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Abstract. The presence of cerebral activation may bias motion correc-
tion estimates when registering FMRI time series. This problem may
be solved through the use of specific registration methods, which in-
corporate or down-weight cerebral activation confounding signals during
registration. In this paper, we evaluate the performance of different reg-
istration methods specifically designed to deal with the problem of ac-
tivation presence. The methods studied here yielded better results than
the traditional approaches based on least square metrics, almost totally
eliminating the activation-related confounds.

1 Introduction

The problem of subject motion is of particular importance in FMRI studies,
due to the small amplitude of the signal changes induced by cerebral activation.
Indeed, signal variations introduced by slight movements can easily hide the
BOLD signal features related to cognitive tasks, or lead to the appearance of
false activations. Due to the lack of perfect and comfortable immobilization
schemes, neuroimaging researchers often prefer to rely on retrospective motion
correction of the FMRI time series. However, optimal registration of the time-
series is not sufficient to correct for all signal changes due to subject motion
during data acquisition.

In practice, an important confounding effect may still be introduced during
the estimation of motion parameters. This confounding effect relates to the fact
that the presence of activation may systematically bias the motion estimates,
rendering them correlated with the activation profile (even in the absence of
subject motion) [1]. This effect is particularly significant when motion estimates
are obtained using similarity measures based on least squares metrics. The con-
sequence may be the appearance of spurious activations along brain edges after
statistical analysis. Moreover, this systematic bias is likely to render invalid any
attempt to correct other motion-related artifacts by using motion parameters as
regressors of no-interest.

A standard approach to reduce the activation-related bias in motion esti-
mates consists of using a robust estimator [2, 3], for instance a Geman-McClure



M-estimator. In [4], the suitability of this estimator was assess in the context
of FMRI registration. This estimator, however, was not sufficient to completely
discard activation-related correlations in the estimation of motion parameters.
More recently, two new methods dedicated to FMRI registration were proposed
in [5, 6].

In this paper, we evaluate the robustness of these two least-squares-based
registration methods in the presence of activation. The fact that the proposed
methods rely on two different computational frameworks, which differ in the in-
terpolation and optimization schemes, has motivated the inclusion of the results
obtained by conventional least-squares-based methods implemented under each
computational framework. The robustness of the different methods is first eval-
uated using two artificial time series, produced in order to simulate a situation
with absence of subject motion, and another with true activation-correlated mo-
tion. The different methods are finally tested on three actual time series obtained
from human subjects in a 3T magnet.

2 Materials

2.1 Similarity Measures

In this paper, we have compared four registration methods, which are outlined
next:

1. Least Squares (LS1 and LS2). The least squares similarity measure is
calculated through the sum of the squared residual difference between voxel
pairs, for a given rigid-body transformation, T'. For two images A and B,
yielding the intensity pair of values (a,b) for voxel 7, the least squares cost
function is defined as

LS(A,B;T) =) (4; - Bf)?, (1)
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in which BY is the resampled value of image B at voxel i after the geometric
transformation 7' has been applied. The LS registration methods are based
on two distinct computational frameworks. The first uses cubic-spline inter-
polation [7] under a Powell optimization scheme [8]. This LS implementation
will be referred to as LS1. The second method relies on the computation
of exact intensity derivatives introduced by a simple fixed-point iteration
method. This second LS implementation will be referred to as LS2.

To prevent each method from being trapped in local minima, spatial smooth-
ing is applied in both methods by convolving the image with a 3D Gaussian
kernel with FWHM value set to 8 mm.

2. Dedicated Least Squares (DLS). This is the registration method that
imposes the strictest down-weighting of voxels that potentially bias motion
estimates. It relies on a dedicated approach, which runs on a two-stage regis-
tration. After the first stage, which is identical to LS1, a rough mask intended



to include all activated areas, is obtained. During the second motion estima-
tion, the voxels inside a dilated version of the activation mask are discarded
from the calculation of the similarity measure. It should be noted that this
mask may include some spurious activations stemming from a biased initial
motion correction, which shall not be a problem if spurious activations are
not too wide. An illustration of a discarding mask is provided in Figure 1
(left).

3. Simultaneous Registration and Activation Detection (SRA). The
fourth method is the SRA, which attempts to overcome the problem of acti-
vation bias by incorporating the effects of the activation into the registration
problem.

Least-squares registration involves finding the motion parameters z that
minimize the sum of squared differences between the volumes A and B. Using
a linear approximation to the motion transformation, this means solving

A = B + Gz, (2)
in the least-squares sense, where the matrix G is the derivative of the trans-
formation with respect to the motion parameters. In this case, consider the
volumes A and B to be column vectors. Similarly, the formulation of activa-
tion detection using the general linear model,

A=B+yH, (3)
lends itself to solving for the coefficients of activation, y, in a least-squares
sense. Here, A and B can be thought of as voxel time series stored as row-
vectors, while H holds the stimulus regressors in its rows. Since the volumes
are stored in columns, and voxel time series are stored in rows, an entire
dataset can be stored in a single matrix. Using this notation, an FMRI
dataset can be modeled as a baseline dataset (B), plus a motion component
(GX), plus an activation component (Y H). Hence, we have the model:

A=B+GX+YH. (4)

A least-squares solution (X,Y) can easily be found using matrix factoring
techniques or by an iterative method. However, it can be shown that the
solution is not unique. Adding a regularization constraint that favours sparse
activation maps has been shown to work on simulated FMRI datasets [6].

3 Description of the Experiments

3.1 FMRI acquisitions

We have used a set of three FMRI studies, corresponding to three different sub-
jects. The images were acquired on a Bruker scanner operating at 3T. Volume
geometry is (64 x 80 x 18, 3.75 mm x 3.75 mm X 6.00 mm). A block design
was used to assess visual activation, in which two tasks were repeatedly pre-
sented to subjects following a box-car design. Each task had a duration of 18 s
(corresponding to 9 volumes), and was repeated 10 times, yielding 180 images.
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Fig. 1. (Left): example of the DLS discard mask with the estimated activated regions
and activation mask obtained by dilation of activated regions. (Right): activation profile
used to generate the simulated time series.

3.2 Experiments with Simulated Time Series

Motionless Simulated Time Series: The evaluation of the different registra-
tion methods is first performed using an artificial time series designed to simulate
an activation process in the absence of subject motion. This was done by dupli-
cating a reference image forty times and adding an activation-like signal change
to some voxels in order to mimic a cognitive activation process. The activation
time profile is shown in Figure 1 (right).

The added activation pattern was obtained using SPM99, after resampling
the first actual time series with LS1 motion estimates (the activation pattern has
a size of 6.7% of the brain and the mean activation level was set to 2% of brain
mean value). To simulate the effects of thermal noise, Rician noise was added to
the dataset by applying Gaussian noise (standard deviation of 2% of the mean
brain value) to both the real and imaginary components. The four registration
methods are then applied. For each registration method, we also compute the
Pearson’s correlation coefficient of the 6 estimated motion parameters with the
cognitive task profile. For the DLS method, the activation mask was obtained
by statistical inference of the resampled simulated time series, according to [5].

The results for the simulated time series are presented in Figure 2. One can
see that the DLS and the SRA registration methods can effectively reduce the
bias in motion estimates introduced by the presence of activation. Substantial
reductions in the correlation coefficients can also be observed in Table 1 (left).
Simulated Time Series with True Correlated Motion: The elaboration
of this simulated time series is similar to the previous one, except that true
activation-correlated motion was added. This is not an uncommon situation in
real studies (for instance, if the subject is asked to speak) and, in fact, the
consequences of a poor alignment may be disastrous in this situation. The simu-
lated true correlated motion, which comprises translations in 2 and y directions,
follows the same profile as the activation, with maximum amplitude in both di-
rections of 2 mm. In order to minimize interpolation-related artifacts, Fourier
interpolation in k-space was used, which is in accordance with the 2-D (z — y
plane) signal acquisition process.
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Fig. 2. Registration errors for the parameters t, and r, for the motion-free simulated
time series. Graphs refer to LS1 and LS2 (left) and to DLS and SRA methods (right).

Results are presented in Figure 3 by subtracting the true motion from the cal-
culated motion-correction parameters and show that both DLS and SRA meth-
ods are significantly robust to activation presence. The summary of correlation
coefficients is presented in Table 1 (right).

param. LS1 LS2 DLS SRA LS1 LS2 DLS SRA
ta 0.12 0.13 0.06 0.10 0.26 0.04 0.10 0.10
ty 0.94 0.93 0.19 0.30 0.94 0.94 0.13 0.00
t, 0.93 0.76 0.25 0.11 0.92 0.68 0.50 0.07
Tz 0.92 0.91 0.14 0.16 0.91 0.94 0.21 0.30
Ty 0.26 0.04 0.16 0.18 0.43 0.01 0.37 0.23
T2 0.33 0.48 0.17 0.28 0.23 0.24 0.30 0.22

Table 1. Correlation values for the motionless simulated time series (left), and for the
simulated time series with true activation-correlated motion (right).

3.3 Experiments with the Real Time Series

The four registration methods were also applied to three actual time series.
For these datasets, the activation profile used to compute cross-correlation was
obtained by convolving the task timing with the SPM99 hemodynamic model.
A moving average was removed from the estimated motion parameters before
computing the correlation in order to discard slow motion trends. In the case of
the DLS method, the number of activated voxels in the three mask comprised,
respectively, 19%, 22% and 18% of the brain size.
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Fig. 3. Registration errors for the parameters ¢, and r, for the simulated time series
with true correlated motion (true motion was removed). Graphs refer to LS1 and LS2
(left) and to DLS and SRA methods (right).

The results obtained with the three actual time series also indicate a reduc-
tion in the correlation between the motion estimates and the activation paradigm
for the DLS and SRA. This is particularly visible in the ¢, (and r;) parameter
(see Figure 4). Correlation values are presented in Table 2.

For the first actual time series, one can see that the different methods do
not generally agree in the estimation of 7, (and r;) parameter (see Figure 4).
This effect, which is also observed for the other two time series, may be due to
the fact that the methods do not share the same computational framework, as
mentioned above.

param. LS1 LS2 DLS SRA

LS1 LS2 DLS SRA

LS1 LS2 DLS SRA

ts 0.27 0.24 0.27 0.05 0.17 0.25 0.24 0.11 0.36 0.38 0.40 0.08
ty 0.65 0.49 0.17 0.05 0.57 0.51 0.27 0.16 0.67 0.47 0.29 0.05
t. 0.46 0.14 0.14 0.31 0.63 0.32 0.29 0.15 0.64 0.42 0.11 0.01
Tz 0.72 0.72 0.10 0.09 0.72 0.73 0.37 0.17 0.69 0.69 0.05 0.00
Ty 0.02 0.03 0.05 0.12 0.05 0.13 0.16 0.22 0.01 0.34 0.04 0.07
T2 0.01 0.12 0.13 0.03 0.20 0.40 0.03 0.09 0.38 0.31 0.17 0.03

Table 2. Correlation values for the three real time-series.

4 Discussion

The problem of minimizing the bias introduced by the presence of activation is of
particular importance due to the use of high field magnets (> 3T"), which increase
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Fig. 4. Detrended registration parameters ¢, and r, for the first actual time series.
Graphs refer to LS1 and LS2 (left) and to DLS and SRA methods (right).

activation amplitude. The work presented in this paper shows that the SRA and
DLS methods seem suitable for the problem of motion compensation of FMRI
studies, even in a situation where true activation-correlated subject motion is
present. Indeed, this is an important issue when assessing the robustness of a
registration method. The explanation is twofold: the first deals with the fact that
interpolation errors during registration could be confounded with an activation-
like bias; the second, to the well known fact that registration error (generally)
increases with the initial misalignement.

The three actual time series used in this work were selected from among
14 subjects because they clearly presented a strong correlation with activation
paradigm. Nevertheless, the true motion for these subjects is unknown and may
or may not be correlated to the stimulus. However, the results obtained from
the experiments performed in this paper clearly support the idea that the bias
in motion estimates was due, at least in part, to presence of activation. Indeed,
incorporating the activation profile into the SRA method or discarding about
20% of the voxels in the DLS method substantially reduces the correlation with
the task.

A few plots obtained from the actual data show a disagreement between the
different registration methods. In our opinion, this situation may stem from the
fact that the time series include spatial distortions induced by the fast acquisi-
tion scheme. Indeed, there is an interaction between these distortions and head
movement and therefore, the rigid registration approach cannot perfectly align
the time series. In such ill-posed situations, similarity measures are prone to sev-
eral local minima, which are due to local good matches between object features,
possibly caused by the fact that both methods rely on different interpolation
methods. This may explain why the two different computational frameworks



sometimes provide slightly different solutions for the rotation parameters for
LS1 and LS2.

The success of the SRA method described in this paper calls for the devel-
opment of integrated methods mixing motion estimation, activation detection
and distortion correction. Like activation detection, however, distortion correc-
tion may require additional information, such as a magnetic field phase map
obtained from the MR scan [9], adding another level of complexity because this
phase map may depend on the head position in the scanner.

5 Conclusion

During the last decade, numerous general purpose similarity measures have been
proposed to tackle medical image registration problems. They have led to a lot
of success with important impact on neuroscience and clinical applications. The
assumptions underlying these similarity measures, however, often neglect some
features specific to FMRI data, leading to the kind of bias mentioned in this
paper. In our opinion, tuning registration methods to account for these features,
as demonstrated for the DLS and SRA methods, will be a necessary and fruitful
endeavour.
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