. NORMAL FORMS AND
DATA STRUCTURES

Reference: Chapter 3 of
Geddes, Czapor, and Labahn



NORMAL FORMS

Three Levels of Abstraction

(i) The object level
abstract level where elements of a domain are
considered as primitive objects

(ii) The form level
here we are concerned with how an object is
represented in terms of some chosen ‘basic
symbols’
e.g., distinguish the following in Z[x,y]:

a(x,y) = 12x2y —4xy +9x -3

a(x,y)=@Bx —1) (4xy + 3)
a(x,y) = (12y)x* + (~4y + 9)x — 3

(iii) The data structure level
concerned with the organization of computer
memory used in representing an object ina
particular form
e.g., linked-lists versus static arrays versus
dynamic vectors



The Problem of Simplification

Why simplify expressions?

(i) computer resources (space and time) may be
wasted storing and manipulating unsimplified
expressions
memory space is always finite

(ii) for human readability, want results to be
expressed in simple form

Example: fully expanded polynomials

The following would simplify to zero:
(12x%y —4xy + 9x — 3) = (3x = 1) (4xy + 3)

But consider

1000 _ 1000
x+Yy)

- expahded form of this polynomial will contain a
thousand terms

The expression

1000 _ ;1000

which is in expanded form is ‘simpler’ than a
corresponding factored form in which (x —y)
is factored out



Zero Equivalence

Special case of general simplification
problem in which we are concerned with
recognizing when an expression is
equivalent to zero

Example:
X Xy : sin(x)
log (tan ( > ) + sec( > ) ) — arcsinh ( T+ cos(n) )’
-1<x<1

(this is equal to 0)
- nontrivial transformations required

In ‘sufficiently rich’ class of expressions, zero
equivalence problem is recursively
undecidable

In many classes of expressions of practical
interest, the problem can be solved
- polynomials
- rational functions
- polynomials modulo side relations
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Normal Form and Canonical Form

E a set of expressions with ¢ an equivalence
relation defined on E

o partitions E into equivalence classes
Transformation functions f: E - E

Definition:
Let E be a set of expressions and let ¢ be an
equivalence relation on E. A normal function
for [E; o] is a computable function f: E - E
which satisfies the following properties:
(i) f(a)oa forallain E
(1)) a 6 0 implies f(a)=f(0)forallain E. O

Definition:
Let [E; c] be as above. A canonical function for
[E; o] is a normal function f: E — E which
satisfies the additional property:
(iii) a o b implies f(a)=f(b) foralla,b in E. O



Representation Issues

OBJECT
LEVEL
d
FORM LEVEL A:
normal/canonical forms
!

FORM LEVEL B:
recursive/distrib. representation
\2

- FORM LEVEL C:
sparse/dense representation
d
FORM LEVEL D:

Zero exponent representation
DATA STRUCTURE
LEVEL
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namely the choice between recursive representation and distributive representation. In the

recursive representation a polynomial a(x;, ..., x,) € Dlx, ..., x,] is represented as
- deg;(a(x)) :

a(xy,....x)= Y  a;(p..., X)X

i=0

(i.e. as an element of the domain D[x,, . . ., x,][x]) where, recursively, the polynomial coef-
ficients ag;(x,, . .., x,) are represented as elements of the domain D[x;, ..., x,][x,], and so
on so that ultimately the polynomial a(xy, ..., x,) 18 viewed as an element of the domain
Dix,]}[x,_;] - - - [x{]. An example of a polynomial from the domain Z[x,y,z] expressed in the
recursive representation is:

a(x,y.,2) = By H=223)y+520x2 + 4x + (=6z+1)y*+3y*Hz*+1)). (3.8)
In the distributive representation a polynomial a(x) € D[x] is represented as

ax)= Y a.x°

ee N’

where a, € D. For example, the polynomial a(x,y,z) € Z[x,y,z] given in (3.8) could be

>xpressed in the distributive representation as

a(x,y,z)= 3x2y2—-2x2yz3+5x222+4x—6y3z+y3+3y2+z4+1. 3.9)
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Normal Forms for Polynomials

Definition:
An expanded normal form for polynomial
expressions can be specified by the normal
function

f;: (1) multiply out all products

(i1) collect terms of the same degree

An expanded canonical form for polynomial
expressions can be specified by the canonical
function

f,: apply f;, then

(ii1) rearrange the terms into descending orde

Also, can define factored normal form
iy - leave factors that exist, expanding each factor to
5 ensure zero recognition

And a factored canonical form
{]L - fully factor the expression
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Example 3.1. Let E be the domain Z[x] of univariate polynomials over the integers. Con-
sider the normal functions f; and f, specified as follows:

fi: (i) multiply out all products of polynomials;
(i) collect terms of the same degree.
f: (1) multiply out all products of polynomials;

(i) collect terms of the same degree;
(iii) rearrange the terms into descending order of their degrees.

Then f, is a normal function which is not a canonical function and f, is a canonical function.

A normal form for polynomials in Z[x] corresponding to f,is
ax" +ax+ - +a,x™ with ¢;#e; wheni# ]
A canonical form for polynomials in Z[x] corresponding to f; is

alxe1+azxe2+ ce +amxe"‘ with e, < €; wheni > j.
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definition 3.5. A factored normal form for polynomial expressions i a uuinan

)[x, ..., x,] can be specified by the normal function
fy: k
3 if the expression is in the product form I'I1 p;, p; € Dlx;, ..., x,] for
I=
i=1,2,...,k, where no p; is itself in product form, then replace the expres-
k

sion by I‘l1 f, (p;) where f, is the canonical function defined in Definition 3.4

and where the latter product is understood to be zero if any of its factors is
zero.
\ factored canonical form for polynomial expressions in a domain Dlx;, . . ., x,] (assuming

1at D is a UFD) can be specified by the canonical function

fy: apply f; and if the result is nonzero then factorize each f, (p;) into its unit

normal factorization (according to Definition 2.13) and collect factors to
obtain the unit normal factorization of the complete expression (made unique
by imposing a pre-specified ordering on the factors).

|
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Example 3.3. Leta(x,y) € Z[x,y] be the expression
a@xy)=((-xy +0)+ @ +3) -y + 1)
(=32 =9y - 5)+x* (y* + 2y + 1)).

Using the distributive representation for writing poiynomials, an expanded normal forr
obtained by applying f; of Definition 3.4 to a(x,y) might be (depending on the order i

which the multiplication algorithm produces the terms):
fila(x,y)) = 5x%y% + 3x%y? - 13x2y — 10x2 + 3x% + 2x® —xy*+ 73
- 3xy2 ~3lxy —x5y3 + 2)(5y2 + 7x5y —20x + 4x° +)c3y3
- 3x3y2 - 9)‘3y ~5x° + x7y2 + 2x7y a7 - x2y4 - x6y3
—3y*+ 127 + 18y% - 12y — 3)c4y3 —3x*y? + 3x*y — 15 + 3x%, |
The expanded canonical form obtained by applying f, of Definition 3.4 to a(x,y) is
folalx,y)) = x7y2 + 2x7y +x! - x6y3 + 3x6y + 2x5 —x5y3 + 23c5y2
+ 7x5y +4x° — 3x4y3 - 3x4y2 + 3x4}; +3x* + x3y3 - 3x3y2
— 93y — 5¢3 - x2y4 + 5x2y3 + 3x2y2 ~ 13x%y - 10x? — xy*
+7xy3 = 3xy% = 31xy — 20x — 3y* + 12p3 + 18y% — 12y — 15.
Applying, respectively, fg; and f, of Definition 3.5 to a(x,y) yields the factored normal form
fa(a(x,y)) = (> —x%y + 2x* ~xy + 4x =3y +3) -
o2+ 2ty +xt+y3 - 3y? - 9y -3)

and the factored canonical form

faGy)=0x-y+DE*+x+3) 4 +y -5 + 12



2-7

On the other hand, the canonical function f; would “‘simplify’’ tl

expression

a(x,y) = (x —y) (x19 +x18y +x17y2 +x16y3 +x15y4 +x14y5

+x13y6 4+ x127 +x1y8 4 x10p9 4 y9y10 4 4811 +xTyl2
+ x5y13 + x5yl +x*y15 4 4316 +x2p17 4 xy!8 +y19)
into the expression

fo(a(x,y)) =x20 -y

while the normal function f; would leave a(x,y) unchanged.
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Normal Forms for
Rational Functions

Normalizing operations:
- form common denominator
- remove GCD from numer and denom
- make denominator unit normal
- put numer and denom into a normal form

The latter operation allows some choices,

thus leading to different normal forms:
- expanded/expanded

- factored/factored

- factored/expanded

- expanded/factored

The expanded/factored normal form has been
found to be particularly useful
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Definition 3.6. An expanded canonical form_ for rational expressions in a field
[ x,) can be specified by the canonical function

fsﬂ (l)

(i1)

(111)

(iv)

[form common denominator| put the expression into the form a/b where
a,b e Dlx,, ..., x,] by performing the arithmetic operations according to

equations (2.42)-(2.43);

[satisfy condition (2.44): remove GCD] compute g = GCD(u.b)e
Dix;, ..., x, | (e.g. by using Algorithm 2.3) and replace the expression a/b

by a’/b’ where a =a’g and b =b'g;
[satisfy condition (2.45): unit normalize] replace the expression a’/b’ by
au/bn thre an = a"(U(bl))—l and bn = b/_(u(bl))-—l;

[satisfy condition (2.46): make polynomials canonical] replace the expres-
sion a”’/b” by fy(a”)/f,(b”) where f, is the canonical function of Definition

3.4.
L



2-12

As in the case of polynomials, it can be useful to consider non-canonical normal forms
for rational functions (and indeed more general forms which are neither canonical nor nor-
mal). We will not set out formal definitions of normal forms for rational expressions bu.

several possible normal forms can be outlined as follows:

fuctored/factored: numerator and denominator both in factored normal form;

——

factorediexpanded: numerator in factored normal form and denominator in expanded

canonical form;
expanded/factored; numerator in expanded canonical form and denominator in factored

normal form.
In this notation the expanded canonical form of Definition 3.6 would be denoted as
cxpandediexpanded. In the above we are assuming that conditions (2.44) and (2.45) are
satistied but that condition (2.46) is not necessarily satisfied. Noting that to satisfy condition
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Example 3.4. Leta(x.y.2) € Z[x.y,z] be the polynomial

a(x,y.z)= 3x2_v2 - f!.xzyz3 +5x%2% +4x - 4+ 1

or. in recursive representation,
_ (Al 3 22 4, 4
a(x.y,z) =3y + (=2z7)y + 52)x +dx+ (-2 +1).

Using the linked list data structure just described. the recursive form of the polynon

a(x,y,z) is represented as shown in Figure 3.2.
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Example 3.5,

Let A(x.y.2) € Z[x,y,z] be the polynomial given in Example 3.4, Using the descriptor block
data structure just described, suppose that the declared maximum degrees are degree 2 in x, degree
3 in y, and degree 4 in 2. Suppose further that multiprecision integers are represented using base

B = 10? and with pre-specified length / = 2. Then the polynomial A(x,y,z) is represented as
follows. . o

- e o seme  em a— . . - - - . e

A e
pu—
Descriptor
Block
\V/
Indeterminates: 0 3 220
x.y.2 0 -2 213
Exponents: 0 5 202
2 bits, 2 bits, 3 bitg 0 4 100
0 -1 004
Layout 0 1 000
Block
Coefficient" Exponent

Block Block

The layout block illustrated in this example indicates that the information stored in the
ectual layout block would include pointers to the names of the indeterminates and also a
specification of the fact that each vector of three exponents is packed into one computer word, with
the exponent of x occupying 2 bits, the exponent of y occupying 2 bits, and the exponent of z
occupying 3 bits, In practice there is also a guard bit in front of each exponent (to facilitate
performing arithmetic operations on the exponents) so this specification implies that the computer
word consists of at least 10 bits. The coefficient block illustrated here reflects the specification of /

= 2 words for each multiprecision intege: although / = | would have sufficed in this particular
example,. O
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Dynam)c ECTOoRS

Examples of Maple’s
Data Representation

General format:

Miii=) | datal | data2 I ldqf& Ql

Lol en codes

- type
-— /enJ‘I'A n+1

— 1 bt simp/f £ ecatlyon < 7'47"43‘

— 2 bits jqrﬁqje collection s%utas

Bz o
ﬁ s R
S B B o

I
RUBRC
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An Example using dismantle

3 .5
- 2 XY b

r: 7
~n 305
- i%g’~—ﬁ
B d
dismantle(r)

SUM (5)
PROD {7}
MAME {(4) : =
INTPOS (2): 3
NAME (4) @ v
INTPOS{2): 5
NAME (4} . d
INTNEG({2) : —4
INTPOS{2): 2
POWER (3)
WAME (4) : &
NAME (41 : b
INTNEG(Z2): —1

dismantle(2 -x + 1)

SUM(5)
NAME (4} @ =
INTPOS {2} :
INTPOS (2) ¢
INTPOS (Z) :

il el N

i




