conference on Automated Reasoning, pages 82–98. Springer, 2016.

[9] Clark Barrett, Christopher L Conway, Morgan Deters, Liana Hadarean, Dejan Jo-
vanović, Tim King, Andrew Reynolds, and Cesare Tinelli. CVC4. In International
Conference on Computer Aided Verification, pages 171–177. Springer, 2011.

88

http://people.csail.mit.edu/kostas/dpls/athena/
https://www.websudoku.com

[10] Clark Barrett and Cesare Tinelli. Satisfiability Modulo Theories. In Handbook of
Model Checking, pages 305–343. Springer, 2018.

[11] Jon Barwise. An introduction to first-order logic. In Studies in Logic and the Foun-
dations of Mathematics, volume 90, pages 5–46. Elsevier, 1977.

[12] Bernhard Beckert, Reiner Hähnle, and Peter H Schmitt. Verification of Object-
Oriented Software. The KeY Approach: Foreword by K. Rustan M. Leino, volume
4334. Springer, 2007.

[13] Armin Biere. Lingeling, Plingeling, PicoSAT and PrecoSAT at SAT Race 2010. FMV
Report Series Technical Report, 10(1), 2010.

[14] Jerry R Burch, Edmund M Clarke, Kenneth L McMillan, David L Dill, and Lain-
Jinn Hwang. Symbolic model checking: 1020 states and beyond. Information and
computation, 98(2):142–170, 1992.

[15] Koen Claessen. Expressing transitive closure for finite domains in pure first-order
logic. Unpublished draft, Chalmers University of Technology, 2008.

[16] Koen Claessen and Niklas Sörensson. New techniques that improve MACE-style fi-
nite model finding. In Proceedings of the CADE-19 Workshop: Model Computation-
Principles, Algorithms, Applications, pages 11–27. Citeseer, 2003.

[17] Edgar F Codd. A Relational Model of Data for Large Shared Data Banks. In Software
pioneers, pages 263–294. Springer, 2002.

[18] James Crawford, Matthew Ginsberg, Eugene Luks, and Amitabha Roy. Symmetry-
Breaking Predicates for Search Problems. KR, 96:148–159, 1996.

[19] Leonardo de Moura and Nikolaj Bjørner. Model-based Theory Combination. Elec-
tronic Notes in Theoretical Computer Science, 198(2):37–49, 2008.

[20] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient SMT solver. In International
conference on Tools and Algorithms for the Construction and Analysis of Systems,
pages 337–340. Springer, 2008.

[21] Bruno Dutertre and Leonardo De Moura. The YICES SMT Solver, 2006.

[22] Jonathan Edwards, Daniel Jackson, Emina Torlak, and Vincent Yeung. Faster con-
straint solving with subtypes. ACM SIGSOFT Software Engineering Notes, 29(4):232–
242, 2004.

89

[23] Aboubakr Achraf El Ghazi and Mana Taghdiri. Analyzing Alloy Constraints using
an SMT Solver: A Case Study. In 5th International Workshop on Automated Formal
Methods (AFM), 2010.

[24] Aboubakr Achraf El Ghazi and Mana Taghdiri. Relational Reasoning via SMT Solv-
ing. In International Symposium on Formal Methods, pages 133–148. Springer, 2011.

[25] Aboubakr Achraf El Ghazi, Mana Taghdiri, and Mihai Herda. First-Order Transitive
Closure Axiomatization via Iterative Invariant Injections. In NASA Formal Methods
Symposium, pages 143–157. Springer, 2015.

[26] Marcelo F Frias, Carlos G Lopez Pombo, and Mariano M Moscato. Alloy Ana-
lyzer+PVS in the Analysis and Verification of Alloy Specifications. In International
Conference on Tools and Algorithms for the Construction and Analysis of Systems,
pages 587–601. Springer, 2007.

[27] Aboubakr Achraf El Ghazi, Ulrich Geilmann, Mattias Ulbrich, and Mana Taghdiri. A
Dual-Engine for Early Analysis of Critical Systems. arXiv preprint arXiv:1408.0707,
2014.

[28] Daniel Grunwald. Translating Alloy Specifications to JML. Master’s thesis, Karlsruhe
Institute of Technology, 2013.

[29] Daniel Jackson. An intermediate design language and its analysis. In Proceedings of the
6th ACM SIGSOFT international symposium on Foundations of software engineering,
pages 121–130, 1998.

[30] Daniel Jackson. Alloy: a lightweight object modelling notation. ACM Transactions
on Software Engineering and Methodology (TOSEM), 11(2):256–290, 2002.

[31] Daniel Jackson. Software Abstractions: Logic, Language, and Analysis. MIT press,
2012.

[32] Eunsuk Kang and Daniel Jackson. Formal Modeling and Analysis of a Flash Filesys-
tem in Alloy. In International Conference on Abstract State Machines, B and Z, pages
294–308. Springer, 2008.

[33] Gergely Kovásznai, Andreas Fröhlich, and Armin Biere. On the Complexity of Fixed-
Size Bit-Vector Logics with Binary Encoded Bit-Width. In SMT @ IJCAR, pages
44–56, 2012.

90

[34] Sebastian Krings, Joshua Schmidt, Carola Brings, Marc Frappier, and Michael
Leuschel. A translation from Alloy to B. In International Conference on Abstract
State Machines, Alloy, B, TLA, VDM, and Z, pages 71–86. Springer, 2018.

[35] Daniel Kroening and Ofer Strichman. Decision Procedures. Springer, 2016.

[36] Daniel Le Berre and Anne Parrain. The sat4j library, release 2.2. Journal on Satisfi-
ability, Boolean Modeling and Computation, 7(2-3):59–64, 2010.

[37] Gary T Leavens, Erik Poll, Curtis Clifton, Yoonsik Cheon, Clyde Ruby, David Cok,
Peter Müller, Joseph Kiniry, Patrice Chalin, Daniel M Zimmerman, et al. JML Ref-
erence Manual, 2008.

[38] K Rustan M Leino and Rosemary Monahan. Reasoning about Comprehensions with
First-Order SMT Solvers. In Proceedings of the 2009 ACM symposium on Applied
Computing, pages 615–622, 2009.

[39] Tianhai Liu, Michael Nagel, and Mana Taghdiri. Bounded Program Verification using
an SMT solver: A Case Study. In 2012 IEEE Fifth International Conference on
Software Testing, Verification and Validation, pages 101–110. IEEE, 2012.

[40] William McCune. A Davis-Putnam program and its application to finite first-order
model search: Quasigroup existence problems. Technical report, Argonne National
Laboratory, 1994.

[41] Baoluo Meng, Andrew Reynolds, Cesare Tinelli, and Clark Barrett. Relational Con-
straint Solving in SMT. In International Conference on Automated Deduction, pages
148–165. Springer, 2017.

[42] Aleksandar Milicevic and Daniel Jackson. Preventing arithmetic overflows in alloy.
Science of Computer Programming, 94:203–216, 2014.

[43] Greg Nelson and Derek C Oppen. Simplification by Cooperating Decision Procedures.
ACM Transactions on Programming Languages and Systems (TOPLAS), 1(2):245–
257, 1979.

[44] Chris Newcombe, Tim Rath, Fan Zhang, Bogdan Munteanu, Marc Brooker, and
Michael Deardeuff. How Amazon Web Services Uses Formal Methods. Communi-
cations of the ACM, 58(4):66–73, 2015.

[45] Tina Ann Nolte. Exploring Filesystem Synchronization with Lightweight Modeling and
Analysis. PhD thesis, Massachusetts Institute of Technology, 2002.

91

[46] Joseph Poremba. Static Symmetry Breaking in Many-Sorted Finite Model Finding.
Undergrad thesis, 2020.

[47] Mojzesz Presburger. Über die Vollständigkeit eines gewissen Systems der Arithmetik
ganzer Zahlen, in welchem die Addition als einzige Operation hervortritt in Comptes
Rendus du I congres de Mathématiciens des Pays Slaves. Slaves, Warsaw, pages
92–101, 1929.

[48] Silvio Ranise and Cesare Tinelli. The Satisfiability Modulo Theories Library (SMT-
LIB). http://www.smt-lib.org. 2006.

[49] Giles Reger, Martin Suda, and Andrei Voronkov. Finding Finite Models in Multi-
Sorted First-Order Logic. In International Conference on Theory and Applications of
Satisfiability Testing, pages 323–341. Springer, 2016.

[50] Andrew Reynolds, Cesare Tinelli, Amit Goel, and Sava Krstić. Finite Model Finding
in SMT. In International Conference on Computer Aided Verification, pages 640–655.
Springer, 2013.

[51] Andrew Reynolds, Cesare Tinelli, Amit Goel, Sava Krstić, Morgan Deters, and Clark
Barrett. Quantifier Instantiation Techniques for Finite Model Finding in SMT. In
International Conference on Automated Deduction, pages 377–391. Springer, 2013.

[52] Joanne K Rowling. Harry Potter and the Order of the Phoenix, volume 5. Bloomsbury
Publishing, 2013.

[53] Alan B Shaffer. A Security Domain Model for Static Analysis and Verification of
Software Programs. 2008.

[54] Natarajan Shankar, Sam Owre, John M Rushby, and Dave WJ Stringer-Calvert. PVS
Prover Guide. Computer Science Laboratory, SRI International, Menlo Park, CA,
1:11–12, 2001.

[55] Ilya Shlyakhter. Declarative Symbolic Pure-Logic Model Checking. PhD thesis, Mas-
sachusetts Institute of Technology, 2005.

[56] Niklas Sorensson and Niklas Een. MiniSat v1.13 – A SAT Solver with Conflict-Clause
Minimization. SAT, 2005(53):1–2, 2005.

[57] Jouke Stoel, Tijs van der Storm, and Jurgen J Vinju. AlleAlle: Bounded Relational
Model Finding with Unbounded Data. In Proceedings of the 2019 ACM SIGPLAN

92

http://www.smt-lib.org

International Symposium on New Ideas, New Paradigms, and Reflections on Program-
ming and Software, pages 46–61, 2019.

[58] Geoffrey Sutcliffe. The TPTP problem library and associated infrastructure: from
CNF to TH0, TPTP v6.4.0. Journal of Automated Reasoning, pages 1–20, 2017.

[59] Mana Taghdiri and Daniel Jackson. A Lightweight Formal Analysis of a Multicast
Key Management Scheme. In International Conference on Formal Techniques for
Networked and Distributed Systems, pages 240–256. Springer, 2003.

[60] Tanel Tammet. Gandalf. Journal of Automated Reasoning, 18(2):199–204, 1997.

[61] Emina Torlak. A constraint solver for software engineering: finding models and cores
of large relational specifications. PhD thesis, Massachusetts Institute of Technology,
2009.

[62] Emina Torlak and Daniel Jackson. Kodkod: A relational model finder. In International
Conference on Tools and Algorithms for the Construction and Analysis of Systems,
pages 632–647. Springer, 2007.

[63] Mattias Ulbrich, Ulrich Geilmann, Aboubakr Achraf El Ghazi, and Mana Taghdiri.
A Proof Assistant for Alloy Specifications. In International Conference on Tools and
Algorithms for the Construction and Analysis of Systems, pages 422–436. Springer,
2012.

[64] Amirhossein Vakili and Nancy A Day. Reducing CTL-Live Model Checking to First-
Order Logic Validity Checking. In 2014 Formal Methods in Computer-Aided Design
(FMCAD), pages 215–218. IEEE, 2014.

[65] Amirhossein Vakili and Nancy A Day. Finite Model Finding Using the Logic of Equal-
ity with Uninterpreted Functions. In International Symposium on Formal Methods,
pages 677–693. Springer, 2016.

[66] Jan Van Eijck. Defining (reflexive) transitive closure on finite models, 2008.

[67] Christoph M Wintersteiger. Termination Analysis for Bit-Vector Programs. PhD
thesis, ETH Zurich, 2011.

[68] Christoph M Wintersteiger, Youssef Hamadi, and Leonardo De Moura. Efficiently
solving quantified bit-vector formulas. Formal Methods in System Design, 42(1):3–23,
2013.

93

[69] John Zao, Hoetech Wee, Jonathan Chu, and Daniel Jackson. RBAC Schema Verifica-
tion using Lightweight Formal Model and Constraint Analysis. Submitted to SACMAT,
2003.

[70] Pamela Zave. Using Lightweight Modeling to Understand Chord. ACM SIGCOMM
Computer Communication Review, 42(2):49–57, 2012.

[71] Hantao Zhang and Jian Zhang. MACE4 and SEM: A Comparison of Finite Model
Generators. In Automated Reasoning and Mathematics, pages 101–130. Springer, 2013.

94

APPENDICES

95

Appendix A

Tool versions

This appendix lists the version of each tool used:

• Alloy Analyzer: v5.1.0

• MiniSat: v2.2.0

• Z3: v4.8.8

• CVC4: v1.8

96

Appendix B

BNF operators

This appendix lists the operators used by the Backus-Naur form (BNF), the notation used
to specify the abstract syntax of languages:

• x∗ for zero or more repititions of x

• x+ for one or more repititions of x

• x | y for a choice x or y

• [x] for an optional x

97

Appendix C

Optimizations

Table C.1 demonstrates the profiling characteristics for each closure approach on the models
not included in Section 5.7 in the interest of space.

98

addressBook2e

Scope = 7

basic Burch et al. Claessen Eijck Liu et al.

Functions 0 0 1 0 1

Predicates 8 10 10 9 8

Max Arity 3 3 4 4 3

Depth Quant 9 7 7 7 7

Skolem Functions 2 4 2 3 3

Initial Term Count ×1 ×0.71 ×0.89 ×0.87 ×0.74

Final Term Count ×1 ×0.002 ×0.005 ×0.005 ×0.001

Transform Time (s) 20.2 0.14 0.27 0.29 0.10

grandpa

Scope = 20

basic Burch et al. Claessen Eijck Liu et al.

Functions 0 0 1 0 1

Predicates 7 11 9 8 8

Max Arity 2 2 3 3 3

Depth Quant 21 3 4 4 7

Skolem Constants - 1 1 1 7

Skolem Functions - 6 2 3 3

Initial Term Count ×1 ×0.14 ×0.15 ×0.15 ×0.13

Final Term Count - ×1 ×3.81 ×3.93 ×0.15

Transform Time (s) - 0.25 1.07 1.19 0.10

Table C.1: Profiling characteristics for comparison of closure translations in Portus

99

	List of Tables
	List of Figures
	Introduction
	Contributions
	Thesis Organization

	Background
	Finite Model Finding
	Alloy and Kodkod
	Fortress
	SMT-LIB2
	Astra
	Summary

	Interfacing with Fortress
	Experimental Setup
	Fortress Model Finders
	Comparison with Kodkod
	Conclusion

	Basic Translation
	Overview
	Step 1 - Translate signatures
	Step 2 - Translate scopes
	Step 3 - Translate formulas
	Step 4 - Solve using Fortress
	Step 5 - Return instances
	Summary

	Optimizations
	Optimization of Join
	Optimization of Exact Scopes
	Optimization of Signature Hierarchy
	Optimization of Signatures
	Optimization of Relations
	Optimization of Ordering Module
	Optimization of Transitive Closure
	Optimization of Cardinality
	Optimization of Integers
	Conclusion

	Experimental Results
	Implementation
	Experimental Setup
	Performance Testing
	Correctness Testing
	Summary

	Related Work
	Astra
	Other Alloy translations
	Other model finding libraries

	Conclusion
	Future Work

	References
	APPENDICES
	Tool versions
	BNF operators
	Optimizations

