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Spectrum analysis of motion parallax in a 3D
cluttered scene and application to egomotion
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Previous methods for estimating observer motion in a rigid 3D scene assume that image velocities can be mea-
sured at isolated points. When the observer is moving through a cluttered 3D scene such as a forest, however,
pointwise measurements of image velocity are more challenging to obtain because multiple depths, and hence
multiple velocities, are present in most local image regions. We introduce a method for estimating egomotion
that avoids pointwise image velocity estimation as a first step. In its place, the direction of motion parallax in
local image regions is estimated, using a spectrum-based method, and these directions are then combined to
directly estimate 3D observer motion. There are two advantages to this approach. First, the method can be
applied to a wide range of 3D cluttered scenes, including those for which pointwise image velocities cannot be
measured because only normal velocity information is available. Second, the egomotion estimates can be used
as a posterior constraint on estimating pointwise image velocities, since known egomotion parameters con-
strain the candidate image velocities at each point to a one-dimensional rather than a two-dimensional space.
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1. INTRODUCTION

When an observer moves through a 3D scene, nearby sur-
faces move at different image speed than do distant sur-
faces. This motion parallax effect informs an observer
both about its own motion relative to the scene, called
egomotion, and about the spatial layout and depth of sur-
faces in the scene. This paper concentrates on a specific
natural scenario that has been relatively neglected in the
past, in which the scene is composed of a very large num-
ber of distinct surfaces at a large range of depths. We re-
fer to such scenarios as 3D cluttered scenes. For such
scenes, most local image regions contain multiple visible
surfaces and hence multiple depths. Psychophysical stud-
ies have shown that human observers can estimate their
direction of heading in such scenes.'™

A canonical natural example of a 3D cluttered scene is
the woods. Helmholtz observed that, from a fixed vantage
point in the woods and using one eye only, an observer has
difficulty segmenting the scene into distinct visible sur-
faces (Ref. 4, p. 295). The difficulty arises from the abun-
dance of depth discontinuities, surface textures, shadows,
etc., which are confounded in the retinal image projection.
He also claimed that, as soon as the observer begins to
move, he immediately perceives the 3D layout of the
scene and the positions of surfaces relative both to each
other and to himself.

Helmholtz’s scenario of a 3D cluttered scene presents a
challenge to traditional computational models of egomo-
tion and 3D structure from motion. Traditional models as-
sume a two-step process in which the observer first mea-
sures pointwise image velocities by optical flow or feature
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tracking and, second, combines these image velocities to
estimate egomotion and 3D structure. Although this two-
step process may seem attractive from a computational
standpoint, since it partitions the problem into indepen-
dent modules, it is unclear a priori that this is the best
computational approach to solving the problem in all sce-
narios. In particular, the first step of measuring pointwise
image velocities is complex in a 3D cluttered scene, since
multiple image velocities can occur within many local re-
gions. For a dense image velocity field to be obtained, a
vision system would need to choose from a variety of
methods, such as optical flow,> occlusion boundary
detection,®’ layered motion,® and even transparency.9 We
emphasize that, in the traditional two-step approach,
these motion estimation methods are applied prior to the
estimation of egomotion and scene structure.

In this paper we present an alternative approach that
applies to 3D cluttered scenes. Rather than estimating
pointwise image velocities as a first step, the observer in-
stead estimates the direction of motion parallax in a
small number of local regions. These estimates are ob-
tained using the local power spectrum of the image se-
quence. The directions of motion parallax are then used to
estimate the observer’s 3D egomotion.

There are two advantages of our method for the case of
3D cluttered scenes. First, our method can estimate ego-
motion in scenes for which no previous egomotion method
exists. We present one such example, namely, scenes con-
sisting entirely of shaded cylinders at random 3D orien-
tations. For such scenes, only normal image velocities can
be computed, and so egomotion methods that are based on

© 2005 Optical Society of America



1718 J. Opt. Soc. Am. A/Vol. 22, No. 9/September 2005

2D image velocities cannot be applied. Although there do
exist egomotion methods that require only normal veloci-
ties to be computed,lo_13 these methods make very restric-
tive assumptions on the observer motion, namely, that the
rotation component is either zero or is known to great ac-
curacy. Our method makes no such assumption. Hence,
our method is able to estimate egomotion in situations for
which no previous method exists.

A second advantage of our method concerns the subse-
quent problem of estimating 3D scene geometry, i.e., the
depths of visible surfaces. Methods for estimating depth
from motion require pointwise image velocities. How does
our method help to estimate such pointwise image veloci-
ties for the case of cluttered 3D scenes? Although we do
not address and solve that problem in this paper, we do
make a key observation that the parameters of egomotion
that our method does compute strongly constrain the so-
lution to the problem of estimating pointwise image ve-
locities. Specifically, once the observer’s rotation and
translation are known, candidate image velocities at each
point are constrained to a line (an epipolar line) in ve-
locity space. Thus, estimating egomotion prior to estimat-
ing image velocities simplifies the latter problem. This ar-
gument applies in principle regardless of which pointwise
image velocity method is used, be it optical flow or a more
general method that allows for occlusions or transpar-
ency.

A preliminary version of this work has been presented
previously. 15

2. BACKGROUND

We begin by reviewing motion parallax and how it can be
used to estimate egomotion and 3D structure.'® When an
observer moves through a rigid scene, the instantaneous
retinal image velocity of a visible scene point depends on
the observer’s instantaneous 3D motion relative to the
scene. Let (X,Y,Z) be a coordinate system with the ob-
server at the origin, Z is the optical axis, and X,Y are the
horizontal and vertical directions in the observer’s frame.
Let the observer’s 3D instantaneous translation velocity
in this coordinate system be T=(T,T,,T.,), and let the ob-
server’s instantaneous angular velocity be Q
=(02,Q,,€,). Let the image plane be at depth Z=f, and
let Z(x,y) be the depth of any surface point visible at im-
age position (x,y).

The image velocity vector v at (x,y) is the sum of two
component vectors,

J=UQ+I;T,

which are due to the observer’s rotation  and transla-
tion T, respectively. The rotation component is
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and the translation component is
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The special image position
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(xT’yT) = F(TauTy) (3)
is called the axis of translation (AOT). In the special case
of lateral motion, namely, where 7,=0, the AOT is at in-
finity in the image plane. In this case, the translation
component is written slightly differently:

> f <_ Tx) 4
Up=—"— .
= ) \- T, (4)

There are two important observations about these
equations. First, there is a depth—speed ambiguity in re-
covering depth Z(x,y) and the translation vector T,
namely, multiplying both Z(x,y) and T by a fixed constant
does not change the velocity field. For this reason, the vi-
sion system can, at best, estimate these variables up to
the unknown scale constant.

Second, if the observer knows Q and the direction of T
(and the parameter f), then the observer could compute
immediately the rotation vector v, and the direction of
the translation vector vy at each image position (x,y).
These values are given directly from the above equations.

To compute depth Z(x,y), given Q and the direction of
T, the observer needs to know the image velocity at (x,y).
But now we see that this velocity is constrained to a one-
dimensional (1D) line, namely, the line passing through
U and in the direction of vy, both of which are given by Q
and the direction of T. Thus, knowing T and Q prior to
estimating pointwise image velocities simplifies this lat-
ter problem, by reducing the search space from 2D to 1D.
This helps to motivate the reordering of computations
that we present in this paper, namely, to compute T and
Q prior to estimating pointwise image velocities rather
than the other way around.

Before we introduce our method, we review a tradi-
tional approach in which an observer estimates image ve-
locities prior to estimating observer motion. This particu-
lar approach is then reformulated into our approach.

How can an observer estimate the rotation vector Q
and the direction of T (AOT), given pointwise image ve-
locities? A classical idea'® is to use motion parallax of
pairs of points that straddle a depth discontinuity. As-
sume first that the image projections of two points are an
infinitesimal distance apart. Because the rotation compo-
nent of the velocity field does not depend on depth, the
difference of the velocity vectors of the two points depends
only on their translation components. But because the
two points lie at different depths, the translation compo-
nents of the two velocity vectors have different magni-
tudes. Since both of these translation components point
away from the AOT, the difference of the two velocity vec-
tors must also point away from (or toward) the AOT. Thus
the AOT lies on a line that passes through the depth dis-
continuity and whose direction is defined by the velocity
difference vector. By computing a set of such lines and
finding their intersection, a vision system can estimate
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the AOT. Rieger and Lawton!’ presented the first
computer-vision implementation of this idea.

The method we present uses a similar idea, namely, to
isolate a direction vector that points to the AOT. The nov-
elty of our method is that it does not rely on precomputed
pointwise image velocities but, instead, estimates this di-
rection vector directly from image intensities.

3. MODEL OF MOTION PARALLAX

Our method is based on a linear model of motion parallax
in a local image region. We first motivate this model by
using informal arguments and then present the formal
model. In Appendix A, we analyze the accuracy of the
model by providing bounds on the deviation of the vari-
ables in the model as a function of scene geometry and ob-
server motion.

Consider three surfaces in a local image region and one
point A, B, C on each of these surfaces. For each pair of
points AB and AC, there is a corresponding pair of veloc-
ity vectors. According to the differential motion idea, 117
the difference vectors v(A)-v(B) and v(A)-v(C) should
point roughly toward or away from the AOT. Specifically,
if three points are near to one another and are far from
the AOT, then these two difference vectors are roughly
parallel. It follows that the image velocity vectors at A, B,
C fall roughly on a line in velocity space (v,,v,) [see Fig.
1(a)l. We refer to the line as the motion parallax line for
the local image region containing A, B, C.

Another way to motivate the model is to use the
smoothness of the rotation field and of the direction-of-
the-translation field. The rotation field is a second-order
polynomial of image position, so it is clearly smooth and
hence locally constant. The direction-of-the-translation
field is a field of unit vectors that point away from the
AOT. With the exception of the singularity at the AOT, the
direction of the unit vectors is also smooth and hence lo-
cally constant.

Figure 2 illustrates these two smoothness properties.
Each plot shows a 7 X7 sampling of the respective field,
with neighboring samples differing in position by about
4 deg of visual angle. The field of view is 30° wide, which
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is typical for a video camera. If we partition the field of
view into square regions, with one region per sample
point in the figure, then we expect the rotation fields and
direction-of-translation fields within each region to be
near constant. The reason is that the fields themselves
are smooth. Since the fields change very little across re-
gions from sample point to sample point (except near the
AOT), we would expect them to change little within re-
gions.

Of course, the image velocity field v is not expected to
be smooth, since the translation component of velocity de-
pends on inverse depth via Egs. (2) and (4). Depth is ex-
pected to be discontinuous often in cluttered 3D scenes,
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Fig. 2. Plots of 7X7 sampling of a 30 deg field of view. Left,
direction-of-translation (normalized) vectors. Right, rotation vec-
tors. The motion parallax line model assumes that the fields
shown are constant over a image region with diameter equal to
distance between samples.

(a)

v
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Fig. 1. (a) Image velocity vectors at three points A, B, C in a local image region. The three points lie on distinct surfaces. From Rieger
and Lawton’s arguments,’” the differences of any pair of these vectors should point to the AOT. It follows that the vectors must lie on a
line in velocity space. (b) The motion parallax line (dotted line). 7is a unit vector in the direction of the translation component. & is the
component of the rotation vector that is perpendicular to 7. « is a set of component speeds in the direction of translation. m =(m,,m,) is

the mean velocity vector that is used in Section 4.
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and depth differences lead to velocity discontinuities. The
key, however, is that, since the direction of the translation
component is roughly constant within regions, the
translation-component vectors will be roughly parallel
within regions. This again leads to a line model of image
velocities within regions, namely, a near-constant rotation
component plus a translation component whose direction
is nearly fixed but whose speed varies over image posi-
tion.

With these motivating arguments behind us, we now
formally state the motion parallax line model. Consider
an image region ¢ that is centered at (x;,y;). For the image
velocity vector v at any position (x,y) in this region, define
7 to be the unit vector that is parallel to the translation
component v and that points away from the AOT. Let 7;
be the 7 vector at (x;,y;). We refer to 7; as the motion par-
allax direction for the region centered at (x;,y;). The
model uses 7; to approximate all 7 vectors in region ;. We
define the motion parallax line for region i to be

lj(x’y) = (Bi + a(x’y);i' (5)

The 2D vector w; is the component of the rotation vector
Uq at (x;,y;) that is perpendicular to 7;. The geometry is
illustrated in Fig. 1(b).

In Appendix A, we present bounds on how well this line
indeed describes the image velocities in a local region cen-
tered at (x;,y;). We also apply these bounds by using the
scene parameters from our experiments. We show that
the motion parallax line is a valid model, provided that
there is a sufficient range of depths and that the region
width is small relative to the distance to the AOT.

In Section 4 we present a method for estimating the
motion parallax line for an image region. This method
does not rely on precomputed pointwise image velocities.

4. METHOD FOR ESTIMATION OF THE
MOTION PARALLAX DIRECTION

Our method for estimating the direction of motion paral-
lax 7 for a region i generalizes the optical snow method,'®
which is a power spectrum method for estimating a mo-
tion parallax line. The optical snow method assumes that
the rotation component of the image velocities is parallel
to the translation component; in particular, it assumes
®;=0 in Eq. (5). This assumption is not valid under gen-
eral camera rotation, however. To apply the method, we
need to generalize it to the case that w;# 0.

To generalize the optical snow method, we add an ini-
tial step that is to transform the power spectrum of the
local image region. This initial step amounts to motion
compensation. It shears the power spectrum, effectively
subtracting an estimate of the mean image velocity in
that image region. This mean velocity estimate is ob-
tained using a multiscale least-squares technique. By
subtraction of the mean velocity, the motion parallax line
of Eq. (5) is shifted so that it passes through the origin.
Once this initial step is performed, the assumption of the
optical snow method holds, and so this method can be ap-
plied to estimate the direction of motion parallax 7; for the
region.
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Fig. 3. Bowtie. Motion parallax in the frequency domain.

A. Background: Motion Parallax in the Frequency
Domain
We begin with a brief review of the power spectrum model
that is the basis of the optical snow method and our gen-
eralization of this method. See Ref. 18 for more details.
When an image region contains an intensity pattern
that translates over time with velocity (v,v,), nonzero
values in the power spectrum are confined to a motion
plane,19

Uafx + 0yfy + =0, (6)

where (f,f,) are the spatial frequencies and f; is the tem-
poral frequency. When multiple image velocities are
present in a region and these velocities lie on a line in ve-
locity space, Eq. (5) applies and can be substituted into
Eq. (6) to obtain a one-parameter (a) family of motion
planes:

(0; + a7) - (fof,) +1:=0. (7)

As illustrated in Fig. 3, this family of motion planes inter-
sects at a common line that passes through the origin in
the 3D frequency domain. This family of planes is re-
ferred to as a bowtie, and the line of intersection of the
planes is referred to as the axis of the bowtie. The axis of
the bowtie is in the direction (-7,,7,, V"wﬁ+w§)i. Thus, to
estimate the direction of motion parallax 7; and the vector
; for image region i, it is sufficient to estimate this
bowtie axis.

The optical snow method estimates the bowtie axis for
the special case that ©=0. In this case, the bowtie axis
lies in the (f;,f,) plane. The method begins with a brute
force search of candidate directions 7; on the unit circle in
the (f;,f,) plane. The directions are sampled every 5 deg.
For each direction, a goodness of fit is computed for how
well the power spectrum resembles a bowtie whose axis is
in that direction. The direction of best fit is found, and a
local binary search refines this initial 7; estimate.

B. Motion Compensation in Local Image Regions
The optical snow method assumes that the bowtie axis is
contained in the (f,,f,) plane, i.e., &;=0. Here we general-
ize that method for the case that o; # 0. We do so by per-
forming motion compensation in the frequency domain,
effectively subtracting the mean velocity of the image re-
gion. This shifts the motion parallax line of Eq. (5) so that
it passes through the origin, and the assumptions of the
optical snow method are then met.

The motion compensation step is performed in the fre-
quency domain, but the basic idea is best explained in the
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space—time domain. Suppose we were to shear the image
region i in xyt by shifting image frame ¢ by (¢m,,tm,) pix-
els. This is equivalent to subtracting some vector (m,,m,)
from each image velocity. If (m,,m,) lies on the motion
parallax line of Eq. (5), then this image shear shifts the
motion parallax line so that it passes through the origin,
which is what we want.

The problem, therefore, is to find a vector (m,,m,); for
region i that lies on the motion parallax line of that re-
gion. We estimate a vector (m,,m,); such that if the image
region were shifted by (m,,m,); pixels per frame, then the
frame-to-frame image intensity variations would be mini-
mized in the sense of minimizing the sum of squared in-
tensity differences:

E {I(x_mxtry_mytat"' 1)—1(95,3’,”}2,

(x,y,t)Eregion i

where the sum is over a region i that we now assume is of
size M X M pixels X T frames. This technique is similar to
classical motion compensation techniques in computer
vision,2%%! except that the sum is performed over T
frames rather than two frames.

Rather than performing motion compensation in the
xyt domain, we perform it in the frequency domain. Using
Parseval’s theorem, the above minimization can be per-
formed (Ref. 22, p. 61) by finding the vector (m,,m,) that
minimizes

D (mufet myf, + FULEof o f) 12, (8)
(fotyl?)

where the sum is over f,,f, e{-M/2,...,M/2-1} and f;
e{-T/2,...,T/2-1}. This is a least-squares fit of a plane
in (fy,fy,f:), where the error is measured in the f; direc-
tion.

C. Signal-Processing Details

Prior to computation of the Fourier transform of a local
image region, the mean intensity of this region is sub-
tracted. The intensities in the M XM X T region are then
multiplied by a cone window in (x,y) and a triangular
window in ¢. The spatial window gives more weight to pix-
els near the center point of the region. This is consistent
with the bounds derived in Appendix A in the sense that
deviations in the model that result from position differ-
ences are more severe as the region is larger. The tempo-
ral window is used because the observer’s motion param-
eters T, Q) may vary slowly over the T frames. The central
frame is taken as the representative value and is
weighted more heavily. (For the experiments we present,
the camera motion parameters T, ) were constant over
the T frames.)

Low spatial frequencies are avoided for the motion
compensation step, for the same reason they are avoided
in the optical snow method,® namely, the image window
and space-time occlusions spread power locally in the fre-
quency domain.’®?*2® This spreading of power is prob-
lematic at low spatial frequencies, since the power of the
image is highest there; i.e., natural images26 have a
power spectrum that tends to fall off as 1/ (}‘i +f§). At low
spatial frequencies, spreading of the power spectrum
transfers power between motion planes of very different
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orientations. This would corrupt the estimates of mean
velocity needed for motion compensation. The spreading
of power is less significant for higher spatial frequencies,
since the spreading occurs over motion planes of similar
slopes.

A third signal-processing issue is aliasing. Because the
image sequence is sampled in xy¢, the Fourier transform
of the local image region is a periodic function,

I (fy mod M,f, mod M ,f; mod T'). Any spatial or temporal
power in the continuous presampled image that is above
the Nyquist frequency (M/2 in space, T/2 in time) is
aliased to frequencies below the Nyquist frequency. Spa-
tial aliasing is typically insignificant for real optical sys-
tems because spatial blurring attenuates high spatial fre-
quencies prior to sampling. Temporal aliasing may be
significant, however, for digital images if high image
speeds are present. Temporal aliasing occurs if there is
energy at spatial frequencies (f;,f,) and velocities (v,,v,)
such that

lv.fy +vyf,| > T12. 9)

The motion plane corresponding to this image velocity
wraps around at the Nyquist frequency, f;=+7T/2, so that
high positive speeds appear in the power spectrum as
high negative speeds and vice versa. Temporal aliasing
does occur in our image sequences.

To address temporal aliasing, we iteratively estimate
the mean velocity vector (m,,m,) by using a multiscale
method.?*?? The least-squares minimization is first per-
formed using a roughly one octave band of spatial fre-
quencies \J'}‘f + ]‘? e[M/16,M/8]. (Spatial frequencies below
M/16 are not used because of windowing and occlusion
issues—see above). Because this one octave band consists
of relatively low frequencies, it is less likely to meet the
temporal aliasing condition of expression (9). At iteration
n, an n octave band [M/16,M/16-2"] is used. Typically,
just two to three iterations are needed for convergence.

At each iteration, the original power spectrum is
sheared in the f; direction. Let (772,,,772,) be the current es-
timate of the motion compensation vector. Before the first
iteration, (1m,,m,)=(0,0). After each iteration, (7,,1,) is
updated by adding the compensation vector computed in
the least-squares minimization:

jsheared(fx’f;nft) = i(fx’fy’(f‘t - Thxfx - ﬁ’Lyfy)mOd T) ,

where f; takes values in 0 to 7'-1, so that the mod opera-
tion is well defined. An example of the sheared power
spectrum after each iteration is shown in Fig. 4.

5. EXPERIMENTS: ESTIMATION OF
MOTION PARALLAX DIRECTION

How well can the direction of motion parallax 7; be esti-
mated? We address this question first using image se-
quences that are rendered with computer graphics
(OpenGL) so that results can be compared with precise
ground truth. We also consider several natural image se-
quences.
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A. Synthetic Sequences

We use three sets of synthetic scenes (see top row of Fig.
5), which vary in information content and in degree of dif-
ficulty. (Examples of our image sequences are available
online at www.cs.uwaterloo.ca/ "mannr/parallax.) The first
consists of squares distributed randomly in a 3D view vol-
ume. Each square is texture mapped with a low-pass
noise pattern that simulates texture and shading on real
surfaces. These scenes are intended to model natural clut-
tered scenes. We have also carried out experiments using
checkerboard texture maps, and similar results were
obtained.'®

Tt , ;
5 ,
original
(myg, my) = (0,0) (-1.6, 0.3)
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The second set of scenes consists of a semitransparent
planar surface in front of an opaque planar surface. An
additive transparency model was used with constant
opacity a. Both surfaces were texture mapped with a
noise pattern. We predicted our method would perform
better in these scenes, since there is abundant texture
and depth differences in local image regions but no occlu-
sions and hence relatively little spreading of power (see
Subsection 4.C).

The third set of scenes consists of long, thin cylinders,
distributed randomly within a 3D view volume. The cyl-
inders are shaded but not texture mapped, and so inten-

After iteration 1 After iteration 2 After iteration 3

(-2.9, 0.7) (-3.0, 0.7)

Fig. 4. Example of motion compensation by iterative shearing. The power spectrum is projected to the (f,,f;) plane. Log brightness is
plotted. For this example, 7 is near the f, direction, and so the bowtie is visible. Temporal aliasing is evident in the original projected

spectrum (left) but disappears after motion compensation (right).
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Fig. 5. Example of results for forward motion only. Top row, first frame of sequence. Middle row, estimated motion parallax lines. Circles
show the computed motion compensation vector (m,,m,). Bottom row, projected bowties for each image region after motion
compensation.
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sity varies only in one dimension for each cylinder,
namely, perpendicular to its axis. This implies that only
normal velocities can be measured for each cylinder; that
is, the aperture problem occurs.?"?® As such, pointwise
image velocities cannot be measured directly from inten-
sities from these sequences, and so egomotion methods
that are based on pointwise image velocities cannot be ap-
plied. Clearly, this set of scenes is especially challenging.

We next provide more details on how we rendered these
three types of synthetic scenes. For the squares scenes,
the squares are all the same size, namely, a width of 0.5
units, and have random orientation and position. Squares
are distributed randomly in a cubic view volume whose
sides are 40 units. The camera had near and far clipping
planes of Z,;,=5 and Z,,,,=50, where the image projec-
tion plane is Z=1 and, at time 0, the cube containing the
view volume is between Z=0 and Z=40. Ambient lighting
was used.

For the transparent-layers scenes, the two layers are at
depths 10 and 20. Both planes were texture mapped with
1/f noise. Again, ambient lighting was used. The opacity «
of the front plane was constant in each sequence and was
varied uniformly from 0.2 to 0.8 over the 20 sequences
used. The compositing model is equivalent to

I(x,y’t) = aIfore(xyy;t) + (1 - a)Iback(x7y5t)’

where Ip,..(x,y,t) and I,q(x,y,t) are the image sequences
that are due to the foreground and background layers on
their own.

For the cylinders scenes, each cylinder has radius 0.1
and the same view volume as the squares. The cylinder
scenes have Lambertian surface reflectance and are illu-
minated by a single collimated light source parallel to the
camera’s optical axis (Z). We chose this lighting condition
because it avoids sharp visible shadows that would pro-
vide point features to track. Instead, our lighting presents
an aperture problem similar to what one finds under true
diffuse lighting. We chose a scenario in which motion
measurement is intentionally difficult for traditional
methods, in order to illustrate an advantage of our
method.

For each of the scene types, we considered three cam-
era motions:

(i) Forward translation and no rotation,

T =(0,0,-0.25), Q=(0,0,0).

(i1) Forward translation and pan,

T =(0,0,-0.25), 0 =(0,0.234,0).

(iii) Lateral motion and roll,

T =(-0.05,0,0), Q=(0,0,1.25).

The translations are stated in world units per frame, the
rotations are in units of degrees, and the optical axis
points in the negative Z direction (standard in OpenGL).

For each camera motion and scene type, 20 image se-
quences were rendered. Each sequence is 7'=32 frames,
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and N X N=256 X 256 pixels. This pixel grid spans a 30
X 30 deg field of view.

To render the sequences with forward motion, we per-
formed a preprocessing step to remove any object that is
in front of or straddling the near clipping plane in any
frame of the sequence. This carves out a space directly in
front of the camera’s path while leaving objects on the pe-
riphery [see Fig. 5 (top)]. We rendered scenes in this man-
ner to remove any artifacts of clipping. This includes ob-
jects that are partially drawn and also objects that vanish
as the camera moves forward. We note that removing ob-
jects in this way makes the egomotion problem more dif-
ficult, since it reduces the amount of parallax. Nonethe-
less, as we will see, enough depth structure remains to
compute the directions of motion parallax and egomotion.

Finally, to mimic optical blur that arises from real cam-
eras and thereby reduce spatial aliasing, we rendered
each image frame at twice (N=512) the desired spatial
resolution. Each frame was then blurred with a Gaussian
kernel (0=1), and the blurred frame was subsampled by a
factor of 2 to yield the desired spatial resolution. No tem-
poral blur was computed, however, since real cameras do
suffer from temporal aliasing.

B. Synthetic Sequences: Results

For all sequences, the direction of motion parallax 7; was
estimated in a 7X7 grid of overlapping image regions,
each of size M X M =64 X 64, which is a width of approxi-
mately 8 deg. The regions were overlapped because of the
triangular window (recall Subsection 4.B).

Figure 5 shows examples of results for pure forward
motion. The top row shows the first frame of three se-
quences. The middle row shows the motion parallax lines,
estimated in each image region and for that sequence.
The bottom row shows the power spectrum, summed and
projected along the estimated bowtie axis for each region
after motion compensation. Like the results in Ref. 18,
the bowtie signature is clearly visible in each region. Note
that, for the transparent scene, two distinct motion
planes are visible in the bowties, corresponding to two
depth layers.

The amount of parallax in each region is indicated by
the range of slopes in the projected bowtie. Regions at the
image edge have the largest range of slopes, and regions
near the center (the AOT) have the smallest range of
slopes. We expect better estimates of 7; when a higher
range of slopes is present.

Figures 6-8 show the pooled results for the squares,
transparent, and cylinders scenes, respectively, and for
each type of camera motion. The left column of each figure
presents the estimated motion parallax lines. One line
segment is shown for each of the regions and for each of
the 20 sequences. Each line segment is centered at the es-
timated (m,,m,) vector and is oriented in the estimated T;
direction.

The right column of each figure presents the mean ab-
solute angular error for the data in the left column, that
is, the difference between the estimated and the true 7,. A
mean absolute angular error of 45 deg indicates chance
performance. The reason is that, in our experiments, we
defined 7 up to a 180 deg ambiguity (pointing away or to-
ward the AOT). The absolute angular error per trial is
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Fig. 6. Estimated directions of motion parallax for synthetic se-
quences under motion (i), forward translation. Left, estimated
motion parallax lines. Right, average mean absolute angular er-
rors of 7; (in degrees) over 20 runs.

bounded between 0 and 90 deg, and so a uniform error in
this interval would have mean of 45 deg.

Although the general pattern of errors is similar for
each scene type, the magnitudes of the errors are smallest
for transparent scenes and largest for cylinders. This is
what we expected. The small errors for the transparent
scenes are due to the lack of occlusions. The large errors
for the cylinders are due to the lack of texture, i.e., only
normal velocities. Note that even though the cylinder er-
rors are large, they are well below the chance level of
45 deg. As we will see in Section 6, they are sufficiently
low to estimate egomotion.

Let us next examine how the results vary with camera
motion. For the sake of brevity, we concentrate our discus-
sion on the squares scenes (the top row of Fig. 6-8).

Figure 6 shows the results for forward translation and
no rotation. The AOT is in the center of the image, and
the true 7; vectors are oriented radially from the AOT.
Thus the motion parallax line for each region passes
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through the origin. The only exception is for regions con-
taining or very near to the AOT, where the motion paral-
lax line model does not hold. In particular, for the central
region of the image, a motion parallax line is not even de-
fined. The angular error for this region is thus marked
with an asterisk.

Figure 7 shows the data when the observer motion is
forward translation and a pan to the right. The AOT is
again at the center of the image but now the mean veloc-
ity vector is nonzero in the central region. Instead, the
mean velocity in the central region is equal to the pan
component. As in Fig. 6, 7; is not well defined in the cen-
tral region, and so the average angular error is indicated
by an asterisk.

Away from the AOT, the error behavior in Fig. 7(a) dif-
fers from that in Fig. 6(a). For the regions on the left edge
of Fig. 7(a), errors are relatively small, whereas, for the
right edge, the errors are relatively large. How can we ac-
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Fig. 7. Estimated directions of motion parallax for synthetic se-
quences under motion (ii), forward translation plus pan. Left, es-
timated motion parallax lines; Right, average mean absolute an-
gular errors of 7, (in degrees) over 20 runs.
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Fig. 8. Estimated directions of motion parallax for synthetic se-
quences under motion (iii), lateral translation plus roll. (left) Es-
timated motion parallax lines. (right) Average mean absolute an-
gular errors of 7; (in degrees) over 20 runs.

count for these errors? At the left edge, the translation
components (specifically 7,) of the image velocities are to
the left, whereas the pan component is to the right. This
yields a velocity cancellation on the left edge such that
the average velocities are near zero. On the right edge of
the image, though, both the translation and the pan com-
ponents are rightward, and thus their sum yields large
rightward velocities. Thus, the regions on the left versus
right edges of Fig. 7 have a similar absolute range of ve-
locities, but, because of the additive pan component, they
have a different mean velocity. We next argue that this
difference in mean velocity affects the errors.

For a given absolute range of velocities, a low mean ve-
locity tends to yield better estimates of the motion paral-
lax line than a higher mean velocity. To understand why,
consider two sets of velocities corresponding to two sets of
motion planes in the frequency domain. Assume arbi-
trarily that in one set the slopes range from 12 to 14
(mean of 13) and in the other set the slopes range from -1
to 1 (mean of 0). In both cases, the absolute range of
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slopes is 2. However, in the former case, the motion
planes are covered by far fewer samples in the 3D fre-
quency domain than in the latter case. The result is an
undersampling of the bowtie in the former case. This un-
dersampling cannot be undone by motion compensation,
and it leads to a relatively poor estimate of the bowtie
axis.

It follows that the larger errors on the right edge of Fig.
7(a) relative to the left edge are as expected. Moreover, as
one moves away from the AOT to the right, errors initially
fall because motion parallax increases, thus providing in-
formation for estimating 7;. Near the right edge of the im-
age, however, errors rise again because the mean velocity
error becomes high. Near the left edge, errors fall where
the mean velocity is near zero. [Note that similar rising
errors away from the AOT are seen at the corners in
Fig. 6(a).]

Similar errors in estimating 7; are found in Fig. 8. The
observer is translating laterally to the left and rotating in
a counterclockwise roll. This yields a true 7; that is hori-
zontal for all image regions, along with a clockwise rota-
tion field. Errors in the 7; estimates increase noticeably at
the bottom edge of the image, where the rotation compo-
nent of the velocity field is large and parallel to the trans-
lation component, yielding a large mean velocity compo-
nent.
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Fig. 9. Estimation of the motion parallax direction for real se-
quences. (left) “Bush” sequence; camera is translating laterally to
left. (right) “Robot” sequence; camera is translating forward to
the left and panning to the left.
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C. Real Sequences

Figure 9 shows the direction of motion parallax estimates
for two real image sequences. The format is similar to Fig.
5. The first frame of the sequence is shown (top) along
with estimated motion parallax lines (middle) and pro-
jected bowties (bottom).

The left sequence (“Bush”) has horizontal (lateral) mo-
tion. The image sequence was obtained using a Hitachi
MPEG MP-EG10W camera moving horizontally on a slid-
ing platform. Images were captured at
30 frames per second, at a resolution of 320 X 240 pixels.
Images were cropped to 240 X 240, and 32 frames, or ap-
proximately 1 s of video, were used. This data are a sub-
set of the sequence used in Ref. 18.

The right sequence (“Robot”) of Fig. 9 was generated
from a consumer video camera (Canon Optura Pi)
mounted on a wheeled robot (AmigoBot from ActivMedia
Robotics). The robot drove on a circular path, curving to
the left. The camera was pointing about 20° to the right of
T. Thus, the AOT was about 20° to the left of the image
center. The standard 4:3, 640X 480 image frame was
cropped to a square, blurred, and subsampled by 2 to give
a 240 X 240 image. The camera field of view of the cropped
image was approximately 30 deg. Hence, the AOT is just
outside the cropped image. The camera captures
30 frames per second, noninterlaced. Again, 32 frames, or
approximately 1 s of video, were used.
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Numerical data are not given, since the camera motion
was not fully calibrated. Note that bowties are visible in
many but not all regions. In particular, in the sequence on
the right, only a small number of surfaces are visible in
certain regions. In addition, errors for that sequence are
higher near the left edge as we get closer to the AOT.

6. ESTIMATION OF EGOMOTION

A. Method

Once the directions of motion parallax 7; have been esti-
mated for each region i, the egomotion vectors T and Q
can be estimated using standard methods.

Our method is based on the Heeger and Jepson sub-
space method.? Each 7; estimate defines a 2D plane (in
XYZ space) on which the true T vector must lie. We find
the unit vector that minimizes the sum of squared dis-
tances to all these 7; planes and take this to be our esti-
mate of T. Once we have the translation T, we find the
rotation Q by solving a second least-squares problem. The
details are given in Appendix B. We also present results
that were based on a robust estimation method.?*3! Ro-
bust estimation can be viewed as a weighted version of
least squares, where the weighting is data dependent. Es-
timates that closely fit the model are assigned greater
weights and contribute more to the estimate. Details of
this method are given in Appendix C.

Table 1. Egomotion Computation Results for Case (i), Forward Motion

(1,,7,,T.) (Q,,Q,,8,)
Scene (0,0,-1) (0, 0, 0)
Squares Mean (-0.002,0.000,-1.000) (0.003,0.000,-0.004)
Std. Dev. (0.011, 0.011, 0.019)
Average Err. 0.6 deg n/a
Layers Mean (-0.001,0.001,-1.000) (-0.002,-0.000,-0.001)
Std. Dev. (0.004, 0.004, 0.010)
Average Err. 0.3 deg n/a
Cylinders Mean (0.003,0.007,-1.000) (~0.008,0.003,-0.011)
Std. Dev. (0.032, 0.045, 0.055)
Average Err. 1.7 deg n/a
Table 2. Egomotion Computation Results for Case (ii), Forward Motion Plus Pan
(Tx’ Ty?TZ) (Qx’Qy7QZ)
Scene (0,0,-1) (0, 0.234, 0)
Squares Mean (0.012,0.004,-1.000) (~0.003,0.240,0.008)
Std. Dev. (0.035, 0.018, 0.068)
Average Err. 1.4 deg 15.7 deg
Layers Mean (~0.002,-0.000,-1.000) (0.000, 0.224, 0.001)
Std. Dev. (0.006, 0.005, 0.003)
Average Err. 0.4 deg 1.4 deg
Cylinders Mean (0.003,0.007,-1.000) (-0.002,0.210,-0.003)
Std. Dev. (0.034, 0.042, 0.048)

Average Err.

1.8 deg

13.7 deg
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Table 3. Egomotion Computation Results for Case (iii), Lateral Motion Plus Roll

(r,,7,,T.) (2, 9,,9,)
Scene (-1,0,0) (0, 0, 125)
Squares Mean (-0.993,-0.011,0.122) (0.004,-0.472,1.166)
Std. Dev. (0.017, 0.539, 0.078)
Average Err. 11.8 deg 19.9 deg
(Robust) (6.2 deg) (6.5 deg)
Layers Mean (-1.000,0.002,-0.018) (0.000,-0.037,1.211)
Std. Dev. (0.002, 0.056, 0.006)
Average Err. 4.2 deg 2.6 deg
(Robust) (1.9 deg) (2.2 deg)
Cylinders Mean (~0.988,0.015,0.156) (~0.005,-0.331,1.237)
Std. Dev. (0.024, 0.501, 0.071)
Average Err. 26.0 deg 14.4 deg
(Robust) (23.8 deg) (11.3 deg)
%0 —o— T error (degrees) B. Experiments . .
—— Q error (degrees) Tables 1-3 show the egomotion computation results for
the three motion cases described in Section 5. For each
757 case we report both the mean of the estimates and the av-
erage errors for T and Q over the 20 sequences. The T er-
ook ror is reported as the average of the angle between the es-

Error (degrees)
p-
(4]

30

15

0 15 30 45 60 75 90

Direction of translation (degrees)
Fig. 10. Egomotion computation results (T, Q) for a variant of
case (ii), forward motion plus pan. The translation direction
moves from forward (#=0) to upward (=90 deg). |T|=0.05, Q
=(0,0.2344,0). Note that the translation speed is reduced from
that in Fig. 6. The data are for squares scenes, and a least-
squares estimation was used. Errors were averaged over ten
runs.

timated unit vector T and the true unit vector T. The Q
error is reported in two ways: as the standard deviation of
each of the (,,(),,(), components and as the average an-
gular error between the estimated € and the true Q. The
latter error is undefined in Table 1, since there is no ro-
tation.

For Table 1 (forward motion), both translation and ro-
tation are accurately determined for all three scene types.
The translation direction is accurate to about 1 deg, and
the estimated rotation vector is near the true value of
Z€ro.

For Table 2 (forward motion+ pan), the translation es-
timates are again accurate to roughly 1 deg for all three
scene types, but the rotation error rises to about 15 deg
for the squares and cylinders scenes.

For Table 3 (lateral translation plus roll), the errors re-
main low for the transparent-layers scene, but the errors
are now large for the squares and cylinder cases. Using
the robust method, the errors were reduced for the

Table 4. Egomotion Results for Real Sequences in Fig. 9

Scene (1,,7T,,T,) (Q,,9,,Q,)
Bush Approx. ground truth (-1,0,0) (0, 0,0)
Computed value (-0.796,0.020,-0.605) (-0.012,-0.188,-0.028)
Approx. angular err.” 37 deg n/a
(Robust) Computed value (-0.998,0.002,-0.063) (-0.012,-0.091,-0.033)
Approx. angular err.” 4 deg n/a
Robot Approx. ground truth (-0.383,0,-0.924) 0, 1, 0)
Computed value (0.392, 0.048, 0.919) (0.019,0.044,-0.023)
Approx. angular err.” 3 deg 34 deg
(Robust) Computed value (0.370, 0.020, 0.929) (0.017,0.042,-0.008)
Approx. angular err.” 1 deg 24 deg

“Angular errors are approximate only, since camera motion was not accurately calibrated.
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squares scenes but remain high for the cylinder scenes.
Here the method comes up against a well-known limita-
tion of egomotion estimation. For a narrow field of view, a
pan+tilt rotation can produce image velocity fields simi-
lar to those of a lateral translation. This problem is
known as the rotation—translation ambiguity.32 In the
case of the motion in Table 3, there is an ambiguity be-
tween translation along the X axis and rotation about the
Y axis. This explains the relatively large bias in the esti-
mate of (), for the squares and cylinders. Presumably this
bias is less significant in the transparent-layers case be-
cause the estimates of 7; are accurate enough to avoid the
ambiguity.

To investigate the translation-rotation ambiguity fur-
ther, we consider the performance of the egomotion
method for squares sequences generated with varying de-
grees of forward and lateral translation. The translation
was given by T=(0,sin 6,cos ), which varies from the Z
direction (6=0) to the Y direction (#=90 deg). The rota-
tion was fixed at 2=(0,0.2344,0), which was the rotation
vector used in Table 2. Figure 10 shows the average (ab-
solute) angular error of T and € as 6 varies. As expected,
the average angular error increases toward lateral motion
(6=90). This pattern of errors is thus consistent with
Rieger and Lawton’s method, as implemented by Heeger
and Jepson in Ref. 29, Fig. 6(a).

Finally, Table 4 shows egomotion results for the real se-
quences shown in Fig. 9. For the bush sequence, the cam-
era motion is roughly lateral and horizontal. For the robot
sequence, the camera motion is roughly forward and to
the left. For both of these real sequences, the ground
truth of T was not determined using precise instrumen-
tation and is accurate to no better than a few degrees.
Moreover, for the robot sequence, only the direction of the
the angular velocity Q but not its magnitude was known.
Given this margin of error, the estimates are acceptable
and consistent with the synthetic scene results presented
above.

7. CONCLUSION

The key contribution of this paper is to show how the di-
rection of motion parallax can be estimated in local image
regions, prior to estimating pointwise image intensities,
and that these motion parallax directions can be com-
bined to estimate egomotion (T and Q). The advantage of
ordering the computations in this way is that the esti-
mated egomotion provides strong constraints on the
pointwise image velocity field, reducing the search for im-
age velocities to a 1D set rather than a 2D set. We argue
that this simplification of optical flow computation is very
important for 3D cluttered scenes, where the high density
of depth discontinuities makes it difficult to estimate a
dense image velocity field. Such a dense image velocity
field is needed for the moving observer to estimate a
dense depth map.

Our method for estimating the direction of local motion
parallax is based on a particular model that assumes the
spread of (unknown) image velocities in a local region is
dominated by the translation component of the velocity
field rather than by the rotation component. As we
showed in Appendix A, this assumption in turn requires
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that there be a large range of depths in each local region.
If this assumption does not hold, then the model does not
hold, and the method cannot be expected to give reliable
estimates. In particular, if the scene consists of a smooth
ground plane, then we would not expect our method to be
effective. This is not a problem, of course, since there are
other egomotion methods that are explicitly designed for
planar surfaces®® and perform well in such scenes. More-
over, when surfaces are smooth and textured, many tra-
ditional egomotion methods that assume only precom-
puted optical flow do fine.3* The case to be made for our
method is that it is designed for 3D cluttered scenes,
where a dense field of image velocities is difficult to com-
pute. Our method provides a way to deal with the com-
plexity of 3D cluttered scenes, both for computing egomo-
tion and for subsequently computing image velocities and
thereby depth.

APPENDIX A: BOUNDS ON THE MOTION
PARALLAX LINE MODEL

Assume the image region is a disk of radius R; in the im-
age plane (Z=f). From the arguments of Longuet-Higgins
and Prazdny,16 the model of Eq. (5) clearly holds in the
limit as R;—0. A pointwise analysis of the error of the
model for R;>0 was given by Rieger and Lawton.!” Here
we extend that analysis and present bounds on the model
as a function of the radius R; and other relevant vari-
ables.

For any variable V defined in region i, let V(x,y) and V;
be the values of the variable at (x,y) and (x;,y;), respec-
tively. We define the deviation AV of the variable V in re-
gion i to be the largest difference between V and V; in the
region:

AV = max{[V(x,y) - Villz:ll(x,y) = @i.y:)l < Ri}-

1. Deviation in the Rotation Component
We first consider the deviation in the components of vg,.
From Eq. (1), the roll component of v, is

Jroll = (_y,x)ﬂza

where (), is in radians per frame. Consider a step (, d,)
away from (x;,y;). The resulting difference in v, is
(=6,,0)8,. The length of this difference vector is (1,6,
where 5=(6,2C+ 65)1/2 is the step size. Since the largest step
size is R;, the deviation of v,y is R;(),.

The pan component of v is

Upan = (== x%/f, = xy/)0,,.

A small step of length & in the x direction produces a vec-
tor difference of (-2x;/f,—y;/f) 6, and a small step of
length & in the y direction produces a vector difference of
(0,-x;/f) 5. We get a bound on the deviation of the pan
component by noting that ||(x;,y;)|ls/f is the tangent of the
visual angle from (0, 0) to (x;,y;) and that this value is
well below 1 for a typical video camera (30 deg field of
view). Specifically, Av,,, goes from O for a region at the
image center up to about R;(), for a region at the image
corners.
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Because of symmetry between pan and tilt, we imme-
diately find that Avy;,=R;(),. Combining the bounds gives

AT < R[|Q5.

Note that this is conservative. The pan and tilt compo-
nents of this bound vanish to zero at the image center.

2. Deviation in the Direction of the Translation
Component

We next consider the deviation of 7. In the case of lateral
motion (T,=0), 7is constant across the entire image, and
so A7;=0. For nonlateral motion, 7 is constant along any
line through (x7,y7) in the image. Thus 7 varies only in
the direction perpendicular to such a line. Because of ra-
dial symmetry of the 7 field about AOT, without loss of
generality we can calculate A7 by letting y; =y and taking
a step (0,R;) from (x;,y7) to (x;,yp+R;). This step pro-
duces a change of 7 by an angle arctan(R;/(x;—x7)) rad.
Invoking the radial symmetry of the 7field about AOT, de-
fining d; to be the distance from AOT to (x;,y;), that is,

di = ”(xi’yi) - (xTayT)”’
and noting that |arctan(6)|<|6|, we get
A’;’= Ri/di rad.

3. Deviation in the Translation Component
Two bounds can be derived depending on whether the mo-
tion is lateral. Both of these bounds depend on the devia-
tion in inverse depths, which we denote A(1/Z).

For lateral motion, Eq. (4) immediately gives

1
Auvy =fl|T||2AE-

For nonlateral motion, we expand vr—v7,; by using Eq. (2)
and then add and subtract [T,/Z(x,y)](x;,y;). Grouping
terms gives

T,
" Z(x,y)

L. T, T,
Ur—Ur,

(x — XY _yi) + (Z(x’y) N Z(xiayi)

X (x; = X7,y = y7).

Applying the triangle inequality then gives

1
Al;T > TzdiA_ .
Z

4. Discussion

We emphasize that the calculation of the bounds was con-
servative in that the bounds are based on worst-case sce-
narios. In several cases, we expect the motion parallax
model of Eq. (5) to provide a much better fit than the
bounds would imply. In particular, only the differences in
the rotation vector that are perpendicular to the motion
parallax line cause deviation from the model, and this de-
viation is negligible under many natural conditions. For
example, if there is no camera roll component (Q,=0),
then Av, decreases linearly to zero at the AOT, and so the
model holds better than the bounds predict. Another ex-
ample is if a laterally moving camera rotates so as to
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track a visible point in the scene.?®®% The rotation vectors
may be large but nonetheless are near parallel to 7;, and
so deviation in the rotation vectors is confined to the 7; di-
rection, which supports rather than contradicts the
model.

5. Example: When the Motion Parallax Model Holds
For the model of Eq. (5) to hold in region R; and for there
to be motion parallax present, all velocity vectors v must
lie near the line of Eq. (5) and there must be a spread of
speeds along this line. For these two conditions to be sat-
isfied, it is sufficient that both A7 is small and Av<Avp.
To illustrate these bounds, we use the parameters from
our experiments of Subsection 5.A. Each local image re-
gion has a radius of about 4 deg, so R;~1/15 rad. The
camera translation direction is either pure forward or
pure lateral. For forward translation, d;=0 at the image
center and rises to d; ~% at the four image corners. Thus,
at the four image corners, AF%% rad or 12 deg. The devia-
tion depends on d;l; e.g., it is doubled for regions that are
half the distance to the AOT. Nonetheless, the majority of
regions have A7 of less than 24 deg. Considering that this
is a worst-case measure, such a value supports the model.
For the second condition (Avg<Auvr), we must choose a
value for A(1/Z). Here we must approximate, since, for
the forward-translation sequences, the surface corre-
sponding to (x;,y;) may vary between frames as may the
set of depths of visible surfaces in the region. For frame 1
of the cylinders and textured squares sequences, Z;,=5,
Zmax=40, and the net forward motion over the sequence is
eight units (f=1). The maximum value of A(1/Z) is (1/5)
—(1/40)=0.2 (at the beginning of the sequence). Using
these numbers we take a value 0.1 as typical for A(1/Z),
keeping in mind below that the value would be lower if
there were an insufficient range of depths in the region.
We now address two of the observer motions.

e Forward motion+pan:

1
T,=0.25, |Q]l; = 0.234 deg/frame ~ 250 rad/frame.

At the image corners,

11
AGg= A, — —— % — ~ 0.0003,
va= 2T o0 " 15

1
Avp>0.25%0.1* 3 ~0.001,

so that Avp> Avg, provided that there is reasonable depth
variation in a region. Moreover, these bounds are both lin-
ear functions of d;, so the model still holds well for regions
that are half the distance from the corner to the image
center. The difficulties with the model thus arise near the
AOT, since A7 can become large there, or when there is a
limited range of depths in the region.
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e Lateral motion+roll:

2
[Tl = 0.05, 2]y =1.25 % — = 0.02 rad.
360

Thus,

1
Avg = — #0.02 = 0.001,
15

Avp=0.05%0.1~= 0.005.

The latter again shows a reasonable range of depths
(fA(1/Z2)=0.1).

APPENDIX B: LEAST-SQUARES
EGOMOTION COMPUTATION

Here we provide a brief description of the egomotion com-
putation. Our method follows the notation and least-
squares formulation of Heeger and J epson.29

For any image region i, let p;=[x;,y;,f] be the center of
the region, and let t;=[7;,7,;,0] be a 3D vector corre-
sponding to 7;=(7,;,7,;). Since the true 7; points toward
the AOT, it follows that the translation vector T must lie
in the plane spanned by p; and t;. Thus, each region sup-
plies a single constraint on the camera translation T,
namely,

(t; X p;)-T=0.

Since the estimates of 7; have nonzero error and since
there is an unresolvable scale ambiguity in T, we compute
a (unit) vector T that minimizes:

argming >, p(unit(; X p;) - T), (B1)

l

where unit( ) takes the unit vector and {; is the estimated
value of t;. p(.) is an error measure, and, for least squares,
ple;)=e?. Robust error measures are described in Appen-
dix C. The solution to the above may be found by least
squares. In particular, if we represent the estimate of
each region by the vector ¢;=t; X p;, then the optimal T is
in the direction of the smallest eigenvector of the matrix

C= 2 cicl.
i

From the estimate of 7;,, we estimate w; by taking the
vector m;, which was computed by the motion compensa-
tion step, and subtracting the component that is in the di-
rection of 7;:

w;=m; - (m; - 7)7,

where @; is the vector perpendicular to 7;.

Instead of the estimated values of 7;, however, we used
the predicted values by using the translation direction T
from above. We found this to give significantly lower er-
rors in ;.

The observer’s angular velocity & can then be esti-
mated. We choose € to be a vector such that the rotation
component of the velocity field at (x;,y;) lies as close as
possible to the estimated motion parallax line, in the
least-squares sense of minimizing:

R. Mann and M. S. Langer

argming > p(|&;] - unit(é,) - Bi2),

13

where p(ei)=ei2, as above, and B; is the matrix in Eq. (1)
evaluated at the center of region i.

The above method of computing T exhibits significant
bias toward the optical axis.?® To avoid this bias, we ap-
plied a whitening transformation to the least-squares so-
lution described above. The details of the algorithm are as
follows.3” We first compute a whitening matrix:

f 0 -x
M:E 0o f -y

2, .2
X —Yi Xty

This matrix reweights the data based on the position of
the image regions in the scene. Next, use M to reweight
the least-squares matrix, C,,=M-Y2CM"2. Choose x cor-
responding to the smallest eigenvector of C,,. Finally, set
T=M"%x.

APPENDIX C: ROBUST EGOMOTION
COMPUTATION

Here we present a brief summary of our robust method
for finding T and Q. We use a form of robust estimation
called M estimation.®® Like least squares, M estimation
performs an optimal fit of the parameters, except that the
method reduces the influence of outliers. (Fog a review of
robust methods in computer vision, see Meer et al.?® and
Stewart.!)

Our robust method follows the notation and formula-
tion of Black and Anandan.?® We use the following error
measure:

e
ple;) e
where e; is the error of the ith estimate and o is a scale
term, intended to specify the expected error in the esti-
mates. When the error is small, we have e?<¢? and
ple;) %e?. In this case the estimate is referred to as an in-
lier, and the behavior is the same as least squares. When
the error is large, ei2 > o2 and p(e;) =1, the data value is an
outlier, and the weight of that estimate is limited. Various
forms of p may be used but usually have similar behavior.
With the new error measure, expression (B1) becomes
nonlinear. A simple solution is to use iteratively re-
weighted least squares.?! The current errors are used to
define a weighting function:

W 19 20
(e) = e; (?eip(ei)_ (02"'@;'2)2.

The weighting function limits the influence of estimates
that are a poor fit to the model.

The iterative algorithm is as follows. Let each estimate
7, have a weight O=<w;<1.
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1. Begin with all weights equal, i.e., w;=1.

2. Find the least-squares solution for T by using
weights w; on each 7; vector.

3. Reassign the weights: w; < W(e;).

4. Repeat step 2 until convergence.

A similar process is used to find Q. We used a coarse-
to-fine optimization strategy, starting with a large value
of o and decreasing it to the size of the expected error in
the estimates.
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