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Abstract. A diverse collection of correctness statements have been proposed and
used in microprocessor verification efforts. Correctness statements have evolved
from criteria that match a single step of the implementation against the specifi-
cation to seemingly looser, multi-step, criteria. In this paper, we formally verify
conditions under which two categories of multi-step correctness statements log-
ically imply single-step correctness statements. The first category of correctness
statements compare flushed states of the implementation and the second category
compare states that are able to retire instructions. Our results are applicable to su-
perscalar implementations, which fetch or retire multiple instructions in a single
step.

1 Introduction

Microprocessor verification efforts usually compare a state-machine description of a
microarchitectural-level implementation against an Instruction Set Architecture (ISA).
The correctness statement describes the intended relationship between the implementa-
tion and the specification ISA. In early verification efforts, correctness statements were
based on Milner’s pointwise notion of simulation — a commuting diagram that says for
any step the implementation takes, the specification must take a corresponding step [15].
Pipelining and other optimizations increased the gap between the behaviour of the im-
plementation and the specification, making it more difficult to show that an individual
implementation step corresponds to a specification step. In a seminal paper, Burch and
Dill proposed constructing abstraction functions automatically by flushing pipelines [5].
Their correctness criteria compares each step of the implementation against the specifi-
cation by flushing the implementation. As verification efforts have tackled complexities
such as out-of-order execution and interrupts, the correctness statements have evolved
from single-step criteria to seemingly looser, multi-step criteria. Sawada and Hunt [16],
Hosabettu et al. [10], Jones et al. [14], and Arons and Pnueli [3] check that the imple-
mentation corresponds with the specification only at flushed implementation states, i.e.
states with no in-flight instructions. Fox and Harman [7] compare the implementation
and specification only at states where an instruction is about to retire. Berezin et al. [4]
compare multi-step implementation traces that fetch a single instruction against a single
step of the specification.
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The change from single-step to multi-step correctness statements raises the questions
“are they proving the same relationship?”, “are there correct machines that satisfy multi-
step correctness but not single-step?”, and finally, “are there bugs that are undetectable
with multi-step correctness statements?” To explore the relationship between multi-step
and single-step correctness statements, we build on the Microbox framework [1,2] for
microprocessor correctness statements. Using Microbox, Aagaard et al. [2] described
and compared thirty-seven correctness statements from twenty-nine papers. Day et al. [6]
mechanized Microbox in the HOL theorem prover [8] and verified a partial order rela-
tionship between correctness statements. Day et al. proved that tighter criteria, such as
single-step correctness statements, logically imply looser criteria, such as testing only
flushed states of the implementation. In this paper we examine whether some reverse im-
plications hold, i.e., if a multi-step correctness statement is verified, is there a single-step
statement that also holds?

Sections 2 provides background material on Microbox. Section 3 characterizes the
microprocessor-specific functions used in the correctness statements. Section 4 describes
the relationship between multi-step correctness that compares flushed states and single-
step correctness using Burch-Dill style flushing. The main result of the section is The-
orem 3, which says that comparing flushed states of the implementation against the
specification is equivalent to using flushing to compare each step of the implementation,
for deterministic specifications with no internal state. We also provide an example of a
non-deterministic specification and implementation that satisfy the multi-step correct-
ness statement, but not the single-step statement with flushing. Section 5 describes the
relationship between multi-step correctness at retirement to single-step correctness. The-
orem 6 says that comparing the implementation to the specification when instructions
are about to retire is equivalent to checking each step of the implementation. Our re-
sults are applicable to superscalar implementations, which can fetch and retire multiple
instructions in a single step. Sections 6 and 7 consider the relevance of our results to
existing verification efforts and summarize the paper.

2 The Microbox Framework

The Microbox framework uses four parameters to characterize a correctness statement:
alignment, match, implementation execution, and specification execution. Alignment
is the method used to align the traces of the implementation and specification (Sec-
tion 2.1). Match is the relation established between aligned states in the implementation
and specification traces (Section 2.2). Implementation execution and specification execu-
tion describe the type of state machines used – either deterministic or non-deterministic.
The Microbox framework provides a list of options for each of these parameters based
on verification efforts discussed in the literature (Table 1). By choosing options for the
parameters, Microbox can produce a wide variety of correctness statements.

Each correctness statement contains a base case and an induction step. The base cases
deal with initial states and are generally quite straightforward, so we concentrate on the
induction steps. The alignment parameter determines the overall form of the induction
clause. For each alignment option, Microbox defines a correctness statement for an other
match (O), non-deterministic implementation (N), and non-deterministic specification
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Table 1. Options for correctness statement parameters

〈alignment〉 〈match〉 〈impl. execution〉 〈spec. execution〉
(F) Flushpoint (O) Other (N) Non-deterministic (N) Non-deterministic
(W) Will-retire (A) Abstraction (D) Deterministic (D) Deterministic
(M) Must-issue (U) Flushing
(S) Stuttering (E) Equality
(I) Informed-pointwise (R) Refinement Map
(P) Pointwise

Example: IUND = informed-pointwise alignment (I), flushing match (U), non-deterministic im-
plementation (N) and deterministic specification (D).

(N). Correctness statements for different match and execution options are generated by
substitutions into the *ONN definitions.

In Microbox, both the specification and implementation machines have program
memories as part of their state, and so do not take instructions as inputs. Invariants,
which limit the state space of a machine to reachable states or an over-approximation of
reachable states, are encoded in the set of states for a machine. Table 2 summarizes the
notation.

Table 2. State-machine notation

N Next-state relation
Nk(q, q′) q′ is reachable from q in k steps of N

n Next-state function
π External state projection function.

qi
π= qs Externally visible equivalence: πi(qi) = πs(qs).

Identifiers are subscripted with “s” for specification and “i” for implementation.

In Sections 2.1 and 2.2, we describe the alignment and match options that are relevant
to this paper. In Section 2.3, we characterize the correctness statements in terms of the
type of synchronization used, i.e. at fetch or at retire. In Section 2.4, we describe the
partial order relationships between these correctness statements.

2.1 Alignment

Alignment describes which states in the execution trace are tested for matching. Point-
wise alignment (P, Definition 1) is the classic commuting diagram. Informed-pointwise
(I, Definition 2) is a variation of pointwise alignment suitable for superscalar imple-
mentations, which allows the implementation to inform the correctness statement of the
number of specification steps to take. In practice, numInstr is instantiated with either
the number of instructions that were fetched (numFetch) or the number of instructions
that were retired (numRetire), depending on the synchronization method (Section 2.3).
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Definition 1 (Pointwise induction clause: PONN).

PONN(R, Ni, Ns) ≡
∀ qi, q

′
i . ∀ qs. ∃ q′

s.[
∧Ni(qi, q

′
i )

R(qi, qs)

]
=⇒

[
∧Ns(qs, q

′
s)

R(q′
i , q

′
s)

]
Ni

Nsqs q′
s

qi q′
i

RR

Definition 2 (Informed-pointwise induction clause: IONN).

IONN(numInstr,R, Ni, Ns) ≡
∀ qi, q

′
i . ∀ qs. ∃ q′

s.
let j = numInstr(qi, q

′
i ) in[

∧Ni(qi, q
′
i )

R(qi, qs)

]
=⇒

[
∧N j

s (qs, q
′
s)

R(q′
i , q

′
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]
Ni

NsNsqs q′
s

qi q′
i

RR

Will-retire alignment (W, Definition 3) compares the implementation and specifica-
tion whenever the implementation is ready to retire instructions. The implementation
retires one or more instructions in the first step of the trace and continues until it is ready
to retire again.

Definition 3 (Will-retire induction clause: WONN).
WONN(numRetire, willRetire,R, Ni, Ns) ≡
∀ q0

i , q1
i , . . . , qk

i . ∀ qs. ∃ q′
s.

let r = numRetire(q0
i , q1

i ) in


∧
∧

∧
∧

Ni(q0
i , q1

i )
willRetire(q0

i , q1
i )(∀j ∈ 1 . . . k − 1.

Ni(q
j
i , q

j+1
i ) ∧ ¬ willRetire(qj

i , q
j+1
i )

)

(∃ q′
i . Ni(qk

i , q′
i ) ∧ willRetire(qk

i , q′
i ) )

R(q0
i , qs)




=⇒
[
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s (qs, q
′
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i , q′
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]
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NsNsqs q′
s
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i
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Flushpoint alignment (F, Definition 4) compares flushed states of the implementation
against the specification. It says that if there is a trace between flushed implementation
states, then there must exist a trace in the specification between a pair of states that match
the flushed implementation states.
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Definition 4 (Flushpoint induction clause: FONN).

FONN(isFlushed,R, Ni, Ns) ≡
∀ qi, q

′
i , qs. ∃ q′

s.


∧
∧
∧

isFlushed(qi)
∃ k. Nk

i (qi, q
′
i )

isFlushed(q′
i )
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lu

sh
ed
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lu

sh
ed

2.2 Match

Instantiations for the match parameter are relations between an implementation state qi

and specification state qs that mean “qi is a correct representation of qs”. Figure 1 shows
the match options that are relevant to this paper and the partial order on the options.

(O)
General relation

R(qi, qs)

qs•��

R

��
qi•

(E)
Equality
qi

π= qs

qs•��

π=

��
qi•

(U)
Flushing

flush(qi)
π= qs

qs• ��
π=��•

qi•
flush

��

�������

������

Fig. 1. Options and partial order for the match parameter

An other match (O) is any relation between implementation and specification states.
The flushing match (U) uses a flushing function to compute an implementation state that
should be externally equivalent to a specification state. The equality match (E) requires
that the implementation and specification states be externally equivalent.

2.3 Synchronization

In the implementation projection function (πi), there are two common representations
of the program counter: the address of the next instruction to fetch, and the address of
the next instruction to retire. We refer to the first option as synchronization at fetch and
the second option as synchronization at retirement.

For a projection function to be sensible, the program counter, register file, and other
state components must all reflect the same point in the execution of a program. Syn-
chronization at fetch is only appropriate when applied to a flushed implementation state.
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Hence, synchronization at fetch can only be used with the flushing match, which flushes
the implementation before applying the projection function, and with flushpoint align-
ment. With synchronization at retirement, the register file and program counter always
correspond to the same point of execution.

The function numInstr is instantiated with numFetch for synchronization at fetch
and numRetire for synchronization at retirement. Instructions in the shadow of a mis-
predicted branch or an exception should not be executed by the specification, and so do
not count toward the number of instructions fetched. The function numRetire counts the
number of instructions that retire. Every instruction that retires should be executed by
the specification.

2.4 Correctness Space

Figure 2 shows the partial order of logical implication for the first two parameters of
correctness statements (alignment and match). For the third and fourth parameters, the
execution of the implementation and specification machines, it is easy to consider de-
terministic as an instance of non-deterministic, thereby providing the ordering amongst
these options. The alignment parameter iF (Definition 5, informed-flushpoint — a com-
mon instance of F) will be introduced in Section 4.1. The non-shaded lines show the
natural ordering amongst correctness criteria, which was verified in Day et al. [6].

In this paper, we verify the arrows in the shaded boxes, which proves equivalences
between the correctness statements. In Section 4.2, we verify informed-flushpoint with
the equality match for deterministic specifications with no internal state is equivalent to
informed-pointwise with flushing (iFE ⇐⇒ IU). The dashed line between iFE and IU
indicates that this implication holds only for deterministic specifications. In Section 5,
we prove will-retire equality is equivalent to informed-pointwise equality (WE ⇐⇒ IE).

In related work, we verified that the multi-step correctness statement of must-issue
with the flushing match, in which the implementation takes some number of stalled
steps followed by one step where it fetches an instruction, is equivalent to the single-
step informed-pointwise flushing (IUNN) [6].

3 Characterization of Microprocessor-Specific Functions

The relationships between correctness statements are based on microprocessor-specific
functions and relations (Table 3) behaving appropriately. In this section, we describe
the required conditions on these functions. These conditions often appear as lemmas in
verification efforts. To apply our results to a particular specification and implementation,
these conditions would have to be verified. Conditions 1–5 are for synchronization at
fetch. Conditions 6–8 are for synchronization at retirement.

3.1 Fetching and Flushing Conditions

Condition 1 states that numFetch is zero in a step if-and-only-if doesFetch is false.
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Fig. 2. Partial order for correctness statements

Table 3. Microprocessor-specific functions

doesFetch(qi, q
′
i ) true if an instruction is fetched in a step.

numFetch(qi, q
′
i ) returns the number of instructions fetched in a step.

willRetire(qi, q
′
i ) true if an instruction is retired in a step.

numRetire(qi, q
′
i ) returns the number of instructions retired in a step.

flush(qi) flushes qi, i.e., completes the execution of any in-flight instructions.
isFlushed(qi) true if a state is flushed.

Condition 1 (numFetch and doesFetch)
numFetch doesFetch(numFetch, doesFetch) ≡

∀ qi, q
′
i . (numFetch(qi, q

′
i ) = 0) ⇐⇒ ¬ doesFetch(qi, q

′
i )

We characterize the required behaviour of a flushing function with Conditions 2 and
3. Condition 2 relates the function flush to the predicate isFlushed and says that if a state
qi is flushed, then flushing qi returns qi, i.e. flush is the identity function for a flushed
state.
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Condition 2 (isFlushed and flush)
isFlushed flush(isFlushed, flush) ≡ ∀ qi. isFlushed(qi) =⇒ (flush(qi) = qi)

Condition 3 says that if an instruction is not fetched in a step where the implemen-
tation transitions from qi to q′

i , then flushing qi returns the same state as flushing q′
i .

Equivalently, flushing a stalled state results in the same state as allowing the machine to
take one (unproductive) step and then flushing.

Condition 3 (doesFetch and flush)
doesFetch flush(doesFetch, flush, Ni) ≡

∀ qi, q
′
i . ¬ doesFetch(qi, q

′
i ) ∧ Ni(qi, q

′
i ) =⇒ (flush(qi) = flush(q′

i ))

Conditions 2 and 3 are the only restrictions on flushing functions. The construction
of the flushing function is up to the verifier. The most common method for constructing
a flushing function was originated by Burch and Dill [5]. They iterate a deterministic
implementation’s next-state function without fetching new instructions. Another method
for constructing flushing functions was developed by Hosabettu et al. [10], who define
completion functions for each stage in the pipeline and then compose the completion
functions to create a flushing function.

We also need a reachability condition and a liveness condition. Condition 4 says that
for any implementation state, qi, there exists a trace from a flushed implementation state
to qi.

Condition 4 (Past Flush)
past flush(isFlushed, Ni) ≡

∀ qi. ∃ k, q0
i . isFlushed(q0

i ) ∧ Nk
i (q0

i , qi)

Condition 5 says that from any state, the implementation can reach a flushed state
by passing through a series of states where it does not fetch an instruction. If the imple-
mentation does not already have the ability to prevent instructions from being fetched,
then flushing circuitry must be added.

Condition 5 (Eventually Flushed)
eventually flushed(isFlushed, doesFetch, Ni) ≡

∀ qi. ∃ k, q0
i , . . . , qk

i .

qi = q0
i ∧ (∀ j < k. Ni(q

j
i , q

j+1
i ) ∧ ¬ doesFetch(qj

i , q
j+1
i )) ∧ isFlushed(qk

i )

3.2 Retiring and Projection Conditions

Condition 6 states that numRetire is zero for an implementation step if-and-only-if
willRetire is false. It is the dual of Condition 1 for synchronization at retirement.

Condition 6 (numRetire and willRetire)
numRetire willRetire(numRetire, willRetire) ≡

∀ qi, q
′
i . (numRetire(qi, q

′
i ) = 0) ⇐⇒ ¬ willRetire(qi, q

′
i )
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Condition 7, relating the predicate willRetire to the implementation projection func-
tion πi appropriate for synchronization at retirement, is the dual of Condition 3. Con-
dition 7 says that if an instruction is not retired in a step where the implementation
transitions from qi to q′

i , then the projections of qi and q′
i are equivalent.

Condition 7 (willRetire and πi)
willRetire pi(willRetire, πi, Ni) ≡

∀ qi, q
′
i . ¬ willRetire(qi, q

′
i ) ∧ Ni(qi, q

′
i ) =⇒ (πi(qi) = πi(q′

i ))

Condition 8 is a liveness condition. The condition says that from any implementation
state, it is possible to reach a state that can retire an instruction.

Condition 8 (Eventually Retires)
eventually retires(willRetire, Ni) ≡

∀ qi. ∃ k, q�
i , q′

i . Nk
i (qi, q

�
i ) ∧ Ni(q�

i , q′
i ) ∧ willRetire(q�

i , q′
i )

4 Flushpoint Equality and Informed-Pointwise Flushing

In this section, we discuss the relationship between the two correctness statements,
flushpoint equality (FE) and informed-pointwise flushing (IU), which use synchroniza-
tion at fetch. IU is Burch-Dill style flushing. In Section 4.1, we introduce a commonly
used version of flushpoint alignment, which we call informed-flushpoint (iF). In Sec-
tion 4.2, we prove that informed-flushpoint equality and informed-pointwise flushing
are equivalent for a deterministic specification with no internal state (iFEND ⇐⇒ IUND,
Theorem 3). A similar relationship does not exist between flushpoint equality (FE) and
informed-pointwise flushing (IU), because flushpoint alignment does not constrain the
number of steps in the specification trace. In Section 4.3, we describe an implementation
and a non-deterministic specification that satisfy informed-flushpoint equality but not
informed-pointwise flushing, thereby providing a counterexample to iFENN =⇒ IUNN.

4.1 Informed-Flushpoint

Flushpoint alignment (Definition 4) does not impose any constraints on the number
of specification steps taken. However, in most verification efforts that use flushpoint
alignment (e.g., [16,10,14]), the number of steps in the specification trace is the number
of instructions executed in the implementation trace. We introduce informed-flushpoint
alignment (iF) to capture this common practice. Informed-flushpoint is most commonly
used with the equality match, as shown in Definition 5. We overload numFetch to return
the total number of instructions fetched in either a sequence of implementation steps or
in a single implementation step.
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Definition 5 (Informed-Flushpoint Equality induction clause: iFENN).
iFENN(isFlushed, numFetch, πi, πs, Ni, Ns) ≡

∀ q0
i , q1

i , . . . , qk
i . ∀ qs. ∃ q′

s.
let f = numFetch〈q0

i , . . . , qk
i 〉 in


∧
∧
∧

isFlushed(q0
i )

(∀j < k. Ni(q
j
i , q

j+1
i ))

isFlushed(qk
i )

q0
i

π= qs


=⇒

[
∧Nf

s (qs, q
′
s)

qk
i

π= q′
s

]
k

π=
π=

NiNi

NsNsqs q′
s

q0
i qk

i

isF
lu

sh
ed

isF
lu

sh
ed

numFetch

4.2 Informed-Flushpoint and Informed Pointwise: Deterministic Specification

In this section, we prove Theorem 3, which says that, for a deterministic specifica-
tion without internal state (i.e. Ns is ns and πs is identity), informed-flushpoint with
the equality match (iFEND, an instantiation of Definition 5) is equivalent to informed-
pointwise with the flushing match (IUND, an instantiation of Definition 2). Showing
that the single-step informed-pointwise correctness statement logically implies multi-
step informed-flushpoint (IUND =⇒ iFEND) is straightforward by induction. Here we
describe the more difficult reverse direction (iFEND =⇒ IUND). First, we introduce
an intermediate point, which we call iFflush (Definition 6) and prove iFEND =⇒ iFflush
(Theorem 1). Second, we show iFflush =⇒ IUND (Theorem 2).

Definition 6 (iFflush).

iFflush(isFlushed, numFetch, flush, πi, πs, Ni, Ns) ≡
∀ q0

i , q1
i , . . . , qk

i .∀ qs. ∃ q′
s.

let f = numFetch〈q0
i , . . . , qk

i 〉 in
∧

∧
isFlushed(q0

i )
(∀j < k. Ni(q

j
i , q

j+1
i ))

qi
π= qs


=⇒

[
∧Nf

s (qs, q
′
s)

flush(qk
i ) π= q′

s

]
k

π=

π=

NiNi

NsNsqs q′
s

q0
i qk

i

isF
lu

sh
ed

numFetch

flush

Definition 6 is the same as informed-flushpoint (Definition 5), except that the final
states must satisfy the flushing match, rather than be externally equivalent.

Theorem 1 (iFENN =⇒ iFflush).
∀ isFlushed, numFetch, doesFetch, flush, πi, πs, Ni, Ns.


∧
∧
∧

eventually flushed(isFlushed, doesFetch, Ni) — Condition 5
doesFetch flush(doesFetch, flush, Ni) — Condition 3
isFlushed flush(isFlushed, flush) — Condition 2
numFetch doesFetch(numFetch, doesFetch) — Condition 1




=⇒
[

iFENN(isFlushed, numFetch, πi, πs, Ni, Ns)
=⇒ iFflush(isFlushed, numFetch, flush, πi, πs, Ni, Ns)

]
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Figure 3 outlines the proof of iFENN =⇒ iFflush (Theorem 1). This theorem depends
on conditions described in Section 3. We begin in Step 0 assuming the left and lower
sides of the commuting diagram for iFflush. In Step 1, we extend the path from qk

i to a
flushed state, q◦

i , using the condition that the implementation can always reach a flushed
state by taking steps that do not fetch instructions (Condition 5, eventually flushed). In
Step 2, we use the condition that flushing a state after taking a series of steps that do
not fetch an instruction is the same as flushing the state at the beginning of the series
(Condition 3, doesFetch flush). In Step 3, we conclude that flushing qk

i results in q◦
i

because flushing a flushed state has no effect (Condition 2, isFlushed flush). In Step
4, we use the fact that iFENN holds for traces between flushed states to complete the
commuting diagram. Condition 1, which relates numFetch and doesFetch, is needed to
relate the number of steps in the specification traces.

Step 0 Step 1: using eventually_flushed

Step 2: using doesFetch_flush Step 3: using isFlushed_flush

Step 4: using iFENN
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π=π=
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Ni

Ni

Ni

NiNi

NiNiNiNi
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flush
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Fig. 3. Steps in proof of iFENN =⇒ iFflush (Theorem 1)

In the second half of the proof of iFEND =⇒ IUND, we use iFflush to arrive at IUND
(Theorem 2). The steps of the proof are outlined in Figure 4.
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Theorem 2 (iFflush =⇒ IUND).
∀ isFlushed, numFetch, flush, πi, πs, Ni, ns.[

∧ past flush(isFlushed, Ni) — Condition 4
πs = (λx.x)

]

=⇒
[

iFflush(isFlushed, numFetch, flush, πi, πs, Ni, ns)
=⇒ IUND(numFetch, flush, πi, πs, Ni, ns)

]

Step 0

Step 2: using iFflush twice

Step 3: IUND

Step 1: using past_flush
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Ni
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Fig. 4. Steps in proof of iFflush =⇒ IUND (Theorem 2)
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In Step 0 of Figure 4, we start with the left and lower edges of the IUND commuting
diagram, leaving out πs because it is the identity function in this case. In Step 1, we
extend the path from qi back to a flushed state, q◦

i , using the condition that for any
state, there is always a previous flushed state (Condition 4, past flush). In Step 2, we
use iFflush to deduce the two commuting diagrams both beginning at q◦

i . Because the
matching relationship is a function, and because the specification is deterministic, from
these two commuting diagrams we can conclude IUND in Step 3.

We combine Theorem 1, specialized for a deterministic specification with no internal
state; Theorem 2; and the result that IUND logically implies iFEND to conclude that iFEND
is equivalent to IUND under the conditions listed in Section 3 (Theorem 3).

Theorem 3 (iFEND ⇐⇒ IUND).
∀ isFlushed, numFetch, doesFetch, flush, πi, πs, Ni, ns.



∧
∧
∧
∧
∧

eventually flushed(isFlushed, doesFetch, Ni) — Condition 5
doesFetch flush(doesFetch, flush, Ni) — Condition 3
isFlushed flush(isFlushed, flush) — Condition 2
numFetch doesFetch(numFetch, doesFetch) — Condition 1
past flush(isFlushed, Ni) — Condition 4
πs = (λx.x)




=⇒

 iFEND(isFlushed, numFetch, πi, πs, Ni, ns)

⇐⇒
IUND(numFetch, flush, πi, πs, Ni, ns)




4.3 Informed-Flushpoint and Informed-Pointwise: Non-Deterministic
Specification Counterexample

In Section 4.2, we proved iFEND ⇐⇒ IUND. In this section, we illustrate that a non-
deterministic specification paired with an implementation can satisfy iFENN without
satisfying IUNN. Figure 5 is an example of a reasonable non-deterministic specification
and a slightly strange, but arguably correct, implementation that satisfies iFENN but not
IUNN. In the specification states (S1—S9), the letters in the top of the box represent
instructions to execute. The lower part of the box lists completed instructions. In the
implementation states (I1–I7), the middle shaded area is in-flight instructions. States with
no in-flight instructions are flushed. The larger, shaded arrows show the projection of
the implementation states. In the step marked “X” the implementation kills its currently
executing instruction “B” and fetches the instructions “C”, and “D”, however it only
reports fetching one instruction.

Figure 6 shows how the iFENN commuting diagram is satisfied for all possible paths
between flushed implementation states. In all three cases, the length of the specification
trace is the reported number of instructions fetched. Because there is a bug in the fetch
mechanism, this is not actually the number of instructions fetched in Path 3. Figure 7
illustrates that IUNN does not hold for the implementation step “X”.
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5 Will-Retire and Informed-Pointwise

The will-retire correctness statement (WONN, Definition 3) uses synchronization at re-
tirement to compare an implementation trace that retires instructions only in the first step
against one specification step. The implementation trace continues until it is ready to
retire another instruction. The main result of this section is Theorem 6, which says that
will-retire equality (WENN) is equivalent to informed-pointwise with equality (IENN,
Definition 2 with the equality match).

The first insight in the proof that WENN is equivalent to IENN is the introduction of an
alternative way of expressing WONN, which we call single-step will-retire (ssWONN,
Definition 7). ssWONN decomposes WONN into two simpler, single-step properties
based on whether the implementation will retire any instructions.

As a single-step correctness statement, ssWONN is similar to informed-pointwise
(IONN) in examining only a single step of the implementation. IONN and ssWONN
are equivalent under Condition 6, numRetire willRetire, which states that the function
numRetire returns zero if-and-only-if willRetire is false (Theorem 4).

Definition 7 (Single-step will-retire induction clause: ssWONN).
ssWONN(numRetire, willRetire,R, Ni, Ns) ≡

∀ qi, q
′
i . ∀ qs.

let r = numRetire(qi, q
′
i ) in[

∧ Ni(qi, q
′
i )

R(qi, qs)

]
=⇒

[
∧ willRetire(qi, q

′
i ) =⇒ ∃ q′

s. Nr
s (qs, q

′
s) ∧ R(q′

i , q
′
s)

¬ willRetire(qi, q
′
i ) =⇒ R(q′

i , qs)

]

Theorem 4 (ssWONN ⇐⇒ IONN).
∀ numRetire, willRetire,R, Ni, Ns.

numRetire willRetire(numRetire, willRetire) — Condition 6

=⇒

 ssWONN(numRetire, willRetire,R, Ni, Ns)

⇐⇒
IONN(numRetire,R, Ni, Ns)




The next and more challenging step in the proof is to show that will-retire with the
equality match is equivalent to the seemingly tighter single-step will-retire correctness
statement (WENN⇐⇒ssWENN). Showing ssWENN =⇒ WENN is straightforward by
induction. The other direction (WENN =⇒ ssWENN, Theorem 5) holds under Condi-
tions 7 and 8.

Theorem 5 (WENN ⇐⇒ ssWENN).
∀ willRetire, πi, πs, Ni, Ns.[

∧ willRetire pi(willRetire, πi, Ni) — Condition 7
eventually retires(willRetire, Ni) — Condition 8

]

=⇒

 WENN(numRetire, willRetire, πi, πs, Ni, Ns)

⇐⇒
ssWENN(numRetire, willRetire, πi, πs, Ni, Ns)
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Figure 8 is an illustration of the proof of Theorem 5. In Step 0, we start with the left
and lower side of the commuting diagram for ssWENN. In Step 1, we use the eventually
retires condition (Condition 8), to reach the first future state, q�

i , that retires an instruction.
In Step 2, we use the willRetire pi condition (Condition 7) to conclude the projection of
q′

i and q�
i are equal. In Step 3, we use WENN to complete the commuting diagram. Step

4 shows ssWENN where the left case follows from Step 3 and the right case follows
directly from Condition 7.

 Step 0

Step 1: using eventually_retires

Step 2: using willRetire_pi

Step 3: using WENN

Step 4: left case from Step 3;
            right case from willRetire_pi 
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Fig. 8. Steps in proof of WENN =⇒ ssWENN (Theorem 6)
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Theorem 6 (WENN ⇐⇒ IENN).
∀ willRetire, πi, πs, Ni, Ns.

∧
∧

willRetire pi(willRetire, πi, Ni) — Condition 7
eventually retires(willRetire, Ni) — Condition 8
numRetire willRetire(numRetire, willRetire) — Condition 6




=⇒

WENN(numRetire, willRetire, πi, πs, Ni, Ns)

⇐⇒
IENN(numRetire, πi, πs, Ni, Ns)




By specializing R in Theorem 4 to the equality match, we are able to conclude
IENN is equivalent to ssWENN under Condition 6. Combining this specialization of
Theorem 4 with Theorem 5, we conclude WENN ⇐⇒ IENN under Conditions 7, 8,
and 6 (Theorem 6).

6 Relating Theory to Practice

We now consider the relevance of our results to existing microprocessor verification
efforts that use multi-step correctness statements based on flushpoint and will-retire
alignment. Using our theorems is contingent upon showing the implementation satisfies
the conditions in Section 3.

Sawada and Hunt [16] verified that a non-deterministic implementation with out-of-
order retirement satisfies informed-flushpoint equality with a deterministic specification
with no internal state (iFEND). Their verification strategy is to build an intermediate
model with history variables, called the MAETT. From our result, they can now con-
clude that informed-pointwise flushing (IUND) also holds. In later work [17,18], they
enhanced their implementation to support external interrupts, which led them to add
non-determinism to their specification because of the problem of predicting how many
instructions the implementation will have completed when an interrupt occurs. Because
of the non-deterministic specification, we cannot conclude that pointwise flushing holds
in this case.

Skakkebæk et al. [14,13] verify that a deterministic implementation with in-order
retirement satisfies informed-flushpoint equality with a deterministic specification with
no internal state (iFEDD). They build a non-deterministic intermediate model that com-
putes the result of each instruction when it enters the machine and queues the result
for later retirement. Because of our result they are able to conclude informed-pointwise
flushing (IUDD) holds.

Hosabettu, Srivas, and Gopalakrishnan [10,11,12,9] prove that a deterministic out-of-
order implementation satisfies informed-flushpoint equality with a deterministic specifi-
cation with no internal state. They first prove informed-pointwise flushing (IUDD), then
apply induction to prove informed-flushpoint equality (iFEDD). Because they use IUDD
as a step toward iFEDD, there is no need for our result in this work.

Arons and Pnueli [3] use flushpoint alignment, not informed-flushpoint. Thus, our
result is not applicable to their verification effort.

Fox and Harman [7] use will-retire alignment for a deterministic implementation
and specification where the match is projection of the implementation (WEDD). Based
on the results of this paper, they can also conclude informed-pointwise equality (IEDD).
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7 Conclusions

This paper contains three results. First, we prove that for deterministic specifications with
no internal state, from multi-step informed-flushpoint equality, one can conclude single-
step informed-pointwise with the flushing match. Second, we provide a counterexample
showing that for non-deterministic specifications flushpoint equality does not always
imply informed-pointwise with the flushing match. Third, we prove that a multi-step
correctness statement based on synchronization at retirement with the equality match is
equivalent to informed-pointwise with the equality match. Our results are applicable to
superscalar implementations, which fetch or retire multiple instructions in a single step.

Our long-term goal in studying correctness statements abstractly is to determine de-
composition strategies that will ease the verification effort. The proofs described in this
paper have been mechanized in the HOL theorem prover. We have created a reusable the-
ory of microprocessor correctness that allows the comparison and extension of existing
verification efforts.
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