FFT Algorithm

NOTE: Procedure FFT is presented here in pseudo-code,
for a generic field F in which it is possible to define w,
a primitive n-th root of unity.

procedure FFT (A, n, w)

Preconditions:

A is a Vector of length n;

n is a power of 2;

w is a primitive n-th root of unity.

The Vector A represents the polynomial
a(z) = A[1] + A[2]#z + ... + A[n]l*z"(n-1)

The value returned is a Vector of the values
[a(1), a(w), a(w™2), ... , a(w"(n-1))]
computed via a recursive FFT algorithm.

H O H H O H H H B R

if n = 1 then
return A

else
Aeven <-- Vector([A[1], A[3], ..., A[n-11])
Aodd <-- Vector([A[2], A[4], ..., A[m]1])

Veven <-- FFT(Aeven, n/2, w™2)
Vodd <-- FFT(Aodd, n/2, w™2)

V <-- Vector(n) # Define a Vector of length n
for i from 1 to n/2 do
V[i] <-- Veven[i] + w~(i-1)*Vodd[i]
V[n/2 + i] <-- Veven[i] - w~(i-1)*Vodd[i]
end do
return V
end if

end procedure

Additional comments

e For computational efficiency, in the for-loop build up the powers of w
using just one multiplication each pass through the loop. Similarly for
the recursive FFT calls, w™2 should be computed only once.

e If the computation is in the field Z,, each arithmetic operation will be
performed mod p. In Maple, globally assign “mod™ := ’mods’ to get
“symmetric representation” (see the help page 7mod in Maple).

