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Abstract

Hardware designers are constantly working to improve circuit performance in an attempt to outdo

their competitors and satisfy consumers. Throughput is the average number of instructions that

can be processed by a microprocessor in a given time. Pipelining is an optimization technique

used ubiquitously for improving circuit throughput.

We describe an automatic method for taking an unpipelined circuit, which has been decom-

posed into functional units, and pipelining it to optimize the throughput. Using a level of descrip-

tion, which we call the Data Dependency (DD) information, we describe the functional units in

terms of the data they need, compute or write to the instruction set architecture (ISA) state. By

working at a high level of abstraction, our technique can be used earlier in the design process

than existing tools. We automatically add pipeline registers, and present rules based on the data

dependencies between functional units that describe how to resolve control and data hazards by

adding hazard detection and resolution circuitry. The problem of determining a correct pipeline

configuration is modelled as a constraint satisfaction problem (CSP). Reinterpretation is used to

perform the clock period calculation for a pipeline configuration. The throughput calculation

must take into account delays in instruction processing caused by stall and kill hardware, and the

calculation is automatically adjusted in our optimization method for each pipeline configuration.

The DLX microprocessor is used as a running example to demonstrate our method. We also

apply our optimization process to a simple multiply accumulator circuit (MAC).
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Chapter 1

Introduction

In 1965, Gordon Moore wrote an article, which began with the statement, “The future of inte-

grated systems is the future of electronics itself” [21]. Thirty-eight years later, Moore’s predic-

tion that integrated circuits would allow home computers to become a reality, has proven true.

Circuits are now an integral part of our day-to-day lives and are used in everything from cal-

culators and cell phones to cars. Hardware designers are constantly working to improve circuit

performance in an attempt to outdo their competitors and satisfy consumers.

In this thesis, we present an automated method of optimizing the throughput of a circuit. In

this chapter we introduce the background concepts, including pipelining circuits and pipeline

hazards. Then we provide an overview of our method, list the contributions of this thesis, and

discuss related work. We also introduce the DLX microprocessor, which we use as a running

example. A summary of this work also appears in [4].
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1.1 Pipelining Microprocessors

Throughput is the number of operations processed by a circuit in a given time (usually per clock

period). The concept of throughput applies to any type of circuit and we use Hennessy and Patter-

son’s academic DLX microprocessor [11] as an example throughout this thesis. For the through-

put of microprocessors, the operations that we are concerned with are instructions. Pipelining [3]

is commonly used to optimize throughput, by partitioning the function of the circuit into stages,

so that multiple instructions can be processed concurrently.

The partitioning of instruction processing is done by introducing state-holding elements,

called pipeline registers (delays), into the pipeline. We demonstrate this process using the DLX.

The DLX is decomposed into 5 functional units, which appear in Table 1.1. A functional unit

is a portion of the circuitry that performs a task, which contributes to the overall objective of

processing instructions.

Acronym Name

IF Instruction Fetch

ID Instruction Decode

EX Instruction Execute

MEM Memory Access

WB Writeback

Table 1.1: DLX Functional Units

The IF unit fetches an instruction from the instruction memory at the current program counter

(pc). The ID unit reads the values of the source operands from the register file. The third

functional unit in the pipeline is EX and it performs arithmetic logic (ALU) operations, such as

2



add and multiply. In the MEM unit, memory is accessed (read from or written to). Finally, the

WB unit writes the new value of the destination register to the register file.

IF ID EX MEM WB

Pipeline register

Functional Unit

Figure 1.1: Unpipelined DLX

The DLX in Figure 1.1 is unpipelined, because there are no pipeline registers separating the

functional units, except for the register between MEM and WB, which is necessary because we

are using a write-before-read register file. The legend used in Figure 1.1 applies to the diagrams

throughout this thesis. The functional units are represented by rectangular boxes and the wires

between them are shown using arrows. The bold line represents the instruction path that carries

a new pc back to the fetch unit, when a branch occurs.

We call the hardware between 2 pipeline registers a segment. The clock period (clock cycle)

is measured in real time 1 and it is equal to the longest time taken by a segment to process an

instruction. In Figure 1.2, the dashed lines show the 3 segments in the unpipelined DLX. There

is an implicit pipeline register at the beginning of the pipeline, before the first functional unit.

1A common unit of time measurement is nanoseconds, but for generality, in this thesis we use “time units”.

3



IF ID EX MEM WB

Segment 1

IF ID EX MEM WB

Segment 3

IF ID EX MEM WB

Segment 2

Figure 1.2: Stages in the Unpipelined DLX

Figure 1.3 shows the clock period of the unpipelined DLX using sample execution times (costs)

for the functional units. The calculations for the cost of each segment are shown. The cost of

Segment 1 and 2 is 22 time units, and cost of Segment 3 is 20 time units, so the clock period is

22 time units (equal to the segment with the highest cost).

In an unpipelined microprocessor, each instruction is entirely processed in a single clock

cycle. Figure 1.4 shows how an instruction passes through every functional unit in one cycle.

In an unpipelined microprocessor, the throughput is equal to the inverse of the clock period.
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22
IF
4

EX
8

MEM
3

WB
2

ID
6

1

Segment 1 = IF + ID + EX + MEM + register
        = 4 + 6 + 8 + 3 + 1
        = 22

Segment 2 = IF + ID + EX + MEM  + register
        = 4 + 6 + 8 + 3 + 1
        = 22

Segment 3 = WB + ID + EX + MEM + register
        = 2 + 6 + 8 + 3 + 1
        = 20

Clock Period = Max(Segment 1, Segment 2, Segment 3)
             = 22

22

20

Figure 1.3: Unpipelined DLX with sample costs

Therefore, decreasing the clock period, increases the throughput. For example, in Figure 1.3, the

clock period is 22 and the throughput is 1/22. In other words, 1 instruction is processed every 22

time units.

Pipelining can be used to reduce the clock period. Figure 1.5 contains a partially pipelined

DLX and the clock period is reduced to 12, which improves the throughput to 1/12 or 1 instruc-

tion every 12 time units. A fully pipelined microprocessor has a pipeline register between each

of the adjacent functional units. The fully pipelined DLX (Figure 1.6) is a 5-stage pipeline, be-

cause the 4 pipeline registers divide the linear datapath into five sections, which are called stages.

The computation of an instruction is illustrated in Figure 1.7, which shows instructions travelling

5



Instruction 1 Instruction 2 Instruction 3

1

2

3

Clock
Cycle

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

Figure 1.4: Instructions being processed in the unpipelined DLX

(Clock Period)

12
IF
4

1

ID
6

EX
8

MEM
3

WB
2

1

Figure 1.5: Sample circuit partially pipelined with cost

through the stages of the pipeline. “Instruction 1” enters the pipeline and the fetch task is com-

pleted by the IF unit. In the next clock cycle, the ID unit processes “Instruction 1”, and the fetch

unit processes “Instruction 2”. At each clock cycle, a new instruction may enter the pipeline and

each instruction already in the pipeline moves to its next stage. When an instruction moves out

of the WB stage, it has been completely processed. The clock period must be long enough for

each stage to complete its computation, which is why the clock period is equal to the segment

with the highest cost. Less computation is done in a stage of the pipelined configuration (Figure

1.7) than the unpipelined configuration (Figure 1.4), meaning that the clock period is less.

Based on the examples above, it could be inferred that a microprocessor with pipeline reg-

6



IF ID EX MEM WB

Figure 1.6: Fully-pipelined DLX

Instruction 1 Instruction 2 Instruction 3

1

2

3

4

IF

ID

EX

MEM

WB

IF

IFID

IDEX

EXMEM

MEMWB

WB

Clock 
Cycle

5

6

7

Figure 1.7: Instructions being processed in the fully pipelined DLX

7



isters between every pair of adjacent functional units would have the highest throughput of any

configuration. This conclusion is not always valid, because pipelining may introduce hazard

situations.

1.1.1 Hazards

Pipelining may introduce hazard situations, which occur when the overlapping of execution

stages of instructions causes incorrect output. These hazard situations must be detected and

resolved, in order to ensure correct output. Hazards arise as a result of data dependencies, in-

structions that change the pc, and resource conflicts [12]. These 3 types of hazards are called

data, control and structural, respectively.

For a pipeline to process instructions correctly, hazards must be resolved using control cir-

cuitry (bypass, stall or kill hardware). The addition of this control circuitry increases the cost of

the stages to which it is added, which means that pipelining may actually decrease clock period

or instruction throughput, rather than increase it.

Data Hazards

Data hazards occur when there are data dependencies between instructions. There are 3 types of

data hazards: read-after-write, write-after-read and write-after-write. Read-after-write hazards

occur when an instruction writes data to a register and a subsequent instruction reads an incorrect

value for that register. In our work, we address only read-after-write hazards, because we assume

in-order execution of instructions and we use a write-before-read register file.

Figure 1.8 illustrates a potential read-after-write hazard in the fully pipelined DLX. This fig-
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ure shows the incorrect data values in bold. Figure 1.8 shows the situation where the instruction
����� �����	��


(the sum of R1 and R2 is stored in R3) is followed by
���� ��������


. The

2 instructions are shown as they travel through the pipeline with the data values of their source

and destination registers in brackets. The register file is also shown with its values at the end of

each clock cycle. In the ID stage, the instruction is decoded and the values of the source registers

for that instruction are retrieved from the register file. The EX stage performs ALU operations.

When the first instruction is in the EX stage, the value of
���

is calculated, but the register file

will not be updated until the write back (WB) phase. This results in a data hazard, because the

second instruction is in the ID stage and it needs the value of
���

(which should be 5), but when

it gets the value from the register file, it gets the old value (which is 6). This data hazard causes

the result of the second instruction to be incorrect (10 instead of 9), so
��

will be assigned an

incorrect value and this value is written back to the register file.

This data hazard can be resolved by passing the value of
���

, which is calculated in the EX

stage, back to the ID stage, using bypass (forwarding) logic. A bypass circuit has 2 inputs: the

instruction after it has been processed in the current stage and an instruction passed back from a

subsequent stage. The bypass examines the instructions to determine whether there is a conflict

(dependency). If there is a conflict, then the bypass uses the value of the source register that is

being passed back from a subsequent instruction, otherwise it uses the current value (the value

in that stage) of that source register.

The pipeline with the hazard circuitry added to fix this data hazard appears in Figure 1.9.

This figure does not contain all of the necessary hardware for hazard prevention in the DLX, just

the bypass that is used to prevent the data hazard discussed above. Figure 1.10 shows the correct

execution for these 2 instructions using the bypass. The result for “Instruction 1” is calculated

in the EX stage and is passed back to the ID stage. When the source registers for “Instruction 2”

9



2

3

5

Clock
Cycle

Instruction 1 Instruction 2 Register File

1 IF

R3(?) R1(?)+R2(?)

4

R1 = 1
R2 = 4
R3 = 6
R4 = 3

ID

R3(?) R1(1)+R2(4)

EX

R3(5) R1(1)+R2(4)

MEM

R3(5) R1(1)+R2(4)

WB

R3(5) R1(1)+R2(4)

6 WB

MEM

R4(10) R3(6)+R2(4)

EX

R4(?) R3(6) 

ID

R4(?) R3(?)+R2(?)

IF

R4(10) R3(6)+R2(4)

R4(10) R3(6)+R2(4)

R1 = 1
R2 = 4
R3 = 6
R4 = 3

R1 = 1
R2 = 4
R3 = 6
R4 = 3
R1 = 1
R2 = 4
R3 = 6
R4 = 3
R1 = 1
R2 = 4
R3 = 5
R4 = 3
R1 = 1
R2 = 4
R3 = 5
R4 = 10

+R2(4)

Figure 1.8: Fully pipelined DLX with a data hazard
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are decoded, the correct value for R3 is received by the bypass. Therefore, the correct value of

R4 is calculated by “Instruction 2”.

Bypass

IF ID EX MEM WB

Figure 1.9: Fully pipelined DLX with a bypass

Not all data hazards can be resolved by forwarding; sometimes it is necessary to stall the

pipeline. Figure 1.11 contains an example that must be resolved using both stall circuitry and

a bypass. The instruction
��� � ��������������

	

represents loading the value at the memory

address “8 + val(R2)” into register R1. In Figure 1.11, the load instruction puts a value into R1

in the MEM stage and that value is only written back to the register file in the WB stage. We

need to stall the pipeline, because the value of R1 is calculated by “Instruction 1” one stage after

“Instruction 2” needs it. We stall the pipeline by inserting a bubble into the pipeline. A bubble is

an instruction that does not perform any tasks, but simply “takes up space” [12] in the pipeline.

We can then forward the value back from MEM to ID.

Figure 1.13 contains the same example with the hazard resolved. In addition to the bypass,

3 pieces of hardware were added to resolve the hazard: detect, stall and selector units. The

detect unit checks for hazard situations by examining the current and past instructions to see if

there is a data dependency (load instruction followed by an ALU instruction). If there is such a

dependency, then the second instruction’s status becomes a bubble.
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2

3

5

Clock
Cycle

Instruction 1 Instruction 2 Register File

1 IF

R3(?) R1(?)+R2(?)

4

R1 = 1
R2 = 4
R3 = 6
R4 = 3

ID

R3(?) R1(1)+R2(4)

EX

R3(5) R1(1)+R2(4)

MEM

R3(5) R1(1)+R2(4)

WB

R3(5) R1(1)+R2(4)

6 WB

MEM

R4(9) R3(6)+R2(4)

EX

R4(?)

ID

R4(?) R3(?)+R2(?)

IF

R4(9) R3(6)+R2(4)

R4(9) R3(6)+R2(4)

R1 = 1
R2 = 4
R3 = 6
R4 = 3

R1 = 1
R2 = 4
R3 = 6
R4 = 3
R1 = 1
R2 = 4
R3 = 6
R4 = 3
R1 = 1
R2 = 4
R3 = 5
R4 = 3
R1 = 1
R2 = 4
R3 = 5
R4 = 9

R3(5)+R2(4)

Figure 1.10: Data hazard resolved by forwarding
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2

3

5

Clock
Cycle

Instruction 1 Instruction 2 Register File

1 IF

R1(?) MEM[8+R2(?)]

4

R1 = 1
R2 = 4
R3 = 6
R4 = 3

ID

EX

MEM

WB

6 WB

MEM

EX

ID

IF

R1(?) MEM[8+R2(4)]

R1 = 1
R2 = 4
R3 = 6
R4 = 3
R1 = 1
R2 = 4
R3 = 6
R4 = 3
R1 = 1
R2 = 4
R3 = 6
R4 = 3
R1 = 10
R2 = 4
R3 = 6
R4 = 3

R1(?) MEM[8+R2(4)]

R1(10) MEM[8+R2(4)]

R1(10) MEM[8+R2(4)]

R4(?) R1(?)+R3(?)

R4(?) R1(1)+R3(6)

R4(7) R1(1)+R3(6)

R4(7) R1(1)+R3(6)

R4(7) R1(1)+R3(6)

R1 = 10
R2 = 4
R3 = 6
R4 = 7

Figure 1.11: Fully pipelined DLX with a data hazard requiring a stall
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The signal output from the detect unit is input to the stall unit. If this signal is not a bubble,

then the stall unit does nothing. However, if this signal is a bubble, then the stall unit causes the

instruction that was processed in the last clock cycle to be reprocessed, causing the pipeline to

just “sit still”.

The selector unit also receives the signal from the detect unit, and it makes the IF unit fetch

the previous instruction, if the pipeline is stalled. In order to stall the program counter, we must be

able to distinguish which functional units fetch the instructions. The input to IF is a distinguished

signal that is the feedback program counter based on the computation of an instruction 2. We send

our signal to stall the pc via this distinguished signal.

Figure 1.12 shows the pipeline with the hazard resolution circuitry and Figure 1.13 shows the

corrected execution of the 2 instructions. It takes 7 clock cycles, rather than just 6, to process

the 2 instructions. Stalls delay the processing of instructions. Therefore, pipelining may cause

the need for hazard resolution hardware, which can actually decrease throughput, rather than

increase it. In this case, the throughput calculation must be altered to account for the delay in

processing.

ID EX MEM WB

DetectStall Selector

IF

Figure 1.12: Data hazard resolved by forwarding and stalling

2In Chapter 2 (page 42), we explain how this signal is distinguished from the others.
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1 IF

R1(?) MEM[8+R2(?)]

4

ID

EX

MEM

WB

6 WB

MEM

IF

R1(?) MEM[8+R2(4)]

R1(?) MEM[8+R2(4)]

R1(10) MEM[8+R2(4)]

R1(10) MEM[8+R2(4)]

R4(?) R1(?)+R3(?)

7
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R2 = 4
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R4 = 3
R1 = 1
R2 = 4
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R1 = 1
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R1 = 1
R2 = 4
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R1 = 10
R2 = 4
R3 = 6
R4 = 3
R1 = 10
R2 = 4
R3 = 6
R4 = 3

R1 = 10
R2 = 4
R3 = 6
R4 = 16

IF

R4(?) R1(?)+R3(?)

Instruction 3

WB

MEM

EX

ID

R4(?) R1(10)+R3(6)

R4(16) R1(10)+R3(6)

R4(16) R1(10)+R3(6)

R4(16) R1(10)+R3(6)

Bubble

Bubble

Bubble
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1.13:
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Control Hazards

Control hazards arise when instructions change the pc. Unconditional and conditional branches

both specify a new pc. Conditional branches must satisfy a condition (i.e.,
���

= 0) in order for

the pc to be changed, otherwise it is incremented as usual. An unconditional branch instruction

specifies the address of the next instruction, so the pc must be changed, for the correct next

instruction to be retrieved from memory. Addressing can be either direct or relative.

In order to process branches efficiently, branch prediction schemes are used. A branch pre-

diction scheme makes a guess about whether the branch will be taken or not, and based on this

guess, subsequent instructions are fetched until the branch condition is calculated. If the branch

is incorrectly predicted, then subsequent instruction(s) are incorrectly fetched (using the wrong

pc). We need to kill these instructions in the shadow of a mispredicted branch by making them

bubbles, so that they do not have any visible effects.

Killing instructions reduces instruction throughput, so adding pipeline stages that cause con-

trol hazards, which are resolved using kills, may decrease throughput. Figure 1.14 contains the

fully pipelined DLX with the kill circuitry added to resolve control hazards. The EX unit cal-

culates the new pc for a branch instruction with relative addressing. The added hazard circuitry

includes 2 kill units (to kill the instructions in the previous 2 stages), a delay, and a selector. A

kill unit has 2 instructions as inputs. The first input is the instruction that is currently flowing

through that stage and the second is an instruction that is passed back from a stage that calcu-

lated the new pc. The kill unit checks to see if the instruction being passed back is a mispredicted

branch. If it is, then the other instruction becomes a bubble. The instruction that is passed back

to the kill units is also input to the selector through a delay. The instruction passes through the

delay, because it changes the pc in the next clock cycle. When we are stalling the pipeline and
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the detect unit is input to the selector, it does not have to pass through a delay, because the pc is

changed in the same clock cycle that the stall is detected.

IF ID EX MEM WB

Kill

Figure 1.14: Fully pipelined DLX with kill circuitry

Structural Hazards

The third type of hazard is called structural and occurs because of hardware resource conflicts.

An example of this type of hazard is multiple instructions requiring the use of the register-file

write port at the same time [11]. Structural hazards are resolved by duplicating hardware or by

have a compiler reorder instructions to avoid hazard situations. In our work, we assume structural

hazards have already been resolved.

1.2 Thesis Description

Pipelining is a valuable technique that can be used to increase throughput, but determining the

optimal pipeline configuration, taking into account hazard resolution circuitry for a given circuit,

is a complex task. We use the term pipeline configuration to mean a pipeline layout with 0 to n
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pipeline registers, where there are n-1 pipeline stages, and the hazards have been resolved. For

example, a circuit with 5 functional units in linear order has 16 possible pipeline configurations

(including the unpipelined circuit), because there are 4 places where pipeline registers could be

placed. To calculate the throughput for each of the 16 configurations, the appropriate hazard

resolution circuitry must be added and taken into account in the clock period and throughput

calculations.

In this thesis, we show that an unpipelined linear datapath, which has been

decomposed into functional units, can be automatically pipelined optimally for

throughput. If the introduction of pipeline registers causes hazards, then the

appropriate hazard resolution hardware can be automatically added and the

clock period and throughput calculations adjusted accordingly.

Next, we provide a brief overview of our pipeline optimization process (Figure 1.15). To

pipeline a datapath, we start with one that has been decomposed into functional units (the smallest

possible pipeline stages), and pipeline the datapath to increase the throughput. We are not trying

to synthesize the datapath itself. We assume that the datapath has already been decomposed into

functional units. If adding pipeline registers introduces potential hazard situations, then hazard

resolution hardware is added and that cost is taken into account in the throughput calculation.

Our process begins with a textual description of the dataflow of the circuit and timing in-

formation for each functional unit in the circuit. The user also provides an abstract view of the

pipeline, which characterizes each functional unit in terms of its data dependency (DD) informa-

tion. The 3 categories of data dependency that we consider are:

� computing data
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pipeline 
configuration

Calculate clock period
and throughput for 

pipeline configuration

Add constraint disallowing 
current configuration

no solution

Dataflow, DD,
Execution times

Generate constraints and
universal pipeline

Call SAT solver
with constraints

Optimal
Solution

Figure 1.15: Pipeline Optimization Process
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� needing data

� writing data

Examples of tasks at this level of abstraction are computing the program counter or writing data

to the register file. This abstract view simplifies the description and analysis of hazards. Using

this abstraction, we have written generic rules to detect and resolve hazards. The rules are based

only on the location of the stages and the tasks that each stage performs (described using DD

information). For a particular datapath, these rules can be instantiated to create a constraint

satisfaction problem (CSP) [27, 26]. CSP involves finding solutions to problems consisting of

� a set of variables,

� a finite domain for each variable, and

� constraints on the values the variables can take.

A solution to a CSP problem is an assignment of domain values to the variables, such that no

constraint is violated. Our variables are Booleans that represent the presence of absence of

pipeline registers and hazard resolution circuitry. A CSP problem that involves only Boolean

variables is called a Boolean satisfiability (SAT) problem. In our case, a solution from the SAT

solver describes a pipeline configuration with all of its hazards resolved.

The rules are applied to the datapath to generate a universal pipeline, which is the union of all

possible pipeline configurations. The universal pipeline contains all of the pipeline registers and

hazard resolution hardware that could appear in any given pipeline configuration. The presence

or absence of hardware is represented by Boolean variables, and a solution from the SAT solver

is used to instantiate the universal pipeline to yield a pipeline configuration.
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Reinterpretation [22] is the technique we use to calculate the clock period of a pipeline config-

uration. Reinterpretation determines the clock period using alternate definitions of the functions

of the various pipeline components. Using reinterpretation, we can use a single circuit descrip-

tion for calculating the clock period, visualization, verification and simulation. The throughput

is calculated using the clock period and information about the potential for stalls and kills in the

pipeline configuration.

Our approach is iterative. Once the clock period and throughput have been calculated for

a pipeline configuration, then a constraint stating that the solution should not be found again

is added to the set of constraints, which are given to the SAT solver. The SAT solver returns

another solution, and its clock period and throughput are calculated. This process continues until

there are no solutions remaining, which means that all possible pipeline configurations have been

considered and we have found the one with the optimal throughput.

The four main contributions of this thesis are:

� the creation of the Data Description abstraction for characterizing hazard situations,

� the development of a set of generic rules for hazard resolution,

� the instantiation of the rules to yield a SAT problem to which the solution is a pipeline

configuration, and

� the use of reinterpretation to calculate the clock period and throughput for determining an

optimal pipeline configuration.
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1.3 Related Work

Although efforts have been made to automate optimization of pipeline layout, this work is often

still done manually in industry. Several methods of automating microprocessor pipelining have

been investigated, and each of these have varying degrees of usefulness to industry and some

have significant weaknesses. Existing tools do not handle hazards and their resolution, which is

critical in pipelined circuits such as microprocessors. Currently, pipeline layout is done using

timing and area estimation tools to simulate the pipeline [5].

Get2Chip’s Pipeline Master Synthesis, and Synopsys’ Module and Behavioural Compilers,

are both used to perform datapath synthesis [9]. Pipeline Master takes Verilog or Superlog as

input and performs optimized pipeline datapath synthesis automatically. Pipeline Master may

add hardware to the pipeline to improve performance. The output of the tool is register-transfer

level (RTL) or gate-level code. Our tool does not do datapath synthesis and we do not further

decompose the functional stages provided as input. We treat the functional units as black boxes,

assuming those implementation details can be taken care of using an existing tool, and work

to optimize at a higher level of abstraction. The Synopsys Behavioural Compiler is similar to

Pipeline Master and it does pipeline rescheduling as well. This tool also applies at a lower level

of abstraction than our method. By working at a higher level of abstraction, our technique can

be used earlier in the design process than existing tools.

Kroening and Paul presented techniques for automating pipeline design and resolving haz-

ards [14]. They begin with a prepared sequential machine, which is a pipeline that has been

partitioned into stages and contains duplicate hardware to resolve structural hazards. They apply

transformations to this pipeline, which add hardware components, and resolve data and control

hazards. The added hardware may lead to a non-optimal implementation in terms of through-
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put. This method requires some manual effort. A major difference between this work and our

proposed work is that the pipeline we generate will be optimized for throughput.

Hassoun and Ebeling developed a technique called architectural retiming, which is used

to improve circuit performance. They use negative registers to decrease clock period (which

increases throughput) without increasing latency (the number of clock cycles it takes to complete

the execution of a single instruction). A negative register differs from a regular register in that it

performs a shift backward in time rather than forward, by using precomputation or prediction to

calculate the negative register values. To do precomputation, duplicate hardware may be needed,

so a trade-off between area and timing is made. Putting both negative and regular registers

in the pipeline is equivalent to placing a wire in the path, because they do not affect latency.

Architectural retiming is currently done manually. The negative/positive register pairs that are

added do not introduce hazards, so no additional hazard resolution hardware is required, although

some hazard circuitry may be present in the original, less efficient pipeline.

Chang and Hu [6] presented a specification style for microprocessors for the design of cycle-

accurate simulators. They created an automated tool that can derive simulators from specifica-

tions. They assume that the microprocessor has already been pipelined and they are not trying

to optimize the pipeline. The hazard resolution (bypass and stall) hardware is automatically

derived from the specification. The need for hazard resolution hardware is determined using

context, which is the state of the processor (register values, pc value, etc.) as seen by a particular

instruction. When an instruction needs a value, it takes the most recently updated version of that

value (using forwarding) and if the value is not available then the pipeline stalls. To simulate

a processor, the functional units must be completely specified or, in other words, the tasks that

each functional unit performs must be explicitly stated.

Marinescu and Rinard [16, 17] use a similar context-based approach to Chang and Hu. The
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goal of their work is to take a set of user-specified modules and output an efficient synchronous

(pipelined) circuit. Their pipelines are said to be “efficient”, but that does not necessarily mean

optimal. By efficient, they mean more efficient than the original asynchronous unpipelined im-

plementation and comparable to a hand-written Verilog model. Although the goal of their work

is similar to ours, their method of achieving it is quite different. Unlike us, they further partition

functional units in an effort to reduce clock period and increase throughput.

An alternative approach to using Boolean CSP, would be to use linear programming (LP),

which is a technique that is often used in operations research to solve optimization problems

[7]. Llewellyn describes linear programming problems as a set of variables with constraints on

or between them, and an objective to attain [15]. This objective usually involves minimizing or

maximizing a linear function. Our problem involves maximizing the instruction throughput, but

LP cannot be used in our work, because the throughput calculation depends on the configuration

of the pipeline. Hazard resolution hardware may delay the execution of instructions. Therefore,

the throughput calculation varies with the different pipeline configurations.

Weinhardt states that custom computing machines combine software with hardware to make

the program more efficient [28]. Weinhardt automates the generation of hardware accelerators

from a sequential software program. The resulting hardware components can sometimes be

pipelined to improve efficiency, and integer linear programming (ILP) is used to automate this

task. ILP is a form of linear programming, although only integer variables can be used in ILP.

ILP involves instantiating a set of constrained integer variables in order to minimize a cost func-

tion. The goal of Weinhardt’s ILP problem is maximizing pipeline throughput, while minimizing

the number of field-programmable gate array (FPGA) flip-flops. The program determines the

quantity and location of flip-flops. This problem is different from ours because hazards are not

resolved using stalls. If stalls are not used for hazard resolution, then the throghput calculation
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is static.

Although we are tackling a different problem, our method works at the same level of abstrac-

tion as the microprocessor descriptions of the Hawk hardware description language [20]. This

abstraction level views the pipeline as having instructions, the register file or memory flowing

along the wires between functional units. Matthews and Launchbury present an elementary mi-

croarchitecture algebra, which can be used to unpipeline a given pipelined datapath [19]. The

problem that they address is the opposite of what we are trying to do, and the goal of their work

is verification. Initially, the pipeline contains hazard resolution hardware including bypass logic.

The algebraic rules remove the pipe stages and the hazard resolution hardware. The rules are

local and there is not a systematic method of applying the rules in order to unpipeline efficiently

the datapath. In fact, the rules could be applied infinitely.

1.4 Thesis Outline

Chapter 2 describes our rules for the inclusion of hazard resolution circuitry based on the DD

information about the circuit and the grouping of the functional units into stages. It contains

definitions and examples of our 5 placement rules for hazard resolution circuitry. We describe

how the rules can be used to generate a set of Boolean constraints as a problem for a SAT solver

that will result in a possible pipeline configuration.

Chapter 3 contains a description of our throughput optimization. We describe our use of

reinterpretation to calculate the clock period. We also show how hazard resolution hardware that

delays the processing of an instruction alters the throughput calculation. Chapter 3 also includes

implementation details of our throughput optimization method.
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Chapter 4 contains the results of the 2 case studies that we performed on the DLX and a

multiply accumulator (MAC). In Chapter 5, we conclude and discuss the limitations of our work

and our ideas for future work.
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Chapter 2

Hazard Resolution Rules

In this chapter, we describe our rules to resolve read-after-write data hazards and control hazards.

Our rules depend on information about the data dependencies among the functional units of the

circuit. We introduce the data dependency (DD) information used to capture this abstraction.

We use Hennessy and Patterson’s DLX microprocessor [11] as a running example and show all

possible pipeline configurations of the DLX with the required hazard detection and resolution

circuitry.

The hazard resolution rules are a key part of our optimization process. We use our rules to

generate constraints and create a Boolean satisfiability problem for determining possible pipeline

configurations, including hazard circuitry.

2.1 DLX: ISA State

Figure 2.1 contains the DLX microprocessor that we introduced in Chapter 1. In Figure 2.2,

we partition the original DLX functional units to expose all state-holding elements, which in
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this case are just the elements of the instruction set architecture (ISA) state, which includes the

program counter (pc), the register file (rf ) and memory (mem). From now on, all references to

the DLX will be to the ISA state representation. Our method of calculating the clock period

considers the amount of computation between all registers (not just pipeline registers), so it is

dependent on ISA state. The dashed lines in Figure 2.2 show the partitioning of the ISA state

diagram into the corresponding functional units in Figure 2.1.

IF ID EX MEM WB

Figure 2.1: Unpipelined DLX Microprocessor

IF1

IF3

pc

ID EX

MEM2 mem

rf

IF2

MEM1

(IF) (MEM)

WB

Figure 2.2: Unpipelined DLX Microprocessor (ISA state)
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2.2 Data Dependencies (DD)

One contribution of this thesis is finding an appropriate level of abstraction to describe the char-

acteristics of a pipeline that cause hazards. We call this description level the data dependency

(DD) information. DD is similar to a def-use relation among the functional units. It is used to de-

scribe the data that is computed, needed, or written by each functional unit. The DD information

includes only data that is affected by multiple functional units. When more than one functional

unit manipulates data there may be a dependency that could result in incorrect output. By data,

we mean the ISA state (program counter, register values or memory).

Using this information, we have created generic rules that indicate where hazard detection

and resolution hardware should be placed, depending on the pipelining of the datapath. These

rules are described in Section 2.5 and they are used to generate constraints that describe the

situations in which hazard resolution circuitry is needed.

The DD representation of the DLX appears in Figure 2.3. The data called regVal represents

a register value other than the pc. The DD information for the DLX was determined by consid-

ering the tasks that each functional unit performs. For example, the ID stage reads the value of

the source registers from the register file. Therefore, it needs data regVal. The ID computes the

pc, because this unit is where the pc of an unconditional branch with direct addressing is calcu-

lated. The EX stage also computes the pc, because the destination pc of branches using relative

addressing is calculated here.

There can be slight variations in the functionality of the DLX that result in different DD

information. If the branch address calculation is moved to the ID, then the EX would no longer

compute the pc, resulting in a different set of DD information for the DLX. We use the DD

information in Figure 2.3 for our DLX example.
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Needs(IF3, pc)
Needs(ID, regVal)
Computes (ID, pc)
Computes(EX, regVal)
Computes (EX, pc)
Computes(MEM1, regVal)
Writes(WB, regVal)

Figure 2.3: DLX DD Information

2.3 SAT Constraints

Our optimization process uses constraint satisfaction programming (CSP) to perform the search

for a pipeline configuration. We use our rules to generate constraints for a Boolean satisfiability

(SAT) solver. Given a set of Boolean variables and constraints on those variables, the SAT solver

finds a satisfying solution.

In our problem, we use Boolean variables to represent the presence or absence of the com-

ponents of a pipeline. Components include pipeline registers and hazard resolution circuitry.

When we apply rules to a pipeline, we use the DD information to generate constraints on the

components involved. In the following sections, we describe each hazard resolution rule. We

also illustrate the Boolean constraints generated from the application of each rule.

Throughout the remainder of this chapter, a set of symbols will be used to represent the

Boolean operators. These symbols appear in Table 2.1 in the order of precedence used in expres-

sions (e.g., � has the highest precedence).
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Boolean Operator Symbol

FOR ALL
�

NOT �

AND �

OR �

IMPLIES �

IFF �

Table 2.1: Boolean Operators

2.4 Naming Conventions

In this chapter, we discuss the addition of hazard resolution circuitry into pipelines. In some

pipelines there may be multiple bypass, stall, kill or selector units. We use the naming conven-

tions in Table 2.2 to name the added control hardware. The names are dependent on the location

of the hardware in relation to the functional units. When we use the term between X and Y in

the table, we mean that X comes before Y on the datapath. When we say X back to Y, we mean

that X comes after Y on the datapath. The names are dependent not only on location, but also

on the direction of the data flow. These names are used as the names of the Boolean variables

representing the presence or absence of a hardware component.

2.5 Hazard Resolution Rules

This section contains the definition of our 5 hazard resolution rules. Each rule is explained using

an example occurrence in the DLX pipeline. The rules appear in Figure 2.4. All of the hazard
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Situation Name

Pipeline register between functional units X and Y XY

Bypass from X back to Y XBypY

Stall between X and Y XStY

Detect from X back to Y XDetY

Kill from X back to Y XKillY

Select between X and Y XSelY

Table 2.2: Hardware Naming Conventions

resolution rules are written in terms of the DD information about functional units, the stages

that the functional units are in, and the distance between stages. Our rules are expressed using

characteristic functions. If the statement “Stage(A, i)” is true, then functional unit A is in stage i.

The predicates Needs, Computes and Writes refer to DD information. The expression “Earlier(A,

B)” means that A is earlier in the dataflow than B. The “Earlier” relation is a partial order. The

variables representing functional units, stages and data are all universally quantified.

If the conditions for the rules are met, then hazard resolution circuitry is needed. For Rules 1,

2, and 3, the hazard resolution circuitry is expressed in terms of the functional units involved. For

Rules 4 and 5, the hazard resolution circuitry required is described in terms of stages, because

stalling and killing are associated with stages rather than functional units.

2.5.1 Bypass Rules: Rules 1, 2 and 3

As we saw in the introductory chapter, bypasses are used to resolve some hazards caused by

read-after-write data dependencies. Bypasses forward data from a functional unit to a preceding
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� Rule 1 (byp):

Stage ��������� � Stage �
	���� � � � � Needs �������� � Computes �
	������
��� �����

Stage � � ��� �	� � � Earlier �
	�� � � � � Writes � � ������
�������� pc �
� forward �
	���������

� Rule 2 (byp):

Stage ��������� � Stage �
	���� ��� � � Needs �������� � Computes ��	�����
��� �����

Stage � � ��� ��� � � Earlier �
	�� � � � � Writes � � ������
������ pc �

�! 	

� forward �
	���������

� Rule 3 (byp):

Stage ��������� � Stage �
	����"� � Earlier �����#	$� � Needs �������� � Computes ��	�����
��� �����

Stage � � ���"� � Earlier ��	�� � � � Stage � � ��� � � � � � Writes � � ������
������ pc

� delayedForward ��	���������
� Rule 4 (stall):

Stage ��������� � Stage �
	���%&� � Stage � � �"% ��� �
� Needs �����('*)+� � Needs ��	����� � Computes � � ����
�,�.-�% �

�! 	

� stall ����� � stallpc

� Rule 5 (kill):

Stage ��������� � Stage �
	���� � ��� � Needs �����('/)0� � Computes ��	��('*)+� ���2143
� kill ��� � ��� � kill ��� � ��5 � � �

�6�7�
� kill ����� � fixpc

Figure 2.4: Hazard Resolution Rules
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functional unit, which needs the data before it has been written to the ISA state.

Rule 1

Rule 1 states that a bypass is required when functional unit A in stage i needs data that functional

unit B in stage � � � computes, but does not write back to ISA state. A bypass is needed in the

DLX when ID and EX are in different stages, and EX is not in the same stage as WB. The stage

with ID needs a value that is computed in EX, but not written to ISA state until the stage with

WB. A bypass is used to pass back the data from the stage with EX to the stage with ID, which

needs it in order to ensure that the proper value of the source register is present at the end of the

stage with ID. If the bypass is not present, then the incorrect value of the source register will be

retrieved from the register file by ID and it will be passed on to the subsequent stage. An exam-

ple of this type of hazard is in Chapter 1 (page 10). This hazard is caused by a data dependency

between ID, which is in stage 1, and EX in stage 2. An instantiation of Rule 1 for the DLX DD

information is:

Stage �����2� � � � Stage � ��� � 
 �
� Needs �����2���
	��������� � Computes � ��� ���
	�������
�
� � Stage � ��� � 
 � � Earlier � ��� � ��� � � � Writes � ��� ����	�������
���
� ���
	������� �� '/)0�
� forward � ��� �����2���
	���������

This instance of Rule 1 introduces a bypass, when there are 2 pipeline registers present: IDEX

and EXMEM1. The presence of the IDEX register means that EX is in the stage immediately

following the stage with ID, satisfying Stage(ID, 1) and Stage(EX, 2). The DLX DD information
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states that the needs-computes-writes dependency component of the rule is satisfied. The pres-

ence of EXMEM1 ensures that regVal is not written by EX or functional units later than EX in

stage 2, satisfying the universally quantified portion of the rule. There are no other functional

units in stage 2. This instance of Rule 1 appears in Figure 2.5, with the optional components

appearing with dashed lines. These dashed-line components are either all present or all absent,

meaning that EXBypID is present if and only if IDEX and EXMEM1 are present.

The Boolean constraint that is generated for this example instance of Rule 1 is:

IDEX � EXMEM1 � EXBypID

EXBypID

IDEX

IF1

IF3

pc

ID EX

MEM2 mem

rf

IF2

MEM1 WB

EXMEM1

Figure 2.5: Example Instance of Rule 1

The presence of EXMEM1 is not always necessary to ensure that WB is not in the same stage

as EX. An alternative instantiation of this rule requires that EXMEM1 is absent, and MEM1WB

is present, and the data would then be forwarded from MEM1 to ID.
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Rule 2

The second bypass rule, applies in situations when the need for a value and its computation

(without a write to ISA state) are separated by 2 or more stages. In the DLX, Rule 2 applies

to ID and MEM1 when there are pipeline registers between ID and EX (IDEX), EX and MEM1

(EXMEM1), and MEM1 and WB (MEM1WB). An example instance of Rule 2 is the following:

Stage �����2� � � � Stage � ����� � � � �
� Needs �����2���
	��������� � Computes � ����� � ���
	��� ���
�
� � Stage � ��� � � � � � � Earlier � ����� � � ����� � � � � Writes � ����� � ���
	��� ���
���
� ��	������� �� '*) �


$ 	

� forward � ��� � � �����2���
	��� �����

The Boolean constraint that is generated for the application of Rule 2 on this example instance

involves 3 pipeline registers:

IDEX � EXMEM1 � MEM1WB � EXBypID

An illustration of this instance of the rule appears in Figure 2.6. The presence of the first 2

registers ensures that ID, which needs data, and MEM1, which computes data, are 2 stages apart

(as the rule requires). The last register, MEM1WB, is needed to guarantee that MEM1 and WB are

in different stages, so that the universally quantified condition that data is not written by the func-

tional unit MEM1 or any functional units later than MEM1 in stage 3 is met. There are no other

functional units in stage 3. MEM1WB is always present because we are using a write-before-read

register file, so a constraint stating that MEM1WB is true is added to the set of constraints.
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MEM1BypID

IDEX

IF1

IF3

pc

ID EX

MEM2 mem

rf

IF2

MEM1 WB

MEM1WBEXMEM1

Figure 2.6: Example Instance of Rule 2

This rule does not completely resolve the hazard. In Chapter 1 (page 14), we saw an example

of a data hazard that requires both a bypass and stall to resolve it. The example above is the

same situation, so the bypass alone will not fix the data hazard. Later in this chapter, Rule 4 is

introduced and it will provide the remaining hardware that is needed to resolve this hazard.

Rule 3

The last bypass rule involves a needs-computes dependency within a single pipeline stage that

consists of multiple functional units, but the data value is not written until a later stage. For

example, if the ID and EX units are in the same pipeline stage, meaning that there is no pipeline

register, IDEX, between them, then a dependency exists because the ID unit needs data and the

EX unit computes data after the instruction has passed through the ID stage. The universally

quantified portion of the rule states that EX, functional units later than EX in stage 1, and func-

tional units in stage 2 cannot write data. Therefore, to satisfy the rule neither EX (which is in

stage 1) nor MEM1 (which is in stage 2) can write data. The data that EX computes must be

passed back to the ID unit to resolve the hazard. An example occurrence of Rule 3 is:
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Stage �����2� � � � Stage � ��� � � � � Earlier �����2� ��� �
� Needs �����2���
	��������� � Computes � ��� ���
	�������
�
� � Stage � ��� � � � � Earlier � ��� � ��� � � � Writes � ��� ����	�������
���
� � Stage � ��� � � � 
 � � � Writes � ����� � ���
	��� ������
� ��	������� �� '*)
� delayedForward � ��� �����2� ��	���������

In this situation, we cannot simply place a bypass from EX to ID directly, because this would

introduce a combinational loop (Figure 2.7). We need to ensure that this bypass is delayed by

a pipeline register, so we bypass from the subsequent stage to ID (Figure 2.8), which means

passing the value that is output by the EXMEM1 pipeline register back to ID.

Combinational loop

EXBypID
IF1

IF3

pc

ID EX

MEM2 mem

rf

IF2

MEM1 WB

EXMEM1 MEM1WB

Figure 2.7: DLX With Bypass Resulting in a Combinational Loop

The Boolean constraint for this instance of Rule 3 depends both on the presence and absence
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EXBypID

IF1

IF3

pc

ID EX

MEM2 mem

rf

IF2

MEM1 WB

MEM1WBEXMEM1

Figure 2.8: Example Instance of Rule 3

of pipeline registers:

� IDEX � EXMEM1 � MEM1WB � EXBypID

If MEM1 also computes regVal, then we would need a bypass from MEM1 to ID by Rule 1.

The duplicate hardware is visible in Figure 2.9. In this situation, we amend Rule 3 and forward

the value at the end of stage 2 (in this case MEM1) so we can resolve the hazards for Rule 1 and

Rule 3 using a single bypass. If we do not need Rule 1, then we apply only Rule 3 and forward

from before MEM1, which decreases the clock period.

2.5.2 Stalling Rule: Rule 4

A pipeline stall is required when the need for a value and its computation are separated by 2

or more stages. Resolution for this hazard involves introducing bubbles into the pipeline, and

sending a signal to stall the program counter. The following is an example instance of this rule
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EXBypID

IF1

IF3

pc

ID EX

MEM2 mem

rf

IF2

MEM1 WB

MEM1WB

EXMEM1

Rule 1

Rule 3

MEM1BypID

Figure 2.9: Rules 1 and 3 applied to DLX: Duplicate hardware

in the DLX:

Stage ��� � � � � � Stage �����2� 
 � � Stage � ��� � � � � �
� Needs ��� � �
'*)0� � Needs �����2� ��	��� ���
� � Computes � ����� � ���
	��� ���
�
�
� - 
 �


$ 	

� stall � � � � stallpc

Figure 2.10 contains the pipeline corresponding to the instance of Rule 4 described above.

Three pieces of hazard resolution circuitry were added: a detect unit, a stall unit and a selector.

Although it is not revealed in Figure 2.10, the detect unit has an internal register, which we call

the history register. This is shown in Figure 2.11. The detect unit uses the history register to

determine whether or not a stall situation has occurred. An alternative to using a history register

is passing the data from the next pipeline register on the datapath back to the detect unit. A load

operation followed by an ALU operation causes the need for a stall. If a stall situation occurs,

then the detect unit makes the instruction a bubble and passes a signal to the stall unit. The stall
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unit causes instructions to “sit still” in the pipeline.

IF1

IF3

IF1ID

ID EX

IDEX

MEM1

EXMEM1 MEM1WB

pc

IF2
MEM2 mem

IDDetIF1
IF1StID

IF3SelIDDetIF1

Stall Detect Selector

rf

WB

Figure 2.10: Example Instance of Rule 4

Detect

Figure 2.11: Detect Unit with State Revealed

The signals to revise the pc are coordinated, so that kill units and instructions later in the

pipeline have precedence. The signals sent back to the IF3 unit are combined in a “pc selector”

unit, illustrated in Figure 2.10. The arrows with dotted lines are used to match labels to some of

the hardware. The bold lines represent instructions that may change the pc travelling back to the

fetch unit through a selector. In a microprocessor without stall or kill circuitry, the distinguished
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pc signal comes from a delay following the last functional unit on the datapath that computes the

pc.

A stall will delay the processing of an instruction. We call a stall that causes a delay of 1

cycle a 1-cycle stall. When the need for a value and its computation are n stages apart, they

cause a (n-1)-cycle stall.

The Boolean constraint for this instance of Rule 4 is a conjunction of 3 expressions. The

first expression is based on the application of the rule. In order for this rule to apply, 4 pipeline

registers must be present:

IF1ID � IDEX � EXMEM1 � MEM1WB � IF1StID

Rule 4 does not explicitly state that the IF and ID must be in different stages. Therefore, the

IFID register is not always necessary, but we included it in this instance of the rule. The second

part of the constraint states that the detect unit should be present if and only if the stall unit is

present:

IF1StID � IDDetIF1

The final part of the constraint involves the selector unit. There could be multiple selector

units in the pipeline, but each is associated with a particular piece of stall or kill hardware. The

selection unit (IF3SelIDDetIF1) is present if and only if the stall unit (IF1StID) is:

IF1StID � IF3SelIDDetIF1

If the need for a value and its computation are separated by more than 2 stages, then the
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detect unit must stall the pipeline more than once. Our current implementation only handles

1-cycle stalls, but by inserting different detect units we could accomodate multiple cycle stalls.

We assume that stall situations can be detected after the fetch unit. If stall situations can only

be detected after the instructions have been decoded, then we would need to alter our rule or add

another rule to ensure that the detect unit is placed in the correct location.

2.5.3 Branching Rule: Rule 5

Instructions in the shadow of a mispredicted branch must be killed in the pipeline. Any branch

prediction scheme could be used with our method. In simulation, we have chosen to use the pre-

dict branch not taken scheme. When a conditional branch enters the pipeline, the fetch unit will

continue to fetch subsequent instructions as if the branch is not taken, until the branch condition

is checked and the branch address is calculated in the EX stage. If the branch is taken, then the

2 instructions that are currently in the IF and ID stages are killed. Rule 5 states that it must

fix the pc (“fixpc”). This means that if the branch is taken, then the instruction containing the

branch target address (the new pc) must be sent to the fetch unit. This instruction passes through

a delay and a selector unit, before reaching the IF3 unit. The selector acts as a switch and is

needed to choose the appropriate pc to use when there are multiple sources of the next pc value.

An example instance of a 2-cycle kill (a kill that affects instructions in 2 previous stages) in the

DLX, appears in Figure 2.12 and the instantiation of the rule is below:

Stage ��� � � � � � Stage � ��� � � �
� Needs ��� � �
'*)0� � Computes � ��� �('*)+� �


 1 3
� kill � 
 � � kill � � � � fixpc
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IF1 ID EX MEM1

MEM2
mem

IF1ID IDEX EXMEM1

IF3

pc

IF2

EXKillIF1

EXKillID

IF3SelEXKillIF1

Kill Selector

WB

Figure 2.12: Example Instance of Rule 5

In Figure 2.12, the delay EXMEM1 is necessary for this instance of the rule to occur. If

EXMEM1 is not present, but IF1ID and IDEX are, then the input to the kill units would come

from after MEM1 rather than EX.

Figure 2.12 describes our current implementation where the output of EX passes through

registers on 2 different wires. An alternative is to not introduce the extra delay on the line to

the selector unit and to have the input to the selector come from EXMEM1 instead. Then we

could remove the selector since both its inputs are the same, and have the wire go directly from

EXMEM1 to IF3.

The Boolean constraints for this instance of Rule 5 are:

IF1ID � IDEX � EXMEM1 � EXKillIF1

EXKillIF1 � EXKillID

EXKillIF1 � IF3SelEXKillIF1
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In this case, the 2 inputs to the selector are the same signal. In the future, we plan to eliminate

the selector and the second wire (from EXMEM into the selector) in situations where both inputs

to a selector are the same.

2.6 Combining Selector Units

The stall and kill rules both require the pc to be altered. Figure 2.13 shows how selector units

can be combined to determine which new pc should be used. In Figure 2.13 there are 2 selector

units. They work in combination to determine whether the next pc should be:

� the current pc resulting from a stall,

� the pc resulting from a branch, or

� the incremented pc.

A B

Kill

C

DetectStall Selector

Figure 2.13: Example of Multiple Selector Units
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In the selector, kill signals take precedence over stall signals. The next level of precedence

ensures that signals coming from later in the pipeline take priority over signals earlier in the

pipeline.

2.7 Application of Rules

Our hazard resolution rules are applied to an unpipelined circuit to determine the required places

to put hazard hardware. The rules are applied in a particular order, so that the added circuitry is

placed in the pipeline in the correct order of precedence. First, we generate the pipeline registers.

Then the rules are applied in the following order: Rule 4, Rule 5, and Rules 1-3. When hazard

resolution circuitry is placed in the pipeline between X and Y, it is placed immediately after X.

For example, when there is both a detect unit and a bypass in the same stage, we want the bypass

to come before the detect unit. This order is important, because we want the forwarded value

from the bypass to be received before the detect unit makes the decision to stall or not.

To apply a rule, we traverse the datapath and use a functional unit as an “anchor”. Each

functional unit takes a turn being the anchor, as we work from earlier to later along the datapath.

We illustrate how Rule 1 is applied, using ID as an anchor. The functional unit ID satisfies

the condition needs data regVal. Therefore, we traverse the remainder of the datapath (from EX

to WB) to determine whether or not the rest of the rule can be satisfied using the DD information.

The next unit that is reached is EX. The unit EX computes data, but does not write data. The

presence of IDEX ensures that ID and EX are 1 stage apart. The presence of EXMEM1 satisfies

the condition that no data is written by functional units later in the stage with EX, because when

EXMEM1 is present there are no functional units after EX in that stage. This pipeline configura-
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tion satisfying this instance of Rule 1 appears in Figure 2.14 and is expressed as follows:

Instance 1

Stage �����2� � � � Stage � ��� � 
 �
� Needs �����2���
	��������� � Computes � ��� ���
	�������
�
� � Stage � ��� � 
 � � Earlier � ��� � ��� � � � Writes � ��� ����	�������
���
� ��	������� �� '*)
� forward � ��� �����2���
	���������

IF1

IF2

MEM1

MEM2

WB

mem
IF3

pc

ID EX

rf

Figure 2.14: DLX Configurations Satisfying Instance 1 of Rule 1

Continuing along the datapath, MEM1 is the next functional unit reached. The MEM1 unit

also computes data. There are 2 pipeline registers between ID and MEM1. Rule 1 states that

the functional units involved in the needs-computes dependency (in this case ID and MEM1)

must be 1 stage apart. Therefore, exactly 1 of the 2 registers between ID and MEM1 (IDEX and

EXMEM1) must be present. The rule also states that data cannot be written by functional units

later in the stage with MEM1, so the MEM1WB register must be present to ensure that WB is in

the stage after MEM1. The pipeline configurations satisfying this instance of Rule 1 appear in
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Figure 2.15. This instance of the rule is expressed as follows:

Instance 2

Stage �����2� � � � Stage � ����� � � 
 �
� Needs �����2���
	��������� � Computes � ����� � ���
	��� ���
�
� � Stage � ��� � � � 
 � � Earlier � ����� � � ����� � � � � Writes � ����� � ���
	��� ���
���
� ��	������� �� '*)
� forward � ��� � � �����2���
	��� �����

IF1

IF2

MEM1

MEM2

WB

rf

mem

IF1

IF2

IF3

IF3

pc

pc

ID

ID EX

EX MEM1

MEM2

WB

mem

rf

Figure 2.15: DLX Configurations Satisfying Instance 2 of Rule 1

We continue traversing the datapath and reach the last functional unit, WB, which does not

compute data, so our application of Rule 1 using ID as an anchor is complete. Applying Rule 1

using the anchor ID is equivalent to applying Rule 1 to the entire pipeline, because ID is the only
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functional unit that needs data.

The constraints that are generated by applying Rule 1 to the DLX are:

� Instance 1

IDEX � EXMEM1 � EXBypID

� Instance 2

(IDEX � � EXMEM1 � � IDEX � EXMEM1) � MEM1WB � MEM1BypID

There are 3 more pipeline configurations of the DLX that satisfy Rule 1 when the pipeline

register IF1ID is present. These are similar to the three presented, except the stage numbers are

incremented by one.

2.8 Universal Pipeline

As we apply our rules to the pipeline, we generate a collection of hazard resolution circuitry that

may be present in the pipeline and a set of constraints describing the situations where that cir-

cuitry is needed. Rather than creating multiple pipeline configurations when applying our rules,

we create one circuit called the universal pipeline, which contains the hazard resolution circuitry

in every possible place that it could appear. The universal pipeline is the union of all possible

pipeline configurations. Figure 2.16 is the universal pipeline for the DLX. It has potentially ex-

traneous hazard resolution circuitry (depending on the configuration). Values for the Boolean

variables indicating the presence or absence of circuitry allow us to create a particular pipeline

configuration from the universal pipeline.
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IF1

IF3
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ID EX MEM1
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Stall Detect KillBypass Selector

Figure
2.16:

U
niversalPipeline
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2.9 DLX Pipeline Configurations

There are 4 pipeline registers that may be added to the DLX and one of these (MEM1WB) is

mandatory, because we are using a write-before-read register file. Therefore, there are

��

or 8

possible pipeline configurations, including the unpipelined configuration. Figures 2.17 to 2.23

contain all of these configurations (except the unpipelined DLX, which appears in Figure 2.2)

with all necessary hazard resolution circuitry based on our rules. The caption of each figure

contains a key that indicates which pipeline configuration is illustrated. For example, in Figure

2.17, there is a pipeline register between IF and ID, so the pipeline key is: IF � ID EX MEM.

These are all correct pipeline configurations, in that they have all hazards resolved to produce

correct output. All of these pipeline configurations are solutions to the CSP problem consisting

of the constraints generated by the application of our rules to the DLX. In the next chapter, we

discuss out method for determining which configuration is optimal for throughput given timing

information.

IDIF1 EX

MEM2

MEM1

mem

rf

WB

IF3

pc

IF2

Figure 2.17: DLX Configuration 1 (IF � ID EX MEM)
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IDIF1 EX

MEM2

MEM1

mem

rf

WB

IF3

pc

IF2

Figure 2.18: DLX Configuration 2 (IF ID � EX MEM)

IDIF1 EX

MEM2

MEM1

mem

rf

WB

IF3

pc

IF2

Figure 2.19: DLX Configuration 3 (IF ID EX � MEM)
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IDIF1 EX

MEM2

MEM1

mem

rf

WB

IF3

pc

IF2

Figure 2.20: DLX Configuration 4 (IF � ID � EX MEM)

IDIF1 EX

MEM2

MEM1

mem

rf

WB

IF3

pc

IF2

Figure 2.21: DLX Configuration 5 (IF � ID EX � MEM)
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IDIF1 EX

MEM2

MEM1

mem

rf

WB

IF3

pc

IF2

Figure 2.22: DLX Configuration 6 (IF ID � EX � MEM)

IDIF1 EX

MEM2

MEM1

mem

rf

WB

IF3

pc

IF2

Figure 2.23: DLX Configuration 7 (IF � ID � EX � MEM)
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2.10 Validation

In order to verify that our rules are correct and complete, we tested the DLX pipeline config-

urations using simulation. In simulation, the input to the pipeline configuration is a program,

which is a list of instructions. Simulation allows us to “execute” our instructions and examine

the results to ensure that they are as expected. The goal is to match the output of our pipelined

configurations with that of the unpipelined processor.

Simulation was used to debug our rules to ensure the necessary hardware was placed in the

correct location for all pipeline configurations. We took a systematic approach and tested an

instance of each of the known hazard situations on all of the pipeline configurations generated

by our method. In Chapter 5, we discuss future work of formally verifying the rules.

2.11 Summary

We have presented 5 rules for hazard resolution. These rules are based on the Data Dependency

(DD) information, which is a description of the data that a functional unit computes, writes or

needs. The rules are also dependent on the grouping of the functional units into stages and the

distance between pipeline stages.

The pipeline rules are applied to yield a set of constraints, which describe all of the situations

in which hazard hardware is required. The constraints can then be passed to a SAT solver and the

resulting solution is an instantiation of the variables, which describes the presence or absence of

hazard resolution circuitry. A solution is one possible configuration of the pipeline.
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Chapter 3

Throughput Optimization

In this thesis, we provide an automated method of finding the optimal pipeline configuration (in

terms of throughput) by examining every configuration. The process starts with an unpipelined

datapath and a description of the functional units, and produces the optimal pipeline. We add

hazard detection and resolution hardware as needed, and take the additional hardware into ac-

count in our clock period and throughput calculations. This chapter describes our approach to

throughput optimization.

3.1 User Input

The layout of the circuit is provided by the user as a textual description of a dataflow diagram.

A unique name for each functional unit is needed, along with its previous (parent) and successor

(child) nodes. The user must also provide any non-pipeline registers, such as the register rep-

resenting the register file in the ISA state. The user may also specify that a particular pipeline

register need always be present.
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There are 2 types of paths in the dataflow diagram: instruction and non-instruction. An in-

struction path is 1 or more wires along which instructions travel. An example of a non-instruction

path is a wire carrying the register file. It is necessary to distinguish between the 2 types of

paths, because non-instruction paths should not be pipelined. If 2 units are connected by a non-

instruction path, then they are considered to be a single functional unit that should not be further

decomposed.

Figure 3.1 is the user input for the DLX. Each line represents a different component (func-

tional unit or register). The first word on a line is the name of the component and the second word

is its type. “PREV:” and “SUCC:” are keywords (all words followed by a colon are keywords)

and they are followed by the names of the child and parent nodes of the component, respectively.

An “(I)” is used to indicate that the path carries an instruction. For example, line 2 of Figure

3.1 states that the ID unit is a successor of the IF1 unit. The “(I)” after ID means that the wire

between IF1 and ID is an instruction path. The input and output of the circuit are also specified

by the user.

To optimize the pipeline, we need the timing cost of each functional unit. Timing cost in-

formation is also needed for pipeline registers and for hazard resolution circuitry. Sample tim-

ing information for the DLX appears in Figure 3.2. The number of inputs (arguments) to each

functional unit is also included. This information is used for generating the data structure and

functional descriptions of the units (discussed later in this section). The “HAZTIMING” section

contains the cost of each type of hazard resolution circuitry.

To resolve hazards we need the Data Dependency information for the functional units, which

was described in Chapter 2. Figure 3.3 contains the DD information for the DLX (previously

seen in Figure 2.3 on page 29).

The descriptions of the circuit layout, the timing information and the DD information are all
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CIRCUIT:
IF1 FUNC PREV: IF3 SUCC: ID (I)
PC REG PREV: IF2 SUCC: IF3
IF2 FUNC PREV: IF3 SUCC: PC
IF3 FUNC PREV: PC, MEMWB SUCC: IF1, IF2 
ID FUNC PREV: IF1 (I), WB SUCC: EX (I)
WB FUNC PREV: MEMWB (I), RFREG SUCC: RFREG, ID
RFREG REG PREV: WB SUCC: WB
EX FUNC PREV: ID (I) SUCC: MEM1 (I), MEM2 (I) 
MEM1 FUNC PREV: EX (I), MEMREG SUCC: MEMWB (I)
MEM2 FUNC PREV: EX (I), MEMREG SUCC: MEMREG
MEMREG REG PREV: MEM2 SUCC: MEM1, MEM2 
MEMWB REG PREV: MEM1 (I) SUCC: IF3, WB (I), OUT (I)

INPUT:
IF1

OUTPUT:
MEM1WB

Figure 3.1: DLX Circuit Description
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TIMING:
IF1 ARGS: 2 TIME: 25
IF2 ARGS: 1 TIME: 20
IF3 ARGS: 2 TIME: 25
ID ARGS: 2 TIME: 30
EX ARGS: 1 TIME: 35
MEM1 ARGS: 2 TIME: 40
MEM2 ARGS: 2 TIME: 35
WB ARGS: 2 TIME: 19

HAZTIMING:
DELAY: 3
BYP: 3
STALL: 2
DETECT: 2
KILL: 2

Figure 3.2: DLX Timing Description

DD:
Needs(IF3, pc)
Needs(ID, regVal)
Computes (ID, pc)
Computes(EX, regVal) 
Computes (EX, pc)
Computes(MEM1, regVal)
Writes(WB, regVal)

Figure 3.3: DLX DD Information
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input to our tool through a text file. We chose this input format for ease of implementation. In

the future, a format more compatible with existing tools could be used.

3.2 Data Structures

We used the functional programming language ML [25] to implement our optimization process.

The input is parsed using mosmllex and mosmlyacc [25, 18], and a data structure representing the

circuit and a functional interpretation of the circuit (described in the next section) is created. We

have designed a graph data type consisting of nodes that store information including the name

of a component, a list of previous nodes, a list of successor nodes and a “visited” flag (used

for traversing the data structure). A node is also categorized as either a functional unit, register,

bypass, kill, stall, detect or selector. Knowing the type of node is necessary for manipulating the

circuit and adding hardware (pipeline registers and hazard resolution circuitry). Before creating

our own data type, we investigated existing types to determine if there was a suitable match. In

our data structure, each node in the graph (circuit) can have multiple children and parents, and

we felt that using a data type that was designed specifically for our problem would be the best

approach.

Once the input is parsed and the data structure is created, we traverse the data structure and

apply the rules to all possible configurations. The output is:

� the universal pipeline, and

� a set of constraints describing situations that required hazard circuitry.

The constraints are then converted to conjunctive normal form (CNF), which is a Boolean

expression that contains only the logical operators and ( � ), or ( � ) and not ( � ). The CNF expres-
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sion is a conjunction of disjunctions of literals. Once the constraints are in CNF, they are input

to the SAT solver SATO [29]. SATO returns an instantiation of the variables that satisfies all of

the constraints (if a solution exists). The connection from ML to SATO was made possible using

modified portions of Gordon’s HolSatLib [10] and the DIMACS graph format [1].

3.3 Universal Pipeline Code

Before introducing the method that we used to calculate the clock period, we must first discuss

the universal pipeline code. Besides the internal data structure, the textual input is also used

to create an ML function representing the universal pipeline, which is the union of all possible

pipeline configurations. A portion of universal pipeline code for the DLX is in Figure 3.4.

We represent a circuit using mutually-recursive functions. Within the let statement, each line

starting with “fun” or “and” describes a signal, which is the output of a functional unit, pipeline

register or hazard resolution hardware. The input to the pipeline, INP, is a program that consists

of 1 or more instructions.

In simulation, the data manipulated by the circuit is a stream (list) of values. The lift func-

tions apply combinational functions to the element of a stream. The input to a pipeline register

(delayPar) is a stream and the output is the input stream shifted by 1 to represent the stream in

the next clock cycle. All signals are functions of units so that we can delay the computation of

infinite lists in a functional language with eager evaluation [24].

The Boolean variables used in the constraints that represent the presence or absence of com-

ponents, are used as the conditions of if statements in the universal pipeline code. For example,

if the Boolean variable !IFIDbv is set to true (in a given SAT solution), then there will be a

pipeline register (delay) between IF and ID. If it is set to false, then the output of that function is

61



one of the inputs, making it equivalent to a wire with no cost. Therefore, given the values for the

Boolean variables, we can create a particular pipeline configuration for a circuit.

In order to test our method using simulation, the universal pipeline code is designed using

an existing library of functions that simulate the tasks that components perform. For example,

library components include an ALU, a pipeline register, and a multiplexer (MUX). Our library

also includes the functional units of the DLX.

3.4 Reinterpretation

Reinterpretation [22] is used to calculate the clock period. Reinterpretation determines the clock

period of the circuit using alternate definitions of the functions of the various pipeline compo-

nents. This allows us to use the same description of the circuit (the universal pipeline code) for

simulation, visualization, verification and timing analysis.

We now explain the concept of reinterpretation through an example using the DLX. The

simulation interpretation defines the components in terms of the tasks that they perform. For

example, the simulation interpretation of the ID unit, as well as the other definitions it relies on,

is in Figure 3.5. Instructions flowing through the circuit are represented using a parcel data type

as a record-like ML structure. The register file is a list of integers. There are two inputs to the

ID function: the instruction (INP) and the register file (rf ). The ID function reads the values of

the two source registers from the register file and outputs the instruction containing these source

values.

To determine the clock period we can use an alternative interpretation. Instead of considering

what the functional units do, the units are defined in terms of how long it takes to perform the

tasks. In this case, timing costs runs along the wires, not instructions. Each function is equal
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fun pipe INP = 
   let 
      fun IF1 () = lift2 IF1FUNC IMEM IF3  ()
      and IMEM () = delayPar "IMEM" initPar IMEM ()
      and PC () = delayPar "PC" initPar IF2
      and IF2 () = lift1 IF2FUNC IF3  ()
      and IF3 () = lift2 IF3FUNC PC SelDEL  ()
      and ID () = lift2 IDFUNC IF1ID RFREG  ()
      and WB () = lift2 WBFUNC MEMWB RFREG  ()
      and IF1ID () = 
            if !IF1IDbv 
              then (delayPar "IF1ID" initPar IF1 ()) 
            else (IF1 ())
      and IF1StID () = 
            if !IF1StIDbv 
              then (lift3 Stall IF1KillID IF1ID IDDetIF1 ())
            else (IF1KillID ())
      and IDDetIF1 () = 
            if !IDDetIF1bv
              then (detect IF1ID ()) 
            else (IDSTEX  ())
      and IF1KillID () = 
            if !IF1KillIDbv 
              then (lift2 kill IF1KillEX IDDetIF1 ()) 
            else (EXKillIF1 ())
    
      ...

      and EXBYPID () = 
            if !EXBYPIDbv 
              then (lift2 bypassPar MEM1BypID EX  ()) 
            else (MEM1BypID ())      
   in 
      MEM1WB
   end;

Figure 3.4: DLX Universal Pipeline Code
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fun ssrc1 (Parcel (_,_,_,(src1,_),_,_)) = src1;

fun ssrc2 (Parcel (_,_,_,(src2,_),_,_)) = src2;

fun sdata1 (Parcel (_,_,_,(_,data1),_,_)) = data1;

fun read rf r = List.nth(rf, r);

fun readRf rf r = read rf (pos r); 

fun mux a b c = if a then b else c;

fun replaceData1 (Parcel (v,pc,opc,(src1,_),x1,x2)) data1 =
  Parcel (v,pc,opc,(src1,data1),x1,x2);

fun replaceData2 (Parcel (v,pc,opc,x1,(src2,_),x2)) data2 =
  Parcel (v,pc,opc,x1,(src2,data2),x2);

fun ID inp rf = 
  let
    fun readRegs i rf =
      let
        val v1 = readRf rf (ssrc1 i)
        and v2 = mux (ssrc2 i = RImm)
                     (sdata2 i)
                     (readRf rf (src2 i))
      in
        replaceData2 (replaceData1 i v1) v2
      end 
    fun out () = lift2 readRegs inp rf ()
  in
    out
  end;

Figure 3.5: Functional Interpretation of ID
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to the maximum value of its inputs plus the time it takes to perform that function (a constant

provided by the user). The inputs to the functional unit are the maximum times that it has taken

the inputs to reach this point in the circuit, since the last register. Figure 3.6 contains the timing

interpretation for the ID unit, where TIME ID is a constant representing the time cost of the ID

unit.

fun ID inp newrf = Int.max(inp, newrf) + TIME_ID;

Figure 3.6: Timing Interpretation of ID

A
10

B
15

3
inp

Segment 1
Segment

2

Segment 3

fun pipe inp =
  let
    fun A () = AFUNC inp ()
    and byp () = bypass A B ()
    and AB () = delayPar "AB" initPar byp ()
    and B () = BFUNC AB ()
    and out ()= delayPar "out" initPar B ()
  in
    out
  end;

out
AB

Figure 3.7: Example of Reinterpretation

Figure 3.7 contains a small example of using reinterpretation to calculate clock period. The

input to the circuit is 0 time units. Reinterpretation uses the definitions of the functional units to
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calculate the costs of the stages. For example, in determining the cost of “Segment 1”, the costs

of A and a bypass are summed. The key to the process is the delay units. The delay unit signifies

the end of the segment and it compares the cost of the segment with the current maximum clock

period. The delay then starts calculating the cost of the next segment at 0 time units. Another role

of the delay is to break loops in the pipeline. Each delay is assigned a unique name, and once a

delay is traversed that name is stored, so that it will not be visited again. For example, “Segment

2” begins at delay AB and follows a loop back to AB, at which point it ends. The process will not

start searching a new path from delay AB, because that delay has already been visited.

An alternative method for calculating the clock period is to traverse our ML data structure

and calculate the costs of each stage. Our data structure is quite complex, and the output from a

node might be input to as many as 6 other nodes, so reinterpretation is a much simpler option.

3.5 Optimization

Our goal is to optimize the throughput, which is dependent on the clock period. In a pipeline

without hazards that cause a delay in processing, the throughput calculation is the inverse of

the clock period. Throughput has to take into account the presence of stalls and kills, because

they will delay the processing of instructions. Hazards are categorized based on the number of

cycles that they delay (stall or kill) the pipeline. The user must provide the information about the

frequency of instructions. For example, a load instruction immediately followed by a dependent

ALU instruction will result in a pipeline stall, so the user must provide information about how

often this instruction pair occurs. The throughput will always be less than or equal to 1, because

only 1 instruction is fetched each clock cycle. The formula for throughput is:
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1� %no-delay ��� cp � 2 � %(1-cycle-delay) � cp ������� � (n+1) � %(n-cycle-delays) � cp

cp clock period

%no-delay percentage without delays

%1-cycle-delay percentage that result in a one cycle delay

%n-cycle-delays percentage that result in an 	 cycle delay

In a pipeline that has stall hardware that causes a 1-cycle delay in processing, the clock pe-

riod calculation must take that into account. For example, if load instructions are following by

dependent ALU instructions 7% of the time, then a 1-cycle stall occurs 7% of the time, so the

throughput calculation becomes:

1� %no-delay �
� cp � 2*%(1-cycle-delay) � cp
� 1� 0.93 ��� cp � 2*(0.07) � cp

Once the throughput has been calculated for a given pipeline configuration, a constraint stat-

ing that the current solution is not allowed is added to the current set of constraints. We iterate

through the process of finding solutions and calculating throughput until there is no solution to

the SAT problem (i.e., we have examined every possible configuration). The result of the process

is an instantiation of the universal pipeline, which is optimal for throughput.

3.6 Summary

The optimization process starts with user input, which is provided in the form of a text file.

The user provides a description of the dataflow of the circuit, timing information for functional
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units and hazard hardware, and DD information for the circuit. The text file is parsed and an

ML internal data structure representing the circuit is created. The data structure is traversed and

the five hazard hardware placement rules are applied to generate a set of constraints, and the

universal pipeline code.

Those constraints are passed to a SAT solver, which returns solutions that are pipeline con-

figurations. A solution from the SAT solver provides values for the Boolean variables, which

are applied to the universal pipeline to generate a particular pipeline configuration. The clock

period is calculated using reinterpretation and the throughput is found for each configuration.

The output of the process is the pipeline configuration that is optimal for throughput.
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Chapter 4

Case Studies

To demonstrate our optimization method, we have performed 2 case studies. The first case study

involved applying our method to Hennessy and Patterson’s DLX pipeline. The DLX was the test

pipeline that we used to develop our optimization method. The second case study was performed

on a multiply accumulator (MAC), which is unrelated to the DLX and was not considered when

developing our technique. The timing costs for hazard resolution circuitry appear in Table 4.1.

These costs are used in both case studies.

4.1 DLX

The DLX is used by Hennessy and Patterson to illustrate pipelining and pipeline hazards [11].

This academic pipeline is linear and composed of only 5 stages, so at first glance it seems that

pipelining it would be a trivial task. We use our optimization method to show that full pipelining

is not always optimal and making relatively minor adjustments to the functional unit costs can

change which pipeline configuration is optimal.
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Hardware Cost

Pipeline Register 3

Bypass 2

Stall 2

Detect 2

Kill 2

Selector 3

Table 4.1: Hazard Resolution Circuitry Timing Cost

There are 8 possible pipeline configurations for the DLX. We experimented with different

costs to see which pipeline configuration was optimal. Running our implementation to generate

an optimal pipeline configuration takes less than 15 seconds on a Pentium III Xeon server. Fig-

ures 4.1 to 4.3 contain 3 optimal pipeline configurations based on 3 different sets of functional

unit costs. From these results, we see that changing the cost of a single functional unit, EX, by as

little as 1 time unit can result in a different optimal pipeline configuration. Figure 4.4 contains

the ML function solution that corresponds with the pipeline configuration diagram in Figure 4.1.

Figures 4.5 to 4.8 contain 4 more pipeline configurations with their timing cost, clock period

and throughput. By comparing the pipeline configurations in Figures 4.7 and 4.8, we see that a

smaller clock period does not necessary correlate to higher throughput. The pipeline in Figure

4.7 has a clock period of 118 and its throughput (0.00722) is higher than the throughput of the

pipeline in Figure 4.8 (0.00707), which has a clock period of 108.
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ID
30

IF1
10

EX
52

MEM2
3

MEM1
11

mem

rf

WB
10

IF3
20

pc

IF2
13

Clock Period = 66
Throughput = 0.01291

Figure 4.1: DLX Results: Example 1 (IF � ID � EX MEM)

ID
30

IF1
10

EX
53

MEM2
3

MEM1
11

mem

rf

WB
10

IF3
20

pc

IF2
13

Clock Period = 70
Throughput = 0.01280

Figure 4.2: DLX Results: Example 2 (IF ID � EX MEM)
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ID
30

IF1
10

EX
440

MEM2
3

MEM1
11

mem

rf

WB
10

IF3
20

pc

IF2
13

Clock Period = 505
Throughput = 0.00198

Figure 4.3: DLX Result: Example 3 (IF ID EX � MEM)

4.2 MAC: Multiply Accumulator

For our second case study, we pipeline a simple multiply accumulator (MAC) [23]. A MAC is

used to perform 3 operations:

� A = B + C

� A = B � C

� A = B + (C � D)

The unpipelined MAC appears in Figure 4.9. Wires representing the input of the program

are included in the figure for clarification. The MAC is composed of 4 functional units, but it

could be further decomposed. The ADD unit reads the value of 2 registers from the register file

and adds them. The MUL unit reads 2 register values from the register file and multiplies them.

The RND unit performs normalization, rounding, and renormalization for floating point numbers.

Finally, the WB unit writes the result to the floating-point register file.
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fun pipe INP = 
   let 
      fun IF1 () = lift1 IF1FUNC IF3  ()
      and PC () = delayPar "PC" initPar IF2 ()
      and IF2 () = lift1 IF2FUNC IF3  ()
      and IF3 () = lift2 IF3FUNC PC IF1KillIDSelIF1  ()
      and ID () = lift2 IDFUNC IF1DELID WB  ()
      and WB () = lift2 WBFUNC MEM1WB RFREG  ()
      and RFREG () = delayPar "RFREG" initPar WB ()
      and EX () = lift1 EXFUNC IDEX  ()
      and MEM1 () = lift2 MEM1FUNC EXMEM1 MEMREG  ()
      and MEM2 () = lift2 MEM2FUNC EXMEM1 MEMREG  ()
      and MEMREG () = delayPar "MEMREG" initPar MEM2 ()
      and MEM1WB () = delayPar "MEM1WB" initPar MEM1 ()
      and IF1DELID () = delayPar "IF1ID" initPar MEM1KillIF1 ()
      and IDEX () = delayPar "IDEX" initPar MEM1KillID ()
      and MEM1KillIF1 () = lift2 kill IF1 MEM1 ()
      and MEM1KillID () = lift2 kill MEM1BypID MEM1 ()
      and MEM1BypID () = lift2 bypassPar ID MEM1  ()
      and IF1KillIDSelIF1 () = lift2 selector MEM1KillIF1DEL MEMDELWBOUT ()
      and MEM1KillIF1DEL () = delayPar "MEM1KillIF1DEL" initPar MEM1 ()
   in 
      MEM1WB
   end;

Figure
4.4:

E
xam

ple
Solution
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ID
15

IF1
15

EX
60

MEM2
15

MEM1
30

mem

rf

WB
15

IF3
15

pc

IF2
15

Clock Period = 97
Throughput = 0.00924

Figure 4.5: DLX Result: Example 4 (IF ID � EX MEM)
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MEM1
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WB
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IF2
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Clock Period = 37
Throughput = 0.02302

Figure 4.6: DLX Result: Example 5 (IF � ID � EX MEM)
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Clock Period = 118
Throughput = 0.00722

Figure 4.7: DLX Result: Example 6 (IF � ID � EX MEM)
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Clock Period = 108
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Figure 4.8: DLX Result: Example 7 (IF � ID � EX � MEM)
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MUL

ADD

RND WB

rf

Figure 4.9: Unpipelined MAC

This pipeline has 2 structural hazard situations. There may be contention for the ADD unit

from the inputs to the unit. The other structural hazard occurs when both ADD and MUL pass

data to the RND unit. Our rules do not resolve structural hazards. For the purpose of this case

study, we assume that a compiler orders instructions so that no structural hazards occur.

Figure 4.10 contains the textual circuit description and the DD information for the MAC.

This pipeline only has Needs-Computes dependencies for regVal. The only hazard resolution

hardware needed is bypasses.

There are 3 possible locations for pipeline registers in the MAC. The RNDWB register is

always present, because we are using a write-before-read register file. There are 4 pipeline con-

figurations of the MAC, including the unpipelined circuit. An interesting feature of this problem,

is that the universal pipeline is the same as the fully pipelined MAC. The MAC configurations

appear in Figures 4.11 to 4.13.

We experimented with timing costs for the functional units to determine which pipeline con-

figurations would be optimal. The resulting pipelines are in Figures 4.14 to 4.16. There are only

2 pieces of hazard resolution hardware that may be required, so the fully pipelined configuration

is often the best. In Figure 4.14, the cost of the functional units is only 2, and the bypass hardware

costs 3 (Table 4.1), but the optimal configuration is still fully pipelined. When the cost of the
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CIRCUIT:
ADD FUNC PREV: WB, INP (I), MUL (I) SUCC: RND (I)
MUL FUNC PREV: WB, INP (I) SUCC: ADD (I), RND (I)
RND FUNC PREV: ADD (I), MUL (I) SUCC: RNDDELWB (I)
RNDDELWB REG PREV: RND (I) SUCC: WB (I), OUT (I)
WB FUNC PREV: RNDDELWB (I) SUCC: MUL, ADD
RF REG PREV: WB SUCC: WB

DD:
ADD Needs regVal
MUL Needs regVal
RND Computes regVal
WB WritesBack regVal

INPUT:
ADD, MUL

OUTPUT:
WB

Figure 4.10: MAC Input (without timing information)

MUL

ADD

RND WB

rf

Figure 4.11: MAC Configuration 1
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MUL

ADD

RND WB

rf

Figure 4.12: MAC Configuration 2

MUL

ADD

RND WB

rf

Figure 4.13: MAC Configuration 3
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functional units is reduced to 1 (Figure 4.15), then a non-fully pipelined configuration becomes

optimal. In Figure 4.16, the MUL unit is much more expensive than the other functional units,

and a pipeline configuration with only 2 pipeline registers is optimal.

MUL
2

ADD
2

RND
2

WB
2

rf

Clock Period = 15
Throughput = 0.06667

Figure 4.14: MAC Results: Example 1

MUL
1

ADD
1

RND
1

WB
1

rf

Clock Period = 7
Throughput = 0.14286

Figure 4.15: MAC Results: Example 2
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Figure 4.16: MAC Results: Example 3
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RND
5

WB
5

rf

Clock Period = 20
Throughput = 0.05

Figure 4.17: MAC Results: Example 4
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4.3 Summary

The DLX and MAC were used to demonstrate the pipeline optimization process, and to show

the variety of pipeline configurations that can result. The resulting pipeline configurations for

the DLX are quite varied. We showed that changing the cost of a single functional unit by a

relatively small amount could affect which pipeline configuration is optimal. On the other hand,

the MAC optimal pipelines are much more consistent. In the MAC, there is very little hazard

hardware required, so the fully pipelined configuration often had optimal throughput.
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Chapter 5

Conclusion and Future Work

The main goal of our work is to pipeline a microprocessor optimally for throughput given a

dataflow decomposed into functional units, timing costs for each pipeline component, and data

dependency (DD) information. The partitioning of a pipeline into stages may cause hazard situa-

tions. The presence or absence of hazards changes the throughput calculation, making pipelining

a non-trivial task. This thesis presents a method for optimally pipelining a circuit for through-

put by adding the appropriate hazard circuitry to the pipeline automatically and adjusting the

throughput calculation accordingly.

5.1 Contributions

The four main contributions of this thesis are:

� the creation of the Data Description abstraction for characterizing hazard situations,

� the development of a set of generic rules for hazard resolution,
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� the instantiation of the rules to yield a SAT problem to which the solution is a pipeline

configuration, and

� the use of reinterpretation to calculate the clock period and throughput for determining an

optimal pipeline configuration.

The DD description level considers 3 types of data manipulation, namely needs, writes and

computes. Data dependencies occur when functional units, in the same or different stages, ma-

nipulate the same piece of data. Using this DD information, we have developed a set of generic

rules for the placement of hazard resolution circuitry. By working at a high level of description,

our method can be applied early in the design process.

Our five hazard resolution rules use the DD information to outline the circumstances where

there is a need for hazard resolution circuitry. Three rules handle the need for a bypass (forward-

ing logic). The fourth rule describes stall situations, which occur when the need for data and its

computation are 2 or more stages apart. The last rule introduces kill circuitry, which is needed to

resolve hazards caused by instructions that change the pc.

The rules are considered for all possible pipeline configurations and a set of Boolean con-

straints is generated. A universal pipeline is created by taking the union of all possible pipeline

configurations. A SAT solver is used to find a satisfying assignment of the variables represent-

ing the presence or absence of pipeline registers and hazard circuitry. The resulting solution is

a set of variable assignments, which represents a correct pipeline configuration. The universal

pipeline can then be instantiated with the variable values to yield that pipeline configuration.

Reinterpretation is used to calculate the clock period. This technique allows us to use the

same functional description of the circuit for simulation, visualization, verification and timing

analysis. The throughput calculation is automatically adjusted to account for hazard circuitry that
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delays the processing of instructions (stalls and kills). The throughput is calculated and compared

with the current maximum. A constraint stating that the current solution is not allowed is then

added to the current set of constraints and the SAT solver finds another solution. This process

continues until all solutions have been found by the SAT solver. The result is that the maximum

throughput has been calculated and the optimal pipeline configuration code is generated.

5.2 Case Studies

We performed case studies on the DLX and on a MAC. Optimal pipeline configurations were

found for these 2 circuits using particular timing information. We showed that a relatively small

change in the cost of a single functional unit could result in different optimal pipeline configu-

rations. We also showed an example of a pipeline with a lower clock period, which produced a

higher throughput than a second pipeline that had a higher clock period. These results were due

to the hazard resolution circuitry present. This demonstrates the complexity of the problem and

shows how something as seemingly simple as the DLX is still difficult to pipeline.

5.3 Limitations

There are several restrictions on the types of circuits that we can optimize. We do not handle

out-of-order execution of instructions. Out-of-order execution may introduce write-after-read or

write-after-write data hazards into the pipeline and we do not have rules to resolve these types of

data hazards.

We cannot apply Rules 4 and 5 to dataflows containing forks or joins because we do not have

rules that take into account instructions changing the pc and executing in parallel. The MAC
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case study is an example of the bypass rules being applied to a pipeline containing a fork and

join. Another limitation is that although our method handles data and control hazards, it does not

handle structural hazards.

We assume that writebacks occur at the beginning of the computation of the next step (i.e., we

have a write-before-read register file). Using a write-before-read register file is only a limitation

of our current implementation and it would be possible to implement rules for a read-after-write

register file.

5.4 Future Work

The next phase of our work is performing formal verification. We have used simulation to test

our rules, but we have not formally verified them. An advantage of using reinterpretation is that

we can also provide an interpretation suitable for verification. In the future, we plan to show that

our pipelines are correct using the Burch-Dill commuting diagram approach [13]. We can use

commuting diagrams to create a statement of correctness, which shows that a pipelined circuit

has the same behaviour as an unpipelined circuit. We can then use the Stanford Validity Checker

(SVC) to verify the statements of correctness [2]. Day et al [8] have already taken the approach

of using commuting diagrams with SVC to verify circuits written in the specification style we

use.

We would also like to verify the rules themselves. To do this, we would need a generic model

of how pipelines behave. We would then verify that any pipeline that satisfies our rules is correct.

Another idea for future work is developing hazard resolution rules for structural hazards.

Once the situations that cause hazards have been characterized, then duplicate hardware could

be placed in the pipeline to resolve them.
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Finally, we would like to investigate how our approach scales as we consider larger circuits

with many more functional units.
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