2. NORMAL FORMS AND DATA STRUCTURES

Reference: Chapter 3 of

Geddes, Czapor, and Labahn

NORMAL FORMS

Three Levels of Abstraction

- (i) The object level abstract level where elements of a domain are considered as primitive objects
- (ii) The form level

 here we are concerned with how an object is

 represented in terms of some chosen 'basic
 symbols'

e.g., distinguish the following in Z[x,y]:

$$a(x,y) = 12x^{2}y - 4xy + 9x - 3$$
$$a(x,y) = (3x - 1)(4xy + 3)$$
$$a(x,y) = (12y)x^{2} + (-4y + 9)x - 3$$

- (iii) The data structure level
 - concerned with the organization of computer memory used in representing an object in a particular form
- e.g., linked-lists versus static arrays versus dynamic vectors

The Problem of Simplification

Why simplify expressions?

(i) computer resources (space and time) may be wasted storing and manipulating unsimplified expressions

memory space is always finite

(ii) for human readability, want results to be expressed in simple form

Example: fully expanded polynomials

The following would simplify to zero:

$$(12x^2y - 4xy + 9x - 3) - (3x - 1)(4xy + 3)$$

But consider

$$(x+y)^{1000} - y^{1000}$$

 expanded form of this polynomial will contain a thousand terms

The expression

$$x^{1000} - y^{1000}$$

which is in expanded form is 'simpler' than a corresponding factored form in which (x - y) is factored out

Zero Equivalence

Special case of general simplification problem in which we are concerned with recognizing when an expression is equivalent to zero

Example:

$$\log\left(\tan\left(\frac{x}{2}\right) + \sec\left(\frac{x}{2}\right)\right) - \operatorname{arcsinh}\left(\frac{\sin(x)}{1 + \cos(x)}\right),$$
$$-1 \le x \le 1$$

(this is equal to 0)

- nontrivial transformations required
- In 'sufficiently rich' class of expressions, zero equivalence problem is recursively undecidable
- In many classes of expressions of practical interest, the problem can be solved
 - polynomials
 - rational functions
 - polynomials modulo side relations

Normal Form and Canonical Form

E a set of expressions with σ an equivalence relation defined on E

σ partitions E into equivalence classes

Transformation functions $f: E \rightarrow E$

Definition:

Let E be a set of expressions and let σ be an equivalence relation on E. A normal function for [E; σ] is a computable function f: E \rightarrow E which satisfies the following properties:

(i) $f(a) \sigma a$ for all a in E

(ii) $a \circ 0$ implies $f(a) \equiv f(0)$ for all a in E.

Definition:

Let $[E; \sigma]$ be as above. A canonical function for $[E; \sigma]$ is a normal function $f: E \to E$ which satisfies the additional property:

(iii) $a \circ b$ implies $f(a) \equiv f(b)$ for all a,b in E.

Representation Issues

FORM LEVEL A: normal/canonical forms

FORM LEVEL B: recursive/distrib. representation

FORM LEVEL C: sparse/dense representation

FORM LEVEL D: zero exponent representation

DATA STRUCTURE LEVEL namely the choice between recursive representation and distributive representation. In the recursive representation a polynomial $a(x_1, \ldots, x_v) \in D[x_1, \ldots, x_v]$ is represented as

$$a(x_1, \ldots, x_v) = \sum_{i=0}^{\deg_1(a(\mathbf{x}))} a_i(x_2, \ldots, x_v) x_1^i$$

(i.e. as an element of the domain $D[x_2, \ldots, x_v][x_1]$) where, recursively, the polynomial coefficients $a_i(x_2, \ldots, x_v)$ are represented as elements of the domain $D[x_3, \ldots, x_v][x_2]$, and so on so that ultimately the polynomial $a(x_1, \ldots, x_v)$ is viewed as an element of the domain $D[x_v][x_{v-1}] \cdots [x_1]$. An example of a polynomial from the domain Z[x,y,z] expressed in the recursive representation is:

$$a(x,y,z) = (3y^2 + (-2z^3)y + 5z^2)x^2 + 4x + ((-6z+1)y^3 + 3y^2 + (z^4+1)).$$
(3.8)

In the distributive representation a polynomial $a(x) \in D[x]$ is represented as

$$a(\mathbf{x}) = \sum_{\mathbf{e} \in \mathbf{N}^{\mathsf{v}}} a_{\mathbf{e}} \mathbf{x}^{\mathbf{e}}$$

where $a_e \in D$. For example, the polynomial $a(x,y,z) \in \mathbb{Z}[x,y,z]$ given in (3.8) could be expressed in the distributive representation as

$$a(x,y,z) = 3x^2y^2 - 2x^2yz^3 + 5x^2z^2 + 4x - 6y^3z + y^3 + 3y^2 + z^4 + 1.$$
 (3.9)

Normal Forms for Polynomials

Definition:

An expanded normal form for polynomial expressions can be specified by the normal function

- f_1 : (i) multiply out all products
 - (ii) collect terms of the same degree

An expanded canonical form for polynomial expressions can be specified by the canonical function

 f_2 : apply f_1 , then

(iii) rearrange the terms into descending orde

Also, can define factored normal form

- leave factors that exist, expanding each factor to ensure zero recognition

And a factored canonical form

fully factor the expression

f3

 f_{4}

Example 3.1. Let E be the domain $\mathbb{Z}[x]$ of univariate polynomials over the integers. Consider the normal functions f_1 and f_2 specified as follows:

- f₁: (i) multiply out all products of polynomials;
 - (ii) collect terms of the same degree.
- f₂: (i) multiply out all products of polynomials;
 - (ii) collect terms of the same degree;
 - (iii) rearrange the terms into descending order of their degrees.

Then f_1 is a normal function which is not a canonical function and f_2 is a canonical function. A normal form for polynomials in $\mathbb{Z}[x]$ corresponding to f_1 is

$$a_1x^{e_1} + a_2x^{e_2} + \cdots + a_mx^{e_m}$$
 with $e_i \neq e_j$ when $i \neq j$.

A canonical form for polynomials in $\mathbb{Z}[x]$ corresponding to f_2 is

$$a_1 x^{e_1} + a_2 x^{e_2} + \cdots + a_m x^{e_m}$$
 with $e_i < e_j$ when $i > j$.

Definition 3.5. A factored normal form for polynomial expressions in a unimal $[x_1, \ldots, x_v]$ can be specified by the normal function

if the expression is in the product form $\prod_{i=1}^k p_i$, $p_i \in D[x_1, \ldots, x_v]$ for $i=1,2,\ldots,k$, where no p_i is itself in product form, then replace the expression by $\prod_{i=1}^k f_2(p_i)$ where f_2 is the canonical function defined in Definition 3.4 and where the latter product is understood to be zero if any of its factors is zero.

factored canonical form for polynomial expressions in a domain $D[x_1, \ldots, x_v]$ (assuming nat D is a UFD) can be specified by the canonical function

 f_4 : apply f_3 and if the result is nonzero then factorize each $f_2(p_i)$ into its unit normal factorization (according to Definition 2.13) and collect factors to obtain the unit normal factorization of the complete expression (made unique by imposing a pre-specified ordering on the factors).

Example 3.3. Let $a(x,y) \in \mathbb{Z}[x,y]$ be the expression

$$a(x,y) = ((x^2 - xy + x) + (x^2 + 3)(x - y + 1)) \cdot ((y^3 - 3y^2 - 9y - 5) + x^4(y^2 + 2y + 1)).$$

Using the distributive representation for writing polynomials, an expanded normal for obtained by applying f_1 of Definition 3.4 to a(x,y) might be (depending on the order in which the multiplication algorithm produces the terms):

$$\begin{split} f_1(a(x,y)) &= 5x^2y^3 + 3x^2y^2 - 13x^2y - 10x^2 + 3x^6y + 2x^6 - xy^4 + 7xy^3 \\ &- 3xy^2 - 31xy - x^5y^3 + 2x^5y^2 + 7x^5y - 20x + 4x^5 + x^3y^3 \\ &- 3x^3y^2 - 9x^3y - 5x^3 + x^7y^2 + 2x^7y + x^7 - x^2y^4 - x^6y^3 \\ &- 3y^4 + 12y^3 + 18y^2 - 12y - 3x^4y^3 - 3x^4y^2 + 3x^4y - 15 + 3x^4. \end{split}$$

The expanded canonical form obtained by applying f_2 of Definition 3.4 to a(x,y) is

$$f_{2}(a(x,y)) = x^{7}y^{2} + 2x^{7}y + x^{7} - x^{6}y^{3} + 3x^{6}y + 2x^{6} - x^{5}y^{3} + 2x^{5}y^{2}$$

$$+ 7x^{5}y + 4x^{5} - 3x^{4}y^{3} - 3x^{4}y^{2} + 3x^{4}y + 3x^{4} + x^{3}y^{3} - 3x^{3}y^{2}$$

$$- 9x^{3}y - 5x^{3} - x^{2}y^{4} + 5x^{2}y^{3} + 3x^{2}y^{2} - 13x^{2}y - 10x^{2} - xy^{4}$$

$$+ 7xy^{3} - 3xy^{2} - 31xy - 20x - 3y^{4} + 12y^{3} + 18y^{2} - 12y - 15.$$

Applying, respectively, f_3 and f_4 of Definition 3.5 to a(x,y) yields the factored normal form

$$f_3(a(x,y)) = (x^3 - x^2y + 2x^2 - xy + 4x - 3y + 3) \cdot (x^4y^2 + 2x^4y + x^4 + y^3 - 3y^2 - 9y - 5)$$

and the factored canonical form

$$f_A(a(x,y)) = (x-y+1)(x^2+x+3)(x^4+y-5)(y+1)^2$$
.

On the other hand, the canonical function f₂ would "simplify" the expression

$$a(x,y) = (x - y)(x^{19} + x^{18}y + x^{17}y^2 + x^{16}y^3 + x^{15}y^4 + x^{14}y^5$$

$$+ x^{13}y^6 + x^{12}y^7 + x^{11}y^8 + x^{10}y^9 + x^9y^{10} + x^8y^{11} + x^7y^{12}$$

$$+ x^6y^{13} + x^5y^{14} + x^4y^{15} + x^3y^{16} + x^2y^{17} + xy^{18} + y^{19})$$

into the expression

$$f_2(a(x,y)) = x^{20} - y^{20}$$

while the normal function f_3 would leave a(x,y) unchanged.

Normal Forms for Rational Functions

Normalizing operations:

- form common denominator
- remove GCD from numer and denom
- make denominator unit normal
- put numer and denom into a normal form

The latter operation allows some choices, thus leading to different normal forms:

- expanded/expanded
- factored/factored
- factored/expanded
- expanded/factored

The expanded/factored normal form has been found to be particularly useful

expanded expanded

- **Definition 3.6.** An <u>expanded canonical form</u> for rational expressions in a field $D(x_1, \ldots, x_v)$ can be specified by the canonical function
 - [form common denominator] put the expression into the form a/b where $a, b \in D[x_1, \ldots, x_v]$ by performing the arithmetic operations according to equations (2.42)-(2.43);
 - (ii) [satisfy condition (2.44): remove GCD] compute $g = GCD(a,b) \in D[x_1, \ldots, x_v]$ (e.g. by using Algorithm 2.3) and replace the expression a/b by a'/b' where a = a'g and b = b'g;
 - (iii) [satisfy condition (2.45): unit normalize] replace the expression a'/b' by a''/b'' where $a'' = a' \cdot (u(b'))^{-1}$ and $b'' = b' \cdot (u(b'))^{-1}$;
 - (iv) [satisfy condition (2.46): make polynomials canonical] replace the expression a''/b'' by $f_2(a'')/f_2(b'')$ where f_2 is the canonical function of Definition 3.4.

As in the case of polynomials, it can be useful to consider non-canonical normal forms for rational functions (and indeed more general forms which are neither canonical nor normal). We will not set out formal definitions of normal forms for rational expressions but several possible normal forms can be outlined as follows:

factored/factored: numerator and denominator both in factored normal form;

factored/expanded: numerator in factored normal form and denominator in expanded canonical form;

expanded/factored: numerator in expanded canonical form and denominator in factored normal form.

In this notation the expanded canonical form of Definition 3.6 would be denoted as expanded/expanded. In the above we are assuming that conditions (2.44) and (2.45) are satisfied but that condition (2.46) is not necessarily satisfied. Noting that to satisfy condition

DATA STRUCTURES

Multiprecision Integers

Typical choices:
$$\beta = 2^{-1}$$
 (32-bit word)
$$\beta = 10^{9}$$
 (32-bit word)

Data Structure Choices

- linked lists (used by 1.15P based system)
 - static arrays (ALTRAN)
- dynamic vectors (Muple)

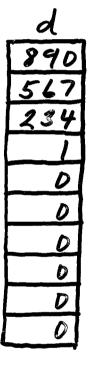
Example:

d = 1234567890

using base B = 103

Linked List

Static Array of Length 10



(Fixed - leagth

array for each

infeger)

Dynamic Vector

INTPOS 890 567 234 1

HEADER encodes:

- type (positive integer)
- length (1+1 = 5)
- simplification status - garbage collection status

Multivariate Polynomials

<u>Linked List</u>: (Recursive Representation)

COEF_LINK EXPONENT NEXT_LINK

with a header node:

INDET_LINK FIRST_LINK

Disposing Disposing Comain variable.

Example:

$$A(x,y,z) = 3x^{2}y^{2} - 2x^{2}yz^{3} + 5x^{2}z^{2}$$

$$+ 4x - z^{4} + 1$$

$$\in \mathbb{Z}[x,y,z]$$

$$= (3y^{2} + (-2z^{2})y + 5z^{2})x^{2} + (4)x + (-z^{4} + 1)$$

€ Z[z][y][x]

Example 3.4. Let $a(x,y,z) \in \mathbb{Z}[x,y,z]$ be the polynomial

$$a(x,y,z) = 3x^2y^2 - 2x^2yz^3 + 5x^2z^2 + 4x - z^4 + 1$$

or, in recursive representation,

$$a(x,y,z) = (3y^2 + (-2z^3)y + 5z^2)x^2 + 4x + (-z^4 + 1).$$

Using the linked list data structure just described, the recursive form of the polynomia a(x,y,z) is represented as shown in Figure 3.2.

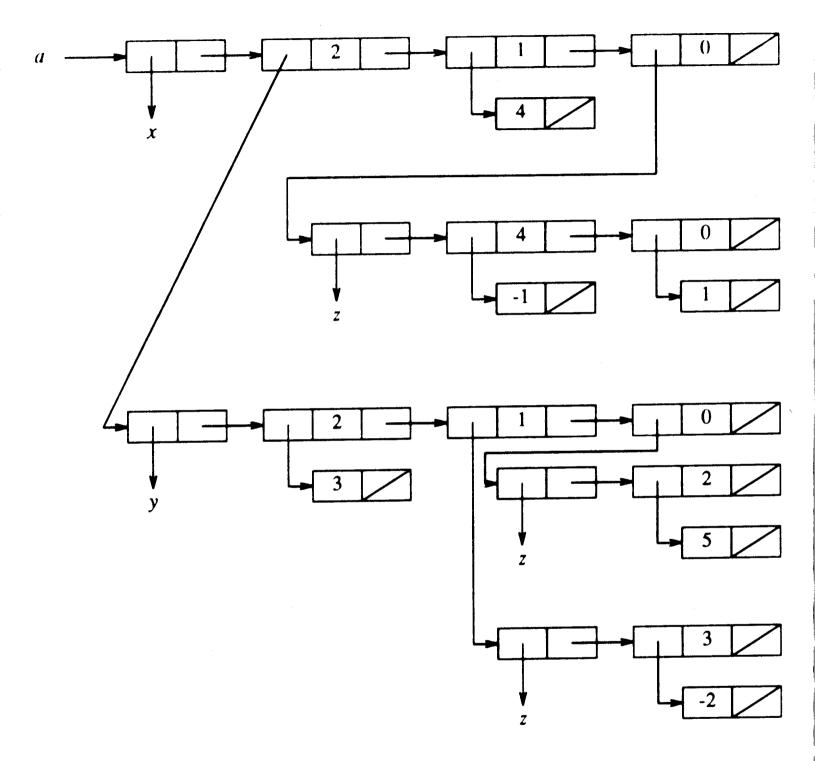


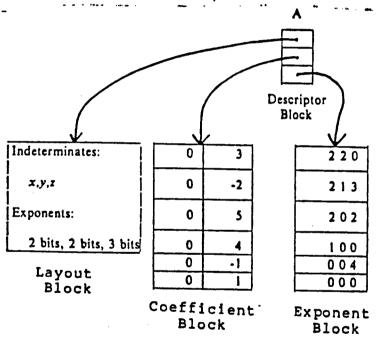
Figure 3.2. A linked list representation.

STATIC ARRAYS

Example 3.5.

#1 -

Let $A(x,y,z) \in Z[x,y,z]$ be the polynomial given in Example 3.4. Using the descriptor block data structure just described, suppose that the declared maximum degrees are degree 2 in x, degree 3 in y, and degree 4 in z. Suppose further that multiprecision integers are represented using base $\beta = 10^3$ and with pre-specified length l = 2. Then the polynomial A(x,y,z) is represented as follows.



The layout block illustrated in this example indicates that the information stored in the actual layout block would include pointers to the names of the indeterminates and also a specification of the fact that each vector of three exponents is packed into one computer word, with the exponent of x occupying 2 bits, the exponent of y occupying 2 bits, and the exponent of z occupying 3 bits. In practice there is also a guard bit in front of each exponent (to facilitate performing arithmetic operations on the exponents) so this specification implies that the computer word consists of at least 10 bits. The coefficient block illustrated here reflects the specification of l and l would have sufficed in this particular example. \square

DYNAMIC VECTORS

Examples of Maple's Data Representation

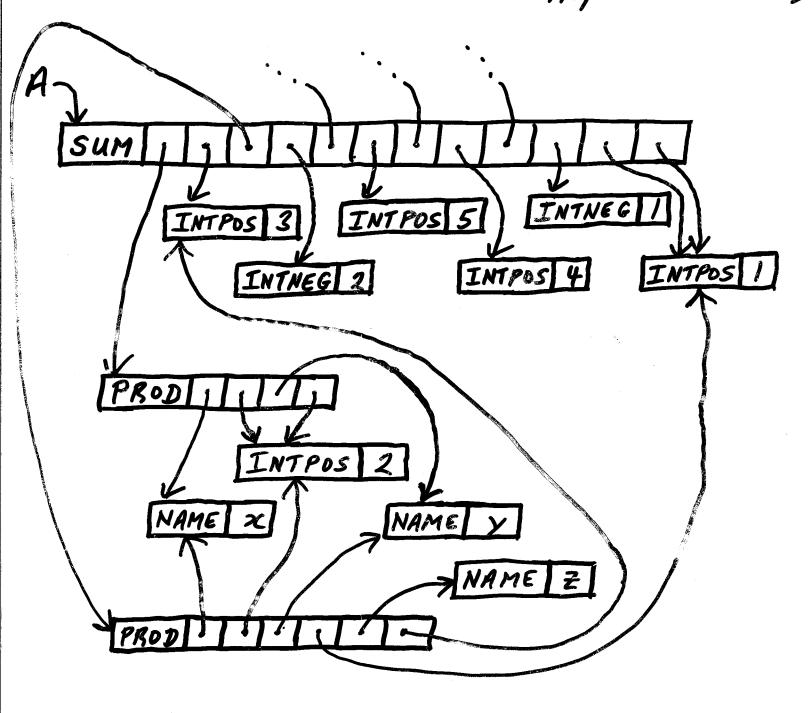
General format:

HERDER datal data2 datan

HEADER Field: encodes

- type
- length n+1
- 1 bit simplification status
- 2 bits garbage collection status

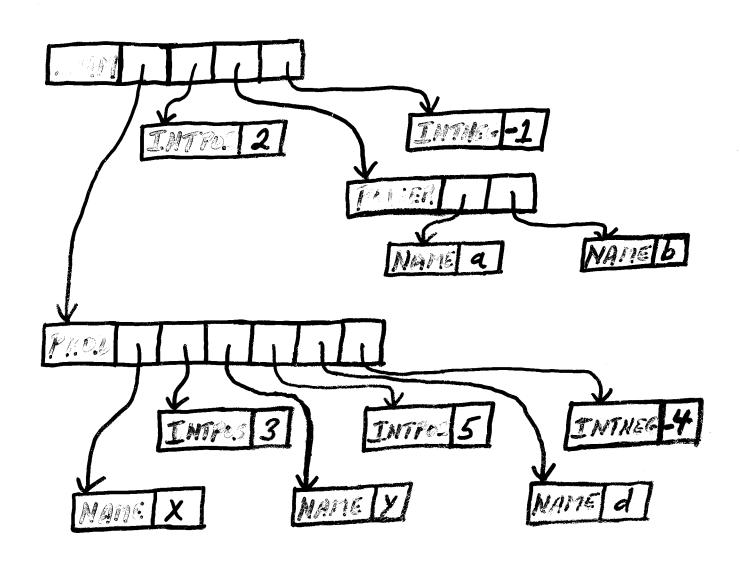
Dynamic Vectors: (Distributive Representation)



$$A(x,y,z) = 3x^2y^2 - 2x^2yz^3 + 5x^2z^2$$

+ 4x - z4+1

e.g.
$$\frac{2 \times 3 \times 5}{d^4} - a^6$$



An Example using dismantle

$$r := \frac{2 \cdot x^3 \cdot y^5}{a^4} - a^b$$

$$r := \frac{2x^3y^5}{d^4} - a^b$$

dismantle(r)

SUM (5)

PROD(7)

NAME (4): X

INTPOS(2): 3

NAME (4): y

INTPOS(2):5

NAME (4): d

INTNEG(2): -4

INTPOS(2): 2

POWER (3)

NAME (4): a

NAME (4): b

INTNEG(2): -1

$dismantle(2 \cdot x + 1)$

SUM (5)

NAME (4): x

INTPOS(2): 2

INTPOS(2): 1

INTPOS(2): 1