An Evaluation of Metro Express

Shahram Esmaeilsabzali Leonard Wong Nancy A. Day

David R. Cheriton School of Computer Science
University of Waterloo
Waterloo, Ontario, Canada N2L 3G1
{sesmaeil,]Jkhwong,nday } @cs.uwaterloo.ca

Technical Report: CS-2005-20
December 2005

Abstract. We study FEzpress, a system that uses template semantics
to map specifications to SMV models. We investigate the efficiency of
the generated SMV models. We consider two case studies and compare
manually created SMV models with models generated by Express. The
generated models are more complex and have larger state spaces, and
consequently longer verification times. We also analyze the effect of us-
ing different optimization schemes in Cadence SMV. Interestingly, some
of the optimizations are more applicable to the generated models and
made verification of the generated models outperform the manually cre-
ated models for some queries. However, considering the best case for
each model, the manually created model always outperforms the gen-
erated model. We propose some optimizations that could be used to
improve dramatically the efficiency of the models generated by Express.
We estimate the magnitude of improvements that such optimizations can
provide.

1 Introduction

The purpose of this report is to investigate the efficiency of SMV models gener-
ated automatically by Ezpress [Lu04]. Express is a tool that maps a specification
written for the Metro tool suite [NADO3] to its equivalent SMV model. Metro
is based on template semantics, a method for describing the semantics of a rich
set of model-based specification notations. As such, Express is capable of under-
standing different notations and semantics, and mapping them into SMV models.
SMV [McM93] is a symbolic model checker.

We analyzed the verification performance of the models generated by Express
by comparing them against manually created SMV models. We considered the
same two case studies as in [Lu04]: a heating system and a single-lane bridge. By
inspecting the generated model, we observed that the model is not as readable as
a manually created model. This can be considered inherent to any automatically
generated artifact. Other complexity criteria, such as the size of model descrip-
tion, also confirmed that the generated model is significantly more complicated

than the manually created one. However, after getting used to the underlying
logic of the generated model, and also template semantics, the generated model
became more understandable.

We used the same set of properties to verify both the manually created and
generated models. The verification time for the generated models were longer,
as expected. Also, the size of the state space was substantially greater in the
generated model, particularly for the heating system example.

We tried different SMV optimization schemes and observed that the default
optimizations of Cadence SMV provide the best verification time for both the
manually created and the generated models. We also measured the number of
BDD nodes under different optimization schemes. Surprisingly, the generated
model, when using some optimization schemes, used fewer BDD nodes than the
manually created model. These findings can be further studied and analyzed to
make more detailed conclusions about the nature of models.

The consistency of our experimental results for the two examples is encour-
aging. Consistency is important because the two examples are quite different
and use different sets of composition operators.

While analyzing Express-generated models, we identified four optimization
opportunities for making the generated model more efficient. All of our proposed
optimizations aim at decreasing the number of variables in the system; and thus
the size of the state space and, hopefully, the verification time. Decreasing the
number of variables could potentially provide ezponential savings in the size of
the state space. We show that how those optimizations can be applied to one of
the studied examples.

The rest of the report is organized as follows: In Section 2, we introduce our
case studies and the properties that we verified. In Section 3, we discuss different
experiments that we performed on models and present the results. In Section 4,
we present our proposed optimization methods for Express. Finally, Section 5
presents conclusions of this report. We assume the reader has some familiarity
with template semantics.

2 Case Studies

We considered two systems, the Heating System and the Single-Lane Bridge, for
our analysis of Express. These examples were taken from Yun Lu’s thesis [Lu04],
where the SMV models are automatically generated from the specifications. We
found these two systems interesting since they use notations with different se-
mantics and, furthermore, they are specified using different sets of composition
operators.

2.1 Heating System

The heating system controls the temperature of a house. It is specified in STATE-
MATE [HN96] semantics and consists of three major hierarchical transition sys-

tems (HTSs)!: room, controller, and furnace. These HTSs are composed using
parallel compositions, meaning that all of them are active at any given time. The
room HTS further consists of two other HTSs, namely, noHeatReq and heatReq,
which are composed using interrupt composition. Interrupt composition means
that exactly one of the components is active at any given time, and there are
transitions that transfer control from one component to the other.

Manually Created vs. Generated SMV Model: To evaluate Express-
generated SMV models, we manually created an SMV model that follows the
structure of the specification as closely as possible. For instance, the interrupt
composition for two HTSs, namely, noHeatReq and heatReq, is specified by in-
troducing variables that model the occurrence of an interrupt between two HT'Ss.
We could have instead flattened the two HTSs into one, and avoided explicitly
modelling interrupts. In the heating system case study, we deliberately tried to
do our translation from the specification to the SMV model as mechanically as
possible. Such a mechanical translation, in our opinion, provides a fair ground
for comparison between the automatically and manually created models.

While developing the model manually, an unintentional non-deterministic
behavior was discovered in the specification: When the controller’s active state
is controllerOn, and the environment generates events heatSwitchOff and
furnaceFault simultaneously, the next state of the controller can be either off
or error. Both the generated and the manually created models determine the
next state non-deterministically. However, it is not obvious whether this behavior
is desired in the original specification.

Table 1 presents different comparison criteria for the generated and manu-
ally created models. The criteria are meant to provide a rough estimate of the
complexity of each model. In particular, non-blank lines of the model, number
of variables, and number of macro definitions, i.e., DEFINE statements, indicate
how difficult it is for users to understand or trace through each model. This is a
crucial factor when users are debugging the model or properties. As showed in
Table 1, the manually created model had significantly more desirable values in
all criteria. This implies that it is likely that the manually created model is more
easily understood by users. This is not unexpected since the generated model
is created based on some general model generation policies while the manually
created model simply models a particular specification. Also, it may be possible
to create a tool flow in which the generated model is never studied by the user,
but rather counterexamples are illustrated on the source specification.

Lesson Learned (SMV Problem): During the creation of the heating system
SMV model, a problem was discovered that caused SMV to return true for all
properties, including explicit falsehood, in CTL terms (EF 0). Basically, when

1 “An HTS is a hierarchical, non-concurrent, extended state machine. In statecharts
terminology, an HTS supports OR-state hierarchy but not AND-state hierarchy.”
[NADO3]

[Measurement |Generated Model [Manually Created Model |
[SMV File Size [26.7 KB [10.3 KB |
Non-blank Lines of the Model |804 292
Number of Variables 32 24
Number of Macro Definitions |[237 7

Table 1. Comparing Generated vs. Manually Created SMV Models for the Heating
System

the search space, constrained by the fairness statements, is empty, Cadence SMV
passes all properties including explicitly false statements. The snippet of a model
in Figure 1 shows a situation where if bug = 1 then all properties pass. The
problem is that both of the fairness constraints can never be true in this model.

MODULE main()
VAR temp : {HOT, COLD};

DEFINE bug:= 1; -- Bug presence flag
DEFINE isStable := bug ? 0 : {0,1}; -- temp can change when isStable = 1

ASSIGN next(temp) := isStable 7 {HOT, COLD} : temp;

SPEC (EF 0)
SPEC ((AG ~(temp=COLD)) & (EF (temp=COLD)))

FAIRNESS (temp
FAIRNESS (temp

COLD)
HOT)

Fig.1: SMV Model where “False” Properties Pass

Properties: Four properties, as specified in Yun Lu’s thesis [Lu04], were con-
sidered for verification. They are non-trivial properties that use various CTL
operators such as AG, —>, AX, AF, and AU. The properties were first encoded in
the manually created model, and then were adapted to the generated model by
simply renaming the variables and macro names appropriately. The following
are the list of properties.

1. If the actual temperature is too low and stays too low after a timeout, then
the furnace will be turned on, unless an error occurred.

AG ((furn.in_furnaceNormal & TOOCOLD
& (room.waitedForWarm = WARMUPTIMER)) ->
AX (A["furn.in_furnaceOn U
(furn.in_furnaceOn | furn.in_furnaceErr)]));

2. If the actual temperature is too high and stays too high after a timeout, then
the furnace will be turned off, unless an error occurred.

AG ((furn.in_furnaceNormal & TOOHOT &
(room.waitedForCool = COOLDOWNTIMER)) ->
AX (A["furn.in_furnaceOff U
(furn.in_furnaceOff | furn.in_furnaceErr)]));

3. Whenever the furnace fails, it will not start before the user resets it.

AG ((envr.furnaceFault & ~envr.userReset) ->
(AX A[("furn.in_furnaceAct & ~“furn.in_furnaceRun)
U envr.userReset]));

4. If the room does not request heat, then eventually the furnace will be turned
off. Also, if the room requests heat, then the furnace will be turned on unless
there is an error.

AG ((room.in_noHeatReq -> AF “furn.in_furnaceOn)
& (room.in_heatReq ->
(AX A["furn.in_furnaceOn U
(furn.in_furnaceOn | furn.in_furnaceErr)])));

2.2 Single-Lane Bridge

The second system we considered for our study was a single-lane bridge, which
is a system for controlling the traffic over a single-lane bridge. The specification
mainly consists of some interleaved components. There are two red and two blue
cars on different sides of the bridge. The bridge is controlled such that red cars
and blue cars do not collide. The specification is in CCS [Mil95] with shared
variables. Each car is specified as a separate component and cars are interleaved
by using three interleaving composition operators. Red and blue cars have sep-
arate enter and exit coordinator entities, i.e., four coordinators in total. The
coordinators are also interleaved by three interleaving composition operators.
The car and coordinator components communicate through environmental syn-
chronization composition events.? There is also a bridgeStatus component that
represents the current status of the bridge, i.e., the number of red or blue cars

2 Environmental synchronization requires that “both components execute in the same
micro-step if the executing transitions all have the same trigger event that is a
designated synchronization event; otherwise, one or the other component takes a step
in isolation, executing transitions not triggered by synchronization events.” [Lu04]

on the bridge. It communicates with car components through rendezvous com-
position.

In our second case study, we deviated from the mechanical manual trans-
lation and allowed the SMV modeller more freedom in his translation. The
hand-generated SMV model for the single-lane bridge did not follow exactly
the mechanical translation of states and transitions of the specification. This ap-
proach means that the decomposition and transitions of the two models are not
exactly the same but yet they specify the same functionalities and both satisfy
the same set of properties.

The fact that the specification heavily relied on interleaving processes made it
a suitable system to be modelled in the SPIN model checker [Hol97]. Therefore,
we also manually modelled the system in SPIN which provided us with some
insights about verification efficiency in different tools.

Manually Created vs. Generated SMV Models: In our manually cre-
ated SMV model, we simulated interleaving composition by using synchronous
modules. Each module in an interleaving composition was non-deterministically
given the turn to run. When one module ran, the others were idle. We avoided
using the built-in SMV interleaving operator, since it did not allow us to model
rendezvous and environmental synchronization compositions.® Table 2 shows
different properties of the manually created and Express-generated SMV mod-
els. Similar to the heating system, the manually created model was significantly
smaller and less complex.

[Measurement |Generated Model [Manually Created Model |
SMV File Size 64.8 KB 11.3 KB

Non-blank Lines of the Model (1593 324

Number of Variables 41 33

Number of Macro Definitions |757 0

Table 2. Generated SMV Model vs. Manually Created SMV Model For Single-Lane
Bridge

In our manually created model, we flattened the six binary interleaving com-
positions into two interleaving compositions, one composition for the cars and
one for the coordinator components. Similarly, we modified the generated SMV
model to use only two interleaving compositions. We were hoping to improve the
performance of the generated model since we removed some INVAR statements
in the model. However, it turned out that this made the performance of the gen-
erated model worse. The verification time increased from 0.08 seconds to 0.24
seconds. While the size of state space remained the same for both models, the

3 In SMV, modules can be made to execute asynchronously by using the process
keyword.

number of BDD nodes was larger in the modified generated model, 32128 com-
pared to 13456. We suspect that if we had used binary interleaving operations
in our manually created SMV model, we might have had better performance.

Modelling In SPIN: SPIN is inherently an interleaving verification system. It
also has built-in support for rendezvous composition. However, modelling envi-
ronmental synchronization turned out to be a difficult task. The problem arose
from the fact that environmental synchronization requires the two components
to take one simultaneous step when an environmental event happens. SPIN, on
the other hand, is a purely asynchronous system. We simulated this operation by
using rendezvous channels along with atomic operations. One component always
received the environmental event and then notified the second component, if it
was ready, and otherwise, it just consumed that event and got ready for the next
environmental event. This approach was not equivalent to environmental syn-
chronization in template semantics, since first, only one of the component always
received the event and notified the other component, and second, no matter how
we simulated this composition we were not able to make the two components
to take a real simultaneous step. This is as close as we managed to get to the
semantics of environmental synchronization in SPIN. As an alternative we could
have tried to broadcast the environmental event to all interested components.
This approach would then have required multiple copies of the same event; also,
all interested components should have been ready to receive that event at all
times.

Table 3 compares the SPIN model and the Express-generated SMV model
of the single-lane bridge. The SPIN model is much smaller than the generated
SMV model. However, the presence of channels in SPIN introduced a level of
complexity that is not present in SMV model.

[Measurement |Generated SMV_[SPIN
SMV Reachable States 3.0E+08 N/A
SPIN Matched States N/A 2.0E+06
File Size 64.8 KB 5.8 KB
Non-blank Lines of the Model |1593 273
Number of Variables 41 N/A
Number of Channels N/A 20

Table 3. Comparing SPIN and Express-generated SMV Model for the Single-Lane
Bridge. N/A represents non-applicable items.

Properties Four properties were verified. They are all safety properties that
basically state that a red and blue car cannot be on the bridge at the same time.
The list of properties follows.

1. It is never the case that the number of red cars and the number of blue cars
on the bridge are greater than zero at the same time.

AG ! (numRed>0 & numBlue>0)
2. A red car can enter the bridge only if there is no blue car on the bridge.
AG ((onRedA | onRedB) -> !(onBlueA|onBlueB))

3. It is never the case that eventually the number of blue cars and the number
red cars on the bridge are greater than zero at the same time.

'AF (numRed>0 & numBlue>0)

4. Tt is never the case that red car A and blue car B are eventually on the
bridge at the same time.

'AF (onRedA & onBlueB)

3 Evaluation

We carried out some experiments to measure the efficiency of Express-generated
models against their manually created counterparts. We performed all our ex-
periments on a Windows XP desktop, Pentium(R)IV, CPU 2.20 GHZ, with 512
MB of RAM. We used Cadence SMV (Release 10-11-02p46) for running our
SMYV models and used SPIN (Ver 4.2.1) for our SPIN model. Also, in our exper-
iments, we considered the average of three experiments. Furthermore, the range
of measurements were always in a stable range. In the following, we present our
results.

3.1 State Space Size

Figure 2 presents the state space size of the generated and manually created
models for both the heating and single-lane bridge systems. “Total state space”
is the product of the number of possible values for all variables in a model.
We provide the number of reachable states when verifying each property. The
manually created heating system outperforms its generated counterpart on the
order of 10%. As for the single-lane bridge, the difference is not as dramatic as
the heating system. We expect a more drastic out-performance by the manually
created model if macros are used in our manually created SMV model.

Tables 4 and 5 provide more information about state spaces of the models.
Tables 4 and 5, respectively, provide the state space information for the heating
system and single-lane bridge systems, when one property is being considered in
each experiment.

1E+20

1E+19 E Generated [0 Manually Created
1E+18

1E+17
1E+16
1E+15
1E+14
1E+13
1E+12
1E+11
1E+10
1E+09
1E+08

1E+07
1E+06
1E+05
1E+04
1E+03
1E+02
1E+01

1E+00
Total state Reachable Reachable Reachable Reachable
space (property 1) (property 2) (property 3) (property 4)

State Space of Heating System SMV Models

Number of States

1E+20
1E+19

iE"ij [Generated O Manually Created
-+

1E+16
1E+15
1E+14
1E+13
1E+12
1E+11
1E+10
1E+09
1E+08

1E+07
1E+06
1E+05
1E+04
1E+03
1E+02
1E+01

1E+00
Total state Reachable Reachable Reachable Reachable
space (property 1) (property 2) (property 3) (property 4)

Number of States

State Space of Single-lane Bridge SMV Models

Fig. 2: State space size for the Manually Created and Express-Generated SMV
Models.

10

Model Type Generated Model Manually Created Model

Measure BDD State Space |BDD State Space
Variables Variables

Property 1 |64 5.47E+11 51 3.7TTE+07

Property 2 |64 5.47E+4+11 51 3.7TTE+07

Property 3 |64 5.47TE+11 43 311904

Property 4 |64 5.47E+11 43 311904

Table 4. Number of BDD variables and reachable state space size when verifying each
property of the heating system. The numbers are reported by SMV when using the
default optimization scheme.

Model Type Generated Model Manually Created Model

Measure BDD State Space |BDD State Space
Variables Variables

Property 1 |51 3.02E4-08 44 5.084E+07

Property 2 |51 3.02E4-08 44 5.084E+07

Property 3 |51 3.02E+4-08 44 5.084E+07

Property 4 |51 3.02E4-08 44 5.084E-+07

Table 5. Number of BDD variables and reachable state space size when verifying each
property of the single-lane bridge system. The numbers are reported by SMV when
using the default optimization scheme.

3.2 Number of BDD Nodes

The number of BDD nodes is an important factor for the efficiency of model
checking. Figure 3 shows the number of BDD nodes of the manually created
models with the automatically generated SMV models under different optimiza-
tion schemes. The measurements are for the cases where all properties of the
systems are verified together. “Check Reachable States” is an optimization in
SMV, which we believe makes SMV compute the number of reachable states be-
fore actually doing the model checking. Interestingly, the generated model had a
smaller number of BDD nodes when using the variable order sifting and heuris-
tic variable ordering schemes. For all other optimization schemes, including the
default, and no-optimization, the manually created model always had a smaller
number of BDD nodes.

These observations are consistent for both the heating and single-lane bridge
systems. Notice in the heating system chart, that the least number of BDD nodes
belongs to the generated model when “variable order sifting” optimization is
used.

3.3 Model Checking Time

Figure 4 shows the verification time measured when verifying all properties. As
we expected, the manually created models outperformed the generated model

11

2,000,000
1,800,000 -
(%] ’ il
2 1,600,000 | B Generated O Manually Created
S 1,400,000 -
£ 1,200,000
© 1,000,000 - II_
S 800,000 -
£ 600,000 -
S 400,000 -
Z 200,000 -
O 4
S g 2 g 2
g £ ® *u“a o £
N o 2 [} 2o
£ 9] o re] c X
SMV. -1 S e = 23
Optimization o S s S 55
o Q = o = &
P o © = c O
] > ~ > =
& 8 3 8
> @ £ 2 2
° 30
T Tt
BDD Nodes Allocated for Model
Checking the Heating System
800,000
@ 700,000 - H Generated O Manually Created }7
S 600,000
Z 500,000
© 400,000
2 300,000 -
£ 200,000
Z 100,000 -
04 ‘ Fe— —| _
S g 2 g 2
g £ ® I o £
N ® B) J=l
SMV £ 3 ° kS °s
Optimization s G =] S 58
P 5 s IS g £
P o © = c O
] > ~ > =
& 8 3 8
> @ £ 2 2
5 o 50
9] @ 5
T T

BDD Nodes Allocated for Model
Checking the Single-lane Bridge

Fig. 3: Number of BDD nodes under different optimization schemes. The right-
most column represents SMV’s default optimization scheme.

12

when both were considered at their best time. Again, we considered different
Cadence SMV optimizations. The results are consistent with the BDD nodes ex-
periments. The optimization schemes with fewer BDD nodes for the generated
model had shorter verification times than their manually created counterparts.
This observation is consistent in both the heating and single-lane bridge sys-
tems. The best verification times happen when the default optimization scheme,
“Heuristic Variable Ordering 4+ Check Reachable States”, is used.

Based on our experiments, it seems that different optimization schemes are
not more efficient than Cadence SMV’s default optimization.

Another observation, worth noting, is that the manually created heating
system model’s best verification time is 38.8% of the Express-generated heating
system model, while the ratio for the single-lane bridge is 80%. As mentioned
earlier, we suspect that by using macros in the manually created model and
reducing the number of variables, we can improve the manually created single-
lane bridge model’s performance.

In Tables 6 and 7, verification times and number of BDD nodes for different
optimization schemes are compared. (More optimization schemes are shown here
than in the charts. Schemes that are worse than “no optimization” are not shown
in the charts.) All experiments suggested a direct relation between the number
of BDD nodes and the verification time.

Measure BDD Nodes Verification Time
Model Generated |Manual Generated |Manual
No Optimization 1784256 881202 58.76 45.01
Variable Order Sifting 169416 527220 31.30 47.55
Heuristic variable ordering 691108 1065459 22.80 25.95
Sift before final order output 1784256 881202 58.78 45.24
Modified search order 1784256 881202 58.91 45.98
Check reachable state 639358 172074 12.91 9.75
Enumerate unknown values 1703993 845597 59.03 45.10
Heuristic ordering + reachable state|386719 267107 10.76 4.18

Table 6. Number of BDD nodes and the verification time for the heating system
categorized by Cadence SMV optimization scheme. These numbers are measured when
verifying all four properties.

SPIN does not report any model checking time for the verified model. We
measured that time manually. The verification time is 24.5 seconds; which is not
comparable with either SMV model. We also measured what seems to be the
pure verification time, 14 seconds.* This is still not competitive with its SMV
counterparts.

4 SPIN creates a C file based on the SPIN specification, and after compiling that
file carries out the verification. 14 seconds refers to the duration starting after the
compilation finishes.

13

70

60

I Generated O Manually Created

50

40
30
20
10
o o =

Time (s)

< =) L) L x
S 3 =1 = =
® 5 8 g s2c
N o o S o S = 12}
SMV £ 2 58 g 80 ¢
Obtimizati £ s s o8 2] S o2
ptimization § £ 3 e x© 52
o = o) 'EEO
2 z 3 £ gg 8

T o I o

Time for Model Checking the Heating System with SMV

E Generated OManually Created

Time (s)

< = K] %) O X
S 3 s} s} 292
=1 5 o <] 88
S = o < ERoR]
SMV £ o 5 g < g8 g
£ 5 E > = o 2 S e
Lo =1 €% o8] FEpa-]
Optimization §& 3 3 g x° B
o > 5 @ 50
2 3 2 388
T O I o~

Time for Model Checking the Single-lane Bridge with SMV

Fig. 4: Verification times for generated and manually created SMV models. The
results are consistent with the BDD nodes results in Figure 3.

14

Measure BDD Nodes Verification Time
Model Generated |Manual Generated |Manual
No Optimization 692022 296830 7.96 2.14
Variable Order Sifting 19355 23734 1.10 1.89
Heuristic variable ordering 21091 40129 0.19 0.20

Sift before final order output 692022 296830 8.06 2.12
Modified search order 692022 296830 7.69 2.10
Check reachable state 544544 28664 2.69 0.14
Enumerate unknown values 692022 296830 7.66 2.10
Heuristic ordering + reachable state|13456 11816 0.10 0.08

Table 7. Number of BDD nodes and the verification time for the single-lane bridge sys-
tem categorized by Cadence SMV optimization scheme. These numbers are measured
when verifying all four properties.

4 Optimization Suggestions for Express

While analyzing the Express-generated SMV models, some potential optimiza-
tions were identified that can lead to more efficient generated models. Mainly,
our optimizations suggest using fewer variables, by either more aggressive appli-
cation of SMV macros or by removing duplicate variables, whenever applicable.
Reducing the number of variables is crucial since variables increase the size of
the state space. Note that macros do not introduce any extra state space while
variables do.

In the following, we discuss our optimization suggestions, and the situations
and variations of SMV, i.e. Cadence SMV and/or NuSMV [CCGRO00], in which
certain optimizations are applicable. As mentioned in [Lu04], NuSMV does not
support non-deterministic assignments in macros and as such cannot enjoy some
of the optimizations that we suggest.

4.1 Removing Unnecessary Environmental Events and Variables

In the generated models, every environmental event and variable is represented
by two variables. In the generated heating system model, for example, the en-
vironmental event userReset can be found as both pss.Ia.userReset and
I.ev.userReset. In the manually created heating system model, on the other
hand, we avoided having two sets of duplicate variables for environmental events
and variables.

One approach to remove the set of duplicate variables in the generated model,
is to remove envVars and envEvents, and consequently remove the Inputs
module. We can then merge resetIa and nextIa into the module nextIa and
remove resetIa altogether. In the following snippet of a model, we show, as
an example, how the new nextIa module would look for environmental variable
userReset.

15

if stable

userReset’ := {0,1} -- Nondeterministic Assignment
else

userReset’ := userReset

This optimization is applicable to all models specified in template semantics,
and can be implemented in both NuSMV and Cadence SMV. The following is an
analysis of the reduction for the total state space if all the unnecessary duplicates
of environmental events and variables are removed from the generated model.
Consider n to be the number of variables that can be represented once, and s;
to be number of states for the ith variable, then the saving factor will be:

S§1 X S92 X 83 X ... X S,

4.2 Using Macros to Represent Enabled Transitions

In the generated models, every HTS module has a variable to represent its
enabled transitions. For instance, in module execute_furnaceSysHts variable
tran had 8 possible values t1_exe,...,t7_exe, noTran_exe, one for each of its
7 possible transitions and one to indicate no enabled transition. By using macros
to represent transition variables, the total state space size can be reduced dras-
tically. The transition macro would be non-deterministically assigned one of the
possible values and would be constrained by an invariant.

This optimization is applicable to all semantics specified in template seman-
tics, but can be implemented only in Cadence SMV. The following is an analysis
of the reduction for the total state space. Consider n to be the number of HTS
modules and let ¢,, be the number of possible transitions for the nth module plus
one, then the saving factor will be:

t1 X tg Xty X ... X1,

Since t,, > 2, the minimum saving factor will be 2". For the generated heating
system, there are two modules with 7 transitions and one module with 10 transi-
tions, which provides potential saving factor of (7+1) x (74 1) x (10+1) = 704.

4.3 Removing Output Variables

The outputs of an HTS can be communicated with the environment and other
parallel components of the system. Express, however, keeps two copies of output
variables. This optimization aims to remove redundant copies of the output
variables.

Our proposed optimization, however, cannot be applied to all semantics.? Tt
can only be applied to the semantics that: (1) do not distinguish between the
generated events that have internal scope, called internal-internal events, and

5 RSML [LHHR94] semantics, for example, cannot be considered for this optimization,
but STATEMATE can be.

16

those generated events that are for the environment, called ezternal-internal
events; and, (2) do not care about the set of internal events generated in each
micro-step.®

For all notations with semantics suitable for this optimization, we can remove
the output variables of module outputs, and consequently, the outputs, reset0,
and next0 modules. We will then use the variables of intEvents instead as
output variables.

This optimization can be implemented in both NuSMV and Cadence SMV.
The saving factor of this optimization depends on the number of variables in the
outputs module. For n variables in outputs, we will save 2" states if all outputs
variables are Boolean variables. In the heating system, the savings factor will be
24 = 16 states.

4.4 Removing Error Variables

Fach generated model has an error variable in its variables module, called
error_variables, to deal with overflow of values. It is never used in the model,
but could be used in properties to ensure that properties are only checked in
executions of the model that do not contain overflow. This variable could be re-
moved and would save 2 states. This optimization can be applied to all notations
and can be implemented in both NuSMV and Cadence SMV.

4.5 Notes on Optimizations

Since each aforementioned optimization targets different variables, they can be
applied together to the generated models. The effect of applying the proposed
optimizations can be dramatic for systems, because all of the optimizations have
potential saving factors that are exponential to the number of possible states for
optimized variables.

5 Conclusions

We believe that Express is a useful tool for automatically creating a SMV model
from the specification of a system. The fact that Express, by mapping Metro
notations into SMV, is providing SMV mappings for different model-based nota-
tions is crucial. However, the generated model is not competitive with a manually
created SMV model of the same specification.

In this report, we analyzed different properties of the generated model and,
furthermore, showed how the generated model can be significantly improved by
reducing some of the unnecessary variables. In particular, more aggressive use of
SMV macros and eliminating some redundant variables in the model can provide
exponentially smaller state spaces.

5 In template semantics there are two types of steps: a micro-step is the execution of
a single transition, and a macro-step is a sequence of zero or more micro-steps.

17

We also experimented with SPIN for modelling one of our case studies. It
seems to us that SMV is both faster and more expressive than SPIN in modelling
a larger range of models. This supports the choice of SMV as a target language
for the translation of Metro models.

References

[CCGRO0] Alessandro Cimatti, Edmund M. Clarke, Fausto Giunchiglia, and Marco

[HN96]

[Hol97]

[LHHR94]

[Lu04]
[McM93]
[Mil95]

[NADO3]

Roveri. NuSMV: A new symbolic model checker. Int. Journal on Soft.
Tools for Technology Transfer, 2(4):410-425, 2000.

David Harel and Amnon Naamad. The statemate semantics of state-
charts. ACM Transaction on Software Engineering Methodology, 5(4):293—
333, 1996.

Gerard J. Holzmann. The Model Checker Spin. IEEE Trans. Softw. Eng.,
23(5):279-295, 1997.

Nancy G. Leveson, Mats Per Erik Heimdahl, Holly Hildreth, and Jon Da-
mon Reese. Requirements specification for process-control systems. IEEE
Transactions on Software Engineering, 20(9):684-707, September 1994.
Yun Lu. Mapping Template Semantics to SMV. Master of Mathematics,
School of Computer Science, University of Waterloo, August 2004.

K. McMillan. Symbolic Model Checking: An Approach to the State Explosion
Problem. Kluwer Academic, 1993.

Robin Milner. Communication and concurrency. Prentice Hall International
(UK) Ltd., 1995.

Jianwei Niu, Joanne M. Atlee, and Nancy A. Day. Template semantics for
model-based notations. IEEE Trans. Software Eng., 29(10):866-882, 2003.

