
Automatic Relationship Discovery in Self-Managing Database Systems

Ihab Ilyas1 Volker Markl2 Peter J. Haas2 Paul G. Brown2 Ashraf Aboulnaga2

1Purdue University, West Lafayette, Indiana
2IBM Almaden Research Center, San Jose, California

ilyas@cs.purdue.edu, {marklv,phaas,pbrown1,aashraf}@us.ibm.com

1. Introduction

Relational database management systems rely on the query-
optimizer component to choose a minimum-cost plan for access-
ing the data. The optimizer’s cost estimates rest on “selectivity”
estimates, that is, estimates of the amount of data that will be ac-
cessed at each stage of processing. Such selectivity estimates are
in turn based on a set of summary statistics about the data (i.e.,
about the relational tables and columns) that are maintained in the
system catalog. In traditional systems, the user specifies the set of
catalog statistics to collect and maintain. This can be a daunting
task, because the number of potential statistics, especially multi-
variate statistics on groups of columns, becomes huge as the num-
ber of tables and columns increases. The user therefore must some-
how identify the “most important” set of statistics. A key goal of
recent research in self-managing database systems is how to au-
tomate this task, i.e., how to quickly and efficiently discover the
most important statistical dependencies between columns without
requiring intervention by a highly skilled database administrator.

One approach to this problem is to use feedback from user
queries. LEO, the DB2 learning optimizer [2], is a typical exam-
ple of this approach. By comparing the actual results with opti-
mizer estimates, LEO can detect errors caused by inaccurate statis-
tics and missed correlations and create adjustment factors that can
be applied in the future to improve the optimizer’s estimates. The
advantage of query-driven approaches is that they scale well and
are efficient, because they focus their efforts on columns that ap-
pear in actual queries. The disadvantage is that the system can pro-
duce poor estimates—and hence choose poor plans—if it has not
yet received enough feedback, either during the initial start-up pe-
riod or after a sudden change in the workload.

In this paper we describe CORDS [1], an algorithm that auto-
matically discovers correlations and soft functional dependencies
(FDs) between pairs of columns and, based on these relationships,
determines a set of statistics to maintain. This data-driven technol-
ogy is an essential complement to query-driven approaches such as
LEO, helping to ensure acceptable performance during slow learn-
ing periods. CORDS focuses on column pairs because this greatly
simplifies the algorithms, and experiments have shown that the
marginal benefit of capturing n-way dependencies for n > 2 is
relatively small. By “correlations,” we mean general statistical de-
pendencies, not merely approximate linear relationships as mea-
sured, for example, by the classical Pearson correlation coefficient.
By a soft FD between columns C1 and C2, we mean a generaliza-
tion of the classical notion of a “hard” FD in which the value of
C1 completely determines the value of C2; see [1] and references
therein. In a soft FD (denoted by C1 ⇒ C2), the value of C1 de-

termines the value of C2 not with certainty, but merely with high
probability. The column pairs examined by CORDS may be in the
same table or different tables.

CORDS first searches for column pairs that are likely to be re-
lated in an interesting and useful way by systematically enumerat-
ing candidate pairs and simultaneously pruning unpromising can-
didates using a flexible set of heuristics. For each surviving can-
didate pair, a statistical analysis is applied to a sample of column
values in order to identify correlations and soft FDs. CORDS then
recommends to the optimizer sets of multivariate “column group”
(CG) statistics to maintain. Use of these statistics can lead to much
more accurate selectivity estimates.

In developing CORDS, we have found that algorithmic simplic-
ity and judicious use of sampling can lead to efficient and highly
scalable self-management algorithms that are suitable for immedi-
ate incorporation into commercial systems. Our work also shows
the importance of proactive behavior, rather than merely feedback-
driven reactive behavior, in a self-managing system. The CORDS
technology is potentially applicable to other autonomic systems
in which automatic detection of correlated data—such as event
or transaction data—is useful. The following sections describe
CORDS in more detail; see [1] for a discussion of related work.

2. Candidate Generation

A candidate in CORDS is a triple (a1, a2, P), where ai (i =
1, 2) is a column of the form R.c, such as CARS.Make or
SALES.City. The quantity P is a “pairing rule” that specifies
which particular a1 values get paired with which particular a2 val-
ues to form the set of potentially interesting column-value pairs.
When the columns lie in the same table R and each a1 value is
paired with the a2 value in the same row, the pairing rule is called
trivial. CORDS also allows columns a1 and a2 to lie in different ta-
bles, say R and S, where R and S might reasonably be joined dur-
ing query processing. A pairing rule P in this case is simply a
two-table join predicate between R and S, such as R.custno =
S.custno.

CORDS first generates all candidates having a trivial pairing
rule. CORDS then finds all nontrivial pairing rules that “look like”
a key-to-foreign-key join predicate, since such join predicates are
likely to occur in query workloads. Each nontrivial pairing rule
P connects a pair of tables R and S, and CORDS generates all
candidates of the form (R.a, S.b, P). To find the nontrivial pair-
ing rules, CORDS first identifies the set K comprising columns that
are either declared primary or unique keys, together with each “un-
declared key,” that is, each column a not of these two types such
that #distinctValues(a)/#rows(a) ≥ 1 − ε1. (Here ε1 is a param-

Proceedings of the International Conference on Autonomic Computing (ICAC’04)

0-7695-2114-2/04 $20.00 © 2004 IEEE

Figure 1. Dependency graph for the Accidents database.

eter of the algorithm.) For each column a ∈ K, CORDS exam-
ines every other column in the schema to find potential matches.
A column b is considered a match for column a if either (1) col-
umn a is a declared primary key and column b is a declared for-
eign key for the primary key, or (2) every data value in a sample
from column b has a matching value in column a. The sample used
to check the condition in (2) need not be large; in our implemen-
tation the sample size was set at a few hundred rows.

The number of potential candidates is typically quite large for
a complex schema with a large number of columns. Therefore
CORDS applies a flexible set of heuristic pruning rules to reduce
the search space and avoid discovery of spurious relationships.
Some useful types of pruning rules include (1) constraints on the
data type of a1 and a2, (2) constraints on the minimum number of
distinct values of a1 and a2, (3) constraints on permissible pair-
ing rules, e.g., only allow trivial pairing rules or pairing rules that
correspond to explicitly declared primary-key-to-foreign-key re-
lationships, (4) workload-based constraints, e.g., prune candidate
columns that do not appear at least once in an equality predicate in
a query workload.

3. Discovering Relationships

Given a candidate (a1, a2, P), CORDS first checks for “triv-
ial” cases in which one or both of the columns a1 and a2 is “al-
most” a key or “almost” single valued. If the situation is non-
trivial, then CORDS looks at a sample of n column-value pairs.
CORDS identifies a soft FD C1 ⇒ C2 if |C1, C2|S ≤ ε2n and
|C1|S ≥ (1 − ε3)|C1, C2|S . Here |C1|S denotes the number of
distinct values in column C1 in the sample; |C1, C2|S is defined
similarly, but for the concatenation of columns C1 and C2. The
small constants ε2 and ε3 are parameters of the algorithm. Intu-
itively, CORDS asserts the existence of a soft FD C1 ⇒ C2 if
|C1|S/|C1, C2|S is “close” to 1. Because determining FDs from
samples is somewhat risky, CORDS only tests for a soft FD if the
reduced table S contains enough “information” in the sense that
n & |C1, C2|S . Intuitively, if the sample S is so small that most
column-value pairs (x, y) in the sample are distinct, then a spu-
rious FD will likely be detected. If two columns C1 and C2 do
not appear to satisfy a soft FD, then CORDS performs a robust chi-

Figure 2. Effect of CORDS on performance.

squared procedure to test for correlation. When constructing the
two-way contingency table used for the test, the values in each
column Ci are bucketized into categories. If the data distribution
is highly skewed in that some values are much more frequent than
others, then CORDS uses each frequent value as a category; other-
wise values are assigned to categories in a uniform manner. Fig-
ure 1 displays relationships that were discovered in a database of
automobile accident data; the graph was generated automatically.

4. Sample Size Determination

CORDS uses a sample size n such that, when the “mean-square
contingency” measure of correlation (see [1]) exceeds a specified
constant δ, the chi-squared test will correctly reject the indepen-
dence hypothesis with probability at least 1− p. Denote by d1 and
d2 the number of categories for the two columns of interest, and
set ν = (d1 − 1)(d2 − 1) and d = min(d1, d2). Then it can
be shown that, when p is small and ν is large, the required sam-
ple size is given by

n ≈
[
−16 ν log

(
p
√

2π
)]1/2 − 8 log

(
p
√

2π
)

1.69 δ(d − 1)ν−0.071
.

Observe that the required sample size is essentially insensitive to
the database size. Because of this insensitivity, CORDS scales well
to very large databases.

5. Exploiting Relationships

CORDS exploits discovered correlations by recommending sets
of CG statistics to maintain. CORDS automatically ranks the dis-
covered soft FDs and correlations by an appropriate measure of
strength (e.g., the quantity |C1|S/|C1, C2|S for soft FDs), so that
only the most important statistics are stored. Figure 2 illustrates
the speedup obtained by applying CORDS to a collection of test
queries. As can be seen, there is no significant degradation, and
some processing times are reduced by orders of magnitude.

References

[1] I. Ilyas, V. Markl, P. Haas, P. Brown, and A. Aboulnaga.
CORDS: Automatic discovery of correlations and soft func-
tional dependencies. In Proc. 2004 ACM SIGMOD. In press.

[2] M. Stillger, G. M. Lohman, V. Markl, and M. Kandil. LEO —
DB2’s LEarning Optimizer. In Proc. 27th VLDB, pages 19–
28. Morgan Kaufmann, 2001.

Proceedings of the International Conference on Autonomic Computing (ICAC’04)

0-7695-2114-2/04 $20.00 © 2004 IEEE

