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Abstract: In this paper we present a frame-
work for the classification and segmentation of mo-
tion data. First, a representation of different two-
dimensional motion categories is proposed. Sec-
ondly, a system to categorize and segment motion
is presented based on hidden Markov models, com-
monly used in speech recognition. Specifically, this
paper combines concepts from both handwriting the-
ory and computational vision to create a system to
classify the motion of a pen when writing/drawing.
Input to the system consists of online pen stroke
data which includes the x, y position and time of
each point along the line. Using derived velocity
and angle information the system classifies and seg-
ments the input into particular categories of motion.
The resulting categorical information may be then
used to describe the scene, extrapolate events, or
as a part of a gesture recognition system. Appli-
cations beyond pen-based input are discussed. This
paper contributes to pen based motion recognition
research in two ways. First, a classification is per-
formed based on a continuous sequence of observa-
tions, rather then feature extraction. Secondly, pen
motion is transformed into a translation and rotation
invariant representation prior to classification.
Keywords: Motion Recognition, Hidden Markov
Models, Percepts, Gesture Recognition

1 Introduction

This project combines concepts from both hand-
writing theory and computational vision to create
a system to classify the motion of a pen when writ-
ing/drawing. We have created a representation that
divides the space of all possible motions in two-
dimensions. To demonstrate one instantiation of
the representation, we have implemented a system
that classifies the motion of a pen on a drawing sur-
face. This paper begins in section two which presents
the ontology itself. Section three describes the mo-
tion recognition system. Section four summarizes
the results of the system, and finally section five dis-
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cusses future applications of both the ontology and
the recognition system.

2 Motion Categories

The goal of the paper is to devise a system that cap-
tures useful properties of motion that occur, regard-
less of position or orientation. In other words the
categories of motions we are interested in describing
are rotation and translation invariant. Therefore, we
do not attempt to describe motion in terms of po-
sition, but rather in terms of velocity and direction.
To simplify this analysis the overall representation
has been separated into two class hierarchies, one
representing all possible angles and one representing
all possible velocities. These categories, have been
organized into a lattice /citejepl, ricl. The lattice is
structured such that the most general cases are at the
root of the lattice (pictured near the top in figures
/refafig and /refvfig) and more specific cases children
of the more general cases. Multiple inheritance is al-
lowed. The general theory is the most specific state
that is consistent with the input, is the most likely
state. The angle lattice has 8 states, and the velocity
lattice has 12 states, rendering a total of 96 states,
although some states are extremely improbable.

2.1 Angle Structures

Figure 1 shows the angle lattice. Each state follows
the general form of a curve, followed by a point of
zero curvature, followed by a curve. The point of zero
curvature (which is an inflection point) is indicated
by a dot on the curve.

2.2 Velocity Structures

Figure 2 shows the velocity lattice. The Velocity
lattice follows the same format as the angle lattice,
where there is a type of velocity, followed by an in-
flection point in the direction, followed by another
velocity categorization. Velocity can be described as



accelerating (A), decelerating (D), constant(C) or a
subset of constant velocity, zero velocity (R). (E) rep-
resents a velocity event, which is either zero velocity
(R) or undefined velocity (as in very rapid accelera-
tion).

Figure 1: Angle Lattice
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3 Motion Recognition System

3.1 Overview

The recognition system consists of four components;
data acquisition, pre-processing of the data, recog-
nition using hidden Markov models, and finally seg-
mentation. The input to the system is a stream of
pen stroke information and the output is a set of to-
kens representing the motion categories. The output
stream both provides a description of the movement
and associated parameterization, and could be used
as input to a gesture recognition system, or a event
classifier. The goal of the system is to provide mid-
level vision processing to facilitate a higher-level rec-
ognizer. The recognition system itself is based on
a hidden Markov model (HMM) representation, de-
scribed in section 3.2.

In order to simplify the recognition process, nine
of the most common states from the above categories
were selected to be recognized by the system. A
graphical depiction of the states is shown in figure
8 and described in table 1. Each was manually seg-
mented, and the recognizer was trained on it. The
recognition system was then evaluated on a separate
set of segmented data, and then on more complex
non-segmented shapes that represented a number of

Figure 2: Velocity Lattice
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motions, from which a stream of output categories
was extracted.

3.2 Hidden Markov Models

Hidden Markov models, although existing for over
three decades, first became popular in speech recog-
nition systems in the late 1980’s [4]. This section
will only provide a brief overview of hidden Markov
Models, to give the reader an intuition as to how the
recognition system works. For a detailed description
of HMM’’s, refer to [5, 4, 1]. For a different approach
to pen based gesture recognition using HMMs, refer
to [6]. This description of hidden Markov models is
mainly derived from [4].

Hidden Markov models are based on the Markov
processes, and are an extension of Markov chains. A
Markov chain is a graph with nodes and arcs. Each
node represents a state. Each arc represents a tran-
sition between nodes, and has an associated proba-
bility, which represents the probability of traveling
across that arc from one node to another. A first-
order Markov chain consists of a set of nodes and
transition probabilities between nodes, and criteria
based on observations on when to traverse an arc.



Then, given some input, it is possible to determine
how well the Markov chain models the data. For in-
stance, if the current state of the Markov chain is
in node A, and based on the next observation the
next state would travel along an arc to node B, if
the probability of that arc is high, then the model
fits the observations well. Hidden Markov Models,
unlike Markov Chains have a second set of probabil-
ities; the probability that we are in state A given the
current observation. In other words, an observation
may be probable in more the one state, and there-
fore the true state of the model is hidden. Finally,
there are two basic types of Hidden Markov Models,
discrete and continuos HMMs. Discrete HMMSs have
a fixed alphabet of observation symbols, where as
continuos HMMs have a continuos range of inputs.

The components of a HMM therefore are: O, a
sequence of observations. N, the number of states
or nodes. M, size of the alphabet if this is a dis-
crete HMM, or the number of mixtures per node if
it is a continuous HMM, a state transition matrix
A = {a;;}, a probability distribution of the observa-
tion occurring in a certain state, B, and finally, an
initial state distribution 7 = {m;} [4]. For contin-
uous distribution HMMs there are a few more pa-
rameters. B, the probability distribution is replaced
with a probability function:

M

m=1
(1
Where, O is the current observation, G is a point
distribution function, usually a Gaussian with mean
p and covariance matrix ¥. There can be more then
one mixture per state, in which case ¢y, is the mix-
ture coefficient of mixture m in state j. All these
parameters form the basis of the model of a HMM,
A
To summarize all of the above, a HMM is initial-
ized with a probability distribution = = {m;}, which
represents the probably of starting in state i. Using
the translation matrix A = {a;;}, we can then de-
termine the probability of making a transition from
state i to state j over all states. Finally, the function
b;(0), allows us to determine the probability that the
next observation o was generated by state j. Com-
bining all of these probabilities we can determine the
overall probability that a sequence of observations O
was generated by a particular HMM, A, that is:

P(OIN) (2)

Therefore given a sequence of observations, O and
a number of different HMMs, A = {\;--- Ak}, we

need to determine,

PON) > POIN)  Vij#i  (3)
that is the model ); which best explains the obser-
vations 0 out of all models A.

Calculating the probability P(O|)) as described
above would be computationally prohibitive. Fortu-
nately a more efficient procedure exists, refered to
as the forward-backward algorithm [4], which stores
intermediate variables using dynamic programming.

HMMs can be trained using an unsupervised
learning algorithm called the Baum-Welch reestima-
tion procedure [4], which can be thought of as an
implementation of the EM-algorithm [1]. In the case
of continuos HMMs the algorithm iterates, each time
improving on the estimates of the parameters un-
til a local maximum is reached, with the goal be-
ing to maximize P(OJX) for a number of training
sequences O. Various modifications and alternative
training procedures exist [1, 8].

Finally, it is worthwhile mentioning that there are
countless variations of HMMs [1, 8, 4]. Most impor-
tantly, the structure and connectivity of HMMs can
vary. The above discussion has focused on fully con-
nected HMMs where there is a transition probability
greater then zero between each node. Other types
of HMMs include left-right HMMs, where there are
only arcs between nodes i and j if j > 4.

3.3 Data Acquisition

The data for the recognition system was acquired us-
ing a Wacom pen tablet. The pen’s position on the
tablet was sampled at a rate of 100Hz, with a reso-
lution of 40 points per mm, with an accuracy of 0.5
mm. This provided very high-resolution data from
which we could accurately extract velocity and angu-
lar measurements. Eighty observations of each state
shown in figure 8 were taken. Forty were used in
the training process, and the additional forty were
used to validate the recognition system. Further-
more, 10 observations of each of the more complex
shapes shown in figure 9 were recorded. It is possible
that other input sources could be used such optical
flow extracted from a video sequence.

3.4 Pre-Processing

The raw data from the tablet includes the X and
Y position of the pen tip, the pressure of the pen
tip, and information about the tilt of the pen. Only
the position data is used. The inputs to the HMM
recognition system include the velocity, the current
direction of the pen, and the direction change of the



pen relative to the start of the frame (more on what
a frame is later), all of which are derived from the
position.

In other words, the HMM is never aware of the
absolute position of the observations, nor explicitly
the spatial relationships as we perceive them. Rather
the inputs are the velocity of the observation and the
angle of the velocity, which can be expressed graph-
ically in polar form, as illustrated in figure 3 and 4.
Typically there is a strong correlation between angle
and speed. In the case of the right angle for example,
the velocity typically slows almost to 0 as the angle
changes, where as in the gentle curve, the velocity
remains almost constant while the angle changes.

Figure 3: X,Y and Polar forms of a Right Angle

Right Angle: Polar Plot of V.8
%

250

Left: X-Y Position plot of a right angle pen motion.
Right: The same pen motion represented in polar
form, indicating that angle of motion and the speed.

Figure 4: X,Y and Polar forms of a Curve

Curve: Polar Plot of V.8

Left: X-Y Position plot of a curving pen motion.
Right: The same pen motion represented in polar
form, indicating that angle of motion and the speed.

The velocity is calculated separately on each
axis from the position using the four-point central-
difference approximation [7]. For example to calcu-
late the velocity along the x-axis:

—Tip2 +8Ti11 — 8Ti—1 + T2
Ve = 12

(4)

The velocity is then smoothed using a median
filter with a width of five samples. The purpose of
this filter is to suppress any jittering that occurs as
a result of the 0.5 mm error margin of the digitizing
tablet.

The overall velocity can then be calculated,

v =4/vi+v2 (5)

and the angle 6 can be derived from the separate
velocity vectors,

0= arctan(v—w) (6)
Uy

from this, the change in 6, 6 is calculated using
a technique similar to (4), but compensating for the
circular nature of angles.

Finally, the relative change in 6 from the starting
position is calculated. This is, if 8;...k is a vector of
changing angles, the relative change 8* is

07 =6, —06 1<i<K (7)

The vectors v, #', and #* become the observa-
tions for the HMM classification system described in
section 3.5. This contrasts with the method in [6]
where observations were based on z, y, v, and v,.
We chose to use v, ', and 6* because of they are
rotation invariant, an important feature in gesture
recognition systems and event classification systems,
as a gesture or event can take place in any orien-
tation yet have the same semantic meaning. This
is similar to the work of [2], who have extracted
speed and angle information from video sequences,
to aid in video analysis and retrieval, however sim-
ilarity between curves was the goal of their system,
rather then classification. As shown below, experi-
mentation seems to indicate that these vectors pro-
vide adequate differentiation between our classes for
accurate classification.

The final pre-processing step involves framing the
data. For short pre-segmented observation vectors,
as used in training and validating the HMM, the data
was centered on the angle event and truncated to an
equal length of 30 samples. For the longer sequence
classification and segmentation, the data was broken
up in to several frames of 30 samples each, each frame
incremented by one sample from the previous frame.
In this manner we are able to slide an ‘observation
window’ over the data sequence.

Figures 6 and 7 shows plots of v, § and 6* with
respect to sample number (time) for a gentle curve
and a right angle.



3.5 HMM Implementation

The HMM is the core of the motion recognition sys-
tem. The HMM used in the recognition system is a
continuous HMM with four nodes, and one mixture
per node. Each mixture uses a Gaussian distribution
to model error from the mean in velocity and angle.
The structure of the HMM is a left to right HMM,
implying that transitions back to nodes previously
visited is not permitted. Figure 5 illustrates a sam-
ple HMM. Intuitively, one can think of each node
having a mean that exemplifies the pen at a par-
ticular moment during the pen motion, and for the
model to have a high probability of fitting the obser-
vations, it must traverse through the nodes without
cycles.

Figure 5: Example left to right HMM

The above HMM shows the each state, and the
transitions probabilities between states.

The HMM was trained using the standard Baum-
Welsh [4] algorithm, modified to fix one node at the
mean in the middle of the frame, so that we can be
assured that spikes in 8’ can be well represented. The
training algorithm was run on forty samples of pre-
segmented gestures for a maximum of 25 iterations.
Occasionally the HMM found an unsatisfactory local
maximum, in which case it was reinitialized with a
new set of randomly generated priors and retrained.

Nine different HMM’s were trained to recognize
the nine different classes of motion illustrated in fig-
ure 8. Once training was completed, classification
was performed as described in section 3.2 and equa-
tion (3). One practical difference, due to numerical
precision issues relating to underflow from repeated
multiplication of small probabilities, is that we rep-
resent P(O|)) in terms of log likelihood [4]. All code
was implemented in Matlab.

To illustrate this process, examine figures 6 and
7. The dashed lines represent each of the training
observations, the > () ’s represent the means for each
of the nodes in the HMM.

Figure 6: Inputs to HMM for a Right Angle
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See figure 3 for an example of the actual motion.
Top: Speed with respect to time for right angle
pen motions. Each pen motion used in training
is shown as a dotted line. The means for each
state of the HMM are shown as (). Middle: The
change in direction with respect to time. Bottom:
The direction of the motion, from the start of the
motion, with respect to time.



Figure 7: Inputs to HMM for a Curve
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See figure 4 for an example of the actual motion.
Top: Speed with respect to time for curving pen
motions. Each pen motion used in training is shown
as a dotted line. The means for each state of the
HMM are shown as (). Middle: The change
in direction with respect to time. Bottom: The
direction of the motion, from the start of the motion,
with respect to time.
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3.6 Segmentation

The sliding window approach described in section 3.4
produces a vector of most probable classifications.
Segmentation comes naturally to this vector which
typically involves large regions of similarly classified
motion. Initially the stream is simply segmented into
similarly classified adjacent motions, and then seg-
ments below a certain threshold (typically five sam-
ples) are discarded.

4 Results

The initial testing on the recognition system con-
sisted of two experiments. The first experiment clas-
sified pre-segmented data. The second experiment
consisted of using a sliding window to classify and
segment a larger more complex motion. The results
of both experiments are shown below.

The final output of the system consists of the seg-
mented symbols, the parameters associated with the
symbols (so angle and distance can be extracted, for
each segment), as well as probabilities for each of the
other classes for that segment.

4.1 Experiment One: Pre-segmented

Data

In the first experiment, the forty pre-segmented ob-
servations of each class used for training and the forty
pre-segmented observations of each class, collected at
the same time as the training samples but not repre-
sented in the training samples were processed by the
recognition system. Both the training data and the
testing data were composed at a number of different
angles. The results of this experiment are summa-
rized in table 2. The classes are illustrated in figure
8, and the meaning is summarized in table 1.

Table 1: Semantic Meaning of the Classes
Class | Interoperation
Right Angle CCW
Right Angle CW
Acute Angle CCW
Acute Angle CW
Obtuse Angle CCW
Obtuse Angle CW
Curve CCW
Curve CW
Straight Line
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Where CW refers to movement in a clockwise
direction and CCW refers to movement in a counter
clockwise direction.



Figure 8: Nine Primary States
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Table 2: Accuracy of Pre-segmented Data

Class | Training Data | Testing Data
1 100 % 100 %
2 97.5 % 100 %
3 100 % 100 %
4 100 % 100 %
5 100 % 100 %
6 97.5 % 100 %
7 92.5 % 87.5 %
8 97.5 % 100 %
9 100 % 100 %

Overall, the HMM recognition system proved to
be very accurate on pre-segmented data. It is curi-
ous to note in the cases of classes 2,6 and 8 the HMM
preformed better on the testing data then the train-
ing data, although in each case it simply indicates
that it miss-classified one sample.

4.2 Experiment Two: Complex Mo-
tion Data

Figure 9 contains illustrations of the more complex
movements classified by the system. To test the ac-
curacy of the system, the resulting classification was
manually analyzed to determine if the classification
seemed reasonable. For instance, while a human may
perceive a straight line, it is reasonable for the com-
puter to see a series of obtuse angles or very gentle
curves. Table 3 shows an example output for each of
the examples. Segments in italics are not consistent
with our perception of the motion. The meaning of
each class is summarized in table 1.

Figure 9: Complex Motion Examples

Example 1 Example 2 Example 3
Example 4 Example 5 Example 6
Example 7

Table 3: Accuracy of Complex Motion
Example | Segmentation Results
6,2,7,8,3,8,6
4,3.6,4,3,4
6,5,1,5,6,1,6,5,1,9
6,7,3,9,6,3,9
9,2
6,2,7,4,7
6,4,2,6,3,4
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The results from this experiment are not as con-
clusive as from experiment one. Clearly on some



examples, the system did very well. In example 3
the system located all three corners, and identified
them as right angles, and in example 4 the system
located the two corners, and identified them as acute
angles. However, in example 7, the system was de-
tecting right angles and acute angles where clearly
there were none.
Figure 10 shows the classification of example 3.

Figure 10: Classification of Example 3
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In this figure, O indicates a classification as a right
angle (Category 1), < represents a obtuse angle
(Category 5 or 6) and + indicates a straight line
(Category 9).
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5 Conclusions and Future

Work

In conclusion, we have presented a representation of
possible types of 2-D motion and have presented a
system that can recognize and extract a subset based
upon hidden Markov models.

The recognition system attempts to model the
regular structure that underlies the motion, while
at the same time maintaining invariance to rota-
tion and translation. The results returned by the
classifier for pre-segmented data are very accurate;
the results returned on real motion sequences have
promise. Normalizing the velocity data is expected
to improve these results and is currently being inves-
tigated. Directly building on this work consists of
establishing a preference lattice, to aid in the selec-
tion of the appropriate state, when multiple candi-
dates are returned from the HMM, and an algorithm
to optimally segment the results, based on dynamic
programming similar to [3].

Other extensions being investigated consist of

adding global parameters to the HMM, such as the
starting state, and other learning algorithms, such as
the parameterized HMM algorithm discussed in [8].

The outputs from this classification system have a
wide range of possible applications. A gesture recog-
nition system could use the output of the recognizer,
which too is currently being explored.
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