Mapping Template Semantics to SMV

Yun Lu Joanne M. Atlee

Nancy A. Day Jianwei Niu

School of Computer Science
University of Waterloo
E-mail: {y41u, jmatlee, nday, jniu}@uwaterloo.ca

Abstract

We show how to create a semantics-based, parameter-
ized translator from model-based notations to SMV, using
template semantics. Our translator takes as input a specifi-
cation and a set of user-provided parameters that encode
the specification’s semantics; it produces an SMV model
suitable for model checking. Using such a translator, we
can model check a specification that has customized seman-
tics. Our work also shows how to represent complex compo-
sition operators, such as rendezvous, in the SMV language,
in which there is no matching language construct.

1. Introduction

Template semantics [17] is a template-based approach
to expressing the semantics of model-based notations, such
as statecharts variants and process algebras. The semantics
that are common among notations (e.g., the concept of an
enabled transition) are predefined as a template of param-
eterized definitions. Users instantiate the template into a
complete semantics by providing notation-specific parame-
ter values (e.g., predicates on how states, events, and vari-
ables enable transitions). Composition operators are param-
eterized constraints on how components execute and share
information. The result is a definition for a notation’s se-
mantics that is finely decomposed into separate parameter-
ized concerns, making it much easier to read, write, and
compare notations’ semantics.

In this paper, we describe how to use the semantic de-
composition provided by template semantics to facilitate
notation-specific analysis. In particular, we use template
semantics to parameterize the translation from a require-
ments notation to the input language of the SMV family
of model checkers: Cadence SMV [15], NuSMV [5]. Our
translator takes as input a specification in a notation and
a set of template parameters detailing the notation’s seman-
tics; the translator combines these inputs with the template’s
common-semantics definitions, to generate an SMV model
of the specification. The generated SMV model preserves
the modularity of both the original specification and tem-
plate semantics. The state space of the SMV model is com-

parable to that of the original specification, and no extra
steps are introduced. Our translator is fully automated and
supports multiple options for each template parameter, in-
cluding the parameter values used in the definitions of many
popular requirements notations: CSP [10], CCS [16], basic
LOTOS [11], a subset of SDL88 [12], and several state-
charts [8] variants. The translator supports also a rich set of
composition operators, including rendezvous, environmen-
tal synchronization, sequence, choice, and interrupt (a form
of goto). Because the supported parameter values describe a
variety of ways in which states, events, variables, and prior-
ities affect a notation’s semantics, the translator can be used
for many more notations (defined by different combinations
of parameter values and composition operators) than the no-
tations listed above. We chose to translate to SMV because
it is a well-used and general-purpose model checker. Be-
cause of the simplicity of the SMV language, our method
for representing various forms of composition may be ap-
plicable to other model checkers.

Compared to writing a direct translator from one no-
tation to another, or to an intermediate language (e.g.,
SAL [1], IF [2], Action Language [3]), we can generate
new notation-specific translations automatically by simply
selecting different combinations of template-parameter val-
ues and composition operators. Furthermore, template se-
mantics supports a richer set of composition operators than
other intermediate languages. Our work is similar to ap-
proaches that generate a model or analysis tool from a no-
tation’s semantics (e.g., [6] [18] [7]), except that our use
of template semantics allows one to specify semantics by
providing parameters to predefined templates, rather than
providing a complete semantic description.

2. Template Semantics

The basic computation model of template semantics is
a nonconcurrent, hierarchical transition system (HTS). An
HTS is an extended state machine (adapted from basic tran-
sition systems [14] and statecharts [8]) that consists of tran-
sitions and a hierarchical set of states. A transition label can
include event and condition triggers, assignments to typed

Proceedings of the 19th International Conference on Automated Software Engineering (ASE’04)

1068-3062/04 $ 20.00 IEEE

YF]',F.

COMPUTER

SOCIETY

variables, generated events, and a priority. A specification
is a hierarchical composition of HT'Ss; concurrency is intro-
duced via composition operators. The mapping from a no-
tation’s syntactic constructs to our HTS syntactic constructs
is usually straightforward.

We use snapshots to collect information about
the system at observable points in its execu-
tion. A snapshot is a tuple of eight elements,
(CS,IE,AV,0,CS,,IE,, AV,,1,), representing
the system’s current states C'S, current internal events
IE, current variable values AV, and current outputs O.
CS,, AV, IE,, I, are auxiliary elements that accumulate
data about states, variables values, and internal and external
events, respectively. Each notation collects different
information in these auxiliary elements.

Template semantics is a collection of parameterized def-
initions that, taken together, describe how a snapshot can
change in an execution step. These definitions separate the
semantics of model-based notations into four phases: reset-
ting a snapshot with inputs, determining the set of enabled
transitions, choosing a set of transitions to execute in a step,
and applying to the snapshot the effects of the executing

transitions. The parameterized definitions include:
e micro_step: a step between consecutive snapshots, due

to the execution of at most one transition per HTS
e macro_step: a sequence of zero or more micro-steps
in response to external input (Macro-steps are used by
notations, such as statecharts, that fully respond to one
set of inputs before receiving another.)
e reset: resets the current snapshot with new inputs at
the beginning of a macro-step
o enabled: computes the set of transitions enabled by the
current snapshot’s states, events, and variable values
e execute: chooses nondeterministically, from the
highest-priority enabled transitions, which transitions
to execute
e apply: applies the executing transitions’ actions (i.e.,
generated events and variable assignments) to the cur-
rent snapshot, to derive the next snapshot
These common semantic definitions are instantiated by
22 template parameters that use, reset, and update the snap-
shot elements in different ways for different notations. Ta-
ble 1 shows template instantiations for STATEMATE stat-
echarts [9] and CCS [16] with variables.! Column re-
setXX(ss,I) lists the parameters used in template definition
reset: each parameter resets a snapshot element in snapshot
ss (e.g., resetCS resets snapshot element C'S), removing
old data and incorporating new system inputs /. Column
nextXX(ss,7) lists the parameters used in apply: each pa-
rameter updates a snapshot element with respect to transi-
tion 7’s actions. Consider STATEMATE event semantics:

ITable 1’s CCS with variables is CCS with shared global variables; this
is different from data-passing CCS [16], which allows internal events to
carry data parameters.

at the start of a macro-step, only input events can trigger
transitions; and in subsequent micro-steps, only events gen-
erated in the previous micro-step can trigger transitions.
These semantics are reflected in the values of five event-
related parameters (rows 3-5 in Table 1): reset empties
snapshot element I E of old internal events and sets element
I, to the input’s events, /.ev; when a transition executes,
IFE is set to the transition’s set of generated events, and I,
is emptied; transitions are enabled by any eventin [E or [,.

Parameter macro-semantics determines the semantics of
a macro-step. In simple semantics, every macro-step is ei-
ther a micro-step or an idle step, and the snapshot is reset
at the start of every step. Simple semantics can be either
diligent, in which enabled transitions have priority over an
idle step, or nondiligent. In stable semantics, a macro-step
is a maximal sequence of micro-steps, starting with a reset
snapshot and ending with a stable snapshot, in which no
transition is enabled.

Parameter pri determines the priority scheme among en-
abled transitions. Parameter resolve_conflicts sets the nota-
tion’s policy for resolving conflicting assignments made to
the same variable in the same micro-step.

We use composition operators to compose hierarchically
a collection of concurrent HTSs. The composition oper-
ators control when the HTSs execute and how the HTSs
share data (e.g., generated events). We have defined the
template semantics for eight composition operators: two
kinds of parallel, interleaving, environmental synchroniza-
tion, rendezvous, sequence, choice, and interrupt. Interrupt
composition transfers control between components (HTSs
or composed HTSs) via new composition-level transitions;
interrupt transitions’ source and destination states can be ei-
ther a component or states within a component.

3. SMV Language

In the SMV language, models are described using vari-
ables, and equations that assign initial and next values to
variables in every SMV step. SMV also supports the speci-
fication of invariants, as boolean expressions following the
keyword INVAR. Expression operators !, &,|, ->, and <->,
represent “not,” “and,” “or,” “implies,” and “iff” respec-
tively. Comments follow the symbol “- -

We make extensive use of SMV’s macros declared after
the keyword DEFINE. Macros are replaced by their defini-
tions, so they do not increase the system’s state space.

SMV provides modules to decompose a model, so that
the statements can be reused by creating a module instance,
which is declared as a variable. A module can also be used
to structure variables into a record that can be passed as a
parameter to another module. If a identifies an instance of a
module, then the expression a . b identifies the internal vari-
able or macro named b within module instance a. We use
the terms “module instantiation” and “record” interchange-

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 19th International Conference on Automated Software Engineering (ASE’04)
1068-3062/04 $ 20.00 IEEE

STATEMATE

CCS with variables

| | |
‘ Parameter | resetXX(ss,)] nextX X (ss, 1) [resetXX(ss, T)] nextX X (ss, 1) |
[5= 7] s5.C’S [entered(dest(T)) 1] s5.C'S [dest(7) |
states [en-states || src(r) C ss.CS i sre(r) C ss.CS |
IE = 0 [gen(T) n/a
events | I, = T.ev | [I.ev [ss.I, Ugen(r)
en_events trig(t) C ss.I, Uss.IE trig(t) C ss.I,
O = [[gen(T) [[gen(T)
[AV = Tlssign(ss. AV, IL.var) assign(ss.AV, eval(ss.AV,last(asn(7)))) [lussign(ss. AV, I.var)assign(ss.-AV, eval(ss. AV, asn(7)))|
ariabled en_cond] ss. AV = cond(1) i 5. AV = cond(1) |
macro-semantics stable simple diligent
pri lowest-ranked scope none
resolve_conflicts resolve(vvy, vva, vV) n/a

entered(s) :
assign(X,Y):
eval(X, A):

last(A):

resolve(vvy , vva, vV):

updates assignments X with assignments Y

set of states when state s is entered, including s’s ancestors and relevant descendants’ default states

evaluates expressions in A with respect to assignments X, and returns variable-value assignments for A
a sub-sequence of A, comprising only the last assignment to each variable in the sequence of assignments A
the conflicting variable assignments in vv1 and in vvs are resolved to vv non-deterministically

gen(t), dest(r), src(r), trig(r), cond(r), and asn(7) are accessor functions on transition T

Table 1. Template Parameter Definitions for STATEMATE and CCS with variables

ably. Modules can be hierarchical. All statements in all
modules run synchronously in an SMV step.

4. Translation to SMV

The first key idea of our translation method is to decom-
pose the translation primarily by template-semantics struc-
ture and secondarily by specification structure. This ap-
proach differs significantly from most translations, in that a
translation is not primarily a mapping of specification con-
struct to corresponding SMV construct. Rather, the high-
level module structure of the resulting SMV model reflects
template semantics’ parameterized definitions and parame-
ters; these modules are then structured along the lines of the
specification’s composition hierarchy. This decomposition
structure localizes definitions that are most likely to change
(i.e., the specification and template-parameter values) and
allows our translator to optimize for SMV the definitions
that are least likely to change (i.e., the common semantics
and composition operators).

The second key idea is to use characteristic predicates
to represent sets, which are prevalent in template-semantics
definitions. For example for the set of executing transitions,
we introduce for each transition a boolean macro that is true
whenever the transition is executed in the current step.

The third key idea is to make extensive use of macros to
structure and communicate information about the system,
without adding to the state space of the model. We use
macros to represent the sets of enabled and executing transi-
tions and components, and use a number of parameter- and
composition-specific helper macros to calculate these sets.
With these macros, we can represent a rich set of composi-
tion operators using SMV’s synchronous composition.

The fourth key idea is to use SMV’s invariants to con-
strain when components may execute, as prescribed by the
meanings of the various composition operators. Each com-
ponent has a boolean macro to indicate whether or not it
executes. For example, the invariants for interleaving com-

position constrain these macros so that the components’ ex-
ecutions are interleaved. By using constraints rather than
specifying which components execute, our translation pre-
serves any nondeterminism in the specification.

Stable and simple macro-semantics differ only in when
the system senses inputs from the environment. The fifth
and final key idea is to represent macro-steps, for notations
that use stable macro-semantics, as micro-steps that have
conditional reset statements. Each SMV step is a micro-
step. If the system is stable (i.e., no transition is enabled)
at the start of a micro-step, new inputs are admitted to the
system using the reset function. This method is adapted
from the work of Chan et al. [4].

en_states
en_events
en_cond
resetCS pri

resetAV parallel
interrupt

nextCS
nextAV

parallel
interrupt

resolve_conflicts

v ssl
apply |25

v . v
[enabled} ="\ execute

‘ micro-step ‘

Figure 1. Architecture of SMV Model

Figure 1 shows the module structure of the SMV model
that our translator produces for a notation with stable
macro-semantics. Boxes represent SMV modules. A solid
arrow represents a record, of SMV variables or macros, that
is instantiated in the arrow’s source module and is passed as
a parameter to the destination module. The dotted arrows
show submodules and encodings of template-parameter val-
ues (e.g., template parameter pri is encoded in the defini-
tion of module enabled). Entities in the figure that share
names with template parameters or with composition oper-
ators correspond to those elements.

Separate modules capture the template-semantics
phases: resetting a snapshot with inputs (reset), deter-

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 19th International Conference on Automated Software Engineering (ASE’04)
1068-3062/04 $ 20.00 IEEE

mining the set of enabled transitions (enabled), choosing
a set of transitions to execute in a step (execute), and
applying the effects of the executing transitions on the
snapshot (apply). Individual parameter values are en-
capsulated in either modules (e.g., resetCS) or macros
(e.g., en_states). The structure of the specification is
realized in the decomposition of the execute module, one
submodule for each composition operator and each HTS.
In addition (and not shown), there is an SMV module that
sets the initial values of the snapshot elements at the start
of execution.

Our translator creates the SMV model by walking over
the abstract syntax tree (AST) of the specification, produc-
ing output suitable for each parameter value. Next, we
briefly describe each of the modules in the figure, discussing
how the translation changes for different parameter values.
Details on our translation method can be found in Lu [13].

4.1 Snapshot and Inputs

The snapshot module has a submodule for each snap-
shot element used by the specification’s semantics. These
submodules contain SMV variable declarations for the
states, variables, and events of the specification. The state
submodule C'S contains one enumerated variable for each
HTS to represent the HTS’s current basic state (the enumer-
ated type has one value for each basic state, plus a value
noState to indicate that the HTS is not active). Informa-
tion about super-states (e.g., whether a super-state is cur-
rent) is represented in macros and derived from information
about basic states. The representation of C'S, depends on
the type of information stored. If C'S, is used to record all
previous states visited in the current macro-step, to avoid
an infinite macro-step, then a boolean variable is needed for
every basic state and super-state, and the set is represented
as the characteristic predicate over these variables. Each of
the variable submodules (AV, AV,) declares an SMV vari-
able for each specification variable. We assume all variables
are of the primitive types provided by SMV: booleans, enu-
merated types, and integer ranges. Each of the event sub-
modules (I E, O, ITE,, I,) declares a boolean variable for
each event and represents event sets by their characteristic
predicates.

The inputs module has variable declarations for each
input, in a similar manner to the snapshot module.

4.2 Enabled

For stable macro-semantics, the enabled module is in-
stantiated twice (see Figure 1): first, to determine if the cur-
rent snapshot is stable and needs to be reset; and second, to
determine which entities are enabled after a reset.

Figure 2 shows a simple system with two HTSs (P and
(2) and one composition operator. Figure 3 shows the top-
level enabled module for this example, where P and () are

L Q 4

§ o ed P s

Figure 2. Example Specification

composed using parallel composition. This module instan-
tiates, in its VAR section, an enabled submodule for each
of the specification’s HTSs, passing its snapshot argument
ss to the submodules. The DEFINE section sets a macro
called any for each component resulting from a composi-
tion operator; this macro determines whether the compo-
nent is enabled, based on the enabled status of its subcom-
ponents. Each HTS submodule sets its own any macro (see
below). For parallel composition, a component is enabled if
any of its subcomponents are enabled.

MODULE enabled (ss)
VAR

P: enabled P(ss);

Q: enabled Q(ss);
DEFINE

R.any := P.any | Q.any;

Figure 3. Enabled Module

Figure 4 shows part of the enabled submodule for the
HTS P. Each transition has a macro to indicate whether
the transition is enabled (e.g., ent2). This macro is the
conjunction of helper macros that test whether the transi-
tion’s source state, triggering events, and guard conditions
are enabled, according to the template parameters for en-
abling states (en_states), enabling events (en_events), and
enabling conditions (ern_cond), respectively. Our translator
produces these helper macros, based on the values of the
provided template parameters. References to state names,
variables, and events are prefixed with module names that
reflect the modular structure of the snapshot (e.g., ss.AV.x
refers to variable z in element AV of snapshot ss). For each
transition, the submodule declares a second macro (e.g., t2)
that determines whether the transition is priority-enabled:
the transition is enabled and no higher-priority transition is
enabled. Our translator produces these macros, based on
the static priority scheme specified in template parameter
pri. In this example, the priority scheme gives t3 priority
over t2. Finally, the HTS is enabled (macro any) if one or
more of its transitions are priority-enabled.

MODULE enabled P (ss)
DEFINE

enStates_t2 ss.CS.in_s2 ;

enEvents_t2 := ss.IE.b ;
enCond_t2 := 8s.AV.x = 1;
ent2 := enStates_t2 & enEvents_t2 & enCond t2;

t2 = ent2 & !ent3 ;
any := tl | t2 | t3 ;

Figure 4. Enabled Submodule for HTS P

For compositions such as rendezvous and environmental
synchronization, the enabling of a component depends on

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 19th International Conference on Automated Software Engineering (ASE’04)
1068-3062/04 $ 20.00 IEEE

the occurrence of synchronization events. For the example
of Figure 2, if ‘rendezvous on event a’ is the composition
operator, then component R is enabled if () can generate a
(transition #4 is enabled) in the same step that P can trig-
ger on a (transition ¢1 is enabled), or if either component
is enabled by a nonsynchronization event. As appropriate,
our translator adds macros that help determine the enabled
status of synchronized components.

4.3 Reset

The reset module contains only macros, one for each
snapshot element. Depending on whether the system is sta-
ble (established by a macro in the enabled module), inputs
are incorporated into the snapshot. There are submodules
that set each snapshot element, according to the values of
the provided resetXX template parameters.

4.4 Execute

Figure 5 shows the execute module for the example in
Figure 2. The execute module uses the enabled status of
transitions and components (parameter en is an instantia-
tion of the enabled module) to constrain which transitions
may execute in a step. The module instantiates an operator-
specific submodule (e.g., parallel) for each composition
and an HTS-specific submodule (e.g., execute_p) for each
HTS. The submodules set macros, called any, for each
composed component and HTS that indicate whether the
element executes in this step. Diligence, when relevant, is
enforced in the execute module by an invariant: if the top-
level component is enabled, it must execute.

MODULE execute (en)
VAR
P : execute P(en.P);
Q : execute_Q(en.Q);
R : parallel(en.P,en.Q,P,Q,en.R)
INVAR
en.R.any -> R.any

Figure 5. Execute Module

Each of the HTS submodules declares an enumerated
variable whose value identifies which of the HTS’s transi-
tions, if any, is chosen (possibly nondeterministically) to
execute in the current step. An invariant asserts that a tran-
sition can execute only if it is enabled (as indicated by
enabled macros).

The submodule for a composition operator uses the en-
abled and execute status of the subcomponents and the en-
abled status of the composition to decide whether the com-
position executes, and possibly to constrain further whether
the subcomponents execute; the submodule also ensures
that subcomponents execute if the operator is diligent. Fig-
ure 6 shows the submodule for parallel composition: a par-
allel component executes (macro any) if either subcompo-
nent executes; and an enabled subcomponent must execute.

Figure 7 shows an example of a rendezvous on event a.
Extra execute macros determine whether the subcompo-

MODULE parallel (enLeft, enRight, exeLeft, exeRight, enMe)
DEFINE

any := exelLeft.any | exeRight.any;
INVAR
(any -> ((enLeft.any -> exeLeft.any)

& (enRight.any -> exeRight.any)))

Figure 6. Parallel Composition

nents are executing transitions that trigger on a or generate
a. The invariant ensures that each subcomponent executes
a transition triggered by a if and only if the other subcom-
ponent executes a transition that generates a. When a ren-
dezvous occurs, only one transition in each component ex-
ecutes. Finally, if a rendezvous does not occur, then the
behaviour of the components is interleaved. Details on the
remaining composition operators can be found in Lu [13].

MODULE rend sync_a(enLeft,enRight, exeLeft, exeRight, enMe)
DEFINE

any := exelLeft.any | exeRight.any;
-- rendezvous means one generates and other triggers
a_rend := (exeLeft.a trig & exeRight.a_gen)

| (exeLeft.a gen & exeRight.a trig);
INVAR
-- left and right are trig/gen on same sync event
(exeLeft.a trig <-> exeRight.a gen)

& (exeLeft.a gen <-> exeRight.a trig)

-- if rendezvous, one tran executes in each component
& ((a_rend) ->

! (exeLeft .more_than _one | exeRight.more_than one))

-- interleaved behaviour

& (!(a_rend) -> ! (exeLeft.any & exeRight.any))

Figure 7. Rendezvous Composition on {a}

4.5 Apply

Module apply sets the values of the snapshot elements
in the next snapshot, based on the effects of the executing
transitions indicated by the execute module. It updates
each snapshot element XX in a separate submodule nextXX,
which realizes the semantics of template-parameter value
nextXX. Submodule nextAv uses the template parameter
resolve_conflicts to handle simultaneous assignments to the
same variable made by multiple HTSs. Underflow or over-
flow errors are detected for integer-range variables.

5 Evaluation

To validate our translator, we have tested our translation
on every template-parameter value and every composition
operator. We assume that the template parameters and com-
position operators are all separate concerns. This separa-
tion of concerns eases the evolution of the translator, in
that adding another parameter value or composition oper-
ator does not usually affect the behaviour of the others.

Table 2 shows, by snapshot element, how the size of the
SMV model resulting from our translation compares with
the original specification. The basic states, internal and
output events, and variables of the specification have cor-
responding SMV variables in C'S, [E, O, and AV, respec-
tively. When used, the auxiliary snapshot elements, C'S,,,
IE,, I,,and AV,, contribute to the state space as appropri-
ate for their parameter values. There is also one variable per

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 19th International Conference on Automated Software Engineering (ASE’04)
1068-3062/04 $ 20.00 IEEE

HTS to represent which transition is chosen to execute. The
only variable added for the composition operators is one for
each choice composition to record the choice made between
components.

SMYV Variables
Snapshot STATEMATE,
Element Worst Case CCS with variables
cs 1 enumerated 1 enumerated
(b + 1) values (b + 1) values
CS, b + s boolean n/a
IE 1 boolean 1 boolean
IE, 1 boolean n/a
1, e boolean e boolean
0] 1 boolean i boolean
AV v typed v typed
AV, v typed n/a
transitions | 1 enumerated 1 enumerated
(per HTS) | (¢ + 1) values (t 4+ 1) values

Table 2. SMV Model Size for Specification with
¢ internal events, e external events, v vari-
ables, and (per HTS) b basic states, s super-
states, and ¢ transitions

We have performed two case studies: a heating system
and a single lane bridge. We simulated and model checked
our SMV models with a set of properties to check that the
models match the behaviours of the original specifications.
NuSMYV calculated the reachable state space sizes of these
models as: 6.88E+8 (heating system), and 9.216E+5 (sin-
gle lane bridge). Because we use the same variable, event,
and state names (prefixed by snapshot information), and do
not add any extra steps, the counterexamples can be easily
understood by users. The complete specifications, the SMV
models, and the properties checked can be found in [13].

6 Conclusion

We have created a fully automated, semantics-based, pa-
rameterized translator from model-based notations to SM'V.
The translator takes the template-semantics description of a
notation and a specification in the notation, and it produces
an SMV model whose state space and execution steps are
comparable to the original specification. Using our trans-
lator, we can model check specifications written in a wide
range of model-based notations. The translator handles all
of the template-parameter values and the composition op-
erators that were used in [17] to describe the semantics of
basic transition systems [14], CSP [10], CCS [16], basic
LOTOS [11], and several statecharts [8] variants. Because
the modularity of our translation matches the modularity of
template semantics, adding a new parameter value or com-
position operator normally means only creating new SMV

module(s). A secondary, but key, contribution of the work is
showing how to represent a rich collection of composition
operators within the language features provided by SM'V.

References

[1] S.Bensalem et al. An overview of SAL. In Langley Formal
Methods Workshop, pages 187-196. Center for Aerospace
Information, NASA, 2000.

[2] M. Bozga, S. Graf, L. Mounier, and J. Sifakis. The inter-
mediate representation IF: syntax and semantics. Technical
report, Verimag, Grenoble, 1999.

[3] T. Bultan. Action language: A specification language for
model checking reactive systems. In Int. Conf. on Soft. Eng.,
pages 335-344, 2000.

[4] W. Chan, R. J. Anderson, P. Beame, S. Burns, F. Modugno,
and D. Notkin. Model checking large software specifica-
tions. IEEE Trans. on Soft. Eng., 24(7):498-519, 1998.

[5] A. Cimatti, E. M. Clarke, F. Giunchiglia, and M. Roveri.
NuSMV: A new symbolic model checker. Int. Journal on
Soft. Tools for Technology Transfer, 2(4):410-425, 2000.

[6] N. A. Day and J. J. Joyce. Symbolic functional evaluation.
In Theorem Proving in Higher Order Logics, volume 1690
of LNCS, pages 341-358. Springer-Verlag, 1999.

[7] L. Dillon and R. Stirewalt. Inference graphs: a computa-
tional structure supporting generation of customizable and
correct analysis components. [EEE Trans. on Soft. Eng.,
29(2):133-150, Feb 2003.

[8] D. Harel et al. On the formal semantics of statecharts. In
Symp. on Logic in Comp. Sci., pages 54-64, 1987.

[9] D. Harel and A. Naamad. The STATEMATE semantics of
statecharts. ACM Trans. on Soft. Eng. Meth., 5(4):293-333,
1996.

[10] C. A.R.Hoare. Communicating Sequential Processes. Pren-
tice Hall, UK, 1985.

[11] ISO8807. LOTOS - a formal description technique based on
the temporal ordering of observational behaviour. Technical
report, ISO, 1988.

[12] ITU-T. Recommendation Z.100. Specification and Descrip-
tion Language (SDL). Technical Report Z-100, International
Telecommunication Union - Standardization Sector, 1999.

[13] Y. Lu. Mapping template semantics to SMV. Master’s the-
sis, School of Computer Science, University of Waterloo,
2004. In preparation.

[14] Z. Manna and A. Pnueli. The Temporal Logic of Reactive
and Concurrent Systems: Specification. Springer-Verlag,
1991.

[15] K. McMillan. Symbolic Model Checking: An Approach to
the State Explosion Problem. Kluwer Academic, 1993.

[16] R.Milner. Communication and Concurrency. Prentice Hall,
New York, 1989.

[17] J. Niu, J. M. Atlee, and N. A. Day. Template seman-
tics for model-based notations. [EEE Trans. on Soft. Eng.,
20(10):866-882, Oct. 2003.

[18] M. Pezze and M. Young. Constructing multi-formalism
state-space analysis tools. In Int. Symp. on Soft. Testing and
Analysis, pages 172—-179. ACM Press, 1996.

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 19th International Conference on Automated Software Engineering (ASE’04)
1068-3062/04 $ 20.00 IEEE

	footer1:

