
Formal Verification of the A-7E Software

Requirements using Template Semantics

Eunsuk Kang Nancy A. Day

David R. Cheriton School of Computer Science
University of Waterloo

Waterloo, Ontario, Canada N2L 3G1
{ekang,nday}@uwaterloo.ca

Technical Report: CS-2006-35

September 2006

Abstract. Template semantics is a template-based approach to ease the
process of identifying the essential differences among model-based nota-
tions. In this approach, a template captures semantics that are common
among notations and allows users to specify only the distinctive features
of a notation. In this paper, we illustrate the method of describing re-
quirements in Software Cost Reduction (SCR) using the Metro toolkit,
which is the framework for the modelling and analysis of notations in
template semantics. Furthermore, we demonstrate the usage of Metro
to verify the A-7E software requirements and compare our verification
effort to an alternative method of requirements analysis, which does not
use template semantics.

1 Introduction

Requirement writers must be able to clearly understand the specification nota-
tions that they use and identify the differences among the semantics of these
notations. However, comparing different notations can be a difficult and time-
consuming process for users with limited expertise in the notations. In order to
ease this process, the researchers at the University of Waterloo have developed
a template-based approach to describe the semantics of model-based notations
[9]. In this approach, semantics that are common to model-based notations are
pre-defined in a template, and users specify only the distinctive features of a
notation as input parameters to the template.

The Metro toolkit [2] is an extensive set of tools developed to support the
modelling and analysis of software specifications in template semantics. Metro
includes tools that allow users to specify notation-specific semantics in a textual
format or using a graphical tool such as MagicDraw. In addition, the toolkit
currently provides translation from a template-based notation to the input lan-
guage of SMV. In effect, Metro is an unified environment under which a variety
of tools can be constructed for the analysis of requirements in template-based



2

notations. As a result, users of Metro do not need to create a separate translator
from a notation to the input language of an existing formal analysis tool.

In order to demonstrate the robustness of the Metro toolkit, we have chosen
to model the Software Requirements for the A-7E Aircraft [9] using template
semantics. The A-7E requirements were originally written in Software Cost Re-
duction (SCR) [6]. After mapping the SCR requirements to a template, we trans-
lated the specification in template semantics to an equivalent SMV model using
Metro Express [7], the translator to SMV. In comparison to previous case studies
that have been done on Metro, the A-7E requirements specification is the largest
in size. Therefore, the A-7E case study also serves as a test for the scalability of
the Metro toolkit.

Previously, Sreemani performed the direct translation of the A-7E require-
ments into an SMV model and verified the properties that had been specified
in the original requirements document [10]. Sreemani’s translator does not in-
volve template semantics. Since our template-based approach is geared toward
the generality of semantics, we expect a loss of efficiency in the analysis phase.
Thus, our SMV model and Sreemani’s model are equivalent in semantics, but
they significantly differ in size. A comparison between the performances of the
model checker on the two SMV models is an useful indicator on the trade-offs
between the expressiveness and the efficiency of template semantics.

The goal of this paper is to describe the steps that are involved in mapping
the A-7E SCR requirements to a specification in template semantics. Further-
more, we illustrate the translation from a template-semantics specification to an
SMV model using Express and discuss our verification effort in comparison to
Sreemani’s results.

In Section 2, we begin with brief introductions to the SCR specification no-
tation and template semantics. In Section 3, we provide a more detailed descrip-
tions of the main problem, the verification of the A-7E requirements specifica-
tion. Section 4 contains a summary of our solution to the problem, and Section
5 details the methods and the tools that were used to implement this solution.
We discuss the comparison of the two sets of verification results and evaluate our
success in Section 6. We conclude our work in Section 7, and provide an outline
of future work in Section 8.

2 Background Information

2.1 The SCR Specification Notation

The SCR notation describes a system specification as a collection of mathe-
matical functions that are represented as tables. A system in SCR consists of
one or more state machines, called mode classes, and in turn, each of these
mode classes contains one or more states, which are called modes. A variable
in a SCR specification may be either monitored or controlled. The value of
a monitored variable is set only by the environment, and that of a controlled
variable is modified by the system as output to the environment.



3

Furthermore, a SCR specification may contain any number of condition ta-
bles or event tables. A condition table is a tabular representation of case-based
assignments to variables; a case is determined by a condition on the current vari-
ables values. An entry in an event table modifies the value of the current mode for
a single mode class, depending on an event and optional enabling conditions. An
event is in form @X(cond), where X may be one of T or F. @T(cond) means that
the condition cond currently evaluates to false but is becoming true in the next
step. The syntax for optional enabling conditions is in form WHEN[enable cond].
An assignment to the mode in an event table entry can occur if and only if both
the event and enable cond for that entry evaluate to true.

2.2 Template Semantics

Template semantics is a parameterized approach to defining model-based no-
tations. A model in template semantics consists of one or more hierarchical
transition systems (HTSs). An HTS contains a set of hierarchical control states,
a set of transitions between the states, a set of events, and a set of variables.
Each transition has the form,

< src, trig ev, cond, act, dest, prty >

where src and dest are the transition’s source and destination states, respectively;
trig ev is zero or more triggering events; cond is a predicate over variables; act
is zero or more actions that assign new values to some variables and generate
events; and prty is the priority of the transition.

The transition semantics of an HTS is defined as a snapshot relation.
A snapshot is an observable point in an HTS execution, containing the sets
of current states, current variable values, current internal events, and current
outputs that are communicated to other concurrent HTSs. A step in template
semantics corresponds to the transition of an HTS from one snapshot to another.
A micro-step is the execution of exactly one transition by an HTS. On contrary,
a macro-step is a sequence of micro-steps that begins with new input from
the environment and terminates when no more transition is enabled. When the
system reaches the end of a macro-step, we refer to the system as being stable.

When a model in template semantics contains two or more HTSs, they are
composed into a hierarchical binary tree with each leaf node representing a sin-
gle HTS, and each non-leaf node representing a composition operator. Currently,
Metro supports the following 7 composition operators for the execution seman-
tics of concurrent HTSs: parallel, interleaving, environmental synchronization,
rendezvous synchronization, sequence, choice, and interrupt. A more detailed
description of the composition operators can be found in [8].

3 Problem Description

The software requirements for the A-7E aircraft were written in the SCR nota-
tion by researchers at the U.S. Naval Research Laboratory in 1978. The version



4

of the requirements document discussed in this paper dates back to 1988 [1],
and is equivalent to the version that was used for Sreemani’s work. The SCR
specification consists of three mode classes with an event table for each of them:

• Alignment/Navigation/Test mode class
• Navigation Update mode class
• Weapon Delivery mode class

A more detailed presentation of the mode classes can be found in [10]. The spec-
ification contains 84 variables and 703 possible transitions in the three event
tables. Each transition depends on the current mode value and the current vari-
able values. Since the specification does not have any condition tables, we assume
that all of the variables are modified by the environment.

Sreemani identified five properties from the A-7E requirements document
and verified them using model checking. These properties define the allowable
combinations of three mode values in the system at a time. For the purpose
of comparing our verification effort to Sreemani’s, we have chosen to verify the
same set of properties using the model checking capabilities in Cadence SMV.

4 Overview of Solution

In our approach to translating the SCR specification into template semantics,
we map each mode class to an HTS with a single control state. An entry in the
SCR event table for the mode class corresponds to a self-looping transition from
this control state. The event in a SCR table entry maps to the triggering event
in a state transition, and the entry’s WHEN conditions correspond to the enabling
conditions in the transition. Since a table in a SCR specification is complete by
definition, all state transitions in an HTS have the explicit priority of 0, with an
exception for an idle transition, whose triggering event is empty, whose condition
is the truth value T, and whose explicit priority is 1. The source state and the
destination state in an HTS’s transitions are the same since all transitions are
self-looping. Finally, an action in a transition assigns a new value to variable
Mode, which represents the value of the current mode for the mode class that is
represented by an HTS. For example, the following is an excerpt from the event
table for the Navigation Update mode class:

MODECLASS NavigationUpdate

MODE RadarUpdate

...

MapUpdate @T(update flyover) WHEN[station selected]

...

This table entry represents the change of the mode from RadarUpdate to
MapUpdate when the variable update flyover is becoming true in the next step
and station selected evaluates to true at the beginning of the assignment.
This table entry translates to the following state transition in the Navigation



5

Update HTS:

<NavigationUpdate, @T(update flyover), Mode = RadarUpdate &

station selected, [Mode := MapUpdate], NavigationUpdate, 0>

where NavigationUpdate represents the sole control state in the HTS.
The composition operator for the SCR notation is functional composition;

when there are more than one HTSs with an enabled transition, only one of them
can execute at a micro-step. The order of the execution of the HTSs depends
on variable dependencies among the event tables, and can be calculated offline
using def-use analysis. Currently, the Metro toolkit does not support functional
composition. However, in a previous case study on Metro, researchers have used
an extra variable, called order, to indicate which one of the HTSs may execute
at the current micro-step. An expression involving order is conjuncted with
enabling conditions in each transition. At the end of a micro-step, the value of
order is updated so that another HTS can execute in the next micro-step. The
sequence of updates for order depends on the pre-determined order of functional
composition among the event tables.

The A-7E model contains only event tables and thus, all variables are modi-
fied only by the environment. In this case, there exist no variable dependencies
between the tables, and the order of the execution of the tables can be assigned
non-deterministically. We have modelled the composition operator of the A-7E
model in Metro using a modified version of interleaving composition, with the
variable order, to ensure that only one table execute at a micro-step, and that
all tables execute exactly once during a macro-step. Furthermore, since SCR
tables are complete by definition, at least one transition is enabled in each table
at all times. In template semantics, the system reaches the end of a macro-step
only when no transition is enabled. We model a SCR snapshot instance without
enabled transitions by setting order to a value that does not correspond to any
of the HTSs’ execution priorities. At the beginning of a macro-step, order is
reset so that the HTS at the top of the ordering can execute.

5 Methods and Tools Used

5.1 SCR2HOL : Translator from SCR to Template Semantics

The first step in our A-7E case study is to translate the A-7E SCR specification
into a template-semantics specification in Metro. The input language of Metro is
the higher-order logic used in the HOL theorem prover [5], which was constructed
on top of Moscow ML. In order to automate the process of the translation from
SCR to HOL, we have implemented a tool called SCR2HOL. The input parser
used in SCR2HOL is largely based on Sreemani’s translator to SMV since both
of the programs process the same format of SCR specifications.

For most parts, translation from SCR to template semantics is purely syn-
tactical. SCR2HOL directly maps each table to a single HTS and table entries



6

to corresponding state transitions, as described in Section 4. The user needs to
specify only the order in which the tables in the input SCR specification should
execute after they are mapped to HTSs; this order can also be determined au-
tomatically using dataflow analysis, but SCR2HOL does not yet support this
feature. When the translation is complete, SCR2HOL produces a ML file that
can be directly inserted into the Metro toolkit for translation to SMV or further
analysis in HOL.

5.2 Express : Translator from Template Semantics to SMV

The second step in our case study is to translate the A-7E specification in tem-
plate semantics to an equivalent SMV model. Metro Express, written by Lu, is
a translator that takes a template-semantics model as an input and produces
an SMV file for formal analysis in tools such as Cadence SMV and NuSMV[3].
Besides the input specification, Express also requires the user to specify a set of
template parameters that describe the characteristics of the original notation.

One problem that we encountered while using Express was that prior to this
case study, Express had not supported triggering events of type @T(cond) or
@F(cond). We have chosen to abstract each of these SCR events to a boolean
variable and assign a value to it at the end of a macro-step, depending on the
current value of cond and the new input from the environment. For example,
the following SMV code illustrates the definition of the variable NT Doppler up,
which corresponds to the SCR event @T(Doppler up):

DEFINE

NT Doppler up := case

stable : ss.AV.Doppler up = 0 & I.var.Dopper up = 1;

1 : ss.AV.NT Doppler up;

esac;

where ss.AV indicates the variable values at the current snapshot, and I.var

refers to a new set of values for the environment variables. Any condition in-
side @T or @F must consist of only monitored variables. When stable evalu-
ates to true, indicating that the system has reached the end of a macro-step,
NT Doppler up is assigned T if and only if Doppler up is currently false but is
becoming true due to an update from the environment. If the system has not
yet reached the end of a micro-step, we do not modify the value of Doppler up.

Table 1 shows the comparison between the measurements of Sreemani’s SMV
model and the model that was generated by Express. The measurements in the
table are meant to provide only a rough estimate of the complexity of the mod-
els. More specifically, we believe that the actual complexity of Sreemani’s model
is greater than what is represented by the number of lines due to the fact that
this model contains large TRANS statements that cannot be further broken down
into smaller TRANS statements. The Express model contains nearly 4 times as
many variables as Sreemani’s model does. There are a number of reasons that
account for the increased number of variables in the Express model. First of all,



7

during translation, Express creates a duplicate of each variable that is desig-
nated as an environmental variable (i.e., a monitored variable in SCR). Since all
of the variables in the A-7E model are of type monitored, the SMV model gen-
erated from Express will contain at least twice as many variables as the original
SCR specification. Secondly, for each of @T or @F event in the SCR specification,
Metro outputs a boolean variable that represents the abstraction of the event.
Lastly, depending on template-semantics parameters for a particular notation,
an Express-generated model contains other auxiliary variables that are used to
model snapshot elements of an HTS.

Measurement Sreemani’s Model Express Model
File size (byte) 258K 617K
Number of lines 1246 16607
Number of variables 65 231
Number of DEFINE macros 0 2450

Table 1: Measurements of Sreemani’s SMV model and Express SMV model

Researchers at the University of Waterloo have come up with various sugges-
tions for reducing the number of variables in an Express-generated SMV model
[4]. One of the suggestions that is applicable to the A-7E model is representing
variable tran in each execute module using a DEFINE macro. Since our model
has 703 possible transitions in total, we expect that this optimization technique
significantly improve the verification performance; the effect of this optimization
is discussed in Section 6. Other optimizations, such as removing all of unneces-
sary duplicate variables in the SMV model, should be pursued as future work
on this case study.

6 Verification Effort

6.1 Properties

For this case study, we have chosen to verify the five properties that Sreemani
identified in her thesis [10]. It is important to note that the Express model
contains two sets of snapshot elements that can be used to specify a property:
pss and iss. pss refers to a snapshot at the beginning of a micro-step, and iss

represents a point in a macro-step after which elements of pss are modified by
the new input from the environment, I. Each instance of pss has corresponding
iss, but the modifications of variables take place if and only if the system is
stable. Therefore, iss should be used to specify properties at the macro-step
level, while pss may be used to describe system behaviours that occur at the
micro-step level.

For example, we specify the false property that the Weapon Delivery mode
class will take on the mode values AA Guns and Manrip at the same point in
future (Property 4 in Sreemani’s thesis) as follows:



8

EF(iss.AV.WeaponDelivery=AA Guns) &

EF(iss.AV.WeaponDelivery=Manrip) &

EF(iss.AV.WeaponDelivery=AA Guns & iss.AV.WeaponDelivery=Manrip)

Due to the space limit on the paper, we are not able to discuss the four other
properties in this section. A detailed description of all the properties can be
found in Sreemani’s thesis.

6.2 Evaluation

Originally, Sreemani verified these properties using CMU SMV. Since our choice
of the model checker for this case study is Cadence SMV, we repeated the veri-
fication of Sreemani’s model using the latter version of SMV. We performed all
of our experiments on a Linux machine with 4GB of RAM and 7GB of swap
space. Table 2 illustrates the comparison of the verification times and the num-
ber of allocated BDD nodes between Sreemani’s model and Express model as
well as the optimized Express model where variable tran has been replaced with
a macro. ”X” indicates that no data is available because Cadence SMV termi-
nated with a segmentation fault or ran out of memory before it could complete
the verification.

Property Sreemani’s Model Express Model Optimized Express Model
Time(sec) BDD Nodes Time(sec) BDD Nodes Time(sec) BDD Nodes

Property 1 0.76 41397 335.88 13516548 316.25 13516448
Property 2 1.08 90617 X X 263.61 13516448
Property 3 1.10 100526 X X 307.78 13516448
Property 4 3.29 168340 X X 261.78 13516448
Property 5 1.06 89432 X X 308.56 13516448

Table 2: Verification performances of the three different SMV models

The verification results show significant differences between the performances
of Sreemani’s model and the two models that were generated by Express. For
all verification runs that completed, the SMV models from Express consistently
perform worse than the Sreemani’s model, in terms of both the verification times
and the number of BDDs that were allocated during the verification. This result
confirms our expectation for the loss of efficiency as a trade-off for the generality
of semantics.

The optimization technique of replacing tran in execute modules with a
macro seems to have a significant effect on the outcome of model checking. In the
experimental runs for the last four properties, Cadence SMV failed to complete
the verification, likely because it was unable to handle the complexity of the
Express model. However, the model checker was able to verify the same set of
properties in the optimized model. The drastic improvement in the performance
is not surprising if we consider the fact that the NavAlignTest HTS contains 302
different transitions, NavigationUpdate 79 transitions, and WeaponDelivery



9

322 transitions. Using the equation in [4], the potential saving factor of this
optimization can be calculated as (302 + 1)(79 + 1)(322 + 1) = 7829520.

As an experiment, we verified the properties after turning on the optimization
option ”Variable order sifting”, which attempts to find an improved variable
ordering in Cadence SMV. Surprisingly, the verification took significantly longer
than it did without the optimization for both Sreemani’s model and the Express
models. We believe that the original ordering that is provided in Sreemani’s
model is the optimal one, and that any attempt to improve this ordering results
in negative effects on the model checking performance.

7 Conclusion

In this paper, we presented the steps that were involved in mapping a SCR spec-
ification into a template-semantics specification. We showed that the template
semantics is expressive enough to capture most aspects of the SCR notation,
with an exception being the functional operator for the composition of tables.
We also illustrated how Metro Express can be used to automatically generate
an SMV model and verify the properties using model checkers such as Cadence
SMV.

To demonstrate these steps with a concrete example, we performed a case
study on the requirements for the A-7E aircraft control software. We successfully
translated the SCR requirements into a template-semantics specification and
eventually, into a SMV model. We verified the properties using Cadence SMV
and compared the verification results to Sreemani’s work. As expected, the SMV
model that was generated from Express did not perform as competitively as
Sreemani’s model, which did not make use of template semantics. We believe
that the relatively low performance of Express is inevitable due to a trade-off
between the efficiency and the generality of template semantics; however, we
also believe that we can significantly improve the performance of Express by
exploring different optimization techniques.

8 Future Work

There are a number of potential optimization techniques that can be used to
reduce the complexity of an Express model. Most of these techniques involve
reducing the number of variables in the model by removing duplicates or re-
placing variables with macros. Another possibility is to take advantage of the
characteristics of a particular model in order to reduce the model size. For ex-
ample, since each HTS in the A-7E specification contains only one control state,
it may be possible to eliminate the snapshot element CS from the model. In ad-
dition, the template-semantics representation of the A-7E specification does not
have any events, so we can remove all SMV modules and variables that are re-
lated to events. We plan to investigate these optimization techniques for further
improvement of Express.



10

References

1. Alspaugh T., Faulk S., Britton K., Parker R., Parnas D., Shore J. Software Re-
quirements for the A-7E Aircraft. Technical report, Naval Research Laboratory,
1988.

2. Atlee, J.M., Day, N.A., Niu J., Fung D., Kang, E., Lu Y., Wong L. Metro: An anal-
ysis toolkit for template semantics. Technical Report 2006-34, David R. Cheriton
School of Computer Science, September 2006.

3. Cimatti A., Clarke E. M., Giunchiglia F., Roveri M. NuSMV: A new symbolic
model checker. In Int. Journal on Soft. Tools for Technology Transfer, pages 410-
425. 2000.

4. Esmaeilsabzli S., Wong L., Day N. A. An evaluation of Metro Express. Technical
Report 2005-20, David R. Cheriton School of Computer Science, December, 2005.

5. Gordon M., Melham T., editors. Introduction to HOL. Cambridge University Press,
1993.

6. Heitmeyer C. L., Jeffords R.D. The SCR tabular notation: A formal validation.
Technical Report NLR/MR/5546-03-8678, Naval Research Laboratory, 2003.

7. Lu Y., Atlee, J.M., Day, N.A., Niu J. Mapping template semantics to SMV. In
ASE, pages 320-325. IEEE Computer Society, 2004.

8. Niu J. Template Semantics: A Parameterized Approach to Semantics-Based Model

Compilation. PhD thesis, University of Waterloo, 2005.
9. Niu, J., Atlee, J.M., Day, N.A. Composable semantics for model-based notations.

In FSE, pages 149-158. 2002.
10. Sreemani T. Feasibility of Model Checking Software Requirements: A Case Study.

MMath thesis, University of Waterloo, 1996.


