
Dash+: Extending Alloy with Hierarchical States
and Replicated Processes

for Modelling Transition Systems
Tamjid Hossain and Nancy A. Day

David R. Cheriton School of Computer Science
University of Waterloo, Waterloo, Canada N2L 3G1

Email: {t7hossain, nday} @uwaterloo.ca

Abstract—Modelling systems abstractly shows great promise to
uncover bugs early in system development. The formal language
Alloy provides the means of writing constraints abstractly,
but lacks explicit constructs for describing transition systems.
Extensions to Alloy, such as Electrum, DynAlloy, and Dash,
provide such constructs. However, still missing are language
constructs to describe easily multiple processes with the same
behaviour (replicated processes) running in parallel as is found
in languages such as PlusCal and PROMELA. In this paper,
we describe our proposal for adding explicit constructs to Dash
for replicated processes. The result is Dash+: an Alloy language
extension for describing transition systems that include both
concurrent and hierarchical states and parametrized concurrent
processes.

Index Terms—Alloy, Statecharts, declarative modelling, tran-
sition systems, replicated processes

I. INTRODUCTION

Modelling systems abstractly and declaratively has become
an important tool for conquering complexity and discovering
bugs early in system development. Difficult problems, such
as cache coherence and consensus protocols, can be mod-
elled abstractly and investigated for problems prior to more
detailed UML modelling and coding. Early abstract modelling
languages such as Z [1] and VDM [2] evolved to languages
such as Alloy [3] and TLA+ [4], which add automated analysis
for finite scopes via model finding and model checking.

The Alloy language allows modellers to describe a system
via sets and relations, but lacks explicit modelling constructs
for describing a transition system. It is possible to parametrize
all dynamic (changing) elements of the transition system
by a “state” or “time” parameter but this practice is ad-
hoc and makes it more difficult to read the Alloy models.
Electrum [5] and DynAlloy [6], [7] are both extensions to
Alloy1 for describing transition systems. Electrum uses linear
temporal logic (LTL) [9] to describe the traces of the transition
system and DynAlloy describes transitions using an action
language closer to programming languages. Neither provides
any explicit constructs for decomposing system behaviour into
hierarchical states or processes.

Dash [10], [11] is another extension to Alloy that uses
the paradigm of hierarchical, concurrent states from Stat-
echarts [12] for modelling transition systems. In Dash, a

1In its latest release, Alloy has incorporated Electrum into its language [8].

modeller creates a hierarchy of named control states and
an explicit transition construct has a source and destination
control state, a guard, and actions. Variables declared within
the state hierarchy are considered dynamic. The guard and
actions of a transition are described in Alloy and can refer to
current (unprimed) and next (primed) values of the variables.
Using the common control modelling paradigm of Statecharts
(also used in UML state machines [13]) makes declarative
behavioural modelling more approachable to users. Dash is
translated to Alloy (without extensions) for analysis, thus the
Alloy Analyzer can be used to check Dash models. However,
Dash lacks a way to describe processes, such as a set of
clients and a set of receivers, which are replicated copies of
concurrent (AND) states.

Modelling in TLA+ is also based on sets and relations. Its
extension, PlusCal [14], adds a process language construct.
A model with replicated processes is called a parametrized
system because it is parametrized by the number of copies the
process. The number of copies of each process in the model
analyzed can be chosen at the analysis stage. The combination
of abstract data modelling plus the process construct is very
valuable for modelling distributed systems as witnessed by the
many case studies that use TLA+ or PlusCal (e.g., [15], [16]).
However, processes in PlusCal must be at the top-level of the
model description and cannot be nested, and PlusCal lacks
constructs for more interesting control state modelling as are
found in Dash. Other declarative languages such as B [17],
Event-B [18], and ASMs [19] do not have any constructs for
explicitly modelling concurrent components.

PROMELA [20] is a lower-level model checking language
used as the input language to the Spin model checker.
PROMELA includes processes as a construct at the top-
level of the model description and has synchronous and
asynchronous channels for communication. However, its con-
structs for describing changes to data are limited. Zave [21]
compares Alloy and PROMELA, and notes that an advantage
of PROMELA is its process construct, which is lacking in
Alloy. For example, in Zave’s model of the Chord protocol in
Alloy [22] (which we use as an example later in our paper)
all dynamic elements of the system must be parametrized by
both a state and a process identifier. All transitions of the
Chord transition system must be described from a global per-



spective rather than a process-local perspective. This required
parametrization and the global point of view both make it
difficult to read the Alloy model and understand the details of
a local process’ behaviour.

Lacking is a formal modelling language that has explicit
constructs for declarative modelling, hierarchical states, and
replicated concurrent (possibly nested) processes. Such a lan-
guage would provide a flexible means of modelling protocols,
distributed systems, and many other domains, such as tracked-
based traffic control systems [23], abstractly. This language
would enable quick feedback on models for exploring options
and finding bugs early in system development.

In this paper, we explore the syntax and semantics of an
extension to Dash that includes replicated concurrent, nested
states, which can model processes. We show how explicit
constructs for replicated states make it possible to create
models that are nicely decomposed because all aspects of a
process can be declared and described together. The processes
can communicate via buffers or exchange information through
global variables and events. A key contribution of our novel
approach is that a modeller can abstractly model the topology
of the processes (ring, list, etc. ) through constraints on the
set indexing the process. Dash+ is the name of our extension
to Dash.

Our paper is organized as follows: Section II describes
Alloy and Dash as background for Dash+. Section III presents
Dash+. We use the Chord example to highlight the decompo-
sition/localization effect achieved in Dash+. In Section IV,
we discuss our proposed semantics for Dash+. Section V
describes issues with respect to the analysis of Dash+ models.
We conclude the paper with related work in Section VI.

II. BACKGROUND

In this section, we briefly present Alloy and Dash as
background for the rest of the paper.

A. Alloy

In Alloy [3], a model consists of sets and relations, and
formulas in relational logic plus transitive closure that describe
constraints on the sets and relations. A signature consists
of a set declaration plus the declaration of fields (relations
on the set) giving the language an object-oriented style. The
sets can be arranged in a hierarchical manner through subsets
and subset extensions (mutually exclusive subsets). Using the
Alloy Analyzer, instances that consist of values for the sets
and relations that satisfy the formulas are found using an
underlying solving engine via a run command. Counterexam-
ples to formulas can also be found using a check command.
Alloy and its toolset have been used to model a variety of
problems such as network protocols [22], security [24], and
train control [25]. Alloy does not have any built-in constructs
for dynamic system behaviour. Typically, a “state” set is
created with predicates describing transitions as changes to
before and after values of the state. The state set is then
required to be an ordered set (a trace) where the ordering

operation is that one transition must be satisfied in each step
of the order.

B. Dash
Dash is an extension to Alloy that adds constructs for named

control states in a hierarchical and concurrent arrangement
for modelling transition systems. As in Statecharts, an AND-
state describes concurrent behaviour and an OR-state is de-
composed hierarchical behaviour. AND- and OR-states can
be arbitrarily nested. The states are related by an explicit
transition construct. The optional elements of a transition are
(taken from [11]):
1 trans trans_label {
2 from <src_state>
3 on <trigger_event>
4 when <guard_condition_in_Alloy>
5 goto <dest_state>
6 do <action_in_Alloy>
7 send <generated_event>
8 }

A transition can include the source and destination control
states for the transition (from, goto); events that trigger
the transition (on) and that are generated by the transition
(send); and actions (do) and guard conditions (when), which
are expressed declaratively in Alloy to change the dynamic
variables of the model. Dash allows for some attributes of the
transition to be omitted and suitable defaults are chosen based
on the transition’s textual location within the model (i.e., when
a transition is declared within a state, it default source control
state is its enclosing state). Dash has syntactic sugar called
transition comprehension for declaring many transitions in one
statement (such as every state transitions to an error state on
some event).

Dynamic variables can be declared within any state, and a
primed variable within a condition or action represent the next
value of a dynamic variable after a transition. Communication
in Dash is global via shared variables and events. However,
using the name spaces provided by the state hierarchy it is
possible to do directed communication by using unique names.
Declaration of signatures and other regular parts of an Alloy
model can be included in Dash outside of the state construct.

An extract from a Dash model of the game musical chairs is
presented in Listing 1. The top-level state is a concurrent state
(but there can be only one top-level state). Inside the top-level
state, the transition system is decomposed into OR-states for
the phases of the game: Starting, Walking, Sitting, and
End. One example transition is shown that goes from Walking

to Sitting. This example shows the very declarative nature
of the transition’s actions: an action requires that all seats are
taken by one player, but we do not need to specify the many
options for which seat is taken by which player (as would
have to be done in an SMV model [26]).

A semantics was chosen for Dash in keeping with the
common semantics for Statecharts where a big-step, which
is the result of environmental inputs, can consist of multiple
transitions arranged in a sequential order of small-steps. Con-
sidering the taxonomy of Statecharts semantic choices created



1 sig Chair, Player {}
2
3 conc state Game {
4 // Game variables
5 active_players: set Player
6 active_chairs: set Chair
7 occupied: Chair set -> set Player
8
9 env event MusicStarts {}
10 env event MusicStops {}
11
12 default state Start { ... }
13
14 state Walking {
15 trans Sit {
16 on MusicStops
17 goto Sitting
18 do {
19 occupied’ in
20 active_chairs -> active_players
21 active_chairs’ = active_chairs
22 active_players’ = active_players
23 // forcing occupied to be total and
24 // each chair mapped to only one player
25 all c : active_chairs’ |
26 one c .(occupied’)
27 // each occupying player is sitting
28 // on one chair
29 all p : Chair.(occupied’) |
30 one occupied’. p
31 }
32 }
33 }
34 state Sitting { ... }
35 state End { ... }
36 }

Listing 1. Part of Dash+ Model for Musical Chairs [10]

by Esmaeilsabzali et al. [27], Dash allows one transition per
small-step with cascading events and variable changes effec-
tive immediately after a small-step. Only one transition per
concurrent region can be taken. These semantic choices ensure
that all big-steps terminate and that the cause-effect behaviour
is understandable in a strictly forward direction (an event must
be generated before it can trigger another transition). With
respect to variable changes in a transition, Dash unifies the
declarative and operational modelling paradigms: if a variable
is explicitly mentioned in the action of the transition, then
the action constrains the variable, but if the variable is not
mentioned in the action then it keeps its value from the
previous snapshot.

Dash is translated to Alloy for analysis. In this translation,
the state hierarchy is represented succinctly using Alloy subset
extensions. Transition behaviour is captured in predicates
for the pre-condition, post-condition and semantics of the
transition, where the semantics predicate ensures the global
requirements that only one transition is taken per concurrent
region in a big-step, etc. Dynamic variables are translated into
relations on a set of states. Any method for checking properties
of the transition system such as inductive invariant checking,

bounded model checking [28], [29] or transitive-closure-based
model checking [26] can be used for analysis.

III. DASH+

Our goal in creating Dash+ is to support replicated AND-
states to Dash. Intuitively, replicated AND-states should run
concurrently with each other and with non-replicated AND-
states of the model. The value of having replicated AND-states
is that many systems such as protocols and distributed systems
consist of replicated components. It is common, for example,
to have a set of clients and receivers. We would like to be
able to describe such systems abstractly in a model without
knowing the number of replicated processes in advance. We
are not aware of a modelling language that supports all of
the features of 1) abstract data modelling; 2) hierarchical
and concurrent control states; and 3) replicated (and possibly
nested) concurrent states. The challenges in adding replicated
concurrent states to Dash are in ensuring that 1) they can
be modelled seamlessly with the control state hierarchy and
behave as if they had each been modelled as a concurrent
state individually for big/small steps; 2) we can easily model
arrangements of components in linear orders or rings, etc. ; 3)
they can communicate with other replicated and non-replicated
states through global/local variables, events and buffers; and
4) we seamlessly integrate with Alloy.

We present Dash+ via discussions of 1) parametrization; 2)
communication; and 3) modularity in the following subsec-
tions. The Dash+ models that we mention are available at:
https://github.com/WatForm/watform-models .

A. Parametrization

We want our models to be able to have multiple different
replicated AND-states (e.g., a set of clients and a set of
servers). We also want to defer setting the number of each
kind of replicated AND-state until analysis time (as is done
for any set in Alloy). As a language design decision, we
consider whether the replicated states should be explicitly
or implicitly parametrized. Implicit parametrization has the
advantage of avoiding the excessive syntax of needing to
include that parameter for every locally declared dynamic
variable. However, with implicit parametrization, the com-
ponent would have no means of communicating with its
sister component directly (because it cannot address the sister
component) and could only broadcast a message. Our solution
is to explicitly parametrize the AND-state declaration but
implicitly parametrize the locally declared dynamic variables.

We use the Chord protocol [30] as an example because it
has also been modelled in Alloy by Zave [22]. Chord is a
peer-to-peer distributed hash table that assigns keys to nodes
that are organized as a ring. Each node has a unique identifier
and a successor and predecessor node. Fig. 1 is an illustration
of a Chord system. An active node is a node that is a part of
the ring in the Chord system. Each active node in the Chord
system is shown as a green circle with an unique identifier
in Fig. 1. The successor for a node is displayed with a blue
arrow and its predecessor with a yellow arrow. It is possible for

 https://github.com/WatForm/watform-models 


1

5

17

24

10

Fig. 1. Chord Nodes in a Ring (figure inspired by Zave [22])

1 open util/ring[Node]
2
3 sig Node {}
4 sig Succs {
5 list: seq Node
6 } { ... }
7
8 conc state NodeProc [Node] {
9
10 succ: one Succs // list of successors
11 prdc: one Node
12 status: lone Status
13 saved: lone Node
14
15 env event Fail {}
16 env event Join {}
17
18 default state Active {
19 default state Stabilizing {
20 trans StabilizeFromSucc { ... }
21 trans StabilizeFromPrdc { ... }
22 }
23 state Rectifying {
24 trans Rectify { ... }
25 }
26 trans NodeFailure { ... }
27 }
28
29 state Failed {
30 // add this node to the ring
31 trans NodeJoin {
32 on Join
33 when status = Failed
34 do {
35 status’ = Active
36 some otherNode: Node |
37 not (otherNode = this) &&
38 NodeProc[otherNode]/status=Active &&
39 between[otherNode, this,
40 NodeProc[otherNode]/succ.list[0]]&&
41 succ’ = NodeProc[otherNode]/succ &&
42 prdc’= otherNode
43 }
44 goto Live
45 }
46 }
47 ...
48 }

Listing 2. Dash+ Model for Chord

Chord

NodeProc

Stabilizing

Rectifying

Active

Failed

NodeJoin NodeFailure

StabilizeFromSucc

StabilizeFromPrdc
Rectify

Fig. 2. State Hierarchy in the Dash+ Chord Model

a node to fail and have itself removed from the ring. When
it rejoins the ring (as node 10 is doing in Fig. 1), it sets it
successor and predecessor to point the node next and previous
to it respectively. The successor and predecessor pointers for
nodes 17 and 5 will be adjusted by stabilize and rectify actions
within nodes 17 and 5 after node 10 joins the ring.

Listing 2 shows parts of our Dash+ model of the Chord
protocol. Each replicated NodeProc state represents a node
in the Chord system. Line 8 of Listing 2 shows the concurrent
state NodeProc is parametrized by a set called Node. Any
Alloy set can be used as the parameter set. This set is declared
in a signature (on Line 3) outside of the state construct. The
size (scope) of the Node set is set at analysis time in an Alloy
run/check command as is normally done in Alloy.

By allowing the parameter to be any Alloy set, constraints
on the parameter set can be written separately to choose a
topology of communication for the replicated components. For
example, the ordering library module in Alloy constrains a set
to be a linear order and provides relations such as next and
prev as operations on the elements of the order. Applying
the ordering module to a set of identifiers for replicated states
forces the replicated states to be arranged in a linear order
with respect to each other, which governs their communication
connections. The Chord protocol requires the nodes to be
arranged in a ring. We plan to create a parametrized ring
module in Alloy that is an extension of the linear ordering
module in which the last element in the linear order points



to the first element and vice versa. On line 1 of Listing 2,
the Node set is constrained to be a ring. In another Dash+
example for a BitCounter, we use a linear order topology of
replicated components to cascade the carry bit where each bit
is one copy of a replicated AND-state.

In Listing 2, dynamic variables succ, prdc, status and
saved are declared locally within the state (Lines 10– 13). The
events Fail and Join come from the environment because
they are declared using the keyword env (Lines 15– 16).

The steps of the Chord protocol are divided into labelled
control states for the behaviour of each NodeProc, such as
the states Active and Failed shown in Listing 2. Fig. 2 is
an illustration of the state hierarchy in the Dash+ model for
the replicated NodeProcs. Every NodeProc defaults to start
in the Active state. This state has two substates within it:
Stabilizing and Rectifying. Failure of a node will result
in it exiting the Active state and any substate of the Active

state on transition NodeFailure, and moving to the Failed

state.
There is a transition named NodeJoin from the state

Failed that reacts to the Join event when the status

variable has the value Failed (guard). The source state of the
transition NodeJoin is the state Failed because the transition
is described with the Failed state and has no from part in
the transition description. Within the do block of the transition
NodeJoin is a list of Alloy formulas describing the change in
behaviour that results from taking this transition in the model.
The variable status is set to active in the step (because
its primed version is used) and this node is fit into the ring
between a different node (otherNode) and the other node’s
successor. We will discuss these actions in the next subsection,
however note that explicit parameterization of NodeProc is
used to refer its sister replicated components in the action.
Finally, the destination state of the NodeJoin transition is the
state Active.

We compare our Dash+ model with an extract from Zave’s
Alloy model of Chord [22] for the join operation shown in
Listing 3. Zave’s model follows a common style in Alloy
modelling of transition systems where a predicate is used to
model each transition system. The preconditions and postcon-
ditions are determined by comments. In Zave’s model, “j” is
the node joining the ring and is passed as argument to the
predicate whereas in our Dash+ model, the operation of joining
is happening to the current node when it receives the Join

event. The previous and next states of the transition system
are passed as arguments to the predicate and every dynamic
variable (such as members) must be explicitly indexed by the
state via the Alloy join (‘.’) operator. The set of all members of
the ring is a dynamic variable of the state and changed directly
rather than each node implicitly being a member of the ring
when it is active and communicating with its neighbours. The
succ and prdc elements map from states to nodes to values,
whereas in Dash+ these elements are local to each process
and do not require any of these parameters. Finally, because
of the semantics of Dash, we do not have to model anything
about the saved variable in the NodeJoin transition because

1 pred Join [s, s’: NetState, j: Node] {
2 -- PRECONDITIONS
3 j ! in s.members
4 some m: s.members |
5 between [m, j, m.(s.succ).list[0]]
6 -- j queries m to get its successor list
7 -- POSTCONDITIONS
8 && s’.time = next [s.time]
9 && s’.members = s.members + j

10 && s’.succ = s.succ + (j -> m.(s.succ))
11 && s’.prdc = s.prdc + (j -> m)
12 && s’.status = s.status
13 && s’.saved = s.saved
14 }

Listing 3. Part of Zave’s Alloy Model for Chord [22]

it is not changed in this transition. Overall, Dash+ allows a
local view for the node rather than thinking about the global
state of the system for each transition.

Dash+ allows nesting of replicated components. In one of
our examples, we model a heating system with concurrent
states for a controller, a furnace, and multiple rooms. The
rooms are replicated components. On error or off events, the
system exits these concurrent states and moves to error/off
states. This model includes abstract data operations that use
quantification over the rooms requesting heat. The feature of
nesting replicated components is unique to Dash+ within the
family of declarative languages.

B. Communication

Concurrent components of a model have to be allowed to
communicate with each other. In Statecharts, communication
is possible via global variable access and global events. While
all communication is global, directed communication is possi-
ble by using particular named events. Dash helps aid in locality
of communication through its namespaces – while everything
is accessible globally, referencing a variable or an event in
another component must be prefixed by the component’s name.

In Dash+, a replicated component can receive global envi-
ronmental events or send global events (e.g., a request for a
token) as these events are declared outside of the component.
Internal access to its locally declared events/variables is writ-
ten without parametrization. The only time parametrization
is needed is for communication to/from sister components
of this component. Examples of this use of parametrization
can be seen on Lines 38– 41 in Listing 2. Using NodeProc

[otherNode]/succ, we refer to the succ variable in the
copy of NodeProc indexed by otherNode. Occasionally, it
is useful to refer to the index of the current node via the
keyword this. For example, NodeProc[this].next refers
to the next node to this one in a linear order.

Asynchronous Buffers. Protocols and distributed systems
often communicate via buffers (channels). When constructing
the model, the size of these buffers may not be known and
it is important that a buffer size limit not be fixed within the
model. No built-in library in Alloy works for Dash+ buffers
because a modeller may want two different buffers consisting



1 conc state Server [ServerID] {
2 requests : buf[ClientID]
3
4 default state Sending {
5 trans send {
6 // There is a request by a client
7 when !requests.isEmpty
8 do {
9 // Send an integer to the buffer of the
10 // client making the request
11 one x : Int |
12 Client[requests.first]/messages.Add[x]
13 // Clear that request
14 requests.delete[0]
15 }
16 }
17 }
18 }
19 conc state Client[ClientID] {
20 messages : buf[Int]
21 ...
22 }

Listing 4. Part of a Dash+ Model with Buffers

of elements of the same set to have different sizes. Therefore,
we introduce syntax in Dash+ buffers as shown on line 2 of
Listing 4. In this example, there are replicated Servers each
with a buffer called requests of ClientIDs and there are
Clients each with a buffer called messages of Ints. When
a Server has a client id in its buffer (line 7) it chooses an
integer to add to that client id’s buffer and then deletes this
element from its buffer (lines 11– 14). There is no goto part
of the transition because it uses the default of looping back
to its source state. We are investigating whether to make all
buffers first-in, first-out (FIFO) or to provide different access
policies for buffers.

Synchronous Buffers. The original modelling lan-
guages for protocols, CSP [31] and CCS [32] included
synchronous/handshake/rendezvous communication between
components where the sender and receiver both take a transi-
tion on the shared event. The Statecharts model of communica-
tion, however, relies on a sequence of small steps that describe
the cascading effect of an event triggering a transition, which
may generate another event and trigger another transition.
This form of communication has been well studied (e.g.,
[27]) and relates to Berry’s synchrony hypothesis [33], which
assumes that the system can complete its response to an
environmental event before the environment generates another
input. In Dash+, we are creating a language that includes
both replicated components and their interactions along with
hierarchical state modelling, which means we have to combine
the typical semantics of each in an intuitive manner. Looking
at one big step in Dash+ as the system’s response to the
environment allows us to view a sequence of small steps in
a combined way as a synchronous response, thus we do not
need to support a special kind of synchronous buffer. If one
component puts something in a buffer, another component can
read from that buffer within the same big step.

C. Modularity via Multiple Files

An important aspect of modelling, even at a very abstract
level, is decomposition into multiple files. Following Alloy
and Dash, Dash+ has two methods of decomposing models:

• Existing and new Alloy modules provide packages of
constraints on data. An example of how this is used in
Dash+ is for the topologies of the replicated processes,
e.g., the ordering module, which orders the components
and allows them to access their neighbours via functions.

• Dash decomposition is accomplished via file concatena-
tion. Each kind of replicated component can be described
in one file and the files can be concatenated to form a
Dash module directly because Dash does not require a
single root state.

IV. SEMANTICS

The semantics of replicated concurrent components in
Dash+ is that they behave as a set of concurrent states. Dash
models are translated to Alloy for analysis [10]. The translation
implements the semantics of hierarchical, concurrent states
in big- and small-steps. For the analysis of Dash+ models,
we plan to extend Dash’s translation to Alloy. Rather than
simply replicating the component a fixed number of times
during translation, a key challenge in this translation is to not
set the number of replicated components until analysis time.
Similarly, we want to leave the size of the buffers to be set at
analysis time and all buffers should not have to be the same
size.

We are exploring how to build parametrization into the
translation. All locally declared variables and events of a repli-
cated component will become functions that are parametrized
by the replicated component’s identifier set in addition to a
state set. Therefore, the number of copies of each dynamic
variable included in the model relies on the cardinality of
the replicated component’s identifier set, which is decided at
analysis time.

Control state and transition labels are translated to sets in
Dash (rather than functions) so parametrization does not work
directly for their translation. We have to link the cardinality
of copies of these sets to the number of replicated states at
analysis time. A simple method of solving this issue is to use
Alloy’s set cardinality operator and constrain the cardinality
of the sets of state and transition labels to be equal to
the cardinality of the replicated component’s identifier set.
However, using set cardinality is not efficient and increases
the analysis time for Alloy models. A more efficient approach
is to specify the scope for each set in the run/check command
such that its scope is equal to the scope of its replicated process
identifier set. But, it would be tedious to require this of the
user when using the Alloy Analyzer on Dash+ models. Thus,
we are integrating support for Dash+ directly into the Alloy
Analyzer to hide the process of translating Dash+ to Alloy.
Via this integration, we can hide the need to make these sets
equivalent in scope and still use the more efficient method of
setting the scopes in the command directly.



For buffers, we want to allow different buffers consisting of
elements of the same set to have different sizes. Alloy’s built-
in seq module is close to our desired meaning for buffers (a
function mapping an index to a position in a sequence). This
module allows users to create buffers consisting of elements
of a set and add/remove items to/from any index respectively.
However, it requires all buffers consisting of elements of the
same set to be the same size because the sequence module has
only one index set. Once the scope for the index set has been
specified for a buffer, every buffer will the size of the index
set. Alleviating this issue requires the use of multiple index
sets such that each buffer will have its own index set. We
will allow the user to set the size of the buffer in a run/check
command by buffer name (as in run for 3 requests, 4

messages). Typically in Alloy, a user cannot set the size of
a relation directly (only sets) so our translator will create a
buffer relation (with appropriate operations for FIFO or other
access policies) and use the scopes set for each buffer in the
command in Dash+ as the scopes of the index sets in the Alloy
translation.

One important aspect of the semantics that needs to be
explored further is the possibility of transitioning into or
out of a substate of a replicated component. Transitioning
out of a substate of a replicated component is the same as
transitioning out of one component of a concurrent state,
which is already supported in Dash. In this case, every
component of the concurrent state is exited when the tran-
sition is taken. Transitioning into the substate of a replicated
component is effectively creating a transition with multiple
destination states. This case currently does not exist in Dash as
a transition cannot have multiple destination states. However,
the semantics of this case should be that the destination
substate is entered in all replicated components. Transitions
from a substate of one replicated component to a substate of
another replicated component will be disallowed through a
well-formedness condition.

V. ANALYSIS

We plan to provide analysis support for Dash+ via the Alloy
Analyzer. As was done with Dash, we will implement the
semantics described in the previous section as a translator to
Alloy.

For model checking, we want to be able to write proper-
ties that are requirements of all replicated components. For
example, in the Chord model, an active node must contain a
predecessor (prdc) node. Using regular Alloy quantification
over the Node set parametrizing the replicated AND-state and
the embedding of computation tree logic (CTL) [34] provided
in [35], we can write:

assert alwaysOnePredecessor{
ctl_mc

[ag[all id: Node |
NodeProc[id]/status=Active

=> one NodeProc[id]/prdc]]}

For the visualization of instances and counterexamples,
using Dash+, the instance will include an identifier for each
process along with information on transitions taken (because
we have named transitions) and the current control state. This
extra information will aid in the debugging process.

Replicated components will cause larger state spaces for
analysis. ALDB [36] provides an initial method for debugging
Dash+ models. ALDB is a debugger for Alloy models of
transition systems. It allows a modeller to step through a
transition system and write simple bounded model checking
properties (‘until’). No special support is needed in ALDB for
either Dash or Dash+ models, but we are exploring how a
graphical illustration of the named state identifiers can help a
user in understanding the model during simulation.

To handle large state spaces, we will develop additional
significance axioms [26]. Significance axioms in Alloy deter-
mine a scope for the transition system that covers an important
subset of its behaviours. For example, a significance axiom
can require the instances checked to include paths that cover
all declared transitions. A significance axiom can require that
all states in the instance are reachable from an initial state to
avoid spurious instances. In Serna [10], significance axioms
were created for Dash that require that every control state is
reachable and all big steps are complete. For Dash+, a new
significance axiom could require that at least one copy of every
replicated component participates in a path of the transition
system.

By exposing the replicated components syntactically, there
may be opportunities to apply symmetry breaking to reduce
the size of the state space. For example, partial order reduc-
tion [37] reduces the number of interleavings of transitions
to consider in state space search. In addition, results from
model checking parametrized systems [38] may be applicable
for generalizing results from checking a finite number of
components. For example, Bozga et al. [39] and Ezparza
et al. [40] describe methods for efficiently proving safety
properties of models with replicated concurrent components
using invariants.

VI. RELATED WORK

Wallace [41] modelled processes in Alloy by defining a
model that changes its global state using transitions with pre-
and post-conditions. Each dynamic variable of a process is
modelled as a function from the global state and process
identifier to the value. Zave [22] used a similar modelling
method in Alloy for nodes in the Chord ring. This extra
parametrization is tedious and makes it difficult to understand
the model from the point of view of one process. The models
of Wallace [41] and Zave [22] did not use buffers. Dash
implicitly models time (or a step) for the user and with our
contributions in Dash+, processes with buffers can be modelled
explicitly.

Electrum [5] is an extension to Alloy that includes the
keyword “var” as syntax to denote the declaration of dynamic
elements of a model. Primed uses of the variable denote
values of the variable in the next step of the transition system.



It uses LTL to describe both the transition system (traces)
and the properties to check of the model. There are also
constructs to describe individual transitions called actions [42].
DynAlloy [6], [7] is an extension of Alloy that enables users
to define a system configuration (an initial state of the system)
and reconfigure the system (change its state) using an action.
The actions contain a pre-condition and post-condition to
describe changes to the system after the action and are strongly
influenced by programming language constructs. Both of these
extensions lack state hierarchy, replicated concurrent states,
and communication using buffers, which Dash+ provides.

PlusCal [14] is an extension of TLA+ [4] that includes
explicit language constructs for replicated processes. Processes
in PlusCal are explicitly indexed and communicate via shared
variables. There is no explicit buffer construct. Replicated
processes in PlusCal run concurrently via interleaving. A
transition from one process is taken in a step. Properties of
PlusCal models can be checked via a translation to TLA+
and using a model checker or theorem prover for TLA+. Any
expression in TLA+ can be used in the triggers and actions
of transitions making it possible to model data very abstractly,
but PlusCal lacks control state hierarchy as is found in Dash+.
All processes in PlusCal must be at the top-level, whereas in
Dash+ replicated AND-states can be arbitrarily nested.

Spin [20] is a model-checking checking tool that analyzes
models written in the modelling language PROMELA. In
PROMELA, users can declare concurrent replicated processes
and the replicated components can communicate with each
other using global variables and/or buffered/rendezvous chan-
nels. However, PROMELA has limited datatypes and data
operations because it focuses mainly on the communication
and synchronization aspects of a model. PROMELA also lacks
hierarchical state modelling.

UML state machines [13] support hierarchical and concur-
rent labelled control state hierarchy. Through the use of object
modelling, UML supports replicated concurrent components.
Using OCL [43], pre- and post- conditions and invariants
can be included in the UML model. However, UML models
lack the level of abstraction for data descriptions that a
declarative language such as Dash+ or Alloy can provide. By
providing language constructs that fully integrate abstract data
descriptions with control state modelling paradigms including
replicated components, Dash+ can be used for data-oriented
and control-oriented modelling.

VII. CONCLUSION

We have presented Dash+, an extension of Dash and Alloy,
that provides language constructs for describing a model with
replicated concurrent components. Dash+ allows communica-
tion among these components and between these components
and the rest of the model. This communication can be global
or directed based on a particular topological arrangement of
the components and may be buffered or not. Dash+ does not
extend the expressiveness of Alloy; it adds explicit language
constructs for convenience in describing transition systems.
Dash+ aims to be a flexible and abstract modelling language

for transition systems that combines abstract data, hierarchical
control states, and replicated components.

Dash+ can have multiple sets of replicated components in
the model and these replicated components can be at any
level in the control state hierarchy, which is a novel and
powerful modelling feature. A key insight in Dash+ is that
we can use a regular Alloy set to describe the topology of
the replicated components. This generality allows users to ar-
range the replicated components in common (and uncommon)
communication structures (e.g., rings) using regular Alloy
constraints. The elegance and abstractness of separating the
modelling of the behaviour of a replicated component and the
specification of the topology of the replicated components is
unique to Dash+.

In addition, Dash+ provides an explicit construct for
buffered communication to allow buffers consisting of ele-
ments of the same set to have different sizes. Combining the
locality of replicated components with buffered communica-
tion and the simplicity of using an existing Alloy set to define
the topology provides important new features to Dash.

We are working on implementing Dash+ as a translation
to Alloy that implements the semantics we have described in
this paper and is directly integrated within the Alloy Analyzer.
Users will be able to toggle between a “Dash+” view of the
model and an “Alloy” view of the model. We are continuing
to investigate optimizations for analysis and case studies.
Once we have support for Dash+ implemented, we plan to
investigate common modelling patterns for replicated AND-
states. For example, there are common methods for handling
failures in replicated components in protocols and we may be
able to provide a Dash+ library that provides models for these
common patterns.

ACKNOWLEDGMENTS

We thank Jose Serna (the creator of Dash) for discussions
regarding the future of Dash. This research was supported
in part by the Natural Sciences and Engineering Research
Council of Canada (NSERC).

REFERENCES

[1] J. M. Spivey, Z Notation - a reference manual, 2nd ed. Prentice Hall,
1992.

[2] C. B. Jones, Systematic software development using VDM, 2nd ed.
Prentice Hall, 1991.

[3] D. Jackson, Software abstractions: logic, language, and analysis, 2nd ed.
Cambridge, Mass: MIT Press, 2012.

[4] L. Lamport, Specifying Systems, The TLA+ Language and Tools for
Hardware and Software Engineers. Addison-Wesley, 2002.

[5] J. Brunel, D. Chemouil, A. Cunha, and N. Macedo, “The Electrum
analyzer: Model checking relational first-order temporal specifications,”
in ASE, 2018, pp. 884–887.

[6] M. F. Frias, J. P. Galeotti, C. G. López Pombo, and N. M. Aguirre,
“DynAlloy: Upgrading Alloy with actions,” in ICSE. ACM, 2005, pp.
442–451.

[7] G. Regis, C. Cornejo, S. Gutiérrez Brida, M. Politano, F. Raverta,
P. Ponzio, N. Aguirre, J. P. Galeotti, and M. Frias, “DynAlloy analyzer:
A tool for the specification and analysis of Alloy models with dynamic
behaviour,” in FSE. ACM, 2017, pp. 969–973.

[8] “Alloytools/org.alloytools.alloy,” https://github.com/AlloyTools/org.
alloytools.alloy, 2021, [Online; accessed Jun 28, 2021].

https://github.com/AlloyTools/org.alloytools.alloy
https://github.com/AlloyTools/org.alloytools.alloy


[9] A. Pnueli, “The temporal logic of programs,” in Symposium on Foun-
dations of Computer Science (FOCS). IEEE Comp. Soc., 1977, pp.
46—-57.

[10] J. Serna, “Dash: Declarative behavioural modelling in Alloy,” MMath
thesis, Univ. of Waterloo, Cheriton School of Comp. Sci., 2019.

[11] J. Serna, N. A. Day, and S. Farheen, “Dash: A new language for
declarative behavioural requirements with control state hierarchy,” in
MODRE Workshop @ RE. IEEE Comp. Soc., 2017, pp. 64–68.

[12] D. Harel, “Statecharts: A visual formalism for complex systems,” Sci.
of Comp. Prog., vol. 8, no. 3, pp. 231–274, 1987.

[13] “OMG unified modeling language,” http://www.omg.org/spec/UML/2.5/
PDF/, 2015, [Online; accessed Jul 4, 2021].

[14] L. Lamport, A PlusCal User’s Manual (P-Syntax), version 1.8 ed.,
August 2018.

[15] C. Newcombe, “Why Amazon chose TLA+,” in ABZ, 2014, pp. 25–39.
[16] H. Wayne, “List of TLA+ examples,” https://www.hillelwayne.com/

list-of-tla-examples/, 2021, [Online; accessed June 28, 2021].
[17] J. Abrial, The B-book - assigning programs to meanings. Cambridge

University Press, 1996.
[18] ——, Modeling in Event-B - System and Software Engineering. Cam-

bridge University Press, 2010.
[19] E. Börger and R. F. Stärk, Abstract State Machines. A Method for High-

Level System Design and Analysis. Springer, 2003.
[20] G. J. Holzmann, The SPIN Model Checker - primer and reference

manual. Addison-Wesley, 2004.
[21] P. Zave, “A practical comparison of Alloy and Spin,” Formal Aspects in

Computing, vol. 27, no. 2, pp. 239–253, 2015.
[22] ——, “Reasoning about identifier spaces: How to make chord correct,”

IEEE Trans. on Software Engineering, vol. 43, no. 12, pp. 1144–1156,
2017.

[23] M. Bagheri, M. Sirjani, E. Khamespanah, N. Khakpour, I. Akkaya,
A. Movaghar, and E. Lee, “Coordinated actor model of self-adaptive
track-based traffic control systems,” Journal of Systems and Software,
vol. 143, 05 2018.

[24] E. Kang, S. Adepu, D. Jackson, and A. P. Mathur, “Model-based
security analysis of a water treatment system,” in 2016 IEEE/ACM
2nd International Workshop on Software Engineering for Smart Cyber-
Physical Systems (SEsCPS). IEEE, 2016, pp. 22–28.

[25] A. Svendsen, B. Møller-Pedersen, Ø. Haugen, J. Endresen, and E. Carl-
son, “Formalizing train control language: automating analysis of train
stations,” in Comprail, 2010, pp. 245–256.

[26] S. Farheen, N. A. Day, A. Vakili, and A. Abbassi, “Transitive-closure-
based model checking in Alloy,” SoSym, vol. 19, pp. 721–740, 2020.

[27] S. Esmaeilsabzali, N. A. Day, J. M. Atlee, and J. Niu, “Deconstructing
the semantics of big-step modelling languages,” REJ, vol. 15, no. 2, pp.
235–265, 2010.

[28] A. Cunha, “Bounded model checking of temporal formulas with Alloy,”
in ABZ. Springer Berlin Heidelberg, 2014, pp. 303–308.

[29] A. Biere, A. Cimatti, E. M. Clarke, O. Strichman, and Y. Zhu, “Bounded
model checking,” in Advances in Computers. Elsevier, 2003, vol. 58
Supplement C, pp. 117 – 148.

[30] I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger, M. F. Kaashoek,
F. Dabek, and H. Balakrishnan, “Chord: a scalable peer-to-peer lookup
protocol for internet applications,” IEEE/ACM Trans. Netw., vol. 11,
no. 1, pp. 17–32, 2003.

[31] T. Hoare, Communicating Sequential Processes, ser. International Series
in Computer Science. Prentice Hall, 1985.

[32] R. Milner, Communication and Concurrency, ser. International Series in
Computer Science. Prentice Hall, 1989.

[33] G. Berry and G. Gonthier, “The esterel synchronous programming
language: design, semantics, implementation,” Sci. of Comp. Prog.,
vol. 19, no. 2, pp. 87–152, 1992.

[34] E. Clarke and E. Emerson, “Design and synthesis of synchronisation
skeletons using branching time temporal logic,” in Workshop on Logic
of Programs, ser. LNCS, vol. 131. Springer, 1981, pp. 52—-71.

[35] A. Vakili and N. A. Day, “Temporal logic model checking in Alloy,” in
ABZ, ser. LNCS, vol. 7316. Springer, Jun. 2012, pp. 150–163.

[36] A. Dureja, A. Keerthi, A. Liang, P. Zhang, and N. A. Day, “ALDB:
Debugging Alloy models of behavioural requirements,” in MODRE
Workshop @ RE. IEEE, 2020, pp. 21–30.

[37] P. Godefroid and P. Wolper, “Using partial orders for the efficient
verification of deadlock freedom and safety properties,” Formal Methods
in System Design, vol. 2, no. 2, pp. 149–164, 1993.

[38] P. A. Abdulla, A. P. Sistla, and M. Talupur, “Model checking param-
eterized systems,” in Handbook of Model Checking. Springer, 2018,
ch. 21, pp. 685–725.

[39] M. Bozga, J. Esparza, R. Iosif, J. Sifakis, and C. Welzel, “Structural in-
variants for the verification of systems with parameterized architectures,”
in TACAS, ser. LNCS, vol. 12078, 2020, pp. 228–246.

[40] J. Esparza, M. Raskin, and C. Welzel, “Computing parameterized
invariants of parameterized petri nets,” 2021.

[41] C. Wallace, “Using Alloy in process modelling,” Information & Software
Technology, vol. 45, no. 15, pp. 1031—-1043, 2003.

[42] J. Brunel, D. Chemouil, A. Cunha, T. Hujsa, N. Macedo, and J. Tawa,
“Proposition of an Action Layer for Electrum,” in ABZ, ser. LNCS, no.
10817. Springer, 2018, pp. 2–6.

[43] “OMG object constraint specification (OCL) specification,” http://www.
omg.org/spec/OCL/2.4/PDF, 2014, [Online; accessed Jul 4, 2021].

http://www.omg.org/spec/UML/2.5/PDF/
http://www.omg.org/spec/UML/2.5/PDF/
https://www.hillelwayne.com/list-of-tla-examples/
https://www.hillelwayne.com/list-of-tla-examples/
http://www.omg.org/spec/OCL/2.4/PDF
http://www.omg.org/spec/OCL/2.4/PDF

	Introduction
	Background
	Alloy
	Dash

	Dash+
	Parametrization
	Communication
	Modularity via Multiple Files

	Semantics
	Analysis
	Related Work
	Conclusion
	References

