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ABSTRACT

Ilyas, Ihab F. Ph.D., Purdue University, August, 2004. Rank-aware Query Process-
ing and Optimization. Major Professors: Ahmed K. Elmagarmid and Walid G.
Aref.

This dissertation focuses on supporting ranking in relational database systems

through a rank-aware query processing and optimization framework. We introduce

ranking algorithms and operators to be adopted by current relational query engines

and we provide a cost-based query optimization technique that integrates the pro-

posed operators in practical relational query processors. In particular, we introduce

two rank-join algorithms. The first algorithm joins multiple ranked inputs on key

attributes and is realized as the binary key rank-join query operator KRJN. The

second rank-join algorithm is more general and joins multiple ranked inputs on gen-

eral join conditions. The second algorithm is realized in two binary query operators;

HRJN and HRJN*. Our rank-join algorithms make use of the individual orders of

the input relations. The join results are ordered on a user-specified scoring function.

The idea is to rank the join results progressively during the join operation. We ad-

dress several practical issues and optimization heuristics to integrate the new join

operators in practical query processors.

To make these operators practically useful, we introduce a rank-aware query

optimization framework that fully integrates rank-join operators into relational query

engines. The framework is based on extending System R dynamic programming

algorithm in both enumeration and pruning. We define ranking as an interesting

property that triggers the generation of rank-aware query plans. We introduce a

probabilistic model for estimating the input cardinality, and hence the cost of a

rank-join operator. To our knowledge, this work is the first effort in estimating the
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needed input size for optimal rank aggregation algorithms. Costing ranking plans,

although challenging, is key to the full integration of rank-join operators in real-world

query processing engines.

We experimentally evaluate our rank-join operators and optimization framework

by modifying the query optimizer of an open-source database management system.

The experimental evaluation of our approach compares recent algorithms for joining

ranked inputs and shows superior performance for our techniques. The experiments

also show the validity of our framework and the accuracy of the proposed estimation

model.
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1 INTRODUCTION

This dissertation studies supporting ranked retrieval in database systems. In ranked

retrieval, answers to user queries are reported (and computed) in an order that

respects specific user criteria. Example of ranked retrieval support is producing the

top k answers to a similarity query in multimedia databases.

In this chapter, we begin by highlighting the bigger picture of integrating infor-

mation retrieval technology in database systems. Next, in Section 1.2, we motivate

(using real examples) for the need to support ranked retrieval in database systems

through efficient handling of ranking queries. In Section 1.4, we give formal defini-

tions of two types of ranking queries: the top-k selection and the top-k join queries.

We give an overview of our solution to support ranked retrieval in Section 1.5. We

summarize the main contributions of the dissertation in Section 1.6. Section 1.7

gives an outline for the rest of the dissertation.

1.1 The Integration between Databases and Information Retrieval

Information retrieval (IR) is concerned with documents (objects) that are likely

to be relevant to the user’s need as expressed in his request [1]. A major development

step in an IR system usually involves selecting a ranking function that determines the

extent to which a document is relevant to a query [2]. On the other hand, database

systems (DBMS) are based on boolean logic and traditionally supports a different

kind of retrieval than those of IR systems. Most of the database systems now try to

extend their applicability to support multimedia retrieval, digital libraries, keyword

search in relational data and mark-up languages. Hence, the distinction between

database systems and IR becomes less obvious. In many cases, an information system

that combines the capabilities of both IR and database systems is the only efficient
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solution. For many years, combining the advantages of both worlds, databases and

information retrieval systems, has been the goal of many researchers. For example,

the QUIQ engine [3] is a hybrid IR-DB system that combines the desirable features

from IR and DB, and many commercial systems are adding capabilities for keyword

search and handling XML documents [4]. Unfortunately, current database systems

do not have a sophisticated notion of relevance and no efficient retrieval based on

ranking.

One approach towards integrating databases and IR is to introduce IR-style

queries as a challenging type of database queries. The new challenge requires several

changes that vary from introducing new query language constructs to augmenting

the query processing and optimization engines with new query operators. It may

also introduce new indexing techniques and other data management challenges.

1.2 Ranking Queries

A ranking query (also known as top-k query) is an important type of queries that

allows for supporting IR-style applications on top of database systems. Emerging

applications that depend on ranking queries warrant efficient support of ranking

queries in real-world database management systems. For example, in the context

of the web, the main applications include building meta-search engines, combining

ranking functions and selecting documents based on multiple criteria [5]. Efficient

rank aggregation is the key to a useful search engine. In the context of multimedia

and digital libraries, an important type of query is similarity matching. Users often

specify multiple features to evaluate the similarity between the query media and the

stored media. Each feature may produce a different ranking of the media objects

similar to the query, hence the need to combine these rankings, usually, through

joining and aggregating the individual feature rankings to produce a global ranking.

Similar applications exist in the context of information retrieval and data mining.
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Most of these applications have queries that involve joining multiple inputs, where

users are usually interested in the top-k join results based on some score function.

The answer to a top-k join query is an ordered set of join results according to some

provided function that combines the orders on each input.

The following examples illustrate possible scenarios for top-k join queries and

highlight their challenges to current relational database systems.

Example 1.2.1 Consider a video database system where several visual features are

extracted from each video object (frames or segments). Example features include

color histograms, color layout, texture, and edge orientation. Features are stored

in separate relations and are indexed using high-dimensional indexes that support

similarity queries. Suppose that a user is interested in the top 10 video frames most

similar to a given query image based on color. The top-k query is translated into a

similarity query (a nearest-neighbor query) using the high-dimensional index on the

color feature. Only the top 10 results are presented to the user.

We call the previous query a single-feature or a single-criterion ranking. Answer-

ing single-criterion ranking query does not require any join. A database system that

supports approximate matching ranks the tuples depending on how well they match

the query according to some similarity measure.

Example 1.2.2 In Example 1.2.1, suppose that the user is interested in the top

10 video frames most similar to the given query image based on color and texture

combined. The user also provides a function for how to combine the ranking according

to each feature in an overall ranking. For example, the global rank of a frame =

0.5 × rank(color) + 0.5 × rank(texture), where rank(F ) of a frame (v) is the rank

of v among all video frames with respect to the similarity of v to the query image,

based on Feature F .

We refer to the query in Example 1.2.2 as a multi-criteria ranking query, or

simply a top-k join query. Unlike single-criterion ranking, in top-k join queries, the
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database query processor combines (joins) the individual rankings into one global

ranking by applying the provided rank-combining function.

Example 1.2.3 Consider a user interested in finding a location (e.g., city) where

the combined cost of buying a house and paying school tuition in that location is

minimum. The user is interested in the top five least expensive places. Assume that

there are two external sources (databases): Houses and Schools that can provide

information on houses and schools, respectively. The Houses database can provide a

ranked list of the cheapest houses and their locations. Similarly, the Schools database

can provide a ranked list of the least expensive schools and their locations.

A näıve way to answer the user query in Example 1.2.3 is to retrieve two lists:

a list of the cheapest houses from Houses and a list of the cheapest schools from

Schools. The user then “joins” the two lists based on location. A valid pair is a

house and a school in the same location. For all the join results, the user computes

the total cost of each pair, e.g., by adding the house price and the school tuition

for five years. The five cheapest pairs constitute the final answer to the user query.

Unfortunately, the user has to “guess” the size of the input lists that will produce

five valid matches. If, after the join operation, there are fewer than five join results,

the whole process needs to be restarted with larger input sizes.

In all previous examples, answering the top-k join query can be prohibitively

expensive and requires complex join and sorting operations on large amounts of

input data.

Efficient processing of ranking queries gained the attention of many researchers

and database vendors. For example, strategies for answering top-k selection queries

over relational databases have been introduced in [6] and were prototyped on top of

Microsoft SQL Server. In [6], top-k selection queries are mapped to range queries with

an adaptable range parameter to produce the top-k results. Other techniques that

maintain materialized views or special indexes to enhance the response time of top-k

queries are introduced in [7–9]. Although these techniques enhance the database



5

system performance in answering top-k queries, they are implemented either at the

application level or outside the core query engine. Hence, processing and optimizing

top-k queries lose the benefit of true integration with other basic database query

types. We further discuss related work on efficient handling of top-k queries in

Chapter 2.

1.3 Real-life Application

The research conducted in this dissertation was primarily motivated by the video

database management system, VDMBS, developed at Purdue [10]. In VDBMS, hours

of video data are stored inside the database. Visual (physical) features are extracted

from the video objects on different levels (single video frame or a video segment)

and stored in the database as well. Example features include color histograms, tex-

ture, edge orientation, and camera motion. Features are stored as multi-dimensional

vector data, e.g, color histograms are stored as 32-dimensions vector data.

One important type of queries in VDBMS is similarity query by example; the user

provides an image or a video segment and requests the top k video objects (frames or

segments) that are most similar to the query object, based on one or multiple visual

features. The scenario is very similar to the scenario described in Examples 1.2.1

and 1.2.2.

VDBMS is built using PREDATOR [11] and Shore [12], and we have provided

support for single-feature top-k queries through the implementation of high-dimensional

indexing techniques on the storage manager level. We implemented GiST [13]

in shore as our indexing technique, built high-dimensional indexes on individual

features, and implemented a nearest-neighbor scan operator on top of these in-

dexes. Single-feature similarity query is implemented as an execution of the nearest-

neighbor scan operator on this particular feature index. Figure 1.1 gives example

single-feature similarity queries based on color histogram, texture and edge orien-
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tation. The top 4 answers for each feature is reported using the high-dimensional

index on this particular feature.

Figure 1.1. Example Single and Multi-feature Queries in VDBMS

To support multi-feature queries, we first experimented with the two basic tech-

niques available in current database technology. In the first approach, we mapped

a multi-feature top-k query to a SQL query that joins the output of multiple single-

feature queries (based on the object id), and then sorts the join results based on a

combined score (computed according to some combining function, e.g., a weighted

sum). This approach, although simple, did not scale with respect to both the num-

ber of features and the database size. For example, a 4-feature top-k query took

over 2 hours to complete. The main problem is that sorting is a blocking operation

that requires full computation of the join process. Although the input to the join is

sorted (ranked) on the individual features, this information cannot be exploited to

the join operation in current database system implementation. Hence, sorting the

join results becomes necessary to produce the top k answers. The second approach

is to sequentially scan all the database objects, compute the score of each object

according to each feature, and then combine the scores into a total score for each

object. The second approach also suffers from scalability problem with respect to

the database size and the number of considered features.
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In this dissertation, we show how to modify the query engine of VDBMS to

be rank-aware. The new processing paradigm achieves significant performance gain

by cutting down the execution time by orders of magnitude as we show in our

experiments.

1.4 Query Model

In this section, we formally define our top-k query model. As mentioned earlier

in the examples, we distinguish between two types of top-k queries: top-k selection

and top-k join queries.

Definition 1.4.1 Top-k Selection Query: Consider one relation R. Each tuple in

R has n attributes A1, . . . , An, and there are m scores, s1, . . . , sm defined on these

attributes (e.g., s1 = A1 and s2 = A2 + A3). The top-k selection query selects the

top-k tuples (objects) from R with the largest combined score s = f(s1, . . . , sm), where

f is some monotone scoring function.

A possible SQL-like notation for expressing a top-k selection query is as follows:

SELECT some attributes

FROM R

WHERE Selection Condition

ORDER BY f(s1, . . . , sm)

STOP AFTER k;

Definition 1.4.2 Top-k Join Query: Consider a set of relations R1 to Rm. Each

tuple in Ri is associated with some score that gives it a rank within Ri. The top-k

join query joins R1 to Rm and produces the results ranked on a total score. The total

score is computed according to some function, f , that combines individual scores.

Note that the score attached with each relation can be the value of one attribute or a

value computed using a predicate on a subset of its attributes.

A possible SQL-like notation for expressing a top-k join query is as follows:
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SELECT *

FROM R1, R2, . . ., Rm

WHERE join condition(R1, R2, . . . , Rm)

ORDER BY f(R1.score, R2.score, . . . , Rm.score)

STOP AFTER k;

The following query (Query Q1) is an example of a top-k join query that follows

the template in Definition 1.4.2, expressed in SQL99.

Q1: WITH RankedABC as (

SELECT A.c1 as x ,B.c2 as y, rank() OVER

(ORDER BY (0.3*A.c1+0.7*B.c2)) as rank

FROM A,B,C

WHERE A.c1 = B.c1 and B.c2 = C.c2)

SELECT x,y,rank

FROM RankedABC

WHERE rank <=5;

where A, B and C are three relations and A.c1,B.c1,B.c2 and C.c2 are attributes

of these relations.

Top-k selection can be modeled as a special case of top-k join. One way of

evaluating a top-k selection query as a top-k join query is to vertically partition R

into m relations R1, . . . , Rm. Relation Ri has the attributes necessary to compute

the score si. For example: R1 = (oid, A1) and R2 = (oid, A2, A3). In this case, the

join condition is an equality condition on key attributes. Despite this observation,

top-k selection query needs to be handled separately due to the fact that many of the

ranking queries are top-k selection. Hence, we need an efficient solution to handle

this type of queries.
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1.5 Our Solution to Integrate Ranking in a DBMS

Rank aggregation algorithms can be implemented in a database system using ta-

ble functions or application-level programs. (i.e., outside the query engine). SQLtable

functions [14] are examples of this type of implementation. Since there is no straight-

forward method for pushing other query predicates into table functions [15], the

performance of this query is severely limited and the approach does not give enough

flexibility in optimizing the issued queries.

Our solution to support ranked retrieval in database systems is through encap-

sulating ranking algorithms in physical query operators that can be part of query

execution plans. We call the new operators rank-join operators. The new operator

encapsulates the rank-join algorithm in its GetNext operation; each call to GetNext

reports the next top element from the ranked inputs. Integrating rank-join algo-

rithms as physical join operators has the following advantages:

• The ranking query is under the optimizer’s control; best ranking algorithms

and strategies can be chosen based on the estimated cost and other execution

environment variables.

• Ranking operators can be shuffled with other operators in a query evaluation

plan for better performance (e.g., pushing down predicates and projections).

This flexibility is not possible when ranking is implemented as a black box in

a user-defined function.

• The ranking functionality is general enough and highly applicable that war-

rants efficient implementation as a core query operator. This native support

of ranking greatly simplifies the development of many emerging applications,

by pushing the ranking logic inside the database engine.

Using traditional join operators to answer a ranking query will result in the

execution plan in Figure 1.2. The blocking sorting operator on top of the join
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is unavoidable. If the inputs are large, the cost of this plan can be prohibitively

expensive.

i

f(score  , score   , ...,score )
1 2 m

Top(k)
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Figure 1.2. Existing Techniques for Ranking in a Query Plan

The biggest advantage of encapsulating a ranking algorithm in a physical query

operator is that ranking can be adopted by practical query engines. The query opti-

mizer will have the opportunity to optimize a ranking query by integrating the new

operator in ordinary query execution plans. Figure 1.3 gives alternative execution

plans to rank-join three ranked inputs.

: The proposed rank−join operator
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Figure 1.3. Alternative Execution Plans to Rank-join Three Ranked Inputs
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1.6 Contributions

The main contributions of this dissertation are as follows:

• We show that supporting ranking as a basic database functionality enables

many key applications on top of current database systems. We show the advan-

tages of supporting ranking on the relational operator level inside the database

engine in contrast to implementing ranking algorithms in the application level.

• We introduce two rank-join algorithms to produce ranked join results according

to some user-defined function. The first algorithm extends an existing rank ag-

gregation algorithm to allow for pipelining. The second algorithm is the most

general algorithm so far to join ranked inputs under arbitrary join conditions.

We provide complexity analysis and optimality proofs for the proposed algo-

rithms.

• We introduce a family of physical binary join operators that implement the

rank-join algorithms. The operators are pipelined and follow the same inter-

face of other relational query operators. Hence, the new rank-join operators

can be easily integrated within query execution plans. We address several op-

timization issues and practical aspects in integrating rank-join operators in

pipelined query execution plans.

• The dissertation also introduces a cost-based optimization framework that in-

tegrates the proposed rank-join operators in practical query processors. The

rank-aware query optimization framework is based on extending the System

R dynamic programming algorithm in both enumeration and pruning. We

define ranking as an interesting property that triggers the generation of rank-

aware query plans. Unlike traditional join operators, optimizing for rank-join

operators depends on estimating the input cardinality of these operators. We

introduce a probabilistic model for estimating the input cardinality, and hence
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the cost of a rank-join operator. To our knowledge, this work is the first effort

in estimating the needed input size for optimal rank aggregation algorithms.

We experimentally evaluate the performance of the introduced operators and

the accuracy of the cost estimation model. The results prove the validity of our

approach and show the advantage of deploying our technique in a database system

prototype. For example, in a multimedia retrieval application, using our rank-aware

query processing framework achieved orders of magnitude enhancement in query

response time.

1.7 Summary and Outline

Efficient handling of ranking queries in database systems enables many key ap-

plications in multimedia, web databases, information retrieval and other emerging

applications. Rank-aware query processing and optimization aim at supporting rank-

ing as a basic functionality on the query engine level. In this chapter, we introduced

definitions for two variants of top-k queries. We briefly summarized our contributions

in integrating ranking in database query processing through introducing rank-aware

join algorithms and operators, and providing a cost-based optimization framework

that generates rank-aware query execution plans.

The rest of this dissertation is organized as follows. Chapter 2 highlights some re-

lated work and necessary background, and gives a summary of some current ranking

algorithms. Chapter 3 presents our solution for answering top-k selection queries.

We introduce a new rank-join query operator named KRJN along with some op-

timization heuristics. Chapter 3 also gives an experimental evaluation of KRJNİn

Chapter 4, we present our solution for answering general top-k join queries. We pro-

vide the necessary correctness and optimality proofs and address several optimization

heuristics of two new rank-join operators HRJN and HRJN*. We conclude Chap-

ter 4 by a performance evaluation of the two rank-join operators and compare their

performance with a recent algorithm to join multiple ranked inputs. Chapter 5 de-
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scribes our rank-aware query optimization framework. The optimization framework

includes a novel cost model to estimate the input cardinality of rank-join operators.

We conclude in Chapter 6 by a summary and final remarks.

Parts of this dissertation have been published in conferences and journals; the new

proposed rank-join query operators and their engineering details have been published

in VLDB-2002 [16], VLDB-2003 [17], and the VLDB Journal [18]. The rank-aware

query optimization framework is published in ACM SIGMOD-2004 [19].
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2 BACKGROUND AND RELATED WORK

In this chapter, we present an overview of the state-of-the-art techniques for efficient

evaluation of top-k queries. We discuss different alternatives to answer top-k selection

queries and top-k join queries. One important technique is rank aggregation, which

we build upon later in this dissertation. We give a theoretical background for rank

aggregation methods and introduce a taxonomy of rank aggregation algorithms based

on the generality of the join conditions among rankings and on the assumptions made

on the available access methods. For the purpose of self containment, we give the

necessary background information on practical relational join operators and cost-

based query optimization. We rely on these concepts in describing our contributions

later in this dissertation.

This chapter is organized as follows. Section 2.1 gives an overview of the different

approaches proposed in the literature to efficiently answer top-k queries. A brief

theoretical background on voting, rank aggregation and ranking distances is given

in Section 2.2. In Section 2.3, we give an overview of rank aggregation algorithms

recently proposed in the context of database applications. In Sections 2.4 and 2.5,

we provide the necessary background information for the ripple join algorithms and

cost-based query optimization, respectively. Section 2.6 summarizes the chapter.

2.1 Approaches for Evaluating Top-k Queries

In this section, we overview and compare the basic approaches of evaluating top-k

selection and top-k join queries as defined in Section 1.4.

We can identify three basic approaches for efficient evaluation of top-k selection

queries:
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• Filter/Restart In this approach, a top-k selection query is mapped to a multi-

dimensional range query [6, 20, 21]. The dimensions of the space are the score

attributes. If the filtering is too selective and less than k results are produced,

the query needs to be “restarted” to compute the rest of the results. Challenges

include quantifying and minimizing the risk of restarts and optimizing top-k

queries that follow the filter/restart model [22]

• Rank Aggregation The rank aggregation method maps a top-k selection query

to aggregating multiple ranked lists. Several algorithms have been introduced

in the literature [16,23–28]. Later in this chapter, we present a new taxonomy

that put these algorithms under one framework. The proposed taxonomy of

rank aggregation algorithms gives better understanding of the difference and

the applicability of these algorithms.

• Ranking Indexes and Ranking Views Using indexes and materialized views is

another approach for enhancing the performance of frequent similar top-k se-

lection queries. Example prototypes that follow this approach are PREFER [8]

and the Onion technique [7].

Similarly, we can identify two major approaches for efficiently evaluating top-k

join queries.

• Rank Aggregation New rank aggregation algorithms have been developed

recently to cover general join condition among the input ranked lists [17,28,29].

We present these algorithms and show the common abstract idea behind these

algorithms.

• Ranking Indexes Recently, the use of indexes was introduced to enhance the

performance of top-k join queries [9]. We go through the details of this ap-

proach later in this chapter.

We summarize the differences among these approaches as follows:
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• The filter/restart method is an easy-to-implement and read-to-go solution. It

builds on the available support of range query processing. In principle, no need

to change the core query engine implementation; the mapping is done on the

application level. The main disadvantage of this approach is the difficulty of

coming up with a “good” range parameter for the range query. A conservative

range that guarantees no restarts can produce too many results that lead to

inefficient execution. On the other hand, a more aggressive range choice with

the probability of restarts can cause multiple executions of the same query

to get the top-k answers. Although there have been studies to minimize the

restarts [21,22], the risk of restarts (for aggressive range choices) or generating

too many false intermediate results (in conservative range choices) can com-

promise the efficiency of this approach. Moreover, most of the implantations

of this approach assume the availability of distribution information (e.g., his-

tograms) on the scores to estimate the range. Unfortunately, in many top-k

applications, the scores are not available offline, rather, they are progressively

computed during execution. Another disadvantage is the static nature of this

approach; the filter/restart method assumes that k is known apriori, and the

query needs to be reissued when more than k results are required, i.e., the

approach is not incremental.

• The rank aggregation method can be implemented both at the application level

(e.g., as a user-defined function) or at the query engine level (e.g., in terms of

query operators). The main advantages of this technique are:

– Most of the algorithms are incremental, i.e., k does not need to be know

beforehand; the rank aggregation algorithm can produce the next top

answer building on the current algorithm state (intermediate results).

– Rank aggregation is deterministic, i.e., the output is exactly the top k

answers. Hence, there is no need to restart the query as in the filter/restart

method.
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– A notion of optimality can be defined that guarantees that rank aggrega-

tion algorithm do not retrieve more inputs than necessary. Hence, we can

define some performance guarantees.

In this chapter and in the rest of the dissertation we concentrate on the rank

aggregation approach as an efficient way to evaluate top-k queries. In partic-

ular, we adopt the approach of implementing rank aggregation on the engine

level in terms of query operators [16, 17, 19].

• Unlike the two previous methods (filter/restart and rank aggregation), the

index and materialized view approach has a different objective. The main goal

of this approach is to answer top-k queries as efficient as possible when similar

top-k queries are issued with different scoring functions. In the two previous

methods, the query needs to be reevaluated whenever the scoring function has

changed. In the index and materialized view approach, the answers of top-k

queries are materialized for different scoring functions to facilitate answering

new top-k queries with different scoring functions. We view the indexing and

materialized view approach as an orthogonal technique that can be used in

tandem with our work in rank-aware query processing and optimization.

2.2 Voting and Rank Aggregation

In this section, we give a more detailed overview of rank aggregation. We start

by a historical and theoretical background on voting and rank aggregation methods,

then we present a taxonomy of current rank aggregation algorithms.

2.2.1 Condorcet Voting

The problem of voting and rank aggregation goes back to at least two centuries

when Marie Jean Antoine Nicolas Caritat, Marquis de Condorcet (1785) [30] intro-

duced an efficient method for conducting elections based on ranked-pairs. The main
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idea is that an election race is broken down into separate pairwise races between pos-

sible pairing of the candidates. Each ranked ballot is then interpreted as a vote in

each of those one-on-one races. If candidate A is ranked above candidate B by a par-

ticular voter, that is interpreted as a vote for A over B. If one candidate beats each

of the other candidates in their one-on-one races, that candidate wins. Otherwise,

the result is ambiguous different procedures are used to resolve the ambiguity.

Figure 2.1 gives an example of a Condorcet voting process for two voters and four

candidates( A, B, C and D). The vote of each voter is represented as a matrix that

gives the preference of that voter in comparing pairs of candidates. Note that the

matrix for Voter 2 did not specify a preference between candidates A and C, i.e., a

total order among candidates is not required. As we will show later, this is a basic

difference between the Condorcet method and other positional ranking methods that

require total order of the candidates.

Figure 2.1. An Example of Condorcet Voting

Many of the existing aggregation methods do not ensure the election of the Con-

dorcet winner, should one exist [5].
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2.2.2 Optimal Rank Aggregation

Given a universe U , an ordered list (or simply, a list) τ with respect to U is a

ranking of a subset S of U , i.e., τ = [x1 > x2 > . . . > xd], with each xi in S, and

> is some ordering relation on S. Also, if i in U is present in τ , let τ(i) denote

the position or rank of i. For a list τ , let |τ | denote the number of elements. By

assigning a unique identifier to each element in U , we may assume without loss of

generality that U = 1, 2, ..., |U |.

In the generic context of aggregating multiple lists that rank a set of objects, the

notion of ”better” depends on what distance measure we optimize. The distance

measure in this case is our way to quantify the difference between two rankings with

respect to S.

Two popular distance measures [31,32] are: (1) The Spearman footrule distance

is the sum, over all elements i in S, of the absolute difference between the rank (posi-

tion) of i in the two lists. Formally, given two lists σ and τ , their Spearman footrule

distance is given by F (σ, τ) =
∑

i |σ(i) − τ(i)|; and (2) The Kendall tau distance

counts the number of pairwise disagreements between two lists; that is, the distance

between two full lists σ and τ is K(σ, τ) = |{(i, j) : i < j, σ(i) < σ(j) ∧ τ(i) > τ(j)}|.

Given lists τ1, . . . , τk, find a ranking σ such that σ is a full list with respect to the

union of the elements of τ1, . . . , τk and σ minimizes K(σ, τ1, . . . , τk). The aggregation

obtained by optimizing Kendall distance is called Kemeny optimal aggregation and

in a precise sense, corresponds to the geometric median of the inputs.

Although Kemeny optimal rank aggregation chooses the Condorcet winner, if one

exists, computing the Kemeny optimal aggregation is NP-Hard even when k = 4 [5].

It has been shown that Kendall distance can be approximated via the Spearman

footrule distance [31]; for any two lists σ, τ , K(σ, τ) < F (σ, τ) < 2K(σ, τ). When

the optimizing criterion is the footrule distance, the result aggregation is footrule

optimal aggregation which can be computed in polynomial time. Although footrule

optimal aggregation does not guarantee the choice of the Condorcet winner, it can



20

be a good approximation of the Kemeny optimal aggregation in the sense that: If σ

is the Kemeny optimal aggregation of lists τ1, . . . , τk, and σ′ optimizes the footrule

aggregation, then: K(σ′, τ1, . . . , τk) < 2K(σ, τ1, . . . , τk)

2.2.3 Borda’s Method and Positional Ranking

Positional rank aggregation methods are perhaps the easiest to compute (linear

time computation). Borda’s method [33] is a positional method in that it assigns a

score corresponding to the position in which a candidate appears within each voter’s

ranked list of preferences, and the candidates are sorted by the sum of their total

score. However, it is proved that positional methods cannot satisfy the Condorcet

criterion. Because of their simplicity, Borda’s rank aggregation is a basic method for

most of practical rank aggregation algorithms introduced in the literature.

2.3 Current Rank Aggregation Algorithms

Table 2.1 summarizes current rank aggregation algorithms and compares their

basic properties. First, Algorithm FA [23] was introduced by Fagin as an efficient

solution to the problem. Algorithms TA [24] (Fagin et al.), Multi-step [25] (Nepal et

al.) and Quick-Combine [26] (Güntzer et al.) are equivalent and are an enhancement

over the FA algorithm. these four algorithms depends on the availability of random

access to the ranked inputs and hence are not pipelined; random access is not possible

when the input arrives as output from another execution of the algorithm in the

query pipeline. They can only be executed on the leaf level of the query evaluation

plan. For example, realizing the FA algorithm in the IBM GARLIC middleware [34]

was limited to a query operator that can exist only on the leaf level of the query

evaluation plan.

Algorithms NRA [24] (Fagin et al.) and Stream-Combine [27] (Güntzer et al.)

do not require random access to the ranked inputs. While Stream-Combine can be

realized easily as a pipelined operator, the NRA algorithm is not pipelined since the
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output does not have exact grades associated with the reported objects. Hence, the

output of the NRA algorithm cannot serve as a valid input to another NRA execution.

The aforementioned algorithms are designed for the top-k selection problem, i.e., they

join (and aggregate) multiple ranked lists according to a “key” join condition.

The J∗ algorithm [29] (Natsev et al.) also does not require random access to the

input and can easily be realized as a pipelined query operator. J ∗ joins multiple

ranked inputs according to a general join condition.

Recently, in [35], the authors introduced Algorithms Upper and Pick for evalu-

ating top-k selection queries over web-accessible sources assuming that only random

access is available for a subset of the sources. Similarly, Algorithm MPro by Chang

and Hwang [28] addresses the expensive probing of some of the object scores in top-k

selection queries. They assume a sorted access on one of the attributes while other

scores are obtained through probing or executing some user-defined function on the

remaining attributes. The authors in [28] introduced an extension to MPro to handle

general join conditions.

Our algorithm, the Rank-join algorithm [17], is the most general rank-aggregation

algorithm introduced so far. Rank-join doe snot require random access and hence

pipelined (although it can exploit random access if available). Rank-join also handles

general join conditions among input rankings.

In the following sections we give the details of two of these algorithms that will

facilitate the description of our proposed techniques in the rest of this dissertation.

In particular, we are interested in this class of rank-join algorithms that do not

require random access to their input streams. Algorithm Stream-Combine is very

similar to the NRA algorithm except for the fact that it requires a reported object

to be seen, through sorted access, in all input streams. The NRA algorithm does

not require this condition, and hence has a faster termination condition as we will

discuss shortly. Hence, we choose to elaborate on the NRA algorithm and the J ∗

algorithm.
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Table 2.1
Rank-join Algorithms

Algorithm Required Random Pipelined Join

Access Condition

FA Yes No key

TA Yes No key

Multi-step Yes No key

Quick-Combine Yes No key

Stream-Combine No Yes key

NRA No No key

J∗ No Yes General

MPro, Upper, Pick Yes No General

Rank-join No Yes General

The NRA Algorithm The NRA algorithm views the database as m input lists

where each list consists of objects associated with grades and objects are sorted in

descending order on these grades. Let t be a weighting function to compute the

overall grade of an object by applying t to all the individual grades of this object.

The NRA algorithm [24] (no-random-access) visits objects from the m input lists

in parallel. At depth d (i.e., when the first d objects have been visited across all

m streams), the bottom values x
(d)
1 , x

(d)
2 , . . ., x(d)

m are maintained as the grades last

seen from each input list. For an object R with l discovered fields x1, . . ., xl, l ≤ m,

we compute the worst grade as W (d)(R) = t(x1, x2, x3, . . . , xl, 0, . . . , 0) and the best

grade as B(d)(R) = t(x1, x2, x3, . . . , xl, xl+1, . . . , xm). Objects encountered thus far

are sorted in descending order according to their worst grade, where ties are broken

using an object’s best grade. If the top k objects are required, and we let M
(d)
k be

the kth largest worst grade, then the algorithm halts when no object outside the top

k objects encountered thus far has a best grade greater than M
(d)
k .
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Using the NRA algorithm directly in the implementation of a pipelined query

operator is complicated by two problems. First, the algorithm depends on a pre-

defined value for k, the number of top results to be retrieved. What we need is

an incremental version of the algorithm which produces the next top object when

needed by the caller. The second problem is that the output from the algorithm

does not have exact grades associated with the output objects. Instead, each object

has a range from worst grade to best grade. This prevents pipelining the operator in

the query plans, since the exact ranks (grades) will be available only from the source

input streams.

The J∗ Algorithm The J∗ algorithm is introduced in [29] by providing the method

GetNext that reports the next top join combination in each call. The algorithm is

based on the A∗ class of search algorithms. As in the A∗ search algorithm, the cost

of the path leading to the final answer is divided into two parts: the first part is the

actual cost encountered thus far, and the second part is an estimate of the cost before

reaching the final answer. The J∗ algorithm works as follows. For each input stream,

a variable is defined whose set of possible values are the tuples from the corresponding

stream. The goal is to find a valid assignment for all the variables that maximizes

the total score, which corresponds to finding the top valid join combination. The

term state is defined as a set of variable assignments, and a complete state is a state

that instantiates all the variables. Otherwise, the state is called a partial state.

To find the next top join combination, the algorithm maintains a priority queue

of partial and complete join results ordered on upper bound estimates of the final

combination scores. At each step, the state on top of the queue is processed in an

attempt to assign one of the unassigned variables by pulling the next tuple from

the corresponding input stream. The algorithm terminates when a complete state

(a valid join combination) appears on top of the priority queue. Table 2.2 gives a

layout of the J* algorithm. The recursive call to GetNext in line 10, and the fact

that the algorithm returns the answer along with the exact combined score, allows

the algorithm to work well with join hierarchies.
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Table 2.2
The J∗ GetNext Operation

J∗: GetNext()

Given: a queue buffer Q

1. LOOP

2. IF Q is Empty

3. RETURN Null

4. head = Q.top.

5. IF head is a complete state

6. RETURN head

7. head2 = a copy head.

8. X = an unassigned variables in head2.

9. IF no tuples available for this stream

10. tuple = stream.GetNext.

11.Assign tuple to X and compute score.

12.IF the assignment is valid

13. Push head2 in Q.

14.Let X in head points to the next tuple in the corresponding stream.

15.Push head into the Q

16. END LOOP

2.4 Ripple Join

Since our new algorithm to handle top-k join queries with general join conditions

depends on the idea of ripple join [36], we present a brief overview of ripple join.

Ripple join is a family of join algorithms introduced in [36] in the context of online

processing of aggregation queries in a relational DBMS. Traditional join algorithms

are designed to minimize the time till completion. However, ripple joins are designed

to minimize the time till an acceptably precise estimate of the query result is avail-
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able. Ripple joins can be viewed as a generalization of nested-loops join and hash

join. We briefly present the basic idea of ripple join below.

In the simplest version of a two-table ripple join, one previously-unseen random

tuple is retrieved from each table (e.g., R and S) at each sampling step. These new

tuples are joined with the previously-seen tuples and with each other. Thus the

Cartesian product R × S is swept out as depicted in Figure 2.2.

S SS

R R R

Figure 2.2. Three steps in Ripple Join

The square version of ripple join draws samples from R and S at the same rate.

However, in order to provide the shortest possible confidence intervals, it is often

necessary to sample one relation at a higher rate. This requirement leads to the

general rectangular version of the ripple join where more samples are drawn from

one relation than from the other. Variants of ripple join are: (1) Block Ripple Join,

where the sample units are blocks of tuples of size b (In classic ripple join, b = 1),

(2) Hash Ripple Join, where all the sampled tuples are kept in hash tables in memory.

In this case, calculating the join condition of a new sampled tuple with previously

sampled tuples is very fast (saving I/O). The second variant is exactly the symmetric

hash join [37,38] that allows a high degree of pipelining in parallel databases. When

the hash tables grow in size and exceed memory size, the hash ripple join falls back

to block ripple join.
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2.5 Cost-based Query Optimization

The optimizer is the component in the query processing engine that transforms

a parsed input query into an efficient query execution plan. The execution plan is

then passed to the run-time engine for evaluation. The task of a query optimizer is

to find the best execution plan for a given query. This task is usually accomplished

by examining a large space of possible execution plans and comparing these plans

according to their “estimated” execution cost. To estimate the cost of an execution

plan, the optimizer adopts a cost model that takes several inputs, such as the es-

timated input size and the estimated selectivity of the individual operations, and

estimates the total execution cost of the query. Most of the different generated plans

come from different organizations of the join operations. In general, the larger the

space of possible plan, the higher the chance that the optimizer will get a better

execution plan.

2.5.1 Plan Enumeration Using Dynamic Programming

Since the join operation is implemented in most systems as a diadic (2-way)

operator, the optimizer must generate plans that transform an n-way join into a

sequence of 2-way joins using binary join operators. The two most important tasks of

an optimizer are to find the optimal join sequence as well as the optimal join method

for each binary join. Dynamic programming (DP) was first used for join enumeration

in System R [39]. The essence of the DP approach is based on the assumption that

the cost model satisfies the principle of optimality, i.e., the subplans of an optimal

plan must be optimal themselves. Therefore, in order to obtain an optimal plan for

a query joining n tables, it suffices to consider only the optimal plans for all pairs of

non-overlapping m tables and n − m tables, for m = 1, 2, ..., n − 1.

To avoid generating redundant plans, DP maintains a memory-resident structure

(referred to as MEMO, following the terminology used in [40]) for holding non-pruned

plans. Each MEMO entry corresponds to a subset of the tables (and applicable pred-



27

icates) in the query. The algorithm runs in a bottom-up fashion by first generating

plans for single tables. Then it enumerates joins of two tables, then three tables,

etc., until all n tables are joined. For each join it considers, the algorithm generates

join plans and incorporates them into the plan list of the corresponding MEMO en-

try. Plans with larger table sets are built from plans with smaller table sets. The

algorithm prunes a higher cost plan if there is a cheaper plan with the same or more

general properties for the same MEMO entry. Finally, the cheapest plan joining n

tables is returned.

Select A.c2
From A,B,C

  and B.c2 = C.c2 ;
Where A.c1 = B.c1

From A,B,C

  and B.c2 = C.c2 
Where A.c1 = B.c1		

Order By A.c2 ;

Select A.c2
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Figure 2.3. Number of Joins vs. Number of Plans

2.5.2 Plan Properties

Plan properties are extensions of the important concept of interesting orders [39]

introduced in System R. Suppose that we have two plans generated for table R, one
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produces results ordered on R.a (call it P1) and the other does not produce any

ordering (call it P2). Also suppose that P1 is more expensive than P2. Normally, P1

should be pruned by P2. However, if table R can later be joined with table S on

attribute a, P1 can actually make the sort-merge join between the two tables cheaper

than P2 since it doesn’t have to sort R. To avoid pruning P1, System R identifies

orders of tuples that are potentially beneficial to subsequent operations for that query

(hence the name interesting orders), and compares two plans only if they represent

the same expression and have the same interesting order. In Figure 2.3(a), we show

a 3-way join query and the plans kept in the corresponding MEMO structure. For

each MEMO entry, a list of plans is stored, each carrying a different order property

that is still interesting. We use DC to represent a “don’t care” property value, which

corresponds to “no order”. The cheapest plan with a DC property value is also stored

in each MEMO entry if this plan is cheaper than any other plan with interesting

orders. Modifying the query to that in Figure 2.3(b), by adding an orderby clause,

increases the number of interesting order properties that need to be kept in all MEMO

entries containing A. By comparing Figure 2.3(a) with Figure 2.3(b), we can see

that the number of generated join plans changes, even though the join graph is still

the same. The idea of interesting orders was later generalized to multiple physical

properties in [41, 42] and is used extensively in modern optimizers. Intuitively, a

physical property is a characteristic of a plan that is not shared by all plans for the

same logical expression (corresponding to a MEMO entry), but can impact the cost

of subsequent operations.

2.6 Summary

In this chapter, we presented an overview of the various proposed approaches

to efficiently evaluate top-k queries. All these techniques are proposed to be imple-

mented on the application level. In summary, there are three main techniques: fil-

ter/restart, rank aggregation and maintaining indexes and materialized views. While
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the first two techniques aim at efficient evaluation of a single top-k query, the in-

dexes and materialized view approach aims at efficient evaluation of top-k queries

by materializing the top-k answers according to several ranking criteria.

Optimal rank aggregation techniques are efficient and incremental approach to

compute top-k queries. We gave a historical and a theoretical background for rank

aggregation methods and we described in detail some of the practical, recently pro-

posed, rank aggregation algorithms. Since we adopt supporting ranking on the query

operator level, we gave an overview of ripple join, a class of physical join operators.

We also described the basic technique of cost-based query optimization that inte-

grates physical query operators in query execution plans.
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3 TOP-K SELECTION ALGORITHMS AND OPERATORS

In this chapter, we introduce a new rank-join algorithm to answer top-k selection

queries (top-k join on key attributes). We provide an efficient implementation of the

algorithm in terms of a physical binary pipelined query operator that can be easily

integrated in current query processors. The introduced algorithm is a modification

of the NRA algorithm [24] to work on ranges of scores instead of exact scores. The

modified algorithm is encapsulated in the rank-join operator, KRJN. We compare

the performance of KRJN with the J∗ algorithm [29].

The rest of this chapter is organized as follows. In Section 3.1 we introduce

the physical pipelined query operator, KRJN. Section 3.2 presents an optimization

heuristic to the basic KRJN algorithm to enhance its performance and scalability

to long query pipelines. A comparison between the J ∗ and KRJN is described in

Section 3.3. The two operators and several optimizations are evaluated through

an empirical study in Section 3.4. Section 3.5 contains a summary of our findings,

recommendations, and concluding remarks.

3.1 The KRJN Operator

The physical query operator, KRJN (Key Rank Join) [16], is a pipelined operator

that implements a modified version of the NRA algorithm in [24].

We propose an incremental, pipelined version of the NRA algorithm that can be

used to implement the GetNext operation of the KRJN operator. We present the

modified algorithm in terms of the KRJN operations Open, GetNext, and Close.

The internal state information needed by the operator consists of a priority queue

which holds the objects encountered thus far. The objects are sorted on worst grade

in descending order, and ties are broken using the best grade (and then arbitrarily for
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ties on the best grades). In order to allow for pipelining, inputs to the algorithm may

be source streams or output streams from other algorithm executions. Therefore,

each object in the input streams is associated with a range of grades from worst

grade w to best grade b (where w = b for exact grades). At depth d (d is the number

of objects retrieved from each input stream), the proposed algorithm maintains the

bottom values b
(d)
1 and b

(d)
2 . The worst grade of an object R is computed as t(w1, w2),

where t is the weighting function and wi is either the worst grade of the object

according to input i, or 0 if the object has not yet been encountered in input stream

i. Similarly, the best grade of an object R is computed as t(b1, b2), where bi is the

best grade of the object according to input stream i, or b
(d)
i if the object has not yet

been encountered in input stream i.

In the Open operation, the operator initializes the internal state information and

opens the left and right child iterators. The Close operation destroys the state

information and closes the input iterators.

The algorithm for the GetNext operation is given in Table 3.1. GetNext is the

core of the rank join operator.

The algorithm in Table 3.1 begins by checking the buffer (priority queue) to see

if an object can be reported. An object can be reported if its worst grade is still

greater than the best grades of all other objects. The maximum best grade for objects

encountered thus far is obtained from the buffer. For objects not yet encountered, a

threshold value can be used as an upper bound of the maximum possible best grade.

The threshold is obtained by applying the weighting function to the best grades of

the last encountered left and right objects. The maximum best grade in the buffer

is maintained so that a scan of the whole buffer is not necessary for each call. To

deal with grade ranges, the algorithm uses the best grades from the input streams

to update the bottom values and to update the best grade of objects in the buffer.

We introduce a heuristic to the KRJN algorithm in Table 3.1 to reduce the

unnecessary ranking overhead at the early stages of the pipeline. We refer to the

problem of performing excessive ranking at the early stages of the query pipeline
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as the local ranking problem. We elaborate on the local ranking problem and the

heuristic to solve it in the next section.

3.2 Optimizing the KRJN Operator

The KRJN as given in Table 3.1 suffers from a computational overhead as the

number of pipeline stages increases. To understand this problem we elaborate on

how KRJN works in a pipeline of 3 inputs assuming three input streams, L1, L2 and

L3. When the top KRJN operator, OP1, is called for the next top ranked object,

several GetNext calls for the left and right children are invoked. According to the

KRJN algorithm described in Table 3.1, at each step, OP1 gets the next tuple from

its left and right children. Hence, OP2 will be required to deliver as many top ranked

objects of L2 and L3 as the number of objects retrieved by L1. These excessive calls

to the ranking algorithm in OP2 result in retrieving more objects from L2 and L3 than

necessary and accordingly, result in larger queue sizes and more database accesses.

One solution is to unbalance the depth step in the operator children. We change

the KRJN GetNext algorithm to reduce the local ranking overhead by changing the

way it retrieve tuples from its children; for each p tuples accessed from the right child

one tuple is accessed from the left child. The idea is to have less expensive GetNext

calls to the left child, which is also an KRJN operator. Using different depths in

the input streams does not violate the correctness of the algorithm [24], but will

have a major effect on the performance. This optimization significantly enhances

the performance of the KRJN operator as will be demonstrated in Section 3.4.2.

Through the rest of the chapter we will call p the balancing factor. Choosing the

right p is a design decision and depends on the data and the order of the input

streams, but a good choice of p boosts the performance of KRJN.

For example, for a typical query with three ranked inputs, we compare between

the total number of accessed tuples by the KRJN operator before and after applying

the heuristic. Also, as a reference, we compare the KRJN operator with a direct
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Table 3.1
The KRJN GetNext Operation

KRJN:GetNext()

1. Threshold = 0;

2. if (Q is not Empty)

3. tuple = Q.Top;

4. W= tuple.WorstGrade;

5. Bmax=Maximum Best Grade in Q-tuple;

6. if (W ≥ Max(Bmax, Threshold))

7. RETURN tuple;

8. LOOP

9. leftTuple = Left.GetNext(depth);

10. rightTuple = Right.GetNext(depth);

11. leftBottom = leftTuple.BestGrade;

12. rightBottom = rightTuple.BestGrade;

13. Threshold = f(leftBottom,rightBottom);

14. Check if tuple were seen before

15. if(tuples exist in Q)

16. Update Worst grade with exact grade and reinsert tuple;

17. For each Object in the queue

18. Update the BestGrade;

19. tuple = Q.Top;

20. W= tuple.WorstGrade;

21. Bmax=Maximum Best Grade in Q-tuple;

22. if(W ≥ Max(Bmax, Threshold))

23. BREAK LOOP;

24. END LOOP;

25. Remove tuple from top of Q;

26. RETURN tuple;
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KRJN KRJN
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Figure 3.1. The Effect of Applying the Heuristic to Solve the Local
Ranking Problem in KRJN

implementation of the NRA Algorithm, the NRA Operator. The NRA operator is

a multi-way rank-join operator. Figure 3.1 shows the number of retrieved tuples for

each case. In the plan in Figure 3.1 (a), p is set to 1 for both KRJN operators.

According to a real data example execution of this query pipeline, the top KRJN

operator retrieves 105 tuples from both children, hence the top 105 tuples are re-

quested from the KRJN child operator, which has to retrieve 448 tuples from each

of its children, for a total of 1001 tuples. In the plan in Figure 3.1 (b), p is set to 3

for the top KRJN operator. While retrieving the same answers, the total number

of tuples retrieved is 739 tuples, which is much less than that of the KRJN before

applying the heuristic since the top KRJN operator requested only 35 tuples from

its left child. The plan in Figure 3.1 (c) shows the number of tuples retrieved by the

NRA operator, which requires 198 tuples from each of its three children for a total

of 594 tuples.

3.3 KRJN vs. J*

Both the J∗ and the KRJN operators implement a joining algorithm that joins

multiple ranked inputs. The two operators are binary and pipelined and can be inte-

grated easily in query evaluation plans. On the other hand, the two operators were
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designed for different problem settings. The KRJN operator requires the existence

of a key as the join attribute. More precisely, the KRJN operator joins two streams

of the same objects ordered differently. In contrast, the J ∗ operator can actually

join different objects under arbitrary joining conditions, and hence can be used in a

wider range of applications. Since it is more general, the J ∗ operator suffers from

larger space requirements in the worst case, as we will show in the next sections.

Both algorithms have proven to be instance-optimal with respect to database access

cost, where instance optimality is a stronger optimality condition defined by Fagin

et al. [24].

In this section we highlight important design differences between the KRJN

operator and the J∗ operator. Two important design aspects of an operator are the

stopping criteria and the space requirements. The stopping condition has a direct

effect on the number of database accesses made by the operator. The goal is to stop

as soon as we have enough information to report the next top-ranked object. The

space requirement is an important design parameter in a database engine, since the

maximum space required by an operator is translated into the quantity of resources

that must be allocated. We conduct a worst case analysis for both the KRJN and

the J∗ operators. For completeness, we also provide a best case analysis on the

buffer size of both operators. The following comparisons are made for the problem

of joining multiple sets of the same objects ordered differently in each ranked input.

For arbitrary join conditions the J∗ operator becomes the only choice.

3.3.1 Stopping Condition

The idea behind the rank-join algorithms is to stop as early as possible, without

the need to actually sort all the streams or visit more objects than needed. The

algorithm implemented by the KRJN operator achieves just that by introducing

the Worst Grade and the Best Grade of an object. The idea is to stop when we

are guaranteed that this object cannot have less overall score than any other object
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in the database, even if not all streams have been seen so far. In contrast, the J ∗

operator requires that an object must be seen in every input stream before reporting

it. This constraint can be seen from the algorithm in Table 2.2; only complete states

on top of the queue can be reported. To illustrate the early stopping criteria of the

KRJN we give the following example. Given two ranked inputs L1 = (R1 : 10, R2 :

5, R3 : 4, R4 : 3) and L2 = (R2 : 5, R3 : 4, R4 : 3, R1 : 1), where each object is

attached to a different score in each list (the scores of R1 are 10 in L1 and 1 in L2).

Let Wi and Bi denote the worst grade and the best grade of object Ri, respectively.

We use a simple monotone function t(a, b) = a+ b to calculate the overall score, and

after two steps by the KRJN operator, the best grade and the worst grade of objects

seen so far are as follows: W1 = 10, B1 = 14; W2 = 10, B2 = 10; and W3 = 4, B3 = 9.

According to the stopping criteria of the KRJN operator, both R1 and R2 can be

reported as the first top objects. Note that object R1 has not been encountered yet

in the input L2 but it is guaranteed to have a worst grade that is larger than the best

grade of any other object. For the same example using the J ∗ operator, R1 cannot

be reported as an output before accessing all objects in the input list L2.

3.3.2 Space Complexity

Rank-join algorithms with no random access suffer from the problem of un-

bounded buffer requirements for tracking the best grade of the objects encountered

so far. Thus, the operator may require bookkeeping tasks for a huge queue contain-

ing these objects before it can report the next object. When comparing the space

requirements of the two operators, a worst case analysis is used to estimate the maxi-

mum size of the buffer that should be reserved in order to correctly report the output

objects. Due to the ability of the J∗ operator to handle general join conditions, it

has to consider more join combinations in the maintained priority queue. Hence,

the space required by the J∗ operator is larger than that required by the KRJN, as

shown in the following subsections and in the performance evaluation in Section 3.4.
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Figure 3.2. Space Complexity of the J∗ Operator

Worst Case Analysis: In the worst case, a rank-join algorithm cannot report any

object unless all objects from the input ranked lists have been seen. Let L1 and L2

be the two source rank lists for objects {R1, R2, . . ., Rn}. For simplicity, let the

grade of an object in a list be n + 1 − rank, let L1 = (R1, R2, R3, . . . , Rn) and

let L2 = (Rn, Rn−1, Rn−2, . . . , R1). The grades of object R1 in lists L1 and L2

are n and 1, respectively. Let the weighting function t(a, b) = a + b, i.e., a simple

monotone function.

In the KRJN Operator, assume we have moved to depth d in the two lists, and

that the objects encountered so far from lists L1 and L2 are (R1, R2, . . . , Rd) and

(Rn, Rn−1, . . . , Rn−d+1), respectively. Our goal is to report the top-most object.

The maximum worst grade value encountered so far is the worst grade of object

R1, computed as W1 = t(n, 0) = n. Hence, R1 is on top of the queue and we can

report it only if the maximum best grade for all other objects is less than W1. The

maximum best grade for objects encountered so far (other than R1) is that of object

R2, computed as B2 = t(n−1, n−d+1) = 2n−d. According to the stopping criteria
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of NRA, we can stop only when 2n− d < n, and that occurs at depth d = n, i.e., we

must move entirely through both lists with a buffer size of n objects.

In the J∗ Operator, the J∗ operator solves a more general problem than the

KRJN, where it can handle arbitrary join conditions. To be able to compare both

operators, we will consider only the case when the join condition is on a key attribute

(for example, self-join). In order to see the space complexity of the operator in dealing

with the input lists L1 and L2, refer to Figure 3.2. In the J∗ algorithm with two input

lists, a state can be either complete, incomplete with one unassigned variable (we will

refer to this state as half-complete), or incomplete with two unassigned variables (we

will refer to this state as incomplete). When processing a half-complete state, two

states are produced. The first state is a complete state, which is inserted only if it

is a valid join combination (when the two variables represent the same object in the

case of self-join). The second state is another half-complete state and it is inserted

in the queue. In Figure 3.2, triangles represent half-complete states, while circles

represent incomplete states. Processing an incomplete state produces two states, a

half-complete state and another incomplete state, and both of them are kept in the

queue. In the example, when L1 and L2 are the two inputs, it is easy to see from

Figure 3.2(a) that all valid half-complete states must be present in the queue before

reporting any objects (all objects have the same global score). When processing

these half-complete states, each state will produce a valid complete state that will

be kept in the queue in addition to another half-complete state that is also inserted

in the queue, yielding a buffer size of 2n− 1 states. Given that each state holds two

tuples, the total buffer size is 4n− 2 tuples, which is larger than that of the KRJN

operator.

Best Case Analysis: For the best case analysis, we compare the two operators

when the two ranked inputs are identical. The KRJN does not need to keep any

reported tuples therefore, the buffer size is always zero. For the J ∗ algorithm, the

maximum buffer size is twice the size of the required results. To see that, we refer

to the previous example with L1 = L2 = (R1, R2, . . . , Rd). Figure 3.2(b) shows
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the type of the states that can be stored in the buffer at the time the object Rk can

be reported. Because the J∗ algorithm has to keep all possible combinations in the

buffer, the buffer will have at least 2k states before reporting the kth object.

3.4 Performance Evaluation

In this section, we experimentally evaluate KRJN through a comparison with

the J∗ algorithm [29]. The experiments are based on our research platform for

a complete video database management system running on a Sun Enterprise 450

with 4 UltraSparc-II processors running SunOS 5.6 operating system. The research

platform is based on PREDATOR [11], the object relational database system from

Cornell University. Shore [12] is the underlying storage manager.

The used data is video visual features stored as high-dimensional vectors that

must be indexed using a high-dimensional indexing scheme. To accommodate the

high-dimensional indexing, we extended the indexing capabilities of Shore by adding

the GiST general indexing framework [13]. We used the GiST implementation of

the SR-tree [43] as the indexing technique. The nearest-neighbor search operator

is implemented as an incremental NN search query on the SR-tree. The following

experiments are conducted on the database table Features, which contains 100,000

records of features extracted from video frames. The feature fields include color

histogram in YUV format (a vector of 32 dimensions), texture tamura (a vector of

16 dimensions) and texture edges (a vector of 9 dimensions). We use the query

evaluation plan, given in Figure 3.3, to evaluate the proposed operators. The plan

has m NN operators on m different visual features. m−1 rank-join binary operators

are used, where the results of one operator are pipelined to the next operator in the

pipeline.

We use the following query to evaluate the performance of the three rank-join

operators:
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SCAN_STOP (k)

Rank−Join (1)

FeatureTable

NN (Feature 1)

Rank_Join (m−1)

NN (Feature m)

FeatureTable

NN (Feature m−1)

FeatureTable

Figure 3.3. The Query Plan Used in the Experiments

Q: Retrieve the k most similar video shots to a given image based on m visual

features.

where m varies from 2 to 6 features and k varies from 5 to 100. Note that the number

of requested results, k is not an input to the rank-join operator. We limit the number

of reported answers to k by applying the Stop-After query operator introduced by

Carey and Kossmann [20, 21]; this is implemented in the prototype. The physical

query operator Scan-Stop is a straightforward implementation of Stop-After and

appears on top of the query plan given in Figure 3.3.

To evaluate the operators, the following performance measures are chosen:

1. The query running time to retrieve the top matching k output results.

2. The size of the buffer maintained by the operator.

3. The number of database accesses (in disk pages).
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While the number of database accesses should give a good indication of the time

complexity of the operator, the experiments show a significant CPU time complexity

difference between the two operators that affect the total running time, especially for

small numbers of inputs as shown by the following experiments. Another interesting

set of experiments shows how ordering of the input streams in the pipeline affects

the performance. This will have a significant impact on query optimization and the

generation of query execution plans for queries involving joining multiple ranked

inputs. In our experiments we study the effect of input streams ordering on both

the KRJN and the J∗ operators.

To compare the two pipelined operators, we implement the non-pipelined version

of the NRA algorithm as a multi-way rank-join operator named NRA. Although

most query optimizers are restricted to binary operators, the performance of the

NRA gives useful insight when comparing the two pipelined operators, and gives a

reference line for the best possible performance to get the required results.

3.4.1 The Effect of Input Ordering

In this experiment we study the effect of input stream ordering in the pipeline on

the performance for both operators. Figure 3.4 gives the performance metrics of the

KRJN operator for 6 possible orderings of the input streams in a query pipeline with

m = 4. Figure 3.5 gives the same metrics for the J ∗ operator. The results show the

sensitivity of the KRJN operator to the ordering of input. This sensitivity can be

explained by the excessive local ranking in the query pipeline, and hence, choosing

which pairs to rank together plays a major role in getting the final results. The

operator J∗ is less sensitive to input orderings due to the guided fewer invocations of

local ranking in the query pipeline. In the experiments in the previous sections, we

use the ordering O1 for both operators. Ordering O1 shows the best performance in

the case of KRJN and the best execution time in the case of J ∗.
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3.4.2 The Effect of the Balancing Factor

The optimization proposed in Section 3.2 has a significant impact on the KRJN

performance and its scalability to long queue pipelines. In Figures 3.7 (a) and

(b) we compare the maximum queue size and the number of accessed pages of the

KRJN operator for different values of p. The case in which p = 1 represents the

unoptimized version of the KRJN. The experiment shows that, for small values of k,

the performance enhances as p increases. For larger values of k, increasing p results

in accessing more tuples from the right child than necessary and hence small values

of p gives a better performance.

We measured the effect of choosing p on the scalability of the KRJN operator.

Figures 3.8(a) and (b) give the maximum queue size and the number of accessed data

pages for different values of m (the length of the pipeline). k is fixed to 20 output

results. Also, we compare the performance of KRJN for different values of p. When

p is variable, p can have a different value in each pipeline stage. For example, p = 1

in the first stage and p = 2 in the second stage, etc. The motivation behind having

different values for p in different pipeline stages is that the cost of accessing the left

child increases as we go up in the query pipeline. A good heuristic is to set p to

depend on the pipeline stage. The figures show that this heuristic gives the best

performance for k = 20. Setting p to 2 enhanced the performance significantly when

compared against the unoptimized version when p = 1.

Choosing the right p is a design decision and depends on the data and the order

of the input streams, but a good choice of p boosts the performance of KRJN.

3.4.3 Real World Data Comparison

Figure 3.6 gives performance comparisons between KRJN (with a balancing

factor p = 2) and J∗ using the best and worst input orderings. We set m = 3, where

m is the number of input sources that give a pipeline of length m − 1. We compare

the best/worst input ordering for KRJN obtained from the previous experiment
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with the corresponding orderings of the J∗ operator. For all orderings, KRJN is

much faster than J∗ because J∗ has to evaluate many unnecessary join combinations

(due to its generality). When comparing the space and I/O complexity, a good

input ordering for KRJN achieves a close I/O and space overhead complexity to the

optimal J∗ algorithm.

3.4.4 The Effect of Pipelining

In this experiment, we evaluate how scalable the two pipelined operators are with

respect to the length of the query pipeline m. By fixing k = 20, the operators KRJN

and J∗ are compared with respect to the three chosen performance metrics given in

Section 3.4. Figure 3.8 compares the performance of the operators KRJN, NRA,

and J∗ as m increases from 2 to 6. Figure 3.8(a) shows that KRJN is an order

of magnitude faster than J∗ with respect to the overall running time. The running

time of J∗ increases drastically with the increase in m making it not scalable for

long query pipelines. The total running time of KRJN is as good as that of NRA

even for long query pipelines. Figures 3.8(b) and (c) show that both the KRJN and

the J∗ operators perform similarly with respect to maximum queue size and number

of database accesses. The figures also show the effect of the pipelining on both

operators as their performance starts to divert from that of NRA as m increases.

3.5 Summary

In this chapter, we introduced a new key-join query operator for efficient evalu-

ation of top-k selection queries. we carried out an extensive performance study to

evaluate our proposed operator against the J ∗ algorithm. Our proposed operator is

an adaptation of the No-Random-Access algorithm. We focused on the use of these

algorithms as binary pipelined query operators, which makes them practical for most

database engines. Several experiments were conducted to illustrate the different per-
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Figure 3.4. The Effect of Input Streams Ordering on KRJN

formance issues and trade-offs. The experiments were in the context of multimedia

retrieval and were performed against a continuous media retrieval prototype.

Our study showed the importance of implementing rank-join algorithms as query

operators. The performance of the KRJN operator is greatly enhanced through

unbalancing the depth step of its inputs to reduce the overhead of local ranking

in the earlier pipeline stages. As demonstrated, the optimized KRJN operator is

superior over the J∗ operator even for large number of ranked inputs. The optimized

KRJN operator is an order of magnitude faster than the J ∗ operator, has less space

requirements, and has a comparable number of disk accesses. The performance
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Figure 3.5. The Effect of Input Streams ordering on J ∗

study also showed that the KRJN operator is more sensitive to the ordering of

the ranked input streams than the J∗ operator, which shows less sensitivity. This

further motivates for the need to optimize rank-join queries as we will demonstrate

in Chapter 5.
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Figure 3.6. Comparing KRJN and J∗ for m = 3
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4 TOP-K JOIN ALGORITHMS AND OPERATORS

In this chapter, we introduce a new rank-join algorithm to answer general top-k join

queries. We provide efficient implementations of the algorithm in terms of physi-

cal binary pipelined query operators that can be integrated easily in current query

processors. The introduced rank-join algorithm is independent of the join strat-

egy and is implemented in two physical rank-join operators, HRJN and HRJN*.

The performance of these rank-join operators is compared against that of the J ∗

algorithm [29]. We start by defining the query model and present our approach to

support evaluating this type of queries in relational query engines.

The remainder of this chapter is organized as follows. Section 4.1 describes

the new rank-join algorithm along with its correctness and optimality proofs. We

present two physical rank-join operators in Section 4.3. We introduce an efficient

optimization heuristic for rank-join execution plans in Section 4.4. In Section 4.5,

we generalize the rank-join algorithm to exploit any available random access to the

input relations. Section 4.6 gives the experimental evaluation of the new rank-join

operator and compares it with alternative techniques. We conclude in Section 4.7

with a summary and final remarks.

4.1 The New Rank-join Algorithm

Current implementations of the join operator do not make use of the fact that

the inputs may be already ordered on their individual scores. Using these individ-

ual orderings, we can perform much better in evaluating the top-k join queries by

eliminating the need to sort the join results on the combined score.

The join operation can be viewed as the process of spanning the space of Carte-

sian product of the input relations to get valid join combinations. An important
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observation is that, only part of this space needs to be computed to evaluate top-k

join queries, if we have the inputs ordered individually.

In this section we describe a new join algorithm, termed rank-join. The algorithm

takes m ranked inputs, a join condition, a combining ranking function f and the

number of desired ranked join results k. The algorithm reports the top k ranked join

results in descending order of their combined score. The rank-join algorithm works

as follows:

• Retrieve objects from the input relations in a descending order of their indi-

vidual scores. For each new retrieved tuple:

1. Generate new valid join combinations with all tuples seen so far from

other relations, using some join strategy.

2. For each resulting join combination, J , compute the score J.score as

f(O1.score, O2.score, . . . , Om.score), where Oi.score is the score of the

object from the ith input in this join combination.

3. Let the object O
(di)
i be the last object seen from input i, where di is number

of objects retrieved from that input, O
(1)
i be the first object retrieved from

input i, and T be the maximum of the following m values:

f(O
(d1)
1 .score, O

(1)
2 .score, . . . , O(1)

m .score),

f(O
(1)
1 .score, O

(d2)
2 .score, . . . , O(1)

m .score),

. . .,

f(O
(1)
1 .score, O

(1)
2 .score, . . . , O(dm)

m .score).

4. let Lk be a list of the k join results with the maximum combined score

seen so far and let scorek be the lowest score in Lk, halt when scorek ≥ T .

• Report the join results in Lk ordered on their combined scores.

The value T is an upper-bound of the scores of any join combination not seen

so far. An object Op
i , where p > di, not seen yet from input i, cannot contribute
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to any join combination that has a combined score greater than or equal an upper-

bound Ti, where Ti = f(O
(1)
1 .score, . . . , O

(di)
i .score, . . . , O(1)

m .score). The value T is

continuously updated with the score of the newly retrieved tuples.

Theorem 4.1.1 Using a monotone combining function, the described rank-join al-

gorithm correctly reports the top k join results ordered on their combined score.

Proof: For simplicity, we prove the algorithm for two inputs l and r. The proof can

be extended to cover the m inputs case. We assume that the algorithm access the

same number of tuples at each step, i.e., d1 = d2 = d. The two assumptions do not

affect the correctness of the original algorithm.

The proof is by contradiction. Assume that the algorithm halts after d sorted

accesses to each input and reports a join combination Jk = (O
(i)
l , O(j)

r ), where O
(i)
l

is the ith object from the left input and O(j)
r is the jth object from the right input.

Since the algorithm halts at depth d, we know that Jk.score ≥ T (d), where T (d)

is the maximum of f(O
(1)
l .score, O(d)

r .score) and f(O
(d)
l .score, O(1)

r .score). Now as-

sume that there exists a join combination J = (O
(p)
l , O(q)

r ) not yet produced by the

algorithm and J.score > Jk.score. That implies J.score > T (d), i.e.,

f(O
(p)
l .score, O(q)

r .score) > f(O
(1)
l .score, O(d)

r .score) (4.1)

and

f(O
(p)
l .score, O(q)

r .score) > f(O
(d)
l .score, O(1)

r .score) (4.2)

Since each input is ranked in descending order of object scores, then O
(p)
l .score ≤

O
(1)
l .score. Therefore, O(q)

r .score must be greater than O(d)
r .score. Otherwise, In-

equality (4.1) will not hold because of the monotonicity of the function f . We

conclude that O(q)
r must appear before O(d)

r in the right input, i.e.,

q < d (4.3)

Using the same analogy, we have O(q)
r .score ≤ O(1)

r .score. Therefore, O
(p)
l .score must

be greater than O
(d)
l .score. Otherwise, Inequality (4.2) will not hold because of the
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monotonicity of the function f . We conclude that O
(p)
l must appear before O

(d)
l in

the left input, i.e.,

p < d (4.4)

From (4.3) and (4.4), if valid, the combination J = (O
(p)
l , O(q)

r ) must have been

produced by the algorithm, which contradicts the original assumption.

Theorem 4.1.2 The buffer maintained by the rank-join algorithm to hold the ranked

join results is bounded and has a size that is independent of the size of the inputs.

Proof: Other than the space required to perform the join, the algorithm needs only

to remember the top k join results independent of the size of the input.

Following this abstract description of the rank-join algorithm, we show how to

implement the algorithm in a binary pipelined join operator that can be integrated

in commercial query engines. Theoretically, any current join implementation can

be augmented to support the previously described algorithm. Practically, the join

technique greatly affects the performance of the ranking process. We show the effect

of the selection of the join strategy on the stopping criteria of the rank-join algorithm.

4.1.1 The Effect of Join Strategy

The order in which the points in the Cartesian space are checked as a valid join

result has a great effect on the stopping criteria of the rank-join algorithm. Consider

the two relations in Figure 4.1 to be joined with the join condition L.A = R.A. The

join results are required to be ordered on the combined score of L.B + R.B.

Following the new rank-join algorithm, described in Section 4.1, a threshold value

will be maintained as the maximum between the two values f(L(1).B, R(d2).B) and

f(L(d1).B, R(1).B), where L(d1) and R(d2) are the last tuples accessed from L and R,

respectively. Figure 4.2 shows two different strategies to produce join results.

Strategy (a) is a nested-loops evaluation while Strategy (b) is a symmetric join

evaluation that tries to balance the access from both inputs. To check for possible
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Figure 4.1. Two Example Relations
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Figure 4.2. Two Possible Join Strategies

join combinations, Strategy (a) accesses four tuples from L and one tuple from R

while Strategy (b) accesses two tuples from each relation. The rank-join algorithm at

this stage computes a different threshold value T in both strategies. In Strategy (a),

T = max(5 + 2, 5 + 5) = 10, while in Strategy (b) T = max(5 + 4, 5 + 4) = 9. At

this stage, the only valid join combination is the tuple pair [(1, 1, 5), (2, 1, 4)] with

a combined score of 9. In Strategy (a), this join combination cannot be reported

because of the threshold value of 10 while the join combination is reported as the

top-ranked join result according to Strategy (b).

The previous discussion suggests using join strategies that reduce the threshold

value as quickly as possible to be able to report top ranked join results early on. In
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the next section, we present different implementations of the rank-join algorithm by

choosing different join strategies.

4.2 Optimality of Algorithm Rank-join

In this section, we analyze the I/O cost of the proposed rank-join algorithm.

The notion of instance optimality is defined by Fagin et al. [24]. Formally, instance

optimality is defined as follows. Let A be a class of algorithms and let D be a class

of databases. For an algorithm A ∈ A and a database D ∈ D, let cost(A, D) be

the total number of I/O accesses incurred by applying A on D. An algorithm B is

instance optimal over A and D if B ∈ A and for every A ∈ A and D ∈ D we have

cost(B, D) = O(cost(A, D))

Hence, there exist constants c, c′ > 0 such that cost(B, D) ≤ c.cost(A, D) + c′ for

every choice of A ∈ A and D ∈ D. The constant c is referred to as the optimality

ratio.

Theorem 4.2.1 Let D be the class of all databases consisting of m sorted relations

(ranked lists) and let A be the class of all correct algorithms that produce the top k

ranked join results from these lists. The rank-join algorithm is instance optimal over

A and D.

Proof: We present the proof in the case of two lists L and R. The proof can be

easily generalized to m lists by adjusting the optimality ratio. Refer to Figure 4.3

for illustration. Let l be the top element in L with a score sl, and let r be the top

element in R with a score sr.

Assume that the rank-join algorithm, when run on D ∈ D, halts at depth d. Let

A ∈ A be an arbitrary algorithm. We shall show that Algorithm A must get to

depth d in at least one of the lists. It then follows that the rank-join algorithm is

instance optimal with optimality ratio at most 2 (assuming two lists). Assume that
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Figure 4.3. Instance Optimality of the Rank-join Algorithm

Algorithm A does not get to depth d in either list; we shall show that Algorithm A

makes a mistake on some database.

Let T be the threshold value at depth d − 1, where T is computed as T =

MAX(f(sl, q), f(sr, p)), where p is the score at depth d − 1 in L, q is the score at

depth d − 1 in R, and f is the scoring function. Without loss of generality, assume

that f(sl, q) ≥ f(sr, p), hence T = f(sl, q).

Since rank-join did not halt at depth d − 1, there are less than k joinable pairs

(a, b) that have been seen by depth d − 1 whose overall score is at least T . We now

construct a database D′ on which Algorithm A errors.

Let D′ have exactly d elements in each list (so that D′ goes only to depth d). Let

D′ be identical to the original database, D, up to depth d − 1 in both lists. Hence,

Algorithm A performs exactly the same on both D and D′. At depth d, we put a

new element a′ with score p in the first list and a new element b′ with score q in the

second list such that b′ joins with l (the top element in L). Hence, the join results

(l, b′) has score f(sl, q) = T .

Clearly, (l, b′) is not on the output list of Algorithm A, since Algorithm A never

sees b′ before it stops. However, the output list of Algorithm A contains k joinable

pairs with less than k having score ≥ T . So Algorithm A made a mistake on D′.
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Since database accesses are the dominant cost factor in querying large databases,

the instance optimality of the rank-join algorithm plays an important role in op-

timizing top-k queries. Practically, instance optimality of the rank-join algorithm

establishes a strong performance guarantee for the rank-join algorithm when com-

pared with any other way to evaluate top-k queries.

4.3 New Physical Rank-join Operators

In this section, we present two alternatives to realize the new rank-join algorithm

as a physical join operator. The main difference between the two alternatives is in

the join strategy that is used in order to produce valid join combinations. Reusing

the current join strategies (nested-loops join, merge join and hash join) results in

a poor performance. Nested-loops join will have a high threshold value because we

access all the tuples of the inner relation for only one tuple from the outer relation.

Merge join requires sorting on the join columns (not the scores) of both inputs and

hence cannot be used in the rank-join algorithm. Similarly, hash join destroys the

order through the use of hashing when hash tables exceed memory size. The join

strategies presented here depend on balancing the access of the underlying relations.

Since the join operation is implemented in most systems as a dyadic (2-way)

operator, we describe the new operators as binary join operators. Following common

query execution models, we describe the new physical join operators in terms of the

three basic interface methods Open, GetNext and Close. The Open method initializes

the operator and prepares its internal state, the GetNext method reports the next

ranked join result upon each call, and the Close method terminates the operator and

performs the necessary clean up.

In choosing the join strategy, the discussion in Section 4.1.1 suggests sweeping

the Cartesian space in a way that reduces the threshold value. We depend on the

idea of ripple join as our join strategy. Instead of randomly sampling tuples from the

input relations, the tuples are retrieved in order to preserve ranking. One challenge
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is to determine the rate at which tuples are retrieved from each relation. We present

two variants of our rank-join algorithm. The two variants are based on adopting two

ripple join variants: the hash ripple join and the block ripple join.

4.3.1 Hash Rank-join Operator (HRJN)

HRJNcan be viewed as a variant of the symmetrical hash join algorithm [37,38]

or the hash ripple join algorithm [36]. The Open method is given in Table 4.1. The

HRJNoperator is initialized by specifying four parameters: the two inputs, the join

condition, and the combining function. Any of the two inputs or both of them can

be another HRJN operator 1. The join condition is a general equality condition to

evaluate valid join combinations. The combining function is a monotone function

that computes a global score from the scores of each input. The Open method sets

the state and creates the operator internal state which consists of three structures.

The first two structures are two hash tables, i.e., one for each input. The hash tables

hold input tuples seen so far and are used in order to compute the valid join results.

The third structure is a priority queue that holds the valid join combinations ordered

on their combined score. The Open method also calls the initialization methods of

the inputs.

The GetNext method encapsulates the rank-join algorithm and is given in Ta-

ble 4.2. The algorithm maintains a threshold value that gives an upper-bound of the

score of all join combinations not yet seen. To compute the threshold, the algorithm

remembers the two top scores and the two bottom scores (last scores seen) of its in-

puts. These are the variables Ltop, Rtop, Lbottom and Rbottom, respectively. Lbottom and

Rbottom are continuously updated as we retrieve new tuples from the input relations.

At any time during execution, the threshold upper-bound value (T ) is computed as

the maximum of f(Ltop, Rbottom) and f(Lbottom, Rtop).

1Because HRJN is symmetric, we can allow pipelined bushy query evaluation plans.



57

Table 4.1
The HRJN Open Operation

HRJN: Open(L,R,C,f)

Input L,R: Left and right ranked input

C: join condition.

f : monotone combining ranking function.

1. Allocate a priority queue Q;

2. Build two hash tables for L and R;

3. Set the join condition to C;

4. Set the combining function to f ;

5. Threshold = 0;

6. L.Open();

7. R.Open();

The algorithm starts by checking if the priority queue holds any join results. If

exists, the score of the top join result is checked against the computed threshold. A

join result is reported as the next GetNext answer if the join result has a combined

score greater than or equal the threshold value. Otherwise, the algorithm continues

by reading tuples from the left and right inputs and performs a symmetric hash

join to generate new join results. For each new join result, the combined score is

obtained and the join result is inserted in the priority queue. In each step, the

algorithm decides which input to poll. This gives the flexibility of optimizing the

operator to get faster results depending on the joined data. A straight forward

strategy is to switch between left and right input at each step.

4.3.2 Local Ranking in HRJN

Implementing the rank-join algorithm as a binary pipelined query operator raises

several issues. We summarize the differences between HRJN and the logical rank-

join algorithm as follows:
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Table 4.2
The HRJN GetNext Operation

HRJN: GetNext()

1. if (Q is not empty)

2. tuple = Q.Top;

3. if (tuple.score ≥ T)

4. RETURN tuple;

5. LOOP

6. Determine next input to access, I; (Section 4.3.3)

7. tuple= I.GetNext();

8. if (I firstTuple)

9. Itop = tuple.score;

10. I firstTuple = false;

11. Ibottom = tuple.score;

12. T = MAX(f(Ltop, Rbottom), f(Lbottom, Rtop));

13. insert tuple in I Hash table;

14. probe the other hash table with tuple;

15. For each valid join combination

16. Compute the join result score using f ;

17. Insert the join result in Q;

18. if (Q is not empty)

19. tuple = Q.Top;

20. if (tuple.score ≥ T)

21. BREAK LOOP;

22. END LOOP;

23. Remove tuple from Q;

24. RETURN tuple;

• The total space required by HRJN is the sum of two hash tables and the

priority queue. In a system that supports symmetrical hash join, the extra

space required is only the size of the priority queue of join combinations. As

shown in Section 4.1, in the proposed rank-join algorithm (with all inputs
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processed together), the queue buffer is bounded by k, the maximum number

of ranked join results that the user asks for. In this case, the priority queue

will hold only the top-k join results. Unfortunately, in the implementation

of the algorithm as a pipelined query operator, we can only bound the queue

buffer of the top HRJN operator since we do not know in advance how many

partial join results will be pulled from the lower-level operators. The effect of

pipelining on the performance is addressed in the experiments in Section 4.6.

• Realizing the algorithm in a pipeline introduces a computational overhead as

the number of pipeline stages increases. To illustrate this problem, we elaborate

on how HRJN works in a pipeline of three input streams, say L1, L2 and

L3. When the top HRJN operator, OP1, is called for the next top ranked

join result, several GetNext calls from the left and right inputs are invoked.

According to the HRJN algorithm, described in Table 4.2, at each step, OP1

gets the next tuple from its left and right inputs. Hence, OP2 will be required

to deliver as many top partial join results of L2 and L3 as the number of objects

retrieved by L1. These excessive calls to the ranking algorithm in OP2 result

in retrieving more objects from L2 and L3 than necessary, and accordingly

larger queue sizes and more database accesses. We call this problem the Local

Ranking problem.

Solving The Local Ranking Problem: Another version of ripple join is the

blocked ripple join [36]. At each step, the algorithm retrieves a new block of one

relation, scans all the old tuples of the other relation, and joins each tuple in the

new block with the corresponding tuples there. We utilize this idea to solve the

local ranking problem by unbalancing the retrieval rate of the inputs. We issue less

expensive GetNext calls to the input with more HRJN operators in its subtree of

the query plan. For example, in a left-deep query execution plan, for each p tuples

accessed from the right input, one tuple is accessed from the left input. The idea is to

have less expensive GetNext calls to the left child, which is also an HRJN operator.
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This strategy is analogous to the block ripple join algorithm, having the left child as

an outer and the right child as inner with a block of size p. Using different depths in

the input streams does not violate the correctness of the algorithm, but will have a

major effect on the performance. This optimization significantly enhances the per-

formance of the HRJN operator as will be demonstrated in Section 4.6. Through

the rest of this chapter, we call p the balancing factor. Choosing the right value for

p is a design decision and depends on the generated query plan, but a good choice

of p boosts the performance of HRJN.

577

328 328

333 333
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HRJN HRJN
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Figure 4.4. The Effect of Applying the Heuristic to Solve the Local
Ranking Problem in HRJN

For example, in a typical query with three ranked inputs, we compare between the

total number of accessed tuples by the HRJN operator before and after applying

the heuristic. Figure 4.4 shows the number of retrieved tuples for each case. In

the plan in Figure 4.4 (a), p is set to 1 for both HRJN operators. This query

pipeline is applied on real data to retrieve the top 50 join results. The top HRJN

operator retrieves 328 tuples from both inputs, hence the top 328 partial join results

are requested from the HRJN child operator. The child HRJN operator has to

retrieve 577 tuples from each of its inputs, for a total of 1482 tuples. In the plan

in Figure 4.4 (b), p is set to 2 for the top HRJN operator. While retrieving the

same answers, the total number of tuples retrieved is 994 tuples, which is much less
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than that of the HRJN before applying the heuristic, since the top HRJN operator

requested only 102 tuples from its left child.

4.3.3 HRJN*: Score-Guided Join Strategy

As discussed in Section 4.1.1, the way the algorithm schedules the next input to

be polled can affect the operator response time significantly. One way is to switch

between the two inputs at each step. However, this balanced strategy may not be

the optimal. Consider the two relations L and R to be rank-joined. The scores

from L are 100, 50, 25, 10 . . . while the scores from R are 10, 9, 8, 5, . . .. After 6 steps

using a balanced strategy (three tuples from each input) we will have the threshold

of max(108, 35) = 108. On the other hand, favoring R by retrieving more tuples

from R than L (four tuples from R and two tuples from L) will give a threshold of

max(105, 60) = 105.

One heuristic is to try to narrow the gap between the two terms in computing

the threshold value. Recall that the threshold is computed as the maximum between

two virtual scores T1 and T2, where T1 = f(Ltop, Rbottom) and T2 = f(Lbottom, Rtop).

f is the ranking function. If T1 > T2 more inputs should be retrieved from R to

reduce the value of T1 and hence the value of the threshold, leading to possible

faster reporting of ranked join results.

This heuristic will cause the join strategy to adaptively switch between the hash

join and nested-loops join strategies. Consider the previous example, since T1 > T2,

more tuples will be retrieved from R till the end of that relation. In this case,

Ltop can be reduced to 50. In fact, because all the scores in L are significantly

higher than R, the strategy will behave exactly like a nested-loops join. On the

other extreme, if the scores from both relations are close, the strategy will behave

as a symmetric hash join with equal retrieval rate. Between the two extremes, the

strategy will gracefully switch between nested-loops join and hash join to reduce the

threshold value as quickly as possible. Of course, this heuristic does not consider
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the I/O and memory requirements that may prefer one strategy on the other. In

the experimental evaluation of our approach, discussed in Section 4.6, we implement

the new join strategy using the HRJN operator. We call the enhanced operator

HRJN*. HRJN* shows better performance than those of other rank-join operators

including the original HRJN.

4.4 Choosing the Best Join Order

As described in Section 4.3, the join operation is implemented in most systems

as a dyadic (2-way) operator for flexibility and practical implementation reasons.

Hence, rank-join operators, e.g., HRJN are implemented as binary join physical

operators. To rank-join n ranked inputs, the inputs are organized in a pipelined

query evaluation plan in the form of a binary tree. The evaluation plan determines

the order at which we carry out the rank-join operations. In this section we highlight

the effect of join order on the overall performance of top-k join queries. We propose

an optimization heuristic to choose the best join order based on sampling.

Consider the following example to join three ranked inputs A, B, and C. Fig-

ure 4.5 gives the number of retrieved records from each input to report the top ten

join results. Figure 4.5 also gives three different join orders (evaluation plans) for

the rank-join operations among A, B, and C. The figure shows that the join order

significantly affects the number of retrieved records from the inputs. For example,

we save significant number of I/O accesses by changing the join order from Plan (b)

to Plan (c). For Plan (b), the number of records retrieved from A, B, and C are

499, 499, and 217 records, respectively, with a total of 1215 records. For Plan (c),

the number of records retrieved from A, B, and C are 324, 324, and 218 records,

respectively, with a total of 866 records, which is 70% of the inputs required for

Plan (b).

The main reason for the effect of the join order on the size of required input—

and hence the performance of the rank-join operation—is the correlation or the
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Figure 4.5. The Effect of the Join Order on the Size of Required Input

similarity among the input rankings. In Figure 4.5, the degree of similarity between

the rankings of A and C is higher than that between the rankings of A and B.

Hence, a rank-join between A and C is likely to require less number of records than

a rank-join between A and B to produce the same number of ranked results. Like

traditional query optimization, the main goal of optimizing rank-join queries is to

choose the best join order. Unlike traditional optimization, the size of the inputs

involved in the rank-join operation is not known apriori. Hence, it is hard to estimate

the cost of a rank-join operation. Figure 4.6 gives actual total execution time and the

number of I/O accesses to rank-join four ranked inputs with six different join orders.

The figure shows the significant impact of the order on the overall performance of

the rank-join operation.

An optimal query execution plan is the plan with the cheapest overall cost, where

the cost includes various components, e.g., the I/O complexity, and the memory

usage. Since the number of retrieved input records greatly affects the I/O and time

complexities of the rank-join operation, we give a definition of an optimal rank-join

order. For simplicity, the definition assumes that the I/O cost to retrieve a record

is the same for all the inputs. This simplification can be easily relaxed by using a

different weight for each input.
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Figure 4.6. The Effect of the Join Order on the Performance of
Rank-join Operators

Definition 4.4.1 Optimal rank-join order: A rank-join order is optimal if it requires

the least number of input records to produce the same number of ranked join results.

Computing the optimal rank-join order is hard and is even impossible in certain

situations for the following reasons:

• Determining the number of input records needed to produce the top k join

results requires a complete knowledge of the score distribution of each input

and a well-defined notion of similarity measure among input rankings.

• There is no clear way of estimating the number of required join results, k, when

pushed down in a plan pipeline. For example, in Plan (c) of Figure 4.5, while

k = 10 for the top HRJN operator, k = 111 for the left child HRJN operator.

The value of k in each rank-join operator depends on the final value of k

(specified in the user query), the rank-join strategy, and the score distribution

of the input.

• Assuming that there is a way to compute and use these statistics to estimate

the input size, the input itself may not be available off-line. For example,
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the input rankings may be computed as the output of single-feature similarity

subqueries (refer to Examples 1.2.1 and 1.2.2).

In the following, we propose a simple yet efficient heuristic to choose a “good”

rank-join order based on sampling.

4.4.1 Rank-join Order Heuristic

The main idea of the proposed heuristic is to push the rank-join of similar rank-

ings as early as possible in the query evaluation plan. We describe the intuition

behind this heuristic as follows:

• Since the number of required results from each rank-join operator increases as

we go down in the query pipeline, we aim at making early rank-join operations

(deep in the query plan) as fast as possible.

• The best case scenario for the rank-join algorithm occurs when joining identi-

cal ranked inputs. We can easily show that the algorithm performance deteri-

orates, i.e., requires more input before termination, as the similarity between

the input rankings decreases.

The proposed technique depends on two main steps: first, obtaining a ranked

sample of size S from each input, and second, having a well-defined notion for the

similarity between two rankings. The first step depends on the type of the input

rankings. In general, input rankings can be in one of the following two forms:

• Available off-line as regular database relations: in this case the ranked sample

is the top S records from the inputs and is available statically without the need

to run the whole (or part) of the top-k query.

• Dynamically computed input: examples of this category is the output of single-

feature similarity queries, or through pulling ranked results from an external

source (e.g., a website). In this case we need to run warm-up subqueries on the



66

inputs. A warm-up subquery is a single-feature top-S query on each individual

input.

In both cases, the ranked samples are ranked “lists” of the top S objects from each

individual ranking.

We define a similarity measure between two rankings based on the footrule dis-

tance [31,32] between those two rankings. The footrule distance between two ranked

lists L and R over the same set of objects is defined as F (L, R) =
∑

i |L(i) − R(i)|,
where L(i) and R(i) is the rank of Object i in L and R, respectively. For two input

rankings (possibly on different sets of objects), with a join condition to join objects

from the first input with objects from the second input, we generalize the distance

metric F (L, R) to F (L, R) =
∑

i,j |L(i)−R(j)|, where (i, j) is a valid join result that

joins Object i from L with Object j from R.

Using the ranked sample and the definition of the distance metric, F (L, R), we

layout the rank-join order technique in Table 4.3. The technique is an adaptation of

Kruskal’s minimum spanning tree algorithm to build the final rank-join evaluation

plan.

The algorithm in Table 4.3 starts by building a graph structure that represents

the similarity measure among all inputs. An edge in the graph connects two vertices,

each representing an input ranking list, where a join condition exists between these

two inputs. The edge is labeled by the value of the distance metric F (L, R), described

earlier. The final rank-join evaluation plan, say P , is built bottom-up by choosing

the next most similar pair of inputs from the graph. If none of the two chosen inputs

exists in the current plan, a new subplan, P ′ is formed by providing these two inputs

as the inputs to a rank-join operator. P ′ is joined to the current evaluation plan, P ,

through building a new rank-join root operator; the inputs of the new root are the

current evaluation plan, P , and the new formed subplan, P ′. If only one input from

the pair of chosen inputs does not exist in P , this input is joined to the plan using

a rank-join operator. Note that because of the symmetry of rank-join operators, we

do not distinguish between the left and right child while building P .
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Table 4.3
The Rank-join Order Algorithm

Rank-join Order(L1, L2, . . . , Lm, JCs)

Input L1, . . . , Lm: m input ranked lists of size S

JCs: a set of join conditions between each pair of inputs.

Output P : a query plan to rank-join the inputs

1. Compute F (Li, Lj) for each pair of inputs Li and Lj

2. Define a graph G = (V, E) as follows:

3. Each input ranked list represents one vertex in V

4. Edge (Li, Lj) exists if there exists a join condition in JCs between Li and Lj

5. Each edge (Li, Lj) is labeled with F (Li, Lj)

6. Let T = {} be a set of graph vertices

7. LOOP while E is not empty

8. Choose the edge e = (Li, Lj) with the least value of F (Li, Lj).

9. Remove e from E

10. if Li ∈ T and Lj ∈ T , then ignore e

11. else if Li /∈ T and Lj /∈ T , then:

12. Form a subplan P ′ that rank-joins Li and Lj

13. if P = NULL, then P = P ′

14. else let P ′′ be a subplan that rank-joins P and P ′; and set P = P ′′

15. T = T ∪ {Li, Lj}
16. else if Li /∈ T , (same for Lj) then:

17. let P ′′ be a subplan that rank-joins P andLi; and set P = P ′′

18. T = T ∪ {Li}
19. END LOOP

Figure 4.7 gives a real example of applying the rank-join order algorithm in

Table 4.3 on 4 inputs. The sample size S = 100 records from each input. The join

condition is an equi-join on the object id from each list. The labels on the graph

edges represent the ranking distance as described earlier in this section. First, the

algorithm chooses the two inputs B and D, since they have the least distance value,

7174. The current evaluation plan P = P1 is a rank-join operator that joins B and
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Figure 4.7. Example Execution of the Rank-join Order Algorithm

D. Since the pair of inputs C and D has the next smallest distance value, C is joined

to P1 to form the evaluation plan P2. Finally, the next most similar two inputs are

A and C. Hence, A is joined to P2 to form the final evaluation plan P3. Other

edges in the graph are ignored since we consumed all the inputs.

4.5 Generalizing Rank-Join to Exploit Random Access Capabilities

The new rank-join algorithm and query operators assume only sorted access to

the input. Random access to some of these inputs is possible when indexes exist.

Making use of these indexes may give better performance depending on the type

of the index and the selectivity of the join operation. We would like to give the

optimizer the freedom to choose whether to use indexes given the necessary cost

parameters.

In this section, we generalize the rank-join algorithm to make use of the random

access capabilities of the input relations. The main advantage to using random access

is to further reduce the upper-bound of the score of unseen join combinations, and

hence being able to report the top-k join results earlier. For simplicity, we present

the algorithm by generalizing the HRJN operator to exploit the indexes available

on the join columns of the ranked input relations. Consider two relations L and
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R, where both L and R support sorted access to their tuples. Depending on index

existence, we have two possible cases. The first case is when we have an index on

only one of the two inputs, e.g., R. Upon receiving a tuple from L, the tuple is first

inserted in L’s hash table and is used to probe the R index. This version can be

viewed as a hybrid between hash join and index nested-loops join. The second case

is when we have an index on each of the two inputs. Upon receiving a tuple from

L(R), the tuple is used to probe the index of R(L). In this case, there is no need to

build hash tables.

On-the-fly Duplicate Elimination: The generalization, as presented, may cause

duplicate join results to be reported. We eliminate the duplicates on-the-fly by

checking the combined score of the join result against the upper-bound of the scores

of join results not yet produced. Consider the two relations L and R with an index

on the join column of R. A new tuple from L, with score Lbottom, is used to probe R’s

index and generate all valid combinations. A new tuple from R, with score Rbottom,

is used to probe the L’s hash table of all seen tuples from L. A key observation is

that any join result, not yet produced, cannot have a combined score greater than

U = f(Lbottom, Rbottom). Notice that Lbottom is an upper-bound of all the scores from

L not yet seen. All join combinations with scores greater than U were previously

generated by probing R’s index. Hence, A duplicate tuple can be detected and

eliminated on-the-fly if it has a combined score greater than U . A similar argument

holds for the case when both L and R have indexes on the join columns. One special

case is when the two new tuples from L and R can join. In this case, only one of

them is used to probe the other relation.

Faster Termination: Although index probing looks similar to hash probing in the

original HRJN algorithm in Table 4.2, it has a significant effect on the threshold

values. The reason is that since the index contains all the tuples from the indexed

relation (e.g., L), the tuple that probes the index from the other relation (e.g.,

R) cannot contribute to more join combinations. Consequently, the top value of
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Relation R should be decreased to the score of the next tuple. For example, for the

two ranked relations L and R in Figure 4.1, assume that relation R has an index on

the join column to be exploited by the algorithm. In the first step of the algorithm,

the first tuple from L is retrieved:(1, 1, 5). We use this tuple to probe the index of R,

the resulting join combination is [(1, 1, 5), (2, 1, 4)]. Since the tuple from L cannot

contribute to other join combinations, we reduce the value Ltop to be that of the next

tuple (2, 2, 4), i.e., 4. In this case we always have Ltop = Lbottom which may reduce

the threshold value T = max(Ltop + Rbottom, Lbottom + Rtop). Note that if no indexes

exists, the algorithm behaves exactly like the original HRJN algorithm.

4.6 Performance Evaluation

In this section, we experimentally evaluate the proposed rank-join operators

through a comparison with the J∗ algorithm [29]. The experiments are based on

our research platform for a complete video database management system running on

a Sun Enterprise 450 with 4 UltraSparc-II processors running SunOS 5.6 operating

system. The research platform is based on PREDATOR [11], the object relational

database system from Cornell University. Shore [12] is the underlying storage man-

ager.

We use a set of synthetic tables that have the schema (Id, JC, Score, Other

Attributes). Each table is accessed through a sorted access plan and tuples are

retrieved in a descending order of the Score attribute. JC is the join column (not a

key) having D distinct values.

We compare the two rank-join operators, HRJN and HRJN* introduced in

Section 4.3, with another rank-join operator based on the J ∗ algorithm. We use a

simple ranking query that joins four tables on the non-key attribute JC and retrieves

the join results ordered on a simple function. The function combines individual scores

which in this case a weighted sum of the scores (wi is the weight associated with input
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i). Only the top k results are retrieved by the query. The following is a SQL-like

form of the query:

Q: SELECT T1.id, T2.id, T3.id, T4.id

FROM T1, T2, T3, T4

WHERE T1.JC=T2.JC and

T2.JC=T3.JC and

T3.JC=T4.JC

ORDER BY w1*T1.Score + w2*T2.Score +

w3*T3.Score + w4*T4.Score

STOP AFTER k;

One pipelined execution plan for the query Q is the left-deep plan, Plan A, given

in Figure 4.8. We limit the number of reported answers to k by applying the Stop-

After query operator [20, 21]. The operator is implemented in the prototype as a

physical query operator Scan-Stop, a straightforward implementation of Stop-After

and appears on top of the query plan. Scan-Stop does not perform any ordering on

its input.

RANK−JOIN

Scan−Stop(k)

RANK−JOIN Index−Scan
Score

RANK−JOIN

T4

Index−Scan
Score
T1

Index−Scan
Score
T3

Index−Scan
Score
T2

w1*T1.Score+w2*T2.Score+w3*T3.Score

w1*T1.Score+w2*T2.Score

w1*T1.Score+w2*T2.Score+w3*T3.Score+w4*T4.Score

Figure 4.8. Plan A: A Left-deep Execution Plan for Q
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A Pipelined Bushy Tree: Plan A is a typical pipelined execution plan in current

query optimizers. Plan B is a bushy execution plan given in Figure 4.9. Note that

bushy plans are not pipelined in current query processors because of the current join

implementations. Because rank-join is a symmetric operation, a bushy execution

plan can also be pipelined. The optimizer chooses between these plans depending

on the associated cost estimates.

Index−Scan
Score
T1

Index−Scan
Score
T2

Index−Scan
Score
T3

Index−Scan

T4
Score

RANK−JOINRANK−JOIN

RANK−JOIN

Scan−Stop(k)

w1*T1.Score+w2*T2.Score+w3*T3.Score+w4*T4.Score

w1*T1.Score+w2*T2.Score w3*T3.Score+w4*T4.Score

Figure 4.9. Plan B: A Bushy Execution Plan for Q

Plan B does not suffer from the local ranking problem, described in Section 4.3.2,

because each operator has almost the same cost for accessing both of its inputs (same

number of plan levels). However, having large variance of the score values between

inputs, retrieving more inputs from one side may result in a faster termination. This

is a typical case where the operator HRJN* can perform better, because HRJN*

uses input scores to guide the rate at which it retrieves tuples from each input. In

the following experiments, we use Plan A as the execution plan for Q. Using Plan B

gave similar performance results.

Changing the number of required answers: In this experiment, we vary the

number of required answers, k, from 5 to 100 while fixing the join selectivity to 0.2%.

Figure 4.10 (a) compares the total time to evaluate the query. HRJN and HRJN*

show a faster execution by an order of magnitude for large values of k. The high

CPU complexity of the J∗ algorithm is because it retrieves one join combination
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Figure 4.10. Comparing HRJN, J∗ and HRJN* for m = 4 and Selectivity = 0.2%

in each step. In each step, J∗ tries to determine the next optimal point to visit in

the Cartesian space. Since both HRJN and HRJN* use symmetric hash join to

produce valid join combinations, more join combinations are ranked at each step.

Figure 4.10 (b) compares the number of accessed disk pages. The three algorithms

have a comparable performance in terms of the number of pages retrieved. J ∗ and

HRJN* achieve better performance because retrieving a new tuple is guided by

the score of the inputs, which makes both algorithms retrieve only the tuples that
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makes significant decrease in the threshold value and hence less I/O. Figure 4.10 (c)

compares the number of maintained buffer space. HRJN and HRJN* have low

space overhead because they use the buffer only for ranking the join combinations,

while J∗ maintains all the retrieved tuples in its buffer. Had we also included the

space of the hash tables, J∗ will have a lower overall space requirement. In most

practical systems the hash space is already reserved for hash join operations. Hence,

the space overhead is only the buffer needed for ranking.

Changing the join selectivity: In this experiment, we fix the value of k to 50 and

vary the join selectivity from 0.12% to 2%. Figure 4.11 (a) compares the total time

to report 50 ranked results, while Figures 4.11 (b) and 4.11 (c) compare the number

of accessed disk pages and the extra space overhead, respectively. For all selectivity

values, HRJN* shows the best performance. J∗ has a better performance than

HRJN for high selectivity values while HRJN performs better for low selectivity

values. The reason is that HRJN* combines the advantages of J ∗ and HRJN. While

HRJN* uses a score-guided strategy to navigate in the Cartesian space for a faster

termination (similar to J∗), it also uses the power of producing fast join results by

using the symmetric hash join technique (similar to HRJN).

The effect of pipelining: In this experiment, we evaluate the scalability of the

rank-join operators. We vary the number of join inputs, m, from 3 to 6 and fix

k = 50 and the join selectivity to 0.2%. Figure 4.12 (a) gives the effect of pipelining

on the total query time. HRJN and HRJN* show much better scalability than that

of J∗ by orders of magnitude. The CPU complexity of J ∗ increases significantly as

m increases. On the other hand, J∗ and HRJN* show better performance in terms

of the number of accessed pages compare to HRJN (Figure 4.12 (b)), because of the

score-guided strategy they are using. HRJN* is the most scalable in terms of the

space overhead as shown in Figure 4.12 (c).
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Figure 4.11. The Effect of Selectivity on HRJN, J ∗ and HRJN* for
m = 4 and K = 50

4.7 Summary

In this chapter, we addressed supporting top-k join queries in practical relational

query processors. We introduced a new rank-join algorithm that is independent of

the join strategy, along with its correctness proof. The proposed rank-join algorithm

makes use of the ranking on the input relations to produce ranked join results on a



76

3 4 5 6
0.0

10.0

20.0

30.0

40.0

T
im

e 
(s

ec
on

ds
)

HRJN
HRJN*
J*

Plan Height (m)
3 4 5 6

0

50

100

150

N
um

be
r 

of
 A

cc
es

se
d 

P
ag

es

HRJN
HRJN*
J*

Plan Height (m)Plan Height (m)

(a) (b)

3 4 5 6
0

200

400

600

800

1000

1200

M
ax

. Q
ue

ue
 S

iz
e 

(t
up

le
s)

HRJN
HRJN*
J*

Plan Height (m)

(c)

Figure 4.12. The Effect of Pipelining on HRJN, J∗ and HRJN* for
Selectivity 0.2% and K = 50

combined score. The ranking is performed progressively during the join and hence,

there is no need for a blocking sort operation after join. We analyzed the I/O

performance of the proposed rank-join algorithm and proved its optimality in terms

of the number of accessed input tuples. We presented a physical query operator to

implement rank-join based on ripple join; the hash rank join (HRJN). We proposed

a new join strategy that is guided by the input score values. We applied the new
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strategy on the original HRJN algorithm and called the new operator HRJN*. We

studied the effect of rank-join order on the performance of rank-join query evaluation

pipeline. We introduced an efficient rank-join order heuristic to help choose a near-

optimal join order. We addressed exploiting available indexes on the join columns.

We proposed a general rank-join algorithm that utilizes these indexes for faster

termination of the ranking process. We experimentally evaluated the proposed join

operators and compared their performance with a recent algorithm to join ranked

inputs. We conducted several experiments varying the number of required answers,

the join selectivity, and the number of inputs in the pipeline. The experiments proved

the concept and showed a significant performance enhancement, especially for low

values of join selectivity.
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5 RANK-AWARE QUERY OPTIMIZATION

In this chapter, we introduce a rank-aware query optimization framework that fully

integrates rank-join operators into relational query engines. The framework is based

on extending the System R dynamic programming algorithm in both enumeration

and pruning. We define ranking as an interesting property that triggers the gener-

ation of rank-aware query plans. Unlike traditional join operators, optimizing for

rank-join operators depends on estimating the input cardinality of these operators.

We introduce a probabilistic model for estimating the input cardinality, and hence

the cost of a rank-join operator. Costing ranking plans, although challenging, is

key to the full integration of rank-join operators in real-world query processing en-

gines. The experiments show the validity of our framework and the accuracy of the

proposed estimation model.

The rest of this chapter is organized as follows. Section 5.1 motivates the need

for integrating ranking in relational query optimization and highlights the main chal-

lenges. We show how to extend traditional query optimization to be rank-aware in

Section 5.2. Moreover, in Section 5.2, we show how to treat ranking as an interesting

physical property and its impact on plan enumeration. In Section 5.3, we introduce

a novel probabilistic model for estimating the input size (depth) of rank-join oper-

ators and hence estimating the cost and space complexity of these operators. In

Section 5.4, we experimentally verify the proposed estimation model and show the

accuracy of estimating the input size and the maximum buffer size needed by rank-

join operators. We discuss related work in Section 5.5 and conclude in Section 5.6

by a summary and final remarks.
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5.1 The Need for Rank-aware Query Optimization

For the new rank operators, described earlier in Chapters 3 and 4, to be prac-

tically useful they must be integrated in real-world query optimizers. Top-k queries

often involve other query operations such as join, selection and grouping. A key chal-

lenge is how to choose a query execution plan that uses the new rank-join operators

most efficiently.

An observation that motivates the need for integrating rank-join operators in

query optimizers, is that a rank-join operator may not always be the best way to

produce the required ranked results. In fact, depending on many parameters (for

example, the join selectivity, the available access paths and the memory size) a

traditional join-then-sort plan may be a better way to produce the ranked results.

Figure 5.1 gives the estimated I/O cost of two plans: a sort plan and a rank-join

plan, for various values of the join selectivity. The sort plan is a traditional plan

that joins two inputs and sorts the results on the given scoring function, while the

rank-join plan uses a rank-join operator that progressively produces the join results

ranked on the scoring function. The figure shows that for low values of the join

selectivity, the traditional sort-plan is cheaper than the rank-join plan. On the other

hand, for higher selectivity values, the rank-join plan is cheaper.

The previous example highlights the need to optimize top-k queries by integrating

rank-join operators in query optimization. This approach, although appealing and

intuitive, is hindered by the following challenges:

• How to generate plans that make use of rank-join operators ? What will be

the plan property that triggers the generation of such plans ?

• How to estimate the cost of a rank-join query operator ? What will be the

value of k when pushed all the way down in the query pipeline ? What is the

effect of other operators in the plan on the cost estimation ?

Another way to phrase the first set of questions is how to make the query opti-

mizer “aware” of the newly available ranking operators and their unique properties.
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Figure 5.1. Estimated I/O Cost for Two Ranking Plans

Throwing these operators as yet another join implementation would not work with-

out defining new physical properties that guarantee the best use of these operators.

Unlike traditional query operators, it is hard to estimate the cost of rank-join op-

erators because of their “early out” feature; whenever the top k results are reported,

the execution stops without consuming all the inputs. The “early out” feature poses

many challenges in costing rank-join operators.

In this chapter, we show how to generate the rank-join plan as an alternative

execution plan to answer top-k queries. We also show how we came up with the cost

estimation of the rank-join plan used in Figure 5.1, for effective query optimization.

5.2 Rank-aware Optimization

In this section, we describe how to extend the traditional query optimization–

one that uses dynamic programming a la [39]–to handle the new rank-join operators.

Integrating the new rank-join operators in the query optimizer includes two major

tasks:(1) enlarging the space of possible plans to include those plans that use rank-

join operators as a possible join alternative, and (2) providing a costing mechanism
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for the new operators to help the optimizer prune expensive plans in favor of more

general cheaper plans.

In this section, we elaborate on the first task while in the following section we

provide an efficient costing mechanism for rank-join operators. Enlarging the plan

space is achieved by extending the enumeration algorithm to produce new execution

plans. The extension must conform to the enumeration mechanism of other tradi-

tional plans. In this work, we choose the DP enumeration technique, described in

Section 2.5. The DP enumeration is one of the most important and widely used enu-

meration techniques in commercial database systems. Current systems use different

flavors of the original DP algorithm that involve heuristics to limit the enumeration

space and can vary in the way the algorithm is applied (e.g., bottom-up versus top-

down). We stick to the bottom-up DP as originally described in [39]. Our approach

is equally applicable to other enumeration algorithms.

5.2.1 Ranking as an Interesting Property

As described in Section 2.5, interesting orders are those orders that can be benefi-

cial to later operations. Practically, interesting orders are collected from: (1) columns

in equality predicates in the join condition, as orders on these columns make up-

coming sort-merge operations much cheaper by avoiding the sort, (2) columns in the

groupby clause to avoid sorting in implementing sort-based grouping, and (3) columns

in the orderby clause since they must be enforced on the final answers. Current op-

timizers usually enforce interesting orders in an eager fashion. In the eager policy,

the optimizer generates plans that produce the interesting order even if they do not

exist naturally (e.g., through the existence of an index).

In the following example, we describe a top-k query using current SQL constructs

by specifying the ranking function in the orderby clause.
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Q2:

WITH RankedABC as (

SELECT A.c1 as x ,B.c1 as y, C.c1 as z, rank() OVER

(ORDER BY (0.3*A.c1+0.3*B.c1+0.3*C.c1)) as rank

FROM A,B,C

WHERE A.c2 = B.c1 and B.c2 = C.c2)

SELECT x,y,z,rank

FROM RankedABC

WHERE rank <=5;

where A, B and C are three relations and A.c1, A.c2, B.c1, B.c2, C.c1 and C.c2

are attributes of these relations. Following the concept of interesting orders, the

optimizer considers orders on A.c2, B.c1, B.c2 and C.c2 as interesting orders

(because of the join) and eagerly enforces the existence of plans that access A, B and C

ordered on A.c2, B.c1, B.c2 and C.c2, respectively. This enforcement can be done

by gluing a sort operator on top of the table scan or by using an available index that

produces the required order. Currently, orders on A.c1 or C.c1 are ”not interesting”

since they are not beneficial to other operations such as a sort-merge join or a sort.

The reason being that a sort on the expression (0.3*A.c1+0.3*B.c1+0.3*C.c1)

cannot benefit from ordering the input on A.c1 or C.c2 individually.

Having the new rank-aware physical join operators, orderings on the individual

scores (for each input relation) become interesting in themselves. In the previous

example, an ordering on A.c1 is interesting because it can serve as input to a rank-

join operator. Hence, we extend the notion of interesting orders to include those

attributes that appear in the ranking function.

Definition 5.2.1 An Interesting Order Expression is ordering the intermediate re-

sults on an expression of database columns that can be beneficial to later query op-

erations.

In the previous example, we can identify some interesting order expressions ac-

cording to the previous definition. We summarize these orders in Table 5.1. Like an
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Table 5.1
Interesting Order Expressions in Query Q2

Interesting Order Expressions Reason

A.c1 Rank-join

A.c2 Join

B.c1 Join and Rank-join

B.c2 Join

C.c1 Rank-join

C.c2 Join

0.3*A.c1+0.3*B.c1 Rank-join

0.3*B.c2+0.3*C.c2 Rank-join

0.3*A.c1+0.3*C.c2 Rank-join

0.3*A.c1+0.3*B.c2+0.3*C.c2 Orderby

ordinary interesting order, an interesting order expression retires when it is used by

some operation and is no longer useful for later operations. In the previous example,

an order on A.c1 is no longer useful after a rank-join between table A and B.

5.2.2 Extending the Enumeration Space

In this section, we show how to extend the enumeration space to generate rank-

aware query execution plans. Rank-aware plans will integrate the rank-join oper-

ators, described in Chapters 3 and 4, into general execution plans. The idea is to

devise a set of rules that generate rank-aware join choices at each step of the DP

enumeration algorithm. For example, on the table access level, since interesting or-

ders now contain ranking score attributes, the optimizer will enforce the generation

of table and index access paths that satisfy these orders. In enumerating plans at

higher levels (join plans), these ordered access paths will make it feasible to use

rank-join operators as join choices.
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For a query with n input relations, T1 to Tn, assume there exists a ranking

function f(s1, s2, . . . , sn), where si is score expression on relation Ti. For two sets of

input relations, L and R, we extend the space of plans that join L and R to include

rank-join plans by adapting the following:

• Join Eligibility L and R are rank-join-eligible if all the following apply:

1. There is a join condition that relates at least one input relation in L to

an input relation in R.

2. f can be expressed as f(f1(SL), f2(SR), f3(SO)), where f1, f2 and f3 are

three scoring functions, SL are the score expressions on the relations in L,

SR are the score expressions on the relations in R, and SO are the score

expressions on the rest of the input relations.

3. There is at least one plan that accesses L and/or R ordered on SL and/or

SR, respectively.

• Join Choices As described in previous chapters, rank-join can have several

implementations as physical join operators. For each rank-join between L and

R, plans can be generated for each join implementation. For example, an

HRJN plan is generated if there exist plans that access both L and R sorted

on SL and SR, respectively.

• Join Order For symmetric rank-join operators (e.g., HRJN), there is no dis-

tinction between outer and inner relations. For the nested-loops implementa-

tion, a different plan can be generated by switching the inner and the outer

relations. L (R) can serve as inner to an nested-loops operator if there exists

a plan that accesses L (R) sorted on SL (SR).

For example, for Query Q2 in Section 5.2.1, new plans are generated by enforcing

the interesting order expressions listed in Table 5.1 and using all join choices available

including the rank-join operators. As in traditional DP enumeration, generated

plans are pruned according to their cost and properties. For each class of properties,

the cheapest plan is kept. Figure 5.2 gives the MEMO structure of the retained



85

DC

DC

DC

DC

DC

DC

Number of Plans = 12 Number of Plans = 17

(b)(a)

MEMO Structure

AB

BC

ABC

C

B

A

Interesting Order Expression

Interesting Order

MEMO Structure

AB

BC

ABC

C

B

A DC

DC

DC

0.3*B.c1+0.3*C.c1

DC

DC

DC0.3*A.c1+0.3*B.c1

C.c1

B.c1

A.c1 A.c2

B.c2

C.c2

B.c2

B.c1B.c1

B.c2

C.c2

B.c1

A.c2

B.c2

0.3*A.c1+0.3*B.c1+0.3*C.c2

Figure 5.2. Enumerating Rank-aware Query Plans

subplans when optimizing Q2. Each oval in the figure represents the best plan

with a specific order property. Figure 5.2 (a) gives the MEMO structure for the

traditional application of the DP enumeration without the proposed extension. For

example, we keep two plans for Table A; the cheapest plan that does not have any

order property (DC) and the cheapest plan that produces results ordered on A.c2 as

an interesting order. Figure 5.2 (b) shows the newly generated classes of plans that

preserve the required ranking. For each interesting order expression, the cheapest

plan that produces that order is retained. For example, in generating plans that join

Tables A and B, we keep the cheapest plan that produces results ordered on 0.3*A.c1

+ 0.3*B.c1.

5.2.3 Pruning Plans

A subplan P1 is pruned in favor of subplan P2 if and only if P1 has both higher

cost and weaker properties than P2. In Section 5.2.2, we discussed extending the

interesting order property to generate rank-aware plans. A key property of top-k

queries is that users are interested only in the first k results and not in a total
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ranking of all query results. This property directly impacts the optimization of

top-k queries by optimizing for the first k results. Traditionally, most real-world

database systems offer the feature of First-N-Rows-Optimization. Users can turn on

this feature when desiring fast response time to receive results as soon as they are

generated. This feature translates into respecting the “pipelining” of a plan as a

physical plan property. For example, for two plans P1 and P2 with the same physical

properties, if P1 is a pipelined plan (e.g., nested-loops join plan) and P2 is a non-

pipelined plan (e.g., sort-merge join plan), P1 cannot be pruned in favor of P2, even

if P2 is cheaper than P1.

In real-world query optimizers, the cost model for different query operators is

quite complex and depends on many parameters. Parameters include cardinality of

the inputs, available buffers, type of access paths (e.g., a clustered index) and many

other system parameters. Although cost models can be very complex, a key ingre-

dient of accurate estimation is the accuracy of estimating the size of intermediate

results.

In traditional join operators, the input cardinalities are independent of the oper-

ator itself and only depend on the input subplan. Moreover, the output cardinality

depends only on the size of the inputs and the selectivity of the logical operation.

On the other hand, since a rank-join operator does not consume all of its inputs, the

actual input size depends on the operator itself and how the operator decides that it

has seen “enough” information from the inputs to generate the top k results. Hence,

the input cardinality depends on the number of ranked join results requested from

that operator. Thus, the cost of a rank-join operator depends on the following:

Figure 5.3. Example Rank-join Plan
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• The number of required results k and how k is propagated in the pipeline. For

example, Figure 5.3 gives a real similarity query that uses two rank-join oper-

ators to combine the ranking based on three features, referred to as A , B and

C. To get 100 requested results (i.e., k = 100), the top operator has to retrieve

580 tuples from each of its inputs. Thus, the number of required results from

the child operator is 580 in which it has to retrieve 783 tuples from its inputs.

Notice that while k = 100 in the top rank-join operator, k = 580 in the child

rank-join operator that joins A and B. In other words, in a pipeline of rank-

join operators, the input depth of a rank-join operator is the required number

of ranked results from the child rank-join operator.

• The number of tuples from inputs that contain enough information for the

operator to report the required number of answers, k. In the previous example,

the top operator needs 580 tuples from both inputs to report 100 rankings,

while the child operator needed 783 tuples from both inputs to report the

required 580 partial rankings.

• The selectivity of the join operation. The selectivity of the join affects the

number of tuples propagated from the inputs to higher operators through the

join operation. Hence, the join selectivity affects the number of input tuples

required by the rank-join operator to produce ranked results.

There are two ways to produce plans that join two sets of input relations, L and

R, and produce ranked results: (1) by using rank-join operators to join L and R

subplans, or (2) by gluing a sort operator on the cheapest join plan that joins L and

R without preserving the required order. One challenge is in comparing two plans

when one or both of them are rank-join plans. For example, in the two plans depicted

in Figure 5.4, both plans produce the same order property. Plan (b) may or may

not be pipelined depending on the subplans of L and R. In all cases, the cost of the

two plans need to compared to decide on pruning. While the current traditional cost

model can give an estimate total cost of Plan (a), it is hard to estimate the cost of

Plan (b) because of its strong dependency on the number of required ranked results,
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k. Thus, to estimate the cost of Plan (b), we need to estimate the propagation

of the value of k in the pipeline (refer to Figure 5.3). In Section 5.3, we give a

probabilistic model to estimate the depths (dL and dR in Figure 5.4 (b)) required by

a rank-join operator to generate top k ranked results. The estimate for the depths

is parameterized by k and by the selectivity of the join operation. It is important

to note that the cost of Plan (a) is (almost) independent of the number of output

tuples pulled from the plan since it is a blocking sort plan. In Plan (b), the number

of required output tuples determines how many tuples will be retrieved from the

inputs and that greatly affects the plan cost.

Figure 5.4. Two Enumerated Plans

Plan Pruning According to our enumeration mechanism, at any level, there will

be only one plan similar to Plan (a) of Figure 5.4 (by gluing a sort on the cheapest

non-ranking plan). At the same time, they may be many plans similar to Plan (b)

of Figure 5.4 (e.g., by changing the type of the rank-join operator or the join order).

For all rank-join plans, the cost of the plan depends on k and the join selectivity

s. Since these two parameters are the same for all plans, the pruning among these

plans follows the same mechanism as in traditional cost based pruning. For example,

pruning a rank-join plan in favor of another rank-join plan depends on the input

cardinality of the relations, the cost of the join method, the access paths, and the

statistics available on the input scores.

We assume the availability of an estimate of the join selectivity, which is the same

for both sort-plans and rank-join plans. A challenging question is how to compare
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between the cost of a rank-join plan and the cost of a sort plan, e.g., Plans (a) and

(b) in Figure 5.4, when the number of required ranked results is unknown. Note

that the number of results, k, is known only for the final complete plan. Because

subplans are built in a bottom-up fashion, the propagation of the final k value to a

specific subplan depends on the location of that subplan in the complete evaluation

plan.

We introduce a mechanism for comparing the two plans in Figure 5.4 using the

estimated total cost of Plan (a) and the estimated cost of Plan (b), parametrized

by k. Section 5.3 describes how to obtain the parametrized cost of Plan (b). For

Plan (a), we can safely assume that Costa(k) = TotalCosta where Costa(k) is the

cost to report k results from Plan (a), and TotalCosta is the cost to report all

join results of Plan (a). This assumption follows directly from Plan (a) being a

blocking sort plan. Let k∗ be that value of k at which the cost of the two plans

are equal. Hence, Costa(k
∗) = Costb(k

∗) = TotalCosta. The output cardinality of

Plan (a) (call it na) can be estimated as the product of the cardinalities of all inputs

multiplied by the estimated join selectivity. Since k cannot be more than na, we

compare k∗ with na. Let kmin be the minimum value of k for any rank-join subplan.

A reasonable value for kmin would be the value specified in the query as the total

number of required answers. Consider the following cases:

• k∗ > na: Plan (b) is always cheaper than Plan (a). Hence Plan (a) should be

pruned in favor of Plan (b).

• k∗ < na and k∗ < kmin: Since for any subplan, k ≥ kmin, we know that we

will require more that k∗ output results from Plan (b). In that case Plan (a)

is cheaper. Depending on the nature of Plan (b) we decide on pruning:

– If Plan (b) is a pipelined plan (e.g., a left deep tree of rank-join operators),

then we cannot prune Plan (b) in favor of Plan (a) since it has more

properties, the pipelining property.

– If Plan (b) is not a pipelined tree, then Plan (b) is pruned in favor of

Plan (a).
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• k∗ < na and k∗ > k: We keep both plans since depending on k, Plan (a) may

be cheaper than Plan (b) and hence cannot be pruned.

Figure 5.5. The Effect of k on the Rank-join Cost

As an example, we show how the value of k affects the cost of rank-join plans and

hence the plan pruning decisions. We compare two plans that produce ranked join

results of two inputs. The first plan is a sort plan similar to that in Figure 5.4(a),

while the second plan is a rank-join plan similar to that in Figure 5.4(b). The sort

plan sorts the join results of an index nested-loops join operator while the rank-join

plan uses HRJN as its rank-join operator. The estimated cost formula for the sort

plan uses the traditional cost formulas for external sorting and index nested-loops

join, while the estimated cost of the rank-join plan is based on our model to estimate

the input cardinality (as will be shown in Section 5.3). Both cost estimates use the

same values of input relations cardinalities, total memory size, buffer size, and input

tuple sizes. Figure 5.5 compares the estimate of the costs of the two plans for different

values of k. While the sort plan cost can be estimated to be independent of k, the

cost of the rank-join plan increases with increasing the value of k. In this example,

k∗ = 176.
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5.3 Estimating Input Cardinality of Rank-join Operators

In this section, we give a probabilistic model to estimate the input cardinality

(depth) of rank-join operators. The estimate is parameterized with k, the number of

required answers from the (sub)plan, and s, the selectivity of the join operation. We

describe the main idea of the estimation procedure by first considering the simple

case of two ranked relations. Then, we generalize to the case of a hierarchy of

rank-join operators.

Let L and R be two ranked inputs to a rank-join operator. Let m and n be the

table cardinalities of L and R, respectively. Our objective is to get an estimate of

depths dL and dR (see Figure 5.6) such that it is sufficient to retrieve only up to

dL and dR tuples from L and R, respectively, to produce the top k join results. We

denote the top i tuples of L and R as L(i) and R(i), respectively. We outline our

approach to estimate dL and dR in Table 5.2.

In the following subsections, we elaborate on steps of the outline in Table 5.2.

Table 5.3 gives Algorithm Propagate used by the query optimizer to compute the

values of dL and dR at all levels in a rank-join plan. We set k to the value specified

in the query when we call the algorithm for the final plan.

We assume the following to simplify the analysis: (1) the combining scoring

function is a linear combination of the scores (e.g., a weighted sum of the input

scores), and (2) each tuple in L is equally likely to join with sn tuples in R and each

tuple in R is equally likely to join with sm tuples in L.

5.3.1 Estimating Any-k Depths

In the first step of the outline in Table 5.2, we estimate the depths cL and cR in

L and R, respectively, required to get any k join results. “Any k” join results are

valid join results, but not necessarily among the top k answers in score.

Theorem 5.3.1 If cL and cR are chosen such that scLcR ≥ k, then the expected

number of valid join results between L(cL) and R(cR) is ≥ k.
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Table 5.2
Outline of the Estimation Technique

Outline EstimateTop-kDepth

INPUT: Two ranked relations L and R

The number of required ranked results, k

The join selectivity, s

Any-k Depths

1. Compute the value of cL and cR, where

cL is the depth in L and cR is the depth in R such that,

∃ expected k valid join results between L(cL) and R(cR)

Top-k Depths

2. Compute the value of dL and dR, where

dL is the depth in L and dR is the depth in R such that,

∃ expected k top-scored join results between L(dL).

and R(dR). dL and dR are expressed in terms of cL and cR.

Minimize Top-k Depths

3. Compute the values of cL and cR to minimize dL and dR.

cL, cR, dL and dR are paramterized by k

Proof Let Xi,j denote a random variable that is equal to the number of join results

produced by joining the first i tuples from L and the first j tuples from R. Since

every tuple in L is likely to join with sj tuples in R(j), then the expected value of

this random variable is E[Xi,j] = sij. Let cL = i and cR = j, hence, if scLcR ≥ k,

then we can expect at least k valid join results between L(cL) (the top cL tuples in

L) and R(cR).
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Table 5.3
Propagating the Value of k

Algorithm Propagate (subplan P , k)

INPUT: The number of required ranked results, k

The root of a subplan, P

OUTPUT: dL and dR for the operator rooted at P

1. Compute dL and dR according to the formulas in Section 5.3.3

2. Call Propagate(left subplan of P , dL)

3. Call Propagate(right subplan of P , dR)

Figure 5.6. Depth Estimation of Rank-join Operators

In general, the choice of cL and cR can be arbitrary as long as they satisfy

scLcR ≥ k. We show that we choose values for cL and cR in Section 5.3.3.
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5.3.2 Estimating Top-k Depths

In the second step in the outline given in Table 5.2, we aim at obtaining good

estimates for dL and dR, where dL and dR are the depths into L and R, respectively,

needed to produce an expected number of top k join results. For the simplicity of

presentation, the formulas presented in this section assume that the scoring function

is the summation of individual scores.

Let SL(i) and SR(i) be the scores of the tuples at depth i in L and R, respectively.

Moreover, let δL(i) and δR(i) be the score difference between the top ranked tuple and

the score of the tuple at a depth i in L and R, respectively, i.e., δL(i) = SL(1)−SL(i)

and δR(i) = SR(1) − SR(i)

Theorem 5.3.2 If there are k valid join results between L(cL) and R(cR), and if dL

and dR are chosen such that δL(dL) ≥ δL(cL)+δR(cR) and δR(dR) ≥ δL(cL)+δR(cR),

then the top k join results can be obtained by joining L(dL) and R(dR).

Proof Refer to Figure 5.6 for illustration. Let δ = δL(cL) + δR(cR) and S =

SL(1) + SR(1). Since, there are k join tuples between L(cL) and R(cR), the final

score of each of the join results is ≥ S − δ. Consequently, the scores of all of the top

k join results are ≥ S − δ. Assume that one of the top-k join results, J , joins a tuple

t at depth d in L with some tuple in R such that δL(d) > δ. The highest possible

score of J is SL(d) + SR(1) = S − δL(d) < S − δ. By contradiction, Tuple t cannot

participate in any of the top k join results. Hence, any tuple in L (similarly R) that

is at a depth > dL (dR) cannot participate in the top k join results.

Since the choice of cL and cR can be arbitrary as long as they satisfy the condition

in Theorem 5.3.1, Step (3) of the outline in Table 5.2 chooses the values of cL

and cR that minimize the values of dL and dR. Note that both dL and dR are

minimized when δ = δL(cL) + δR(cR) is minimized. Hence we minimize δ subject to

the constraint scLcR ≥ k. The rationale behind this minimization is that an optimal

rank-aggregation algorithm does not need to retrieve more than the minimum dL

and dR tuples from L and R, respectively, to generate the top k join results.
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5.3.3 Estimating the Minimum dL and dR

Till now, we did not have any assumptions on the score distributions of L and

R. We showed that dL and dR are related to cL and cR in terms of the scores of the

tuples at these depths.

To have a closed formula for the minimum dL and dR, we assume that the rank

scores in L and R are from some uniform distribution. Let x be the average decrement

slab of L (i.e., the average difference between the scores of two consecutive ranked

objects in L) and let y be the average decrement slab for R. Hence, the expected

value of δL(cL) = xcL and the expected value of δR(cR) = ycR. To minimize δ =

δL(cL) + δR(cR), we minimize xcL + ycR, subject to scLcR ≥ k. The minimization

is achieved by setting cL =
√

(yk)/(xs) and cR =
√

(xk)/(ys). In this case, dL =

cL + (y/x)cR and dR = cR + (x/y)cL

In the simplistic case, where both the relations come from the same uniform

distribution, i.e., x = y, then cL = cR =
√

k/s and dL = dR = 2
√

k/s.

In a hierarchy of joins, where the output of one rank-join operator serves as

input to another operator, the score distributions of the second level join are no

longer uniform. Assuming the scoring function is the sum of two scores, the scores

of rank join with two uniform distributions follows a triangular distribution. As we

go higher up in the join hierarchy, the distribution tends to be normal (bell-shaped

curve) by central limit theorem (see Figure 5.7).

u u

u

1 2

3

Figure 5.7. Central Limit Theorem
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Let X, Y be two independent random variables from the uniform distribution

[0, n]. We refer to this uniform distribution as u1. We refer to the summation of

j independent random variable from u1 as uj. The random variable Z = X + Y ,

which follows the distribution u2, is a triangular distribution over [0, 2n] with a peak

at n. If we choose n elements from the u2 distribution, the score of the ith element

(i ≤ n/2), in a decreasing order of the scores, is expected to be 2n −
√

2in. In

general, if we choose m elements from uj, which ranges from [0, jn], then the score

of the ith element is expected to be

scorei = jn − (j!inj/m)1/j (5.1)

Using the described distribution scores, we estimate the values of cL and cR that

give the minimum values of dL and dR for the general rank-join plan in Figure 5.4 (b).

Let the output of L be the output of rank-joining l ranked relations. Let the output

of R be the output of rank-joining r ranked relations. Let k be the number of output

ranked results required from the subplan, and s be the join selectivity. Then mini-

mizing δ = δL(cL) + δR(cR) amounts to minimizing δ = (l!cLnl−1)1/l + (r!cRnr−1)1/r.

We substitute cR = k
scL

and minimize δ with respect to cL. The minimizations yield:

cr+l
L =

(r!)lklnr−llrl

sl(l!)rrrl
(5.2)

cr+l
R =

(l!)rkrnl−rrrl

sr(r!)llrl
(5.3)

dL = cL[1 + r/l]l (5.4)

dR = cR[1 + l/r]r (5.5)

Note that dL and dR are strict upper-bounds assuming worst-case behavior. For

an average case analysis, assume that L follows a ul distribution and R follows a

ur distribution with each having n tuples. The join of L and R produces another

relation, G with a ul+r distribution and sn2 tuples. Using Equation 5.1 and setting

j = l+r and m = sn2, the score of the top kth tuple in G is scorek = (l+r)n− ((l+

r)!knl+r−2/s)1/(l+r). Hence, we need to check in L (R) up to a tuple that joins with
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R (L) to produce scorek. We can show that on average, dL and dR can be computed

as follows:

dl+r
L =

((l + r)!)lklnr−l

(l!)l+rsl
and dl+r

R =
((l + r)!)rkrnl−r

(r!)l+rsr

Because the distribution of the depths is tight around the mean, we can apply

the formulas recursively in a rank-join plan, as shown in the algorithm in Table 5.3,

by replacing k of the left and right subplans by dL and dR, respectively. The value

of k for the top operator is the value specified by the user in the query.

5.4 Experimental Verification of the Estimation Model

In this section, we experimentally verify the accuracy of our model for estimating

the depths (input size) of rank-join operators and estimating an upper-bound of the

buffer size maintained by these operators. Estimating the input size and the space

requirements of a rank-join operator make it easy to estimate the total cost of a

rank-join plan according to any practical cost model.

5.4.1 Implementation Issues and Setup

All experiments are based on a research platform for a complete video database

management system running on a Sun Enterprise 450 with 4 UltraSparc-II processors

running SunOS 5.6 operating system. The prototype is built on top of an open-source

database management system that allows us to implement a simple cost-based rank-

aware optimizer in the query engine (details are omitted for expository reasons). We

have implemented a simple DP join enumerator that generates all possible rank-join

plans in a bottom-up fashion.

In the experiments conducted in this section, the user query provides the system

with an example image and requests the most similar video objects (segments or

snapshots) to the query image based on multiple visual features. The visual fea-

tures are extracted from the video data and are stored in separate relations. High-

dimensional index access paths are available on these relations to rank the objects
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according to each of the corresponding features. Example features include color

histograms (ColorHist), color layout (ColorLayout), texture (Texture) and edge ori-

entation (Edges). Hence, for a multi-feature similarity query, each input ranks the

stored video objects according to a single feature. The top-k query produces the k

objects with the top combined scores. We use the following top-k query:

Q: Retrieve the k most similar video shots to a given image based

on m visual features

In the implemented prototype, we automatically show the generated evaluation

(sub)plans at each level of the DP algorithm. We only display “templates” of the

execution plans. Each of these plan templates generates several evaluation plans by

changing the join implementation choices, switching the join order, or gluing sort

operators to enforce interesting order properties.

Figure 5.9 gives a snapshot of the plan generation interface for joining 4 inputs.

We focus on the first complete generated plan and annotate it in Figure 5.8 for easy

referencing. We refer to this plan as Plan P.

Figure 5.8. Example Rank-join Plan

5.4.2 Verifying Input Cardinality Estimation

In this experiment, we evaluate the accuracy of the depth estimates of rank-join

operators. We conducted several experiments on a variety of example evaluation
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Figure 5.9. A Snapshot of the Plan Generation Interface

plans of Query Q. Since all experiments show similar behavior, we show a repre-

sentative sample results for this experiment. The results shown here represent the

estimates for Plan P in Figure 5.8. We use HRJN as the implementation of the

rank-join operator. k ranked results are required from the top rank-join operator in

the plan.

Varying the Number of Required Answers (k) For different values of k,

Figure 5.10 (a) compares the actual values of d1 and d2 (refer to Figure 5.8) with

two estimates:(1) Any-k Estimate, the estimated values for d1 and d2 to get any k

join results (not necessary the top k), and (2)Top-k Estimate, the estimated values

for d1 and d2 to get the top k join results. Any-k Estimate and Top-k Estimate are

computed according to Section 5.3. The actual values of d1 and d2 are obtained by

actually running the query and by counting the number of retrieved input tuples by

each operator. Figure 5.10 (b) gives similar results for comparing the actual values

of d5 and d6 to the same estimates. The figures show that the estimation error is less

than 25% of the actual depth values. In general, for all conducted experiments, this

estimation error is less than 30% of the actual depth values. Note that the measured

values of d1 and d2 lie between the Any-k Estimate and the Top-k Estimate. The



100

Any-k Estimate can be considered as a lower-bound on the depths required by a

rank-join operator.

(a) (b)

Figure 5.10. Estimating the Input Cardinality for Different Values of k

Varying the Join Selectivity Figure 5.11 compares the actual and estimated

values for the depths of Plan P in Figure 5.8 for various values of the join selectiv-

ity. For low selectivity values, the required depths increase as the rank aggregation

algorithm needs to retrieve more tuples from each input to have enough information

to produce the top ranked join results. The maximum estimation error is less than

30% of the actual depth values.

5.4.3 Estimating the Maximum Buffer Size

Rank-join operators usually maintain a buffer of all join results produced and

cannot yet be reported as the top k results. Estimating the maximum buffer size is

an important parameter in estimating the total cost of a rank-join operator. In this

experiment, we use Plan P in Figure 5.8. The left child rank-join operator in Plan P

needs d1 and d2 tuples from its left and right inputs, respectively, before producing

the top k results. The worst case (maximum) buffer size occurs when the rank-join

operator cannot report any join result before retrieving all the d1 and d2 tuples.
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(a) (b)

Figure 5.11. Estimating the Input Cardinality for Different Values
of Join Selectivity

Hence, an upper bound on the buffer size can be estimated by d1d2s, where s is the

join selectivity. We use our estimates for top-k depths, d1 and d2, to estimate the

upper bound of the buffer size. We compare the actual (measured) buffer size to the

following two estimates: (1) Actual upper-bound, the upper bound computed using

the measured depths d1 and d2, and (2) Estimated upper-bound, the upper bound

computed using our estimation of top-k depths.

Figure 5.12 shows that the estimated upper-bound has an estimation error less

than 40% of the actual upper-bound (computed using the measured values of d1 and

d2). Figure 5.12 also shows that the actual buffer size is less than the upper-bound

estimates. The reason being that in the average case, the operator progressively

reports ranked join results from the buffer before completing the join between the d1

and d2 tuples. The gap between the actual buffer size and the upper-bound estimates

increases with k, as the probability of the worst-case scenario decreases.

5.5 Related Work

Another approach to evaluate top-k queries is the filter/restart approach [6, 20–

22]. Ranking is mapped to a filter condition with a cutoff parameter. If the filtering

produces less than k results, the query is restarted with a less restrictive condition.
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Figure 5.12. Estimating the Buffer Size of Rank-join

The final output results are then sorted to produce the top k results. A probabilistic

optimization of top-k queries is introduced in [22] to estimate the optimal value of

the cutoff parameter that minimizes the total cost including the risk of restarts.

Optimizing top-k queries that contain only selection has been studied in [44] in the

context of querying multimedia repositories. The optimization in [44] focuses on

determining the best way to execute a set of filtering conditions given different costs

of searching and probing the available indexes.

In contrast to previous work, we focus on optimizing ranking queries that involve

joins. Moreover, our ranking evaluation encapsulates optimal rank aggregation al-

gorithms. To the best of our knowledge, this is the first work that tries to estimate

the cost of optimal rank aggregation algorithms and incorporate them in relational

query optimization. We believe that the proposed optimization model for filtering

operations in [44] can be used in tandem with our proposed optimization technique

for selection predicates.

5.6 Summary

In this cahptaer, we introduced a framework for integrating rank-join operators

in real-world query optimizers. Our framework was based on two key steps. First,
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we extended the enumeration phase of the query optimizer to generate rank-aware

plans. The extension was achieved by providing rank-join operators as possible

join choices, and by defining ranking expressions as a new physical plan property.

The new property triggered the generation of a new space of ranking plans either

“naturally” by using rank-join operators or “enforced” by gluing sort operators to

sort the partial results. Next, we provided a probabilistic technique to estimate

the minimum required input cardinalities by rank-join operators to produce top k

join results. Estimating the minimum required input cardinalities emerged from

realizing the unique “early-out” property of rank-join operator. Unlike traditional

join operators, rank-join operators do not need to consume all their inputs. Hence,

estimating the cost of rank-join operator depends on estimating the number of tuples

required from the input.

Our proposed estimation model captured this property with estimation error less

than 30% of the actually measured input cardinality under some reasonable assump-

tions on the score distributions. We also estimated the space needed by rank-join

operators with estimation error less than 40%. We conducted several experiments to

evaluate the accuracy of our estimation model and the validity of our enumeration

extension. The results proved the concept and showed the robustness of our esti-

mation to several parameters such as the number of required answers and the join

selectivity.
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6 CONCLUSION

The main goal of this thesis is to leverage relational query processors to efficiently

support ranked retrieval, an increasingly important requirement by many emerging

applications. Top-k queries provide the user with the k most important results of a

given query ranked according to some scoring function. Top-k queries are dominant

in applications such as multimedia databases, information retrieval, web databases

and middleware design.

This dissertation introduces a new query processing paradigm that increases the

awareness of databases of user preferences. The dissertation also fills the gap between

theoretical development of ranking algorithms and the practical system-oriented in-

corporation of these techniques inside real-world database systems.

6.1 Summary of Contribution

The dissertation introduces three main contributions in rank-aware query pro-

cessing. First, the dissertation introduces a new algorithm for combining multiple

ranked inputs into one global ranking, where the inputs are joined according to ar-

bitrary join conditions. The new ranking algorithm advances the state of the art of

ranking algorithms by supporting arbitrary join conditions and exploiting all avail-

able access methods. The main idea is to consume only that part of the inputs that

has enough information to produce the top k results. We theoretically prove the

optimality of the algorithm in terms of the number of retrieved objects from inputs.

Experimental evaluation shows that the new algorithm outperforms current näıve

approaches by orders of magnitude and achieves significant performance benefit over

previously proposed algorithms.
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Second, the dissertation proposes an efficient implementation of the new algo-

rithm in terms of physical join operators for easy integration in practical query pro-

cessors. We addressed all the practical and engineering issues that allow for adopting

the operators in real-world database systems. These issues include pipelining, scal-

ability and adaptive join strategies.

The third contribution in this dissertation is developing a rank-aware query opti-

mization framework that enables a full integration of a rank-join algorithm and op-

erators inside real-world query processors. The framework includes novel approaches

to extend current cost-based optimization techniques to enumerate rank-aware query

execution plans. The framework also introduces a cost estimation model for rank

aggregation algorithms. To the best of our knowledge, this is the first model to

estimate the required input size of optimal rank aggregation algorithms. The model

by itself is very useful outside the context of query optimization and gives a better

understanding of the complexity of rank aggregation algorithms.

The research in this dissertation was primarily motivated by a prototype of a

video database management system developed by the database group at Purdue

University. The system was built by modifying and augmenting an open-source

database management system to support video storage, streaming and retrieval by

content. In a typical query, the user provides an example image or multiple images

and requests the most similar video objects based on multiple extracted features.

Current relational query processors are based on boolean logic and have no notion

for fuzziness or ranking.

6.2 Future Extensions

Throughout the study presented in this dissertation, several research questions

were raised both in supporting ranking and user preference in query processing, and

in the bigger picture of ameliorating the database systems “awareness” of available
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context information. In this section, we give an overview of several directions for

future research.

6.2.1 Approximate Ranking

The algorithms and techniques discussed in this dissertation focus on reporting

the “exact” top k answers to a user query. In several scenarios, this can be unneces-

sarily expensive. For example, consider an image database where we are interested

in retrieving the top 10 similar images to a given query. Now assume that there are

only n < 10 images that are considered “similar” to the query image; all other images

in the database are almost the same in terms of their similarity to the query. This

scenario is not uncommon in similarity search according to [45]. In this particular

scenario, the ranking algorithm will spend most of the execution time in distinguish-

ing among “irrelevant” results trying to get the exact top k answers. This example

motivates two research challenges:

• How to identify the number “relevant” top k answers ?

• How to adapt the behavior of the ranking algorithm to enhance the perfor-

mance using the relevance information?

One approach is to compute approximate top k answers with some guarantees on

the quality of the results.

6.2.2 Budget-guided Ranking

An important research challenge arises when we are interested in computing the

top k answers, given some constraints on the available resources or “budget”. For

example, in online applications, users may be interested in getting query answers

within some time limits. Another example in limited resources environments is

when we are interested in computing the top k results with limited space or access
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capabilities. In these examples, the proposed techniques to answer ranking queries

may suffer from these constraints on time and space complexities and may become

inapplicable.

We can see the connection between this challenge and approximate ranking; one

way to address resources constraints is through the support of approximate query

answers. What remains to be challenging is how to continuously adapt the ap-

proximation techniques to the available resources. We also intend to explore other

approaches that includes sampling and using history information to adapt to resource

constraints.

6.2.3 Learning the Scoring Function

In all the algorithms presented in this dissertation, we assumed that the com-

bining scoring function is specified by the user. Although this assumption may be

acceptable in simple scenarios, requiring users to specify how to combine multiple

criteria can be very hard and even impractical. An interesting challenge is to be able

to learn the combining function by collecting user preferences. Tackling this chal-

lenge will involve techniques from computer human interaction and machine learning.

One obvious difficulty is how to ensure that the learned combining function has the

properties required by the algorithm.

Moreover, this research direction can trigger other challenges with respect to the

scoring function. For example, if the learned function is not monotone with respect

to the individual scores, what are the other properties we can exploit to enhance

over the näıve sorting approach.

6.2.4 Other Extensions

Other possible research directions include: (1) secure top-k computation from

multiple sources, raising several challenges in privacy preserving query processing

and insuring that users cannot infer more information than specified by the query;
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(2) Supporting preference queries as a generalization of ranking queries, including

supporting partial order on database objects and efficient evaluation of other query

types, e.g., skyline queries; (3) Handling large ranking dimensions for web settings.
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[27] Ulrich Güntzer, Wolf-Tilo Balke, and Werner Kießling. Towards efficient multi-
feature queries in heterogeneous environments. In Proceedings of the Inter-
national Symposium on Information Technology (ITCC), Las Vegas, Nevada,
pages 622–628. IEEE Computer Society, 2001.

[28] Kevin Chen-Chuan Chang and Seung won Hwang. Minimal probing: supporting
expensive predicates for top-k queries. In Proceedings of the ACM SIGMOD
International Conference on Management of Data, Madison, Wisconsin, pages
346–357. ACM, 2002.

[29] Apostol Natsev, Yuan-Chi Chang, John R. Smith, Chung-Sheng Li, and Jef-
frey Scott Vitter. Supporting incremental join queries on ranked inputs. In Pro-
ceedings of the 27th International Conference on Very Large Databases (VLDB),
Rome, Italy, pages 281–290. Morgan Kaufmann, 2001.
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