
Representing Hierarchical State Machine Models
in SMT-LIB

Nancy A. Day
David R. Cheriton School of Computer Science

University of Waterloo
Waterloo, Canada

nday@uwaterloo.ca

Amirhossein Vakili
David R. Cheriton School of Computer Science

University of Waterloo
Waterloo, Canada

avakili@uwaterloo.ca

ABSTRACT
We motivate and present a proposal for how to represent the
syntax of behavioural models written in extended finite-state
machine languages with hierarchical states (e.g., the State-
charts family) in SMT-LIB. By including the state structure
explicitly in the SMT-LIB model, our goal is to facilitate ef-
fective automated deductive reasoning, which can exploit
the structure found in the state hierarchy. We present a
novel method that combines deep and shallow encoding tech-
niques to describe models that have both state hierarchy and
use the rich datatypes found in SMT-LIB. Our representa-
tion permits varying semantics to be chosen for the syntax
recognizing the rich variety of semantics that exist for this
family of modelling languages. We hope that discussion of
these representation issues will facilitate model sharing for
investigation of analysis techniques.

1. INTRODUCTION
The purpose of this paper is to initiate a discussion regard-

ing the best way to represent behavioural models written in
hierarchical extended finite-state machine based languages
(HSMs) (e.g., the Statecharts family [24, 14]) within SMT-
LIB [3]1. HSMs have state hierarchy, parallel states, and
transitions with labels that manipulate data. SMT-LIB is
an existing, well-used, and well-accepted standard for rep-
resenting satisfiability and validity problems in first-order
logic (FOL). Many existing verification tools accept SMT-
LIB as input, including solvers (e.g., [9, 2]) and APIs (e.g.,
[17, 16, 10]). We propose a representation of the syntax
of HSMs in SMT-LIB that explicitly represents the state
structure, motivated by the goal of allowing SMT solvers to
use this structure to improve their deductive analysis per-
formance for tasks such as model checking. Translators can
be written from representations of models in sophisticated
modelling IDEs to our proposed representation in SMT-LIB.

1Throughout this paper, SMT-LIB means the latest version
of the standard, which is currently 2.5.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

c© 2016 ACM. ISBN 978-1-4503-2138-9.

DOI: 10.1145/1235

What kinds of HSMs? We are interested in support-
ing state machine based modelling formalisms that allow the
user to describe the system using hierarchical and parallel
states. Transitions between states are labelled with guards,
events, and actions. There are many modelling languages
in this family including Statecharts [14] and UML StateMa-
chines [21], and there are a variety of semantics proposed for
this kind of syntactic representation [24, 12]. Much of the
complexity and variety in the semantics comes in the mean-
ing of the big-steps (macro and micro steps in Statecharts
terminology).

Why represent HSMs in SMT-LIB? There has been
recent progress by us [22, 23] and others [6, 7] on using SMT
solvers for model checking finite and infinite state systems.
During these investigations, we painfully wrote primitive
Kripke structures models in SMT-LIB for input to solvers
and we would like to analyze models written in more user-
friendly modelling languages. Usually, a translation process
from HSMs to analysis tools incorporates the semantics of
the language into the representation of the model in the
destination language, and the hierarchical state structure is
lost: it is either flattened and lost, or represented in primi-
tive variables and ignored in analysis. Automated first-order
provers (e.g., SMT solvers [4]) are deductive reasoners. We
believe that the deductive-based reasoning of SMT-solvers
can exploit the hierarchical state structure to perform rea-
soning in a more efficient and modular manner. In our pro-
posed approach, we create an explicit representation of the
syntax of the state hierarchy in SMT-LIB and plan to use
separate FOL axioms to describe the semantics of the states
in the HSMs. We hope that discussion of the syntactic repre-
sentation issues will facilitate model sharing for investigation
of analysis techniques.

What are the modelling issues? This work encoun-
tered three main challenges:

Staying within a decidable fragment of FOL. A chal-
lenge in formalizing the state hierarchy of these models
in FOL is the lack of recursive datatypes. We chose a
representation of the syntax of the state hierarchy that
stays within the logic of uninterpreted functions [1],
which is a decidable fragment of FOL. Thus, if the
data and operations of the transitions of the model
are within a decidable fragment of FOL, our represen-
tation of the hierarchy of states and transitions keeps
the entire representation of the model within a decid-
able fragment of logic.

Supporting rich datatypes native in SMT-LIB. One of
the advantages of using SMT-LIB as a base language

is that our models with hierarchical states can include
operations on rich datatypes such as integers, lists, and
uninterpreted types and functions. We expect that the
ability to write and reason about behavioural models
that are rich in both control and datatypes will be
a significant advantage in MDE methodology. Inte-
grating a representation of the syntax of state hier-
archy with native SMT-LIB datatypes and operations
required us to develop a middle point between deep
and shallow embedding techniques [5] for representing
one language in another.

Supporting variable semantics. We are pursuing the goal
of applying deductive reasoning to these models while
accomodating the variety of semantics that modellers
employ for very similar syntax. We have created a
representation of the syntax of the model that can be
combined with separately formulated semantic func-
tions that are independent of the specific model and
can be varied depending on the language of the model.

Our contribution in this paper is a format in SMT-LIB
for representing hierarchical state machines that 1) explic-
itly represents the syntax of the hierarchical state structure;
2) allows the use of general FOL on transition guards and
actions; and 3) represents the state structure within a decid-
able fragment of FOL, and therefore does not add complex-
ity to the analysis problem. Because we have formulated
the syntax of the state hierarchy only, the semantics of the
language can be described separately in FOL allowing users
to choose their semantics for the model, rather than having
the semantics integrated into the model.

Related Work. There are many existing standards for
representing the syntax of models of hierarchical state ma-
chines. We created Composed Hierarchical Transition Sys-
tems (CHTSs) [18] to represent the syntax of such models in
XML. Hall and Zisman presented the OpenModel Modeling
Language (OMML) [13], which was a similar attempt to cre-
ate a standard format for the syntax of extended finite-state
machine models. The Object Management Group (OMG)
has defined the Executable UML Foundation (fUML) [20]
with its Action Language (Alf) [19]. Our goal in this work
differs from these approaches in that it is focused on rep-
resenting HSMs within an existing logic for analysis, but
without choosing a fixed semantics (as is the case in fUML),
and also allowing general FOL for specification of transition
guards and actions.

2. BACKGROUND
SMT-LIB. A satisfiability modulo theories (SMT) solver,

for short SMT solver, is an automatic tool to check the sat-
isfiability of a set of formulae in many-sorted FOL [4]. An
SMT solver differs from a general-purpose FOL satisfiability
checker in one major way: if a built-in type such as integers
is used in a formula, the SMT solver considers only the stan-
dard interpretation for that type and the defined operations
over it. SMT-LIB is a standard notation that state-of-the-
art SMT solvers accept as input [3]. A specification of a
problem in SMT-LIB consists of four parts: 1) declarations
of user-defined types using the keyword declare-sort, 2)
declarations of functional symbols used in the model2 using
the keyword declare-fun, 3) definitions that are used to

2A relational symbol is a functional symbol of type Bool.

simplify the model using the keyword define-fun, and 4)
a set of assertions, where each assertion is a formula. All
functions in SMT-LIB are total. SMT-LIB does not distin-
guish between terms and formulae. A formula is a term of
type Bool. To ease the parsing of SMT-LIB specifications
by SMT solvers, each SMT-LIB specification is a sequence
of S-expressions.

HSMs. At its most basic level, a behavioural model de-
scribes a set of traces of configurations. A configuration is a
mapping from variables to values. A configuration relation
(sometimes called a next state relation or a transition rela-
tion) is a definition of the set of traces as a set of possible
steps between two configurations. The source configuration
of a step is called the current configuration and the destina-
tion configuration of a step is called the next configuration.
Specifications that are control-oriented include a hierarchical
set of named states (sometimes called modes). Transitions
originate and end at states and have labels. We consider
models that are hierarchical state machines with And, Or,
and Basic states3. Each transition has a source state, a
destination state, a name, and optionally an event, a guard
condition, an action, and a generated event. Transitions are
labelled in the form:
transname: event [guard] / action ˆgenerated event
Generally speaking, a configuration relation for a model with
states and transitions is the combined (not necessarily con-
juncted) behaviour of the set of transitions in the form of
implications: when the current configuration includes the
source state of a transition, the event occurs, and the guard
on that transition’s label is true of the current configura-
tion, then in the next configuration the source state of the
transition is replaced by its destination state and the action
labelling the transition has taken effect. The complications
in the semantics for these languages (which give rise to the
variations in this family of languages) come in how the states
in the current configuration effect the set of transitions cho-
sen to be executed in a step.

3. SIMPLE EXAMPLE
In this section, we give an example of our proposed for-

mat for representing HSMs in SMT-LIB. We use a deep em-
bedding of the state hierarchy, but a shallow embedding of
the guards and actions of the transitions. The consequence
of using a shallow embedding is that supporting the cre-
ation of separate semantic functions requires some auxiliary
functions, which we illustrate in this example and describe
further in the next sections.

Figure 1 is an simple example of a heating system model
with hierarchical states. Figure 2 shows how we represent
the state hierarchy through function definitions in SMT-LIB.
Each state name is declared as a constant of sort State.
The state name root exists for all models. We also require
an assertion that all state constants represent distinct state
names. The state hierarchy is introduced through a set of
definitions stating the kind of each state (Basic, And, or Or),
the parent of each state, and the default state of each state.
Because all functions in SMT-LIB are total, to represent
partial functions, we introduce constants that represent no
value. Thus, the parent of the root state is defined to be
no state. ite is a keyword in SMT-LIB for the if-then-else

function.

3Other kinds of states could be added.

low high

t3: turn_up / ^turn_on_fan

t4: [temp > 30 and occupied]

inactive active

t5: turn_on_fan / setting = 2

t6: [temp > 30] / setting = 1

fan

furnace
on

off

t1: turn_on

t2: turn_off

Figure 1: Simple Heating System Model

; declare every state name
(declare -fun off () _State)
(declare -fun on () _State)
(declare -fun furnace () _State)
(declare -fun high () _State)
(declare -fun low () _State)
(declare -fun fan () _State)
(declare -fun active () _State)
(declare -fun inactive () _State)
(assert (distinct _root off on furnace high

low fan active inactive _no_state))

; represent the state hierarchy
(define -fun _kind ((s _State)) _Kind

(ite (or (= s _root) (= s furnace) (= s fan)) _or
(ite (= s on) _and
(ite (or (= s off) (= s high) (= s low)

(= s active) (= s inactive)) _basic
_no_kind))))

(define -fun _parent ((s _State)) _State
(ite (= s _root) _no_state
(ite (or (= s off) (= s on)) _root
(ite (or (= s furnace) (= s fan)) on
(ite (or (= s high) (= s low)) furnace
(ite (or (= s active) (= s inactive)) fan

_no_state))))))

(define -fun _default ((s _State)) _State
(ite (= s _root) off
(ite (= s furnace) low
(ite (= s fan) inactive

_no_state))))

Figure 2: Representing State Hierarchy in SMT-LIB

The statements representing the transitions of our simple
model in SMT-LIB are shown in Fig 3. The names of the
transitions are declared as distinct constants of sort Tran.
Each part of the transition is stated in a separate definition.
The source and destination states of each transition are de-
fined in the functions src and dest using conditionals on
the transition names. The source and destination states can
be anywhere in the state hierarchy.

; declare every transition name
(declare -fun t1 () _Tran)
(declare -fun t2 () _Tran)
(declare -fun t3 () _Tran)
(declare -fun t4 () _Tran)
(declare -fun t5 () _Tran)
(declare -fun t6 () _Tran)
(assert (distinct t1 t2 t3 t4 t5 t6))

; declare basic events
(declare -fun turn_on () _Event)
(declare -fun turn_off () _Event)
(declare -fun turn_up () _Event)
(declare -fun turn_on_fan () _Event)
(assert (distinct turn_on turn_off turn_up

turn_on_fan _no_event))

(define -fun _src ((t _Tran)) _State
(ite (= t t1) off
(ite (= t t2) on
(ite (= t t3) low
(ite (= t t4) high
(ite (= t t5) inactive
(ite (= t t6) active _no_state)))))))

(define -fun _dest ((t _Tran)) _State
(ite (= t t1) on
(ite (= t t2) off
(ite (= t t3) high
(ite (= t t4) low
(ite (= t t5) active
(ite (= t t6) inactive _no_state)))))))

(define -fun _event ((t _Tran)) _Event
(ite (= t t1) turn_on
(ite (= t t2) turn_off
(ite (= t t3) turn_up
(ite (= t t5) turn_on_fan _no_event)))))

(define -fun _guard ((t _Tran)
(temp Int) (occupied Bool)

(setting Int)) Bool
(or (and (= t t4) (and (> temp 30) occupied))

(and (= t t6) (> temp 30))
(not (or (= t t4) (= t t6)))))

(define -fun _action ((t _Tran)
(temp Int) (occupied Bool)
(setting Int)
(temp_n Int) (occupied_n Bool)
(setting_n Int))

Bool
(or (and (= t t5) (= setting_n 2))

(and (= t t6) (= setting_n 1))
(not (or (= t t4) (= t t6)))))

; per configuration element
; does a transition constrain it?
(define -fun _change_temp ((t _Tran)) Bool

false)
(define -fun _change_occupied ((t _Tran)) Bool

false)
(define -fun _change_setting ((t _Tran)) Bool

(or (= t t5) (= t t6)))

(define -fun _gen_event ((t _Tran)) _Event
(ite (= t t3) turn_on_fan _no_event))

Figure 3: Representing Transitions in SMT-LIB

We have deeply embedded the state hierarchy in SMT-
LIB, meaning that the state names and transition names are
new sorts and semantic functions can be written to compare
elements of these sorts. However, we want the guards and
actions of a transition to be shallowly embedded in SMT-
LIB. The advantage of using a shallow embedding is that
the expressions can use sorts native to SMT-LIB (e.g., inte-

gers, arrays) without any additional infrastructure (such as
declaring the sort and creating constructors and operators
of the sort). The definition of the function guard takes a
transition name as an argument and a vector of the variables
manipulated by the model (a configuration). This function
returns a Boolean result. For example, the term

guard (t1 temp occupied setting)
is true when the guard of transition t1 is true in the config-
uration represented by the vector temp occupied setting.

The function action takes a transition name, the current
configuration (a vector of variables), and the next configura-
tion (variables with n appended) as arguments. It returns
true when the action of the transition has happened, i.e.,
the relationship between the current and next configuration
variables used in the action holds. Each transition action
changes only some of the variables of the model. The se-
mantic functions will need to ensure that all configuration
variables are constrained according to the model’s seman-
tics, which likely include the rule that a unchanged variable
retains its previous value. Thus, we need to provide a func-
tion that says which transitions change the values of each
variable in the configuration. This information is described
in a change function for each variable.

We use a deep embedding for events. Basic events are
declared as constants of sort Event and required to be dis-
tinct from each other. The function event takes a transi-
tion and returns the event guarding that transition (possibly
none). The function gen event takes a transition and re-
turns the event generated by the transition (possibly none).

4. DEFINITION OF REPRESENTATION
For our representation format, there is a generic part and

a part specific to each model. Figure 4 show the sorts and
functions that are the same for every model in our format.
Figure 5 is a template for the functions that must be de-
clared/defined for an individual model.

The syntax of the representation must conform to SMT-
LIB. The order of these elements is not fixed except that
definitions/declarations must occur before their use as in
SMT-LIB. We use the convention that sorts and functions
required in our format begin with underscores. We follow
the SMT-LIB convention that sorts begin with upper case
letters.

Our format requires the following:

• Declarations of constants for state names, transition
names, and event names.

• Assertions that all state names are distinct, all transi-
tion names are distinct, and all event names are dis-
tinct.

• Definitions of functions: kind, parent, default,
src, dest, guard, event, action, gen event,

and change (per configuration variable). The func-
tion guard must take a vector of configuration ele-
ments. The function action must take two vectors of
configuration elements.

A modeller can use more definitions than those found in
Figures 4 and 5 to create the model. The guards and actions
of transitions can be any terms in SMT-LIB that match the
sorts required by our template.

We expect that it would be easy to translate from another
representation of the syntax to this format and that the user

(declare -sort _State 0)
(declare -fun _root () _State)
(declare -fun _no_state () _State)
(declare -sort _Kind 0)
(declare -fun _basic () _Kind)
(declare -fun _and () _Kind)
(declare -fun _or () _Kind)
(declare -fun _no_kind () _Kind)
(distinct _basic _and _or _no_kind)
(declare -sort _Tran 0)
(declare -sort _Event 0)
(declare -fun _no_event () _Event)

Figure 4: Generic Part of Representation Format

; declare every state name
(declare -fun statename1 () _State)
(declare -fun statename2 () _State)
...
(assert (distinct statename1 statename2 ... _no_state))

; represent the state hierarchy
(define -fun _kind ((s _State)) _Kind ...)
(define -fun _parent ((s _State)) _State ...)
(define -fun _default ((s _State)) _State ...)

; declare every transition name
(declare -fun t1 () _Tran)
(declare -fun t2 () _Tran)
...
(assert (distinct t1 t2 ...))

; declare basic events
(declare -fun ev1 () _Event)
(declare -fun ev2 () _Event)
...
(assert (distinct ev1 ev2 ... _no_event))

(define -fun _src ((t _Tran)) _State ...)

(define -fun _dest ((t _Tran)) _State ...)

(define -fun _event ((t _Tran)) _Event ...)

(define -fun _guard ((t _Tran)
<variables of configuration >)
Bool

...)

(define -fun _action ((t _Tran)
<variables of configuration >
<copy of variables of configuration >)
Bool

...)

(define -fun _gen_event ((t _Tran)) _Event ...)

; per configuration element
; does a transition constrain it?
(define -fun _change_var ((t _Tran)) Bool ...)
...

Figure 5: Template of Representation Format

would do any editing of the model in its original format.
Transition names are the only elements that might not be
present in the original form of the model. These can be
added in the translation process to give every transition a
unique name.

The independent semantic functions will be written to use
the sorts and functions in our format as arguments.

5. DESIGN DECISIONS
In this section, we discuss the most significant design de-

cisions we made in creating our representation.
Deep vs Shallow Embeddings: We use a representa-

tion format where the state hierarchy and transition names
are deeply embedded in SMT-LIB using datatypes that we
create, and the guards and actions of transitions are shal-
lowly embedded.

By using a deep embedding of the state hierarchy and
transition names, we allow the semantic functions to de-
scribe separately the language’s rules for which set of tran-
sitions should be taken in a step. These rules are where the
variation points exist in the semantics of this family of lan-
guages and these rules can be used in deductive reasoning.

A deep embedding of the guards and actions of transitions
would have required us to define a syntax for the language of
these labels of the transitions, whereas a shallow embedding
allows the model to take full advantage of the expressiveness
of the underlying logic. However, using a shallow embedding
means that semantic functions cannot access the contents
of the guard or action, only its effect. Thus, we need to
include in our representation the right set of information
so the independent semantic functions can still define the
overall meaning of the model.

Drawing on our past experience with embedding languages
in logics [8], we recognize that the semantic functions will
need to create a next configuration relation between a cur-
rent and a next configuration. This configuration is a vector
of variables. The semantic functions will take two config-
urations and use the following interface to the guards and
actions of the transitions to create the next configuration
relation:

• Test if a guard is true/false in a configuration of the
model. Thus, we require the guard function in our
representation to take a transition name and a config-
uration and return a Boolean.

• Assert that the action of a transition occurs in a step.
Thus, we require the action function to take a transi-
tion name and two configurations and return a Boolean.

• Assert constraints on the entire set of variables in a
configuration. Usually, in this family of languages, a
variable that is not changed in a step must retain its
previous value. Thus, we require the change func-
tion for each variable to determine which transitions
have actions that change that variable. Since the set of
transitions is finite, from this information (and the set
of configuration variables), the semantic functions can
deduce when a configuration variable is not changed
in a step.

In our current representation, the vectors of configuration
elements are passed as arguments to the functions. Records
would make writing these function definitions more conve-
nient, but SMT-LIB does not yet support records4.

The independent semantic functions will take two config-
urations as arguments and use the semantics of the language
to determine which set of transitions are taken and enforce
their constraints using the above interface to the guards and
actions of the transitions. A limit of our chosen form of
representation is that the semantic functions will have to

4Support for records is proposed for SMT-LIB 2.6.

enforce either all or none of the action of a transition, po-
tentially causing inconsistencies in the configuration relation
if transitions with race conditions can be taken at the same
time. The independent semantic functions will also require a
vector of configuration elements of the specific model. Once
SMT-LIB supports records, writing functions that take this
vector can be done without specific knowledge of the model.

Definitions vs Axioms: The usual way to define a state
hierarchy in a deep embedding of a language is to use a recur-
sive datatype. Since we cannot use a recursive datatype def-
initions in SMT-LIB5, we formalize accessor functions to de-
scribe all the information that would be found in a recursive
datatype for the state hierarchy. The meaning of these acces-
sor functions could have been described by definitions (as we
chose), or assertions such as, (assert (= (_kind (_root)) _or)).
The axiomatization approach would require the use of a
quantifier in the axiom to express the default case of the
definition, e.g., that any other states have the kind of
no kind. These quantified asssertions would move our rep-

resentation of the state hierarchy outside of a decidable frag-
ment of FOL. The definitional approach that we chose al-
lows the representation of the state hierarchy to stay within
a decidable fragment of FOL, namely the logic of uninter-
preted functions [1]. As long as the guards and actions of the
transitions are decidable then the whole model stays within
a decidable fragment, and representing the state hierarchy
has not increased the complexity of the verification problem.

Functions in SMT-LIB are total, thus we faced the classic
issue of how to handle describing partial functions, such as
the default function when every state does not have a de-
fault state. SMT-LIB does not have an Option type (often
available in functional programming languages), so we de-
clare constants, such as no state, to represent cases where
the function is not defined. We use the SMT-LIB short-hand
of the distinct keyword to assert that declared constants are
distinct. We have chosen not to include an axiom that the
constants declared are the complete set of values for the sorts
(e.g., there are no states besides those declared)5. Such a
universally quantified axiom may be required for some kinds
of analysis.

Events: In our study of language variants [12], we found
that this family of languages has a range of ways of describ-
ing events, which are instantaneous occurrences to which the
system reacts. We deeply embed events in the SMT-LIB rep-
resentation, but the modeller can add functions that create
events (e.g., entered(state)) and event expressions (e.g., a
disjunction of events). Semantic functions will need to be
provided for any event that the user introduces.

Invariants: Some languages include invariants as a way
to express parts of a model declaratively rather than opera-
tionally. Similarly, many models benefit from using declar-
ative invariants to capture environmental constraints. We
chose not to include invariants explicitly in our representa-
tion because they can be described as axioms in SMT-LIB
directly. Invariants can be conjuncted with the configuration
relation to form the meaning of the model. Environmental
constraints can be antecedents of an analysis question. Ax-
ioms of theories describing the behaviour of operations on
SMT-LIB data structures are implicit invariants.

5The SMT-LIB community is discussing standardizing a for-
mat for algebraic datatypes (enumerative and recursive) and
decision procedure support for them, which may remove the
need for some of these definitions and axioms.

user1 user2

t4: / ^del

t2: / ^add

dbstate

t6: del [content(k) != NULL]
 / content(k) = NULL

t5: add [content(k) = NULL]
 / content(k) = d

db

users

t1: /^add t3: /^del

Figure 6: Database Model

6. EXAMPLE: INTEGRATING CONTROL
WITH RICH DATATYPES IN MODELS

By using a shallow embedding in SMT-LIB of the guards
and actions of transitions, we have the ability to write ab-
stract models (similiar to those written in Alloy [15]) that
also have state hierarchy. We can therefore create models
that are rich in both control and data structures.

Figure 6 is a simple model of a database that has two
users and has both interesting datatypes and state hierar-
chy. One user can add items to the database and the other
delete items, both by issuing events to which the database
reacts. Figure 7 shows an interesting fragment of the SMT-
LIB representation of this model, which uses uninterpreted
sorts and functions. Because a configuration cannot include
a function type6 (i.e., the function representing a database
mapping keys to values), we represent this function using
three uninterpreted types: DB, Data, and Key. A func-
tion content maps a database and a key to data.

7. FUTURE WORK
There are two major directions for future work before the

usefulness of our proposed representation format can be es-
tablished.

Analysis. We motivate the need for a representation
of the state hierarchy in SMT-LIB with the idea that the
deductive-based reasoning of SMT-solvers can use the state
structure in analysis. In search-based reasoning for model-
checking, each configuration must be examined until a coun-
terexample is reached or all configurations have been ex-

6This is because quantification over an element of type func-
tion would be higher-order quantification. Quantification
over the elements of the configuration is required for model
checking analysis.

; DB represents the state of the database.
(declare -sort DB 0)

; Data represents the possible data that can be
; stored in the database
(declare -sort Data 0)

; Key represents the possible keys
(declare -sort Key 0)

; uninterpreted function represents
; the contents of the database
; content: DB x Key -> Data
(declare -fun content (DB Key) Data)

; if there is no data associated with a key ,
; the value of that key is NULL
(declare -fun NULL () Data)

(define -fun _gen_event ((t _Tran)) _Event
(ite (or (= t t1) (= t t2)) add
(ite (or (= t t3) (= t t4)) del

_no_event)))

(define -fun _guard ((t _Tran)
(k Key) (d Data) (c DB)) Bool

(or (= t t1)
(= t t2)
(= t t3)
(= t t4)
(and (= t t5) (= (content c k) NULL))
(and (= t t6) (not (= (content c k) NULL)))))

(define -fun _action ((t _Tran)
(k Key) (d Data) (c DB)
(k_n Key) (d_n Data) (c_n DB))
Bool

(or (and (= t t5) (= (content c_n k) d))
(and (= t t6) (= (content c_n k) NULL)
(not (or (= t t5) (= t t6))))))

Figure 7: Fragment of SMT-LIB of Database Model

plored. In symbolic-based reasoning for model checking (e.g.,
binary decision diagrams or bounded model checking), one
propositional logic formula can represent many configura-
tions, reducing both the memory required and the time
taken to examine all configurations. In our recent work, we
showed that for a subset of CTL, called CTL-Live (which in-
cludes liveness properties but not safety), the entire model
checking problem can be encoded in first-order logic and
therefore given to an SMT-solver in one call [22, 23]. SMT-
solvers include decision procedures that exploit knowledge
regarding particular data structures prior to reducing the
problem to a SAT problem. In the context of model check-
ing of modelling languages based on hierarchical state ma-
chines, the state hierarchy is a type of data ready to be
used to improve the analysis performance similar to other
datatypes. We chose our representation of the syntax to be
compatible with a set of first-order semantic functions very
similar to those described in Esmaeilsabzali and Day [11].
These semantic functions declaratively describe the mean-
ing of the syntax and can be used by a deductive reasoning
tool in analysis. For example, a typical semantic rule is
that configurations that include an And state must include
a child state from all of the components of the And state.
Usually, in translations to analysis tools such a constraint is
encoded operationally in the model. However, in deductive
reasoning, such a rule can be used as the basis for a case
split. The goal of directly representing the state structure

in these models is to allow deductive reasoning to exploit
this structure.

Translators. SMT-LIB is verbose and the standard for-
mat that we are proposing would not be written by hand.
Rather we need translators from current representations (tex-
tual or graphical within an IDE) to produce a model in the
SMT-LIB format. Because the structure of the state hier-
archy is captured in the SMT-LIB, the translation should
be reversible, i.e., there is a 1-1 relationship between the
two representations. Our representation does not include
some of the syntactic sugar used in this family of languages
(e.g., in state predicates, history states, generating multiple
events on a transition) so the meaning of these elements will
either have to be incorporated into the translation process
or our format would have to be extended to accommodate
them.

8. CONCLUSION
With the goal of facilitating model sharing, we have pro-

posed a format for representing behavioural models written
in extended-finite-state-machine-based languages with hier-
archical states in SMT-LIB. The value in our contribution
is that:

1. It represents the state hierarchy explicitly in SMT-LIB
so that it can be exploited in deductive reasoning with-
out increasing the complexity of the problem (i.e., our
format stays within a decidable fragment of FOL).

2. It allows for the creation of abstract models rich in
both control and data structures.

3. It permits the representation of models in a family
of languages because the semantic functions can be
expressed separately.

We accomplished the above through a combination of deep
and shallow embeddings. We motivated our decisions for
the sorts and functions used in the representation based on
wanting the flexibility to include interesting datatypes and
allowing semantic functions for the language to be described
independently of the model. Our next step is to define a set
of semantic functions in SMT-LIB and investigate their use
in model checking. A further avenue for exploration is the
use of our format to describe parameterized systems.

9. ACKNOWLEDGMENTS
We thank the reviewers for their insightful comments. Our

work is supported in part by the Natural Sciences and En-
gineering Research Council of Canada (NSERC).

10. REFERENCES
[1] W. Ackermann. Solvable Cases of the Decision

Problem. Studies in Logic and the Foundations of
Mathematics. North-Holland, 1954.

[2] C. Barrett, C. L. Conway, M. Deters, et al. CVC4. In
CAV, LNCS, pages 171–177. Springer, 2011.

[3] C. Barrett, P. Fontaine, and C. Tinelli. The SMT-LIB
Standard: Version 2.5. Technical report, Department
of Computer Science, The University of Iowa, 2015.

[4] C. Barrett, R. Sebastiani, S. Seshia, and C. Tinelli.
Satisfiability Modulo Theories. In Handbook of
Satisfiability, volume 185 of Frontiers in Artificial

Intelligence and Applications, chapter 26, pages
825–885. IOS Press, 2009.

[5] R. Boulton, A. Gordon, M. Gordon, J. Harrison,
J. Herbert, and J. Van Tassel. Experience with
embedding hardware description languages in HOL. In
Theorem Provers in Circuit Design, pages 129–156.
North-Holland, 1992.

[6] T. Bultan, R. Gerber, and W. Pugh. Symbolic model
checking of infinite state systems using Presburger
arithmetic. In CAV, volume 1254 of LNCS, pages
400–411. Springer, 1997.

[7] R. Cavada, A. Cimatti, et al. The nuXmv symbolic
model checker. In CAV, pages 334–342, 2014.

[8] N. A. Day. A Framework for Multi-Notation,
Model-Oriented Requirements Analysis. PhD thesis,
University of British Columbia, 1998.

[9] L. De Moura and N. Bjørner. Z3: An efficient SMT
solver. In TACAS, LNCS, pages 337–340. Springer,
2008.

[10] L. Erkok. SBV: SMT based verification in Haskell.
http://leventerkok.github.io/sbv/.

[11] S. Esmaeilsabzali and N. Day. Prescriptive semantics
for big-step modelling languages. In FASE, volume
6013 of LNCS, pages 158–172, 2010.

[12] S. Esmaeilsabzali, N. A. Day, J. M. Atlee, and J. Niu.
Deconstructing the semantics of big-step modelling
languages. REJ, 15(2):235–265, 2010.

[13] R. J. Hall and A. Zisman. OMML: A behavioural
model interchange format. In RE, pages 272–282.
IEEE Computer Society, 2004.

[14] D. Harel. Statecharts: A visual formalism for complex
systems. Science of Computer Programming,
8(3):231–274, 1987.

[15] D. Jackson. Software Abstractions - Logic, Language,
and Analysis. MIT Press, 2006.

[16] K. Krchak and A. Stump. ocaml-smt2.
http://www.cs.uiowa.edu/˜astump/software/ocaml-
smt2.zip.

[17] A. Micheli and M. Gario. pysmt 0.4.1.
https://pypi.python.org/pypi/pySMT.

[18] J. Niu. Template Semantics: A Parameterized
Approach to Semantics-Based Model Compilation.
PhD thesis, University of Waterloo, 2005.

[19] Object Management Group (OMG). Action language
for foundational UML (Alf), version 1.0.1, 2013.

[20] Object Management Group (OMG). Semantics of a
foundational subset for executable UML models
(fUML), version 1.1, 2013.

[21] Object Management Group (OMG). OMG unified
modeling language (OMG UML), v2.5, 2015.

[22] A. Vakili and N. A. Day. Reducing CTL-Live model
checking to first-order logic validity checking. In
FMCAD, pages 215–218. IEEE, 2014.

[23] A. Vakili and N. A. Day. Verifying CTL-Live
properties of infinite state models using an SMT
solver. In FSE, pages 213–223. ACM, 2014.

[24] M. von der Beeck. A comparison of statecharts
variants. In Formal Techniques in Real-Time and
Fault-Tolerant Systems, volume 863 of LNCS, pages

128–148. Springer, 1994.

