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Spectrum analysis of motion parallax in a 3D
cluttered scene and application to egomotion
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Previous methods for estimating observer motion in a rigid 3D scene assume that image velocities can be mea-
sured at isolated points. When the observer is moving through a cluttered 3D scene such as a forest, however,
pointwise measurements of image velocity are more challenging to obtain because multiple depths, and hence
multiple velocities, are present in most local image regions. We introduce a method for estimating egomotion
that avoids pointwise image velocity estimation as a first step. In its place, the direction of motion parallax in
local image regions is estimated, using a spectrum-based method, and these directions are then combined to
directly estimate 3D observer motion. There are two advantages to this approach. First, the method can be
applied to a wide range of 3D cluttered scenes, including those for which pointwise image velocities cannot be
measured because only normal velocity information is available. Second, the egomotion estimates can be used
as a posterior constraint on estimating pointwise image velocities, since known egomotion parameters con-
strain the candidate image velocities at each point to a one-dimensional rather than a two-dimensional space.
© 2005 Optical Society of America
OCIS codes: 330.4150, 330.4060.
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. INTRODUCTION
hen an observer moves through a 3D scene, nearby sur-

aces move at different image speed than do distant sur-
aces. This motion parallax effect informs an observer
oth about its own motion relative to the scene, called
gomotion, and about the spatial layout and depth of sur-
aces in the scene. This paper concentrates on a specific
atural scenario that has been relatively neglected in the
ast, in which the scene is composed of a very large num-
er of distinct surfaces at a large range of depths. We re-
er to such scenarios as 3D cluttered scenes. For such
cenes, most local image regions contain multiple visible
urfaces and hence multiple depths. Psychophysical stud-
es have shown that human observers can estimate their
irection of heading in such scenes.1–3

A canonical natural example of a 3D cluttered scene is
he woods. Helmholtz observed that, from a fixed vantage
oint in the woods and using one eye only, an observer has
ifficulty segmenting the scene into distinct visible sur-
aces (Ref. 4, p. 295). The difficulty arises from the abun-
ance of depth discontinuities, surface textures, shadows,
tc., which are confounded in the retinal image projection.
e also claimed that, as soon as the observer begins to
ove, he immediately perceives the 3D layout of the

cene and the positions of surfaces relative both to each
ther and to himself.

Helmholtz’s scenario of a 3D cluttered scene presents a
hallenge to traditional computational models of egomo-
ion and 3D structure from motion. Traditional models as-
ume a two-step process in which the observer first mea-
ures pointwise image velocities by optical flow or feature
1084-7529/05/091717-15/$15.00 © 2
racking and, second, combines these image velocities to
stimate egomotion and 3D structure. Although this two-
tep process may seem attractive from a computational
tandpoint, since it partitions the problem into indepen-
ent modules, it is unclear a priori that this is the best
omputational approach to solving the problem in all sce-
arios. In particular, the first step of measuring pointwise

mage velocities is complex in a 3D cluttered scene, since
ultiple image velocities can occur within many local re-

ions. For a dense image velocity field to be obtained, a
ision system would need to choose from a variety of
ethods, such as optical flow,5 occlusion boundary

etection,6,7 layered motion,8 and even transparency.9 We
mphasize that, in the traditional two-step approach,
hese motion estimation methods are applied prior to the
stimation of egomotion and scene structure.

In this paper we present an alternative approach that
pplies to 3D cluttered scenes. Rather than estimating
ointwise image velocities as a first step, the observer in-
tead estimates the direction of motion parallax in a
mall number of local regions. These estimates are ob-
ained using the local power spectrum of the image se-
uence. The directions of motion parallax are then used to
stimate the observer’s 3D egomotion.

There are two advantages of our method for the case of
D cluttered scenes. First, our method can estimate ego-
otion in scenes for which no previous egomotion method

xists. We present one such example, namely, scenes con-
isting entirely of shaded cylinders at random 3D orien-
ations. For such scenes, only normal image velocities can
e computed, and so egomotion methods that are based on
005 Optical Society of America
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D image velocities cannot be applied. Although there do
xist egomotion methods that require only normal veloci-
ies to be computed,10–13 these methods make very restric-
ive assumptions on the observer motion, namely, that the
otation component is either zero or is known to great ac-
uracy. Our method makes no such assumption. Hence,
ur method is able to estimate egomotion in situations for
hich no previous method exists.
A second advantage of our method concerns the subse-

uent problem of estimating 3D scene geometry, i.e., the
epths of visible surfaces. Methods for estimating depth
rom motion require pointwise image velocities. How does
ur method help to estimate such pointwise image veloci-
ies for the case of cluttered 3D scenes? Although we do
ot address and solve that problem in this paper, we do
ake a key observation that the parameters of egomotion

hat our method does compute strongly constrain the so-
ution to the problem of estimating pointwise image ve-
ocities. Specifically, once the observer’s rotation and
ranslation are known, candidate image velocities at each
oint are constrained to a line (an epipolar line14) in ve-
ocity space. Thus, estimating egomotion prior to estimat-
ng image velocities simplifies the latter problem. This ar-
ument applies in principle regardless of which pointwise
mage velocity method is used, be it optical flow or a more
eneral method that allows for occlusions or transpar-
ncy.

A preliminary version of this work has been presented
reviously.15

. BACKGROUND
e begin by reviewing motion parallax and how it can be

sed to estimate egomotion and 3D structure.16 When an
bserver moves through a rigid scene, the instantaneous
etinal image velocity of a visible scene point depends on
he observer’s instantaneous 3D motion relative to the
cene. Let �X ,Y ,Z� be a coordinate system with the ob-
erver at the origin, Z is the optical axis, and X ,Y are the
orizontal and vertical directions in the observer’s frame.
et the observer’s 3D instantaneous translation velocity

n this coordinate system be T= �Tx ,Ty ,Tz�, and let the ob-
erver’s instantaneous angular velocity be �
��x ,�y ,�z�. Let the image plane be at depth Z= f, and

et Z�x ,y� be the depth of any surface point visible at im-
ge position �x ,y�.
The image velocity vector v� at �x ,y� is the sum of two

omponent vectors,

v� = v�� + v�T,

hich are due to the observer’s rotation � and transla-
ion T, respectively. The rotation component is

v�� = � xy/f − f − x2/f y

f + y2/f − xy/f − x���x

�y

�z
� , �1�

nd the translation component is
v�T =
Tz

Z�x,y�
�x − xT

y − yT
� . �2�

he special image position

�xT,yT� =
f

Tz
�Tx,Ty� �3�

s called the axis of translation (AOT). In the special case
f lateral motion, namely, where Tz=0, the AOT is at in-
nity in the image plane. In this case, the translation
omponent is written slightly differently:

v�T =
f

Z�x,y�
�− Tx

− Ty
� . �4�

There are two important observations about these
quations. First, there is a depth–speed ambiguity in re-
overing depth Z�x ,y� and the translation vector T,
amely, multiplying both Z�x ,y� and T by a fixed constant
oes not change the velocity field. For this reason, the vi-
ion system can, at best, estimate these variables up to
he unknown scale constant.

Second, if the observer knows � and the direction of T
and the parameter f), then the observer could compute
mmediately the rotation vector v�� and the direction of
he translation vector v�T at each image position �x ,y�.
hese values are given directly from the above equations.
To compute depth Z�x ,y�, given � and the direction of

, the observer needs to know the image velocity at �x ,y�.
ut now we see that this velocity is constrained to a one-
imensional (1D) line, namely, the line passing through

�� and in the direction of v�T, both of which are given by �
nd the direction of T. Thus, knowing T and � prior to
stimating pointwise image velocities simplifies this lat-
er problem, by reducing the search space from 2D to 1D.
his helps to motivate the reordering of computations

hat we present in this paper, namely, to compute T and
prior to estimating pointwise image velocities rather

han the other way around.
Before we introduce our method, we review a tradi-

ional approach in which an observer estimates image ve-
ocities prior to estimating observer motion. This particu-
ar approach is then reformulated into our approach.

How can an observer estimate the rotation vector �
nd the direction of T (AOT), given pointwise image ve-
ocities? A classical idea16 is to use motion parallax of
airs of points that straddle a depth discontinuity. As-
ume first that the image projections of two points are an
nfinitesimal distance apart. Because the rotation compo-
ent of the velocity field does not depend on depth, the
ifference of the velocity vectors of the two points depends
nly on their translation components. But because the
wo points lie at different depths, the translation compo-
ents of the two velocity vectors have different magni-
udes. Since both of these translation components point
way from the AOT, the difference of the two velocity vec-
ors must also point away from (or toward) the AOT. Thus
he AOT lies on a line that passes through the depth dis-
ontinuity and whose direction is defined by the velocity
ifference vector. By computing a set of such lines and
nding their intersection, a vision system can estimate



t
c

i
e
p
r

3
O
i
u
m
m
a
s

p
p
i
t
p
i
t
p
C
1
t

s
t
p
h
fi
A
d
c

E
w
4

i
v
p
d
n
a
g
A
g

b
p
p

F
a
l
c
t

F
d
t
s
d

R. Mann and M. S. Langer Vol. 22, No. 9 /September 2005 /J. Opt. Soc. Am. A 1719
he AOT. Rieger and Lawton17 presented the first
omputer-vision implementation of this idea.

The method we present uses a similar idea, namely, to
solate a direction vector that points to the AOT. The nov-
lty of our method is that it does not rely on precomputed
ointwise image velocities but, instead, estimates this di-
ection vector directly from image intensities.

. MODEL OF MOTION PARALLAX
ur method is based on a linear model of motion parallax

n a local image region. We first motivate this model by
sing informal arguments and then present the formal
odel. In Appendix A, we analyze the accuracy of the
odel by providing bounds on the deviation of the vari-

bles in the model as a function of scene geometry and ob-
erver motion.

Consider three surfaces in a local image region and one
oint A, B, C on each of these surfaces. For each pair of
oints AB and AC, there is a corresponding pair of veloc-
ty vectors. According to the differential motion idea,16,17

he difference vectors v��A�−v��B� and v��A�−v��C� should
oint roughly toward or away from the AOT. Specifically,
f three points are near to one another and are far from
he AOT, then these two difference vectors are roughly
arallel. It follows that the image velocity vectors at A, B,
fall roughly on a line in velocity space �vx ,vy� [see Fig.

(a)]. We refer to the line as the motion parallax line for
he local image region containing A, B, C.

Another way to motivate the model is to use the
moothness of the rotation field and of the direction-of-
he-translation field. The rotation field is a second-order
olynomial of image position, so it is clearly smooth and
ence locally constant. The direction-of-the-translation
eld is a field of unit vectors that point away from the
OT. With the exception of the singularity at the AOT, the
irection of the unit vectors is also smooth and hence lo-
ally constant.

Figure 2 illustrates these two smoothness properties.
ach plot shows a 7�7 sampling of the respective field,
ith neighboring samples differing in position by about
deg of visual angle. The field of view is 30° wide, which

ig. 1. (a) Image velocity vectors at three points A, B, C in a loc
nd Lawton’s arguments,17 the differences of any pair of these ve
ine in velocity space. (b) The motion parallax line (dotted line). ��
omponent of the rotation vector that is perpendicular to ��. � is a
he mean velocity vector that is used in Section 4.
s typical for a video camera. If we partition the field of
iew into square regions, with one region per sample
oint in the figure, then we expect the rotation fields and
irection-of-translation fields within each region to be
ear constant. The reason is that the fields themselves
re smooth. Since the fields change very little across re-
ions from sample point to sample point (except near the
OT), we would expect them to change little within re-
ions.

Of course, the image velocity field v� is not expected to
e smooth, since the translation component of velocity de-
ends on inverse depth via Eqs. (2) and (4). Depth is ex-
ected to be discontinuous often in cluttered 3D scenes,

ge region. The three points lie on distinct surfaces. From Rieger
hould point to the AOT. It follows that the vectors must lie on a
nit vector in the direction of the translation component. �� is the
component speeds in the direction of translation. m� = �mx ,my� is

ig. 2. Plots of 7�7 sampling of a 30 deg field of view. Left,
irection-of-translation (normalized) vectors. Right, rotation vec-
ors. The motion parallax line model assumes that the fields
hown are constant over a image region with diameter equal to
istance between samples.
al ima
ctors s
is a u
set of
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nd depth differences lead to velocity discontinuities. The
ey, however, is that, since the direction of the translation
omponent is roughly constant within regions, the
ranslation-component vectors will be roughly parallel
ithin regions. This again leads to a line model of image
elocities within regions, namely, a near-constant rotation
omponent plus a translation component whose direction
s nearly fixed but whose speed varies over image posi-
ion.

With these motivating arguments behind us, we now
ormally state the motion parallax line model. Consider
n image region i that is centered at �xi ,yi�. For the image
elocity vector v� at any position �x ,y� in this region, define
to be the unit vector that is parallel to the translation

omponent v�T and that points away from the AOT. Let ��i
e the �� vector at �xi ,yi�. We refer to ��i as the motion par-
llax direction for the region centered at �xi ,yi�. The
odel uses ��i to approximate all �� vectors in region i. We

efine the motion parallax line for region i to be

v��x,y� = �� i + ��x,y���i. �5�

he 2D vector �� i is the component of the rotation vector
�� at �xi ,yi� that is perpendicular to ��i. The geometry is
llustrated in Fig. 1(b).

In Appendix A, we present bounds on how well this line
ndeed describes the image velocities in a local region cen-
ered at �xi ,yi�. We also apply these bounds by using the
cene parameters from our experiments. We show that
he motion parallax line is a valid model, provided that
here is a sufficient range of depths and that the region
idth is small relative to the distance to the AOT.
In Section 4 we present a method for estimating the
otion parallax line for an image region. This method

oes not rely on precomputed pointwise image velocities.

. METHOD FOR ESTIMATION OF THE
OTION PARALLAX DIRECTION

ur method for estimating the direction of motion paral-
ax ��i for a region i generalizes the optical snow method,18

hich is a power spectrum method for estimating a mo-
ion parallax line. The optical snow method assumes that
he rotation component of the image velocities is parallel
o the translation component; in particular, it assumes

� i=0 in Eq. (5). This assumption is not valid under gen-
ral camera rotation, however. To apply the method, we
eed to generalize it to the case that �� i�0.
To generalize the optical snow method, we add an ini-

ial step that is to transform the power spectrum of the
ocal image region. This initial step amounts to motion
ompensation. It shears the power spectrum, effectively
ubtracting an estimate of the mean image velocity in
hat image region. This mean velocity estimate is ob-
ained using a multiscale least-squares technique. By
ubtraction of the mean velocity, the motion parallax line
f Eq. (5) is shifted so that it passes through the origin.
nce this initial step is performed, the assumption of the
ptical snow method holds, and so this method can be ap-
lied to estimate the direction of motion parallax ��i for the
egion.
. Background: Motion Parallax in the Frequency
omain
e begin with a brief review of the power spectrum model

hat is the basis of the optical snow method and our gen-
ralization of this method. See Ref. 18 for more details.

When an image region contains an intensity pattern
hat translates over time with velocity �vx ,vy�, nonzero
alues in the power spectrum are confined to a motion
lane,19

vxfx + vyfy + ft = 0, �6�

here �fx , fy� are the spatial frequencies and ft is the tem-
oral frequency. When multiple image velocities are
resent in a region and these velocities lie on a line in ve-
ocity space, Eq. (5) applies and can be substituted into
q. (6) to obtain a one-parameter ��� family of motion
lanes:

��� i + ���i� · �fx,fy� + ft = 0. �7�

s illustrated in Fig. 3, this family of motion planes inter-
ects at a common line that passes through the origin in
he 3D frequency domain. This family of planes is re-
erred to as a bowtie, and the line of intersection of the
lanes is referred to as the axis of the bowtie. The axis of
he bowtie is in the direction �−�y ,�x ,	�x

2+�y
2�i. Thus, to

stimate the direction of motion parallax ��i and the vector
� i for image region i, it is sufficient to estimate this
owtie axis.
The optical snow method estimates the bowtie axis for

he special case that �� =0. In this case, the bowtie axis
ies in the �fx , fy� plane. The method begins with a brute
orce search of candidate directions ��i on the unit circle in
he �fx , fy� plane. The directions are sampled every 5 deg.
or each direction, a goodness of fit is computed for how
ell the power spectrum resembles a bowtie whose axis is

n that direction. The direction of best fit is found, and a
ocal binary search refines this initial ��i estimate.

. Motion Compensation in Local Image Regions
he optical snow method assumes that the bowtie axis is
ontained in the �fx , fy� plane, i.e., �� i=0. Here we general-
ze that method for the case that �� i�0. We do so by per-
orming motion compensation in the frequency domain,
ffectively subtracting the mean velocity of the image re-
ion. This shifts the motion parallax line of Eq. (5) so that
t passes through the origin, and the assumptions of the
ptical snow method are then met.

The motion compensation step is performed in the fre-
uency domain, but the basic idea is best explained in the

Fig. 3. Bowtie. Motion parallax in the frequency domain.
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pace–time domain. Suppose we were to shear the image
egion i in xyt by shifting image frame t by �tmx , tmy� pix-
ls. This is equivalent to subtracting some vector �mx ,my�
rom each image velocity. If �mx ,my� lies on the motion
arallax line of Eq. (5), then this image shear shifts the
otion parallax line so that it passes through the origin,
hich is what we want.
The problem, therefore, is to find a vector �mx ,my�i for

egion i that lies on the motion parallax line of that re-
ion. We estimate a vector �mx ,my�i such that if the image
egion were shifted by �mx ,my�i pixels per frame, then the
rame-to-frame image intensity variations would be mini-
ized in the sense of minimizing the sum of squared in-

ensity differences:



�x,y,t��region i

�I�x − mxt,y − myt,t + 1� − I�x,y,t��2,

here the sum is over a region i that we now assume is of
ize M�M pixels�T frames. This technique is similar to
lassical motion compensation techniques in computer
ision,20,21 except that the sum is performed over T
rames rather than two frames.

Rather than performing motion compensation in the
yt domain, we perform it in the frequency domain. Using
arseval’s theorem, the above minimization can be per-

ormed (Ref. 22, p. 61) by finding the vector �mx ,my� that
inimizes



�fx,fy,ft�

�mxfx + myfy + ft�2
Î�fx,fy,ft�
2, �8�

here the sum is over fx , fy� �−M /2 , . . . ,M /2−1� and ft
� �−T /2 , . . . ,T /2−1�. This is a least-squares fit of a plane
n �fx , fy , ft�, where the error is measured in the ft direc-
ion.

. Signal-Processing Details
rior to computation of the Fourier transform of a local

mage region, the mean intensity of this region is sub-
racted. The intensities in the M�M�T region are then
ultiplied by a cone window in �x ,y� and a triangular
indow in t. The spatial window gives more weight to pix-
ls near the center point of the region. This is consistent
ith the bounds derived in Appendix A in the sense that
eviations in the model that result from position differ-
nces are more severe as the region is larger. The tempo-
al window is used because the observer’s motion param-
ters T, � may vary slowly over the T frames. The central
rame is taken as the representative value and is
eighted more heavily. (For the experiments we present,

he camera motion parameters T, � were constant over
he T frames.)

Low spatial frequencies are avoided for the motion
ompensation step, for the same reason they are avoided
n the optical snow method,18 namely, the image window
nd space–time occlusions spread power locally in the fre-
uency domain.18,23–25 This spreading of power is prob-
ematic at low spatial frequencies, since the power of the
mage is highest there; i.e., natural images26 have a
ower spectrum that tends to fall off as 1/ �fx

2+ fy
2�. At low

patial frequencies, spreading of the power spectrum
ransfers power between motion planes of very different
rientations. This would corrupt the estimates of mean
elocity needed for motion compensation. The spreading
f power is less significant for higher spatial frequencies,
ince the spreading occurs over motion planes of similar
lopes.

A third signal-processing issue is aliasing. Because the
mage sequence is sampled in xyt, the Fourier transform
f the local image region is a periodic function,

ˆ�fx mod M , fy mod M , ft mod T�. Any spatial or temporal
ower in the continuous presampled image that is above
he Nyquist frequency (M /2 in space, T /2 in time) is
liased to frequencies below the Nyquist frequency. Spa-
ial aliasing is typically insignificant for real optical sys-
ems because spatial blurring attenuates high spatial fre-
uencies prior to sampling. Temporal aliasing may be
ignificant, however, for digital images if high image
peeds are present. Temporal aliasing occurs if there is
nergy at spatial frequencies �fx , fy� and velocities �vx ,vy�
uch that


vxfy + vyfy
 � T/2. �9�

he motion plane corresponding to this image velocity
raps around at the Nyquist frequency, ft= ±T /2, so that
igh positive speeds appear in the power spectrum as
igh negative speeds and vice versa. Temporal aliasing
oes occur in our image sequences.
To address temporal aliasing, we iteratively estimate

he mean velocity vector �mx ,my� by using a multiscale
ethod.20,22 The least-squares minimization is first per-

ormed using a roughly one octave band of spatial fre-
uencies 	fx

2+ fy
2� �M /16,M /8�. (Spatial frequencies below

/16 are not used because of windowing and occlusion
ssues—see above). Because this one octave band consists
f relatively low frequencies, it is less likely to meet the
emporal aliasing condition of expression (9). At iteration
, an n octave band �M /16,M /16·2n� is used. Typically,

ust two to three iterations are needed for convergence.
At each iteration, the original power spectrum is

heared in the ft direction. Let �m̂x ,m̂y� be the current es-
imate of the motion compensation vector. Before the first
teration, �m̂x ,m̂y�= �0,0�. After each iteration, �m̂x ,m̂y� is
pdated by adding the compensation vector computed in
he least-squares minimization:

Îsheared�fx,fy,ft� ª Î�fx,fy,�ft − m̂xfx − m̂yfy�mod T�,

here ft takes values in 0 to T−1, so that the mod opera-
ion is well defined. An example of the sheared power
pectrum after each iteration is shown in Fig. 4.

. EXPERIMENTS: ESTIMATION OF
OTION PARALLAX DIRECTION

ow well can the direction of motion parallax ��i be esti-
ated? We address this question first using image se-

uences that are rendered with computer graphics
OpenGL) so that results can be compared with precise
round truth. We also consider several natural image se-
uences.
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. Synthetic Sequences
e use three sets of synthetic scenes (see top row of Fig.

), which vary in information content and in degree of dif-
culty. (Examples of our image sequences are available
nline at www.cs.uwaterloo.ca/̃ mannr/parallax.) The first
onsists of squares distributed randomly in a 3D view vol-
me. Each square is texture mapped with a low-pass
oise pattern that simulates texture and shading on real
urfaces. These scenes are intended to model natural clut-
ered scenes. We have also carried out experiments using
heckerboard texture maps, and similar results were
btained.15

ig. 4. Example of motion compensation by iterative shearing.
lotted. For this example, �� is near the fx direction, and so the b
pectrum (left) but disappears after motion compensation (right)

ig. 5. Example of results for forward motion only. Top row, first
how the computed motion compensation vector �mx ,my�. B
ompensation.
The second set of scenes consists of a semitransparent
lanar surface in front of an opaque planar surface. An
dditive transparency model was used with constant
pacity �. Both surfaces were texture mapped with a
oise pattern. We predicted our method would perform
etter in these scenes, since there is abundant texture
nd depth differences in local image regions but no occlu-
ions and hence relatively little spreading of power (see
ubsection 4.C).
The third set of scenes consists of long, thin cylinders,

istributed randomly within a 3D view volume. The cyl-
nders are shaded but not texture mapped, and so inten-

wer spectrum is projected to the �fy , ft� plane. Log brightness is
is visible. Temporal aliasing is evident in the original projected

of sequence. Middle row, estimated motion parallax lines. Circles
row, projected bowties for each image region after motion
The po
owtie
frame
ottom
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ity varies only in one dimension for each cylinder,
amely, perpendicular to its axis. This implies that only
ormal velocities can be measured for each cylinder; that

s, the aperture problem occurs.27,28 As such, pointwise
mage velocities cannot be measured directly from inten-
ities from these sequences, and so egomotion methods
hat are based on pointwise image velocities cannot be ap-
lied. Clearly, this set of scenes is especially challenging.
We next provide more details on how we rendered these

hree types of synthetic scenes. For the squares scenes,
he squares are all the same size, namely, a width of 0.5
nits, and have random orientation and position. Squares
re distributed randomly in a cubic view volume whose
ides are 40 units. The camera had near and far clipping
lanes of Zmin=5 and Zmax=50, where the image projec-
ion plane is Z=1 and, at time 0, the cube containing the
iew volume is between Z=0 and Z=40. Ambient lighting
as used.
For the transparent-layers scenes, the two layers are at

epths 10 and 20. Both planes were texture mapped with
/ f noise. Again, ambient lighting was used. The opacity �
f the front plane was constant in each sequence and was
aried uniformly from 0.2 to 0.8 over the 20 sequences
sed. The compositing model is equivalent to

I�x,y,t� = �Ifore�x,y,t� + �1 − ��Iback�x,y,t�,

here Ifore�x ,y , t� and Iback�x ,y , t� are the image sequences
hat are due to the foreground and background layers on
heir own.

For the cylinders scenes, each cylinder has radius 0.1
nd the same view volume as the squares. The cylinder
cenes have Lambertian surface reflectance and are illu-
inated by a single collimated light source parallel to the

amera’s optical axis �Z�. We chose this lighting condition
ecause it avoids sharp visible shadows that would pro-
ide point features to track. Instead, our lighting presents
n aperture problem similar to what one finds under true
iffuse lighting. We chose a scenario in which motion
easurement is intentionally difficult for traditional
ethods, in order to illustrate an advantage of our
ethod.
For each of the scene types, we considered three cam-

ra motions:

(i) Forward translation and no rotation,

T = �0,0,− 0.25�, � = �0,0,0�.

(ii) Forward translation and pan,

T = �0,0,− 0.25�, � = �0,0.234,0�.

(iii) Lateral motion and roll,

T = �− 0.05,0,0�, � = �0,0,1.25�.

he translations are stated in world units per frame, the
otations are in units of degrees, and the optical axis
oints in the negative Z direction (standard in OpenGL).
For each camera motion and scene type, 20 image se-

uences were rendered. Each sequence is T=32 frames,
nd N�N=256�256 pixels. This pixel grid spans a 30
30 deg field of view.
To render the sequences with forward motion, we per-

ormed a preprocessing step to remove any object that is
n front of or straddling the near clipping plane in any
rame of the sequence. This carves out a space directly in
ront of the camera’s path while leaving objects on the pe-
iphery [see Fig. 5 (top)]. We rendered scenes in this man-
er to remove any artifacts of clipping. This includes ob-

ects that are partially drawn and also objects that vanish
s the camera moves forward. We note that removing ob-
ects in this way makes the egomotion problem more dif-
cult, since it reduces the amount of parallax. Nonethe-

ess, as we will see, enough depth structure remains to
ompute the directions of motion parallax and egomotion.

Finally, to mimic optical blur that arises from real cam-
ras and thereby reduce spatial aliasing, we rendered
ach image frame at twice �N=512� the desired spatial
esolution. Each frame was then blurred with a Gaussian
ernel ��=1�, and the blurred frame was subsampled by a
actor of 2 to yield the desired spatial resolution. No tem-
oral blur was computed, however, since real cameras do
uffer from temporal aliasing.

. Synthetic Sequences: Results
or all sequences, the direction of motion parallax ��i was
stimated in a 7�7 grid of overlapping image regions,
ach of size M�M=64�64, which is a width of approxi-
ately 8 deg. The regions were overlapped because of the

riangular window (recall Subsection 4.B).
Figure 5 shows examples of results for pure forward
otion. The top row shows the first frame of three se-

uences. The middle row shows the motion parallax lines,
stimated in each image region and for that sequence.
he bottom row shows the power spectrum, summed and
rojected along the estimated bowtie axis for each region
fter motion compensation. Like the results in Ref. 18,
he bowtie signature is clearly visible in each region. Note
hat, for the transparent scene, two distinct motion
lanes are visible in the bowties, corresponding to two
epth layers.
The amount of parallax in each region is indicated by

he range of slopes in the projected bowtie. Regions at the
mage edge have the largest range of slopes, and regions
ear the center (the AOT) have the smallest range of
lopes. We expect better estimates of ��i when a higher
ange of slopes is present.

Figures 6–8 show the pooled results for the squares,
ransparent, and cylinders scenes, respectively, and for
ach type of camera motion. The left column of each figure
resents the estimated motion parallax lines. One line
egment is shown for each of the regions and for each of
he 20 sequences. Each line segment is centered at the es-
imated �mx ,my� vector and is oriented in the estimated ��i
irection.
The right column of each figure presents the mean ab-

olute angular error for the data in the left column, that
s, the difference between the estimated and the true ��i. A

ean absolute angular error of 45 deg indicates chance
erformance. The reason is that, in our experiments, we
efined �� up to a 180 deg ambiguity (pointing away or to-
ard the AOT). The absolute angular error per trial is
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ounded between 0 and 90 deg, and so a uniform error in
his interval would have mean of 45 deg.

Although the general pattern of errors is similar for
ach scene type, the magnitudes of the errors are smallest
or transparent scenes and largest for cylinders. This is
hat we expected. The small errors for the transparent

cenes are due to the lack of occlusions. The large errors
or the cylinders are due to the lack of texture, i.e., only
ormal velocities. Note that even though the cylinder er-
ors are large, they are well below the chance level of
5 deg. As we will see in Section 6, they are sufficiently
ow to estimate egomotion.

Let us next examine how the results vary with camera
otion. For the sake of brevity, we concentrate our discus-

ion on the squares scenes (the top row of Fig. 6–8).
Figure 6 shows the results for forward translation and

o rotation. The AOT is in the center of the image, and
he true ��i vectors are oriented radially from the AOT.
hus the motion parallax line for each region passes

ig. 6. Estimated directions of motion parallax for synthetic se-
uences under motion (i), forward translation. Left, estimated
otion parallax lines. Right, average mean absolute angular er-

ors of ��i (in degrees) over 20 runs.
hrough the origin. The only exception is for regions con-
aining or very near to the AOT, where the motion paral-
ax line model does not hold. In particular, for the central
egion of the image, a motion parallax line is not even de-
ned. The angular error for this region is thus marked
ith an asterisk.
Figure 7 shows the data when the observer motion is

orward translation and a pan to the right. The AOT is
gain at the center of the image but now the mean veloc-
ty vector is nonzero in the central region. Instead, the

ean velocity in the central region is equal to the pan
omponent. As in Fig. 6, ��i is not well defined in the cen-
ral region, and so the average angular error is indicated
y an asterisk.
Away from the AOT, the error behavior in Fig. 7(a) dif-

ers from that in Fig. 6(a). For the regions on the left edge
f Fig. 7(a), errors are relatively small, whereas, for the
ight edge, the errors are relatively large. How can we ac-

ig. 7. Estimated directions of motion parallax for synthetic se-
uences under motion (ii), forward translation plus pan. Left, es-
imated motion parallax lines; Right, average mean absolute an-
ular errors of �� (in degrees) over 20 runs.
i
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ount for these errors? At the left edge, the translation
omponents (specifically �x) of the image velocities are to
he left, whereas the pan component is to the right. This
ields a velocity cancellation on the left edge such that
he average velocities are near zero. On the right edge of
he image, though, both the translation and the pan com-
onents are rightward, and thus their sum yields large
ightward velocities. Thus, the regions on the left versus
ight edges of Fig. 7 have a similar absolute range of ve-
ocities, but, because of the additive pan component, they
ave a different mean velocity. We next argue that this
ifference in mean velocity affects the errors.
For a given absolute range of velocities, a low mean ve-

ocity tends to yield better estimates of the motion paral-
ax line than a higher mean velocity. To understand why,
onsider two sets of velocities corresponding to two sets of
otion planes in the frequency domain. Assume arbi-

rarily that in one set the slopes range from 12 to 14
mean of 13) and in the other set the slopes range from −1
o 1 (mean of 0). In both cases, the absolute range of

ig. 8. Estimated directions of motion parallax for synthetic se-
uences under motion (iii), lateral translation plus roll. (left) Es-
imated motion parallax lines. (right) Average mean absolute an-
ular errors of ��i (in degrees) over 20 runs.
lopes is 2. However, in the former case, the motion
lanes are covered by far fewer samples in the 3D fre-
uency domain than in the latter case. The result is an
ndersampling of the bowtie in the former case. This un-
ersampling cannot be undone by motion compensation,
nd it leads to a relatively poor estimate of the bowtie
xis.
It follows that the larger errors on the right edge of Fig.

(a) relative to the left edge are as expected. Moreover, as
ne moves away from the AOT to the right, errors initially
all because motion parallax increases, thus providing in-
ormation for estimating ��i. Near the right edge of the im-
ge, however, errors rise again because the mean velocity
rror becomes high. Near the left edge, errors fall where
he mean velocity is near zero. [Note that similar rising
rrors away from the AOT are seen at the corners in
ig. 6(a).]
Similar errors in estimating ��i are found in Fig. 8. The

bserver is translating laterally to the left and rotating in
counterclockwise roll. This yields a true ��i that is hori-

ontal for all image regions, along with a clockwise rota-
ion field. Errors in the ��i estimates increase noticeably at
he bottom edge of the image, where the rotation compo-
ent of the velocity field is large and parallel to the trans-

ation component, yielding a large mean velocity compo-
ent.

ig. 9. Estimation of the motion parallax direction for real se-
uences. (left) “Bush” sequence; camera is translating laterally to
eft. (right) “Robot” sequence; camera is translating forward to
he left and panning to the left.
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. Real Sequences
igure 9 shows the direction of motion parallax estimates

or two real image sequences. The format is similar to Fig.
. The first frame of the sequence is shown (top) along
ith estimated motion parallax lines (middle) and pro-

ected bowties (bottom).
The left sequence (“Bush”) has horizontal (lateral) mo-

ion. The image sequence was obtained using a Hitachi
PEG MP-EG10W camera moving horizontally on a slid-

ng platform. Images were captured at
0 frames per second, at a resolution of 320�240 pixels.
mages were cropped to 240�240, and 32 frames, or ap-
roximately 1 s of video, were used. This data are a sub-
et of the sequence used in Ref. 18.

The right sequence (“Robot”) of Fig. 9 was generated
rom a consumer video camera (Canon Optura Pi)
ounted on a wheeled robot (AmigoBot from ActivMedia
obotics). The robot drove on a circular path, curving to

he left. The camera was pointing about 20° to the right of
. Thus, the AOT was about 20° to the left of the image

enter. The standard 4:3, 640�480 image frame was
ropped to a square, blurred, and subsampled by 2 to give
240�240 image. The camera field of view of the cropped

mage was approximately 30 deg. Hence, the AOT is just
utside the cropped image. The camera captures
0 frames per second, noninterlaced. Again, 32 frames, or
pproximately 1 s of video, were used.

Table 1. Egomotion Computation

cene

quares Mean
Std. Dev.

Average Err.

ayers Mean
Std. Dev.

Average Err.

ylinders Mean
Std. Dev.

Average Err.

Table 2. Egomotion Computation Resu

cene

quares Mean
Std. Dev.

Average Err.

ayers Mean
Std. Dev.

Average Err.

ylinders Mean
Std. Dev.

Average Err.
Numerical data are not given, since the camera motion
as not fully calibrated. Note that bowties are visible in
any but not all regions. In particular, in the sequence on

he right, only a small number of surfaces are visible in
ertain regions. In addition, errors for that sequence are
igher near the left edge as we get closer to the AOT.

. ESTIMATION OF EGOMOTION
. Method
nce the directions of motion parallax ��i have been esti-
ated for each region i, the egomotion vectors T and �

an be estimated using standard methods.
Our method is based on the Heeger and Jepson sub-

pace method.29 Each ��i estimate defines a 2D plane (in
YZ space) on which the true T vector must lie. We find

he unit vector that minimizes the sum of squared dis-
ances to all these ��i planes and take this to be our esti-
ate of T. Once we have the translation T, we find the

otation � by solving a second least-squares problem. The
etails are given in Appendix B. We also present results
hat were based on a robust estimation method.30,31 Ro-
ust estimation can be viewed as a weighted version of
east squares, where the weighting is data dependent. Es-
imates that closely fit the model are assigned greater
eights and contribute more to the estimate. Details of

his method are given in Appendix C.

lts for Case (i), Forward Motion

�Tx ,Ty ,Tz�
�0,0,−1�

��x ,�y ,�z�
(0, 0, 0)

02,0.000,−1.000� �0.003,0.000,−0.004�
(0.011, 0.011, 0.019)

0.6 deg n/a

01,0.001,−1.000� �−0.002,−0.000,−0.001�
(0.004, 0.004, 0.010)

0.3 deg n/a

3,0.007,−1.000� �−0.008,0.003,−0.011�
(0.032, 0.045, 0.055)

1.7 deg n/a

r Case (ii), Forward Motion Plus Pan

�Tx ,Ty ,Tz�
�0,0,−1�

��x ,�y ,�z�
(0, 0.234, 0)

2,0.004,−1.000� �−0.003,0.240,0.008�
(0.035, 0.018, 0.068)

1.4 deg 15.7 deg

2,−0.000,−1.000� (0.000, 0.224, 0.001)
(0.006, 0.005, 0.003)

0.4 deg 1.4 deg

3,0.007,−1.000� �−0.002,0.210,−0.003�
(0.034, 0.042, 0.048)

1.8 deg 13.7 deg
Resu

�−0.0

�−0.0

�0.00
lts fo

�0.01

�−0.00

�0.00
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. Experiments
ables 1–3 show the egomotion computation results for
he three motion cases described in Section 5. For each
ase we report both the mean of the estimates and the av-
rage errors for T and � over the 20 sequences. The T er-
or is reported as the average of the angle between the es-
imated unit vector T and the true unit vector T. The �
rror is reported in two ways: as the standard deviation of
ach of the �x ,�y ,�z components and as the average an-
ular error between the estimated � and the true �. The
atter error is undefined in Table 1, since there is no ro-
ation.

For Table 1 (forward motion), both translation and ro-
ation are accurately determined for all three scene types.
he translation direction is accurate to about 1 deg, and

he estimated rotation vector is near the true value of
ero.

For Table 2 (forward motion+pan), the translation es-
imates are again accurate to roughly 1 deg for all three
cene types, but the rotation error rises to about 15 deg
or the squares and cylinders scenes.

For Table 3 (lateral translation plus roll), the errors re-
ain low for the transparent-layers scene, but the errors

re now large for the squares and cylinder cases. Using
he robust method, the errors were reduced for the

r Case (iii), Lateral Motion Plus Roll

�Tx ,Ty ,Tz�
�−1,0,0�

��x ,�y ,�z�
(0, 0, 125)

93,−0.011,0.122� �0.004,−0.472,1.166�
(0.017, 0.539, 0.078)

11.8 deg 19.9 deg
�6.2 deg� �6.5 deg�

00,0.002,−0.018� �0.000,−0.037,1.211�
(0.002, 0.056, 0.006)

4.2 deg 2.6 deg
�1.9 deg� �2.2 deg�

988,0.015,0.156� �−0.005,−0.331,1.237�
(0.024, 0.501, 0.071)

26.0 deg 14.4 deg
�23.8 deg� �11.3 deg�

Real Sequences in Fig. 9

�Tx ,Ty ,Tz� ��x ,�y ,�z�

�−1,0,0� (0, 0, 0)
0.796,0.020,−0.605� �−0.012,−0.188,−0.028�

37 deg n/a
0.998,0.002,−0.063� �−0.012,−0.091,−0.033�

4 deg n/a

�−0.383,0,−0.924� (0, 1, 0)
0.392, 0.048, 0.919) �0.019,0.044,−0.023�

3 deg 34 deg
0.370, 0.020, 0.929) �0.017,0.042,−0.008�

1 deg 24 deg

.

Table 3. Egomotion Computation Results fo

cene

quares Mean �−0.9
Std. Dev.

Average Err.
(Robust)

ayers Mean �−1.0
Std. Dev.

Average Err.
(Robust)

ylinders Mean �−0.
Std. Dev.

Average Err.
(Robust)
Table 4. Egomotion Results for

cene

ush Approx. ground truth
Computed value �−

Approx. angular err.a

Robust) Computed value �−
Approx. angular err.a

obot Approx. ground truth
Computed value (

Approx. angular err.a

Robust) Computed value (
Approx. angular err.a

a

ig. 10. Egomotion computation results �T ,�� for a variant of
ase (ii), forward motion plus pan. The translation direction
oves from forward ��=0� to upward ��=90 deg�. �T�=0.05, �
�0,0.2344,0�. Note that the translation speed is reduced from

hat in Fig. 6. The data are for squares scenes, and a least-
quares estimation was used. Errors were averaged over ten
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quares scenes but remain high for the cylinder scenes.
ere the method comes up against a well-known limita-

ion of egomotion estimation. For a narrow field of view, a
an+tilt rotation can produce image velocity fields simi-
ar to those of a lateral translation. This problem is
nown as the rotation–translation ambiguity.32 In the
ase of the motion in Table 3, there is an ambiguity be-
ween translation along the X axis and rotation about the

axis. This explains the relatively large bias in the esti-
ate of �y for the squares and cylinders. Presumably this

ias is less significant in the transparent-layers case be-
ause the estimates of ��i are accurate enough to avoid the
mbiguity.
To investigate the translation–rotation ambiguity fur-

her, we consider the performance of the egomotion
ethod for squares sequences generated with varying de-

rees of forward and lateral translation. The translation
as given by T= �0,sin � , cos ��, which varies from the Z
irection ��=0� to the Y direction ��=90 deg�. The rota-
ion was fixed at �= �0,0.2344,0�, which was the rotation
ector used in Table 2. Figure 10 shows the average (ab-
olute) angular error of T and � as � varies. As expected,
he average angular error increases toward lateral motion
�=90�. This pattern of errors is thus consistent with
ieger and Lawton’s method, as implemented by Heeger
nd Jepson in Ref. 29, Fig. 6(a).
Finally, Table 4 shows egomotion results for the real se-

uences shown in Fig. 9. For the bush sequence, the cam-
ra motion is roughly lateral and horizontal. For the robot
equence, the camera motion is roughly forward and to
he left. For both of these real sequences, the ground
ruth of T was not determined using precise instrumen-
ation and is accurate to no better than a few degrees.
oreover, for the robot sequence, only the direction of the

he angular velocity � but not its magnitude was known.
iven this margin of error, the estimates are acceptable
nd consistent with the synthetic scene results presented
bove.

. CONCLUSION
he key contribution of this paper is to show how the di-
ection of motion parallax can be estimated in local image
egions, prior to estimating pointwise image intensities,
nd that these motion parallax directions can be com-
ined to estimate egomotion (T and �). The advantage of
rdering the computations in this way is that the esti-
ated egomotion provides strong constraints on the

ointwise image velocity field, reducing the search for im-
ge velocities to a 1D set rather than a 2D set. We argue
hat this simplification of optical flow computation is very
mportant for 3D cluttered scenes, where the high density
f depth discontinuities makes it difficult to estimate a
ense image velocity field. Such a dense image velocity
eld is needed for the moving observer to estimate a
ense depth map.
Our method for estimating the direction of local motion

arallax is based on a particular model that assumes the
pread of (unknown) image velocities in a local region is
ominated by the translation component of the velocity
eld rather than by the rotation component. As we
howed in Appendix A, this assumption in turn requires
hat there be a large range of depths in each local region.
f this assumption does not hold, then the model does not
old, and the method cannot be expected to give reliable
stimates. In particular, if the scene consists of a smooth
round plane, then we would not expect our method to be
ffective. This is not a problem, of course, since there are
ther egomotion methods that are explicitly designed for
lanar surfaces33 and perform well in such scenes. More-
ver, when surfaces are smooth and textured, many tra-
itional egomotion methods that assume only precom-
uted optical flow do fine.34 The case to be made for our
ethod is that it is designed for 3D cluttered scenes,
here a dense field of image velocities is difficult to com-
ute. Our method provides a way to deal with the com-
lexity of 3D cluttered scenes, both for computing egomo-
ion and for subsequently computing image velocities and
hereby depth.

PPENDIX A: BOUNDS ON THE MOTION
ARALLAX LINE MODEL
ssume the image region is a disk of radius Ri in the im-
ge plane �Z= f�. From the arguments of Longuet-Higgins
nd Prazdny,16 the model of Eq. (5) clearly holds in the
imit as Ri→0. A pointwise analysis of the error of the

odel for Ri�0 was given by Rieger and Lawton.17 Here
e extend that analysis and present bounds on the model
s a function of the radius Ri and other relevant vari-
bles.
For any variable V defined in region i, let V�x ,y� and Vi

e the values of the variable at �x ,y� and �xi ,yi�, respec-
ively. We define the deviation 	V of the variable V in re-
ion i to be the largest difference between V and Vi in the
egion:

	V � max��V�x,y� − Vi�2:��x,y� − �xi,yi��2 
 Ri�.

. Deviation in the Rotation Component
e first consider the deviation in the components of v��.
rom Eq. (1), the roll component of v�� is

v�roll = �− y,x��z,

here �z is in radians per frame. Consider a step ��x ,�y�
way from �xi ,yi�. The resulting difference in v�roll is
−�y ,�x��z. The length of this difference vector is �z�,
here �= ��x

2+�y
2�1/2 is the step size. Since the largest step

ize is Ri, the deviation of v�roll is Ri�z.
The pan component of v�� is

v�pan = �− f − x2/f,− xy/f��y.

small step of length � in the x direction produces a vec-
or difference of �−2xi / f ,−yi / f� �, and a small step of
ength � in the y direction produces a vector difference of
0,−xi / f� �. We get a bound on the deviation of the pan
omponent by noting that ��xi ,yi��2 / f is the tangent of the
isual angle from (0, 0) to �xi ,yi� and that this value is
ell below 1 for a typical video camera (30 deg field of
iew). Specifically, 	v�pan goes from 0 for a region at the
mage center up to about Ri�y for a region at the image
orners.



d

N
n

2
C
W
m
s
l
t
d
g
a
d
I
fi

a

3
T
t
t

F
a
t

A

4
W
s
n
m
b
t
p
v
e
t
m
a

t
m
s
r
m

5
F
t
l
s
i

o
g
c
p
c
a
t
h
r
i

v
t
s
s
o
Z
e
−
t
k
t

A

s
v
e
t
c
A
l

R. Mann and M. S. Langer Vol. 22, No. 9 /September 2005 /J. Opt. Soc. Am. A 1729
Because of symmetry between pan and tilt, we imme-
iately find that 	v� tilt=Ri�x. Combining the bounds gives

	v�� 
 Ri���2.

ote that this is conservative. The pan and tilt compo-
ents of this bound vanish to zero at the image center.

. Deviation in the Direction of the Translation
omponent
e next consider the deviation of ��. In the case of lateral
otion �Tz=0�, �� is constant across the entire image, and

o 	��i=0. For nonlateral motion, �� is constant along any
ine through �xT ,yT� in the image. Thus �� varies only in
he direction perpendicular to such a line. Because of ra-
ial symmetry of the �� field about AOT, without loss of
enerality we can calculate 	�� by letting yi=yT and taking
step �0,Ri� from �xi ,yT� to �xi ,yT+Ri�. This step pro-

uces a change of �� by an angle arctan�Ri / �xi−xT�� rad.
nvoking the radial symmetry of the �� field about AOT, de-
ning di to be the distance from AOT to �xi ,yi�, that is,

di � ��xi,yi� − �xT,yT��,

nd noting that 
arctan���

 
�
, we get

	�� = Ri/di rad.

. Deviation in the Translation Component
wo bounds can be derived depending on whether the mo-
ion is lateral. Both of these bounds depend on the devia-
ion in inverse depths, which we denote 	�1/Z�.

For lateral motion, Eq. (4) immediately gives

	v�T = f�T�2	
1

Z
.

or nonlateral motion, we expand v�T−v�T,i by using Eq. (2)
nd then add and subtract �Tz /Z�x ,y���xi ,yi�. Grouping
erms gives

v�T − v�T,i =
Tz

Z�x,y�
�x − xi,y − yi� + � Tz

Z�x,y�
−

Tz

Z�xi,yi�
�

��xi − xT,yi − yT�.

pplying the triangle inequality then gives

	v�T � Tzdi	
1

Z
.

. Discussion
e emphasize that the calculation of the bounds was con-

ervative in that the bounds are based on worst-case sce-
arios. In several cases, we expect the motion parallax
odel of Eq. (5) to provide a much better fit than the

ounds would imply. In particular, only the differences in
he rotation vector that are perpendicular to the motion
arallax line cause deviation from the model, and this de-
iation is negligible under many natural conditions. For
xample, if there is no camera roll component ��z=0�,
hen 	v�� decreases linearly to zero at the AOT, and so the
odel holds better than the bounds predict. Another ex-

mple is if a laterally moving camera rotates so as to
rack a visible point in the scene.35,36 The rotation vectors
ay be large but nonetheless are near parallel to ��i, and

o deviation in the rotation vectors is confined to the ��i di-
ection, which supports rather than contradicts the
odel.

. Example: When the Motion Parallax Model Holds
or the model of Eq. (5) to hold in region Ri and for there

o be motion parallax present, all velocity vectors v� must
ie near the line of Eq. (5) and there must be a spread of
peeds along this line. For these two conditions to be sat-
sfied, it is sufficient that both 	�� is small and 	v���	v�T.

To illustrate these bounds, we use the parameters from
ur experiments of Subsection 5.A. Each local image re-
ion has a radius of about 4 deg, so Ri�1/15 rad. The
amera translation direction is either pure forward or
ure lateral. For forward translation, di=0 at the image
enter and rises to di�

1
3 at the four image corners. Thus,

t the four image corners, 	�� � 1
5 rad or 12 deg. The devia-

ion depends on di
−1; e.g., it is doubled for regions that are

alf the distance to the AOT. Nonetheless, the majority of
egions have 	�� of less than 24 deg. Considering that this
s a worst-case measure, such a value supports the model.

For the second condition �	v���	v�T�, we must choose a
alue for 	�1/Z�. Here we must approximate, since, for
he forward-translation sequences, the surface corre-
ponding to �xi ,yi� may vary between frames as may the
et of depths of visible surfaces in the region. For frame 1
f the cylinders and textured squares sequences, Zmin=5,
max=40, and the net forward motion over the sequence is
ight units �f=1�. The maximum value of 	�1/Z� is �1/5�
�1/40�=0.2 (at the beginning of the sequence). Using

hese numbers we take a value 0.1 as typical for 	�1/Z�,
eeping in mind below that the value would be lower if
here were an insufficient range of depths in the region.

We now address two of the observer motions.

• Forward motion+pan:

Tz = 0.25, ���2 = 0.234 deg/frame �
1

250
rad/frame.

t the image corners,

	v�� = 	v�pan −
1

250
�

1

15
� 0.0003,

	v�T � 0.25 � 0.1 �
1

3
� 0.001,

o that 	v�T
	v��, provided that there is reasonable depth
ariation in a region. Moreover, these bounds are both lin-
ar functions of di, so the model still holds well for regions
hat are half the distance from the corner to the image
enter. The difficulties with the model thus arise near the
OT, since 	�� can become large there, or when there is a

imited range of depths in the region.
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• Lateral motion+roll:

�T�2 = 0.05, ���2 = 1.25 �
2�

360
� 0.02 rad.

hus,

	v�� �
1

15
� 0.02 � 0.001,

	v�T = 0.05 � 0.1 � 0.005.

The latter again shows a reasonable range of depths
f	�1/Z�=0.1�.

PPENDIX B: LEAST-SQUARES
GOMOTION COMPUTATION
ere we provide a brief description of the egomotion com-
utation. Our method follows the notation and least-
quares formulation of Heeger and Jepson.29

For any image region i, let pi= �xi ,yi , f� be the center of
he region, and let ti= ��x,i ,�y,i ,0� be a 3D vector corre-
ponding to ��i= ��x,i ,�y,i�. Since the true ��i points toward
he AOT, it follows that the translation vector T must lie
n the plane spanned by pi and ti. Thus, each region sup-
lies a single constraint on the camera translation T,
amely,

�ti � pi� · T = 0.

ince the estimates of ��i have nonzero error and since
here is an unresolvable scale ambiguity in T, we compute
(unit) vector T that minimizes:

argminT 

i

��unit�t̂i � pi� · T�, �B1�

here unit( ) takes the unit vector and t̂i is the estimated
alue of ti. ��.� is an error measure, and, for least squares,
�ei�=ei

2. Robust error measures are described in Appen-
ix C. The solution to the above may be found by least
quares. In particular, if we represent the estimate of
ach region by the vector ci= t̂i�pi, then the optimal T is
n the direction of the smallest eigenvector of the matrix

C = 

i

cici
T.

From the estimate of ��i, we estimate �� i by taking the
ector mi, which was computed by the motion compensa-
ion step, and subtracting the component that is in the di-
ection of �̂i:

�i ª mi − �mi · �̂i��̂i,

here �̂i is the vector perpendicular to �̂i.
Instead of the estimated values of �̂i, however, we used

he predicted values by using the translation direction T
rom above. We found this to give significantly lower er-
ors in �̂i.

The observer’s angular velocity � can then be esti-
ated. We choose � to be a vector such that the rotation

omponent of the velocity field at �xi ,yi� lies as close as
ossible to the estimated motion parallax line, in the
east-squares sense of minimizing:
argmin� 

i

����̂i� − unit��̂i� · Bi��,

here ��ei�=ei
2, as above, and Bi is the matrix in Eq. (1)

valuated at the center of region i.
The above method of computing T exhibits significant

ias toward the optical axis.29 To avoid this bias, we ap-
lied a whitening transformation to the least-squares so-
ution described above. The details of the algorithm are as
ollows.37 We first compute a whitening matrix:

M = 

i � f 0 − xi

0 f − yi

− xi − yi xi
2 + yi

2� .

his matrix reweights the data based on the position of
he image regions in the scene. Next, use M to reweight
he least-squares matrix, Cw=M−1/2CM1/2. Choose x cor-
esponding to the smallest eigenvector of Cw. Finally, set
=M−1/2x.

PPENDIX C: ROBUST EGOMOTION
OMPUTATION
ere we present a brief summary of our robust method

or finding T and �. We use a form of robust estimation
alled M estimation.38 Like least squares, M estimation
erforms an optimal fit of the parameters, except that the
ethod reduces the influence of outliers. (Fog a review of

obust methods in computer vision, see Meer et al.30 and
tewart.31)
Our robust method follows the notation and formula-

ion of Black and Anandan.39 We use the following error
easure:

��ei� =
ei

2

�2 + ei
2 ,

here ei is the error of the ith estimate and � is a scale
erm, intended to specify the expected error in the esti-
ates. When the error is small, we have ei

2��2 and
�ei��ei

2. In this case the estimate is referred to as an in-
ier, and the behavior is the same as least squares. When
he error is large, ei

2
�2 and ��ei��1, the data value is an
utlier, and the weight of that estimate is limited. Various
orms of � may be used but usually have similar behavior.

With the new error measure, expression (B1) becomes
onlinear. A simple solution is to use iteratively re-
eighted least squares.31 The current errors are used to
efine a weighting function:

W�ei� =
1

ei

�

�ei
��ei� =

2�

��2 + ei
2�2

.

he weighting function limits the influence of estimates
hat are a poor fit to the model.

The iterative algorithm is as follows. Let each estimate
ˆ have a weight 0�w �1.
i i
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1. Begin with all weights equal, i.e., wi=1.
2. Find the least-squares solution for T by using

eights wi on each ��i vector.
3. Reassign the weights: wi←W�ei�.
4. Repeat step 2 until convergence.

A similar process is used to find �. We used a coarse-
o-fine optimization strategy, starting with a large value
f � and decreasing it to the size of the expected error in
he estimates.
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