
CLAMS: Bringing Quality to Data Lakes

Mina Farid
University of Waterloo

mfathy@uwaterloo.ca

Alexandra Roatiş
University of Waterloo

aroatis@uwaterloo.ca

Ihab F. Ilyas
University of Waterloo
ilyas@uwaterloo.ca

Hella-Franziska Hoffmann∗

Thomson Reuters
hella.hoffmann@thomsonreuters.com

Xu Chu
University of Waterloo

x4chu@uwaterloo.ca

ABSTRACT
With the increasing incentive of enterprises to ingest as
much data as they can in what is commonly referred to as
“data lakes”, and with the recent development of multiple
technologies to support this “load-first” paradigm, the new
environment presents serious data management challenges.
Among them, the assessment of data quality and cleaning
large volumes of heterogeneous data sources become essen-
tial tasks in unveiling the value of big data.

The coveted use of unstructured and semi-structured data
in large volumes makes current data cleaning tools (primar-
ily designed for relational data) not directly adoptable.

We present CLAMS, a system to discover and enforce
expressive integrity constraints from large amounts of lake
data with very limited schema information (e.g., represented
as RDF triples). This demonstration shows how CLAMS is
able to discover the constraints and the schemas they are de-
fined on simultaneously. CLAMS also introduces a scale-out
solution to efficiently detect errors in the raw data. CLAMS
interacts with human experts to both validate the discovered
constraints and to suggest data repairs.

CLAMS has been deployed in a real large-scale enterprise
data lake and was experimented with a real data set of 1.2
billion triples. It has been able to spot multiple obscure data
inconsistencies and errors early in the data processing stack,
providing huge value to the enterprise.

1. INTRODUCTION
At present, data is viewed as a major enterprise asset,

and tools for analyzing big data are highly coveted. To han-
dle the scale of available data, businesses have shifted to a
“load-first” approach. This has lead to an upward trend of
maintaining data in its native format and storing it in large
repositories referred to as “data lakes.”1

The effectiveness of data analysis depends on the quality
of the underlying data. Current data quality techniques [5]

∗Work done while at University of Waterloo
1http://www.gartner.com/newsroom/id/2809117

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGMOD’16, June 26-July 01, 2016, San Francisco, CA, USA
c© 2016 ACM. ISBN 978-1-4503-3531-7/16/06. . . $15.00

DOI: http://dx.doi.org/10.1145/2882903.2899391

rely on the existence of a global schema and use it to de-
fine various integrity constraints. In load-first schema-later
environments, most data is available in a plethora of lo-
cal schemas, schema-less RDF triple formats, and comma-
separated-value files. Analytics are performed on top of
application-specific schemas that are defined much later in
the stack. Waiting until a global schema is defined means
propagating large volumes of erroneous data through multi-
ple data processing layers via complex Extract-Transform-
Load [2] operations. This complicates repairing and tracking
errors to their original sources [1]. On the other hand, at-
tempting to clean data in the lake directly after ingesting it
from the sources is complicated by the lack of schema infor-
mation and the limited number of integrity constraints that
can be defined without a schema.

Denial Constraints (DCs) [4] are a state-of-the-art method
to express data quality rules over relational data [5]. The
literature has proposed efficient discovery [3] and enforce-
ment [4] algorithms for DCs. However, these algorithms
cannot be directly applied on data lakes because of (i) the
schema-less nature of lake data; and (ii) the limited scala-
bility of these algorithms to large datasets.

We present CLAMS, an interactive system that enables
business users to design and enforce complex constraints
over large unstructured and semi-structured datasets. In
particular, CLAMS operates on large-scale data processing
frameworks (specifically, Apache Spark) to manipulate mas-
sive datasets. The features of CLAMS include:
• Providing a data ingestion module to transform un-

structured and semi-structured data into RDF triples,
which are then loaded into HDFS;
• Specifying expressive integrity constraints over graph

data through (i) automatic discovery and ranking of
plausible quality constraints which get verified by the
user; and (ii) a friendly and interactive UI for creat-
ing and modifying constraints guided by data sampling
and summarization;
• Enforcing the specified constraints through scalable,

distributed algorithms to detect data inconsistencies;
• Surfacing a ranked list of possible errors along with the

lineage of the violating data for user inspection.
Our solution brings the enterprise one step closer to extract-
ing value from its dark (limited-access) data.

2. CLAMS SYSTEM OVERVIEW
Figure 1 illustrates the system architecture of CLAMS.

We give an overview of the different components, and then
discuss the details of each component.

2089

http://www.gartner.com/newsroom/id/2809117
http://dx.doi.org/10.1145/2882903.2899391

Dirty
DataRepairs

Data Lake

Text

RDF

Constraints

triple loading

triple extraction

① Data Ingestion ② Constraint Building

data sampling

constraint building

lineage
tracing

holistic
repair

hypergraph
③ Violation Detection

violation
detection

query
evaluation

constraint
parsingQ

Pview

④ Data Repair

OUTPUT

INPUT

conflicts

UI

Figure 1: CLAMS System Architecture

• the data ingestion module 1© loads datasets into HDFS,
registers data sources for cleaning, and uses informa-
tion extraction to produce semi-structured data (Sec-
tion 2.1);
• the constraint building module 2© offers an interactive

UI to examine automatically discovered simple quality
rules and guides the user in creating more complex
ones (Section 2.2);
• the violation detection module 3© efficiently enforces

a set of constraints over the registered data sources
to detect data that does not conform to the specified
constraints (Section 2.3);
• the data repair module 4© identifies the highly likely

causes of errors and proposes solutions for cleaning
them (Section 2.3).

2.1 Data Ingestion
At present, CLAMS uses the RDF data model for stor-

ing heterogeneous data. RDF is a graph-based data model,
where facts are represented as triples (directed labeled edges
between labeled nodes). Figure 2 shows a sample RDF
dataset in its graph representation, using data from the New
York Times2 and GeoNames3 datasets.

Heterogeneous information can be easily represented in
this format. Also, no global schema is necessary to under-
stand the data due to its human friendly readability.

Our conversation with multiple companies confirmed that
RDF is indeed a common format to represent data com-
ing from heterogenous data sources. Information extraction
tools (e.g., Open Calais4 of Thomson Reuters and IBM’s
AlchemyAPI5) may assist in extracting RDF triples from
unstructured text and linking the extracted data to popular
ontologies (e.g., DBpedia).
CLAMS ingests RDF data into HDFS. If the data is in a

different format, CLAMS uses information extraction tools

2http://data.nytimes.com/
3http://www.geonames.org/
4http://www.opencalais.com/
5http://www.alchemyapi.com/

uid1
a

“30.0086111”geo:latb

“31.2122222”geo:longc

“Giza (Egypt)”@en

skos:prefLabeld

uid2
e

owl:sameAsf

“30.00808”geo:lat

“31.21093”geo:long“Giza”

gn:nameg

a
http://data.nytimes.com/48075591700161033501

b
http://www.w3.org/2003/01/geo/wgs84 pos#lat

c
http://www.w3.org/2003/01/geo/wgs84 pos#long

d
http://www.w3.org/2004/02/skos/core#prefLabel

e
http://sws.geonames.org/360995/
f
http://www.w3.org/2002/07/owl#sameAs

g
http://www.geonames.org/ontology#name

Figure 2: Sample RDF Graph

Two identical locations must have the same latitude coordi-
nates is represented as a CDC c = (Q , ϕ), where:

Q = SELECT ?loc1 ?loc2 ?lat1 ?lat2

WHERE { ?loc1 owl:sameAs ?loc2 .

?loc1 geo:lat ?lat1 .

?loc2 geo:lat ?lat2 }

ϕ = {∀t ∈ Q(D), ¬(t.lat1 6= t.lat2)}

Figure 3: Sample Quality Constraint

to extract RDF triples before loading them. Users can reg-
ister HDFS datasets as resources, expanding the catalog of
data sources on which constraints can be applied.

2.2 Constraint Building
Definition of Constraints. In CLAMS, we define a con-
ditional denial constraint (CDC) c over data model M as a
pair (Q , ϕ), where Q is a query in language L, and ϕ is a
denial constraint over the relation defined by the answer of
Q over D, denoted Q(D). The query Q in a CDC defines a
relational view over the unstructured input dataset. Then,
the denial constraint ϕ over the view expresses the set of
conditions that represent a forbidden (incorrect) pattern for
(sets of) tuples in Q(D). We say that a dataset D ∈ M
satisfies a CDC c = (Q , ϕ), denoted D |= c, iff the answer
to Q(D) satisfies ϕ, denoted Q(D) |= ϕ.

We will demonstrate the application of CDCs over hetero-
geneous datasets using the RDF data model and its query
language, SPARQL. Figure 3 shows a simple constraint ex-
ample over the RDF graph in Figure 2.

Note that while the set of predicates is limited by the DC
formalism, the query Q allows the definition of constraints
beyond DCs. Take for instance a graph reachability con-
straint stating a conflict of interest, e.g., a bank employee
cannot be in charge of the account of a first-degree relative.
In order to express that constraint, the reachability predi-
cates are pushed into the query. Therefore, the query will
represent the forbidden pattern while ϕ is void, signalling
that every query answer is a violation of the CDC.
Constraint Discovery. The separation of a CDC into
query and DC significantly complicates the discovery pro-
cess. The space of possible DCs for a given schema is al-
ready massive [3]. Performing such a search for all possible
schemas is unfeasible. We therefore limit our search to ba-

2090

http://data.nytimes.com/
http://www.geonames.org/
http://www.opencalais.com/
http://www.alchemyapi.com/
http://data.nytimes.com/48075591700161033501
http://www.w3.org/2003/01/geo/wgs84_pos#lat
http://www.w3.org/2003/01/geo/wgs84_pos#long
http://www.w3.org/2004/02/skos/core#prefLabel
http://sws.geonames.org/360995/
http://www.w3.org/2002/07/owl#sameAs
http://www.geonames.org/ontology#name

sic graph pattern (i.e., conjunctive) queries. This limitation
allows for a manageable scope of potential schemas, with
many repeating sub-patterns. Furthermore, CDC discovery
is optimized by intertwining the search for relation schemas
with the search for DC predicates.

The automatic constraint discovery uses multiple tech-
niques to detect potential schemas in the data and discover
constraints that may apply on them. The schema detec-
tion spans from using schema languages such as RDFS and
OWL, to graph summaries and entity anchoring. DC predi-
cate detection is based on state-of-the-art techniques [3], ex-
tended with attribute type inference and on-the-fly schema
detection. CLAMS generates friendly natural English de-
scriptions for the discovered constraints.
Constraint Building. CLAMS also provides an interac-
tive interface to manually build more complex constraints.
The system guides the user in the process of creating con-
straints by providing statistics about common types and
properties in the dataset and their co-occurrence to assist
in constructing the constraint queries.

2.3 Violation Detection and Holistic Repair
A violation of a CDC c is defined as a minimal set of triples

that cannot coexist, and removing any triple from that set
will resolve the violation. For example, the following triples
from Figure 2 violate the CDC c from Figure 3. The set of
triples {t1, t2, t3} forms a single violation of c.

t1 : uid1 owl:sameAs uid2 .
t2 : uid1 geo:lat “30.0086111” .
t3 : uid2 geo:lat “30.00808” .

Once we have detected all violations, possibly from mul-
tiple constraints, a violation hypergraph G is built. Each
node in the hypergraph represents a triple, and each hy-
peredge represents a violation. Figure 4 shows a viola-
tion hypergraph with three violations V1, V2, V3, where V1 =
{t1, t2, t3}, V2 = {t1, t2, t4, t5}, and V3 = {t1, t6}.

t5
V3

t1 t2 t3t4

t6
V1

V2

Figure 4: Example Hypergraph of three Violations

The hypergraph immediately reveals the number of viola-
tions a triple participates in, for example, t1 is involved in
three violations, while t2 is involved in two violations. All
nodes (triples) in the hypergraph are potential erroneous
triples. We rank the potential erroneous triples by the num-
ber of violations each triple participates in. The intuition
behind such ranking is that the more violations a triple is in-
volved in, the more likely that triple is incorrect [4]. A visual
interface is offered to the user, color coding the problematic
triples by their participation in violations, as well as provid-
ing reasons to explain why these triples are erroneous [1].
The user gradually edits or remove triples from the graph
until all the violations are solved. For example, triple t1 in
Figure 4 is first presented to the user. After examining the
violations t1 is involved in, the user might decide that t1 is
an erroneous triple and thus should be removed. Removing
t1 causes CLAMS to update the hypergraph. In this ex-
ample, deleting t1 causes all the hyperedges (i.e., violations)

Figure 5: Data Source Registration

to be removed, eliminating the need for the user to further
examine the rest of the triples.

2.4 Implementation Details
We designed and implemented the backend algorithms for

constraint discovery and enforcement on the Apache Spark
cluster computing framework to benefit from its efficient in-
memory processing capabilities. Spark reads RDF data from
HDFS, which represents our data lake, and distributes the
algorithmic work among 10 worker nodes with a total of 832
GB RAM memory. We implemented a RESTful web ser-
vices layer using Dropwizard6 to communicate with Spark
and HDFS. Dropwizard exposes our data quality algorithms
as web services. When a request is received, we formulate
and submit an appropriate Spark job to the cluster, and the
results are written to HDFS. A user web application is built
in JavaScript on top of Node.js7 framework and it is respon-
sible for providing an interactive UI to call the Dropwizard
web services and manipulate catalog information.

3. DEMONSTRATION SCENARIO
The demonstration’s audience will be able to use CLAMS

to enforce quality constraints on RDF data. Participants
may assess automatically discovered constraints or manu-
ally build constraints with the help of CLAMS’s data ex-
ploration tool. After defining the constraints, the constraint
enforcement algorithms of CLAMS run to detect violations
and suggest repairs. Users can investigate the detected vio-
lations and provide repair feedback to the system.

In this section, we present a demonstration scenario to
show the functionality of CLAMS in one possible applica-
tion to enforce data quality constraints on the data lake.

Data Ingestion and Source Registration. The first step
in our demonstration is to register the data sources that we
will operate on.

6http://www.dropwizard.io/
7https://nodejs.org

2091

http://www.dropwizard.io/
https://nodejs.org

 Data to Enforce Constraints

Enforce

Cleaning RDF Data in the Lake
 Logged in

Send Feedback HDFS

all_locations tiny taxes reegle all_locations nyt_locations

Sample

Violations

Subject Property Object #Violations Action

<http://sws.geonames.org/2332459/> geo:lat "6.45407" 5

<http://data.nytimes.com/N38716320602102563861> owl:sameAs <http://sws.geonames.org/4154663/> 3

This triple is involved in the following violations:

SameLocEqualLat

<http://data.nytimes.com/N38716320602102563861> owl:sameAs <http://sws.geonames.org/4154663/>

<http://data.nytimes.com/N38716320602102563861> geo:lat "25.3128967"^^<http://www.w3.org/2001/XMLSchema#double>

<http://sws.geonames.org/4154663/> geo:lat "25.37217"

SameLocEqualLat

<http://data.nytimes.com/N38716320602102563861> owl:sameAs <http://sws.geonames.org/4154663/>

<http://data.nytimes.com/N38716320602102563861> geo:lat "25.3128967"^^<http://www.w3.org/2001/XMLSchema#double>

<http://sws.geonames.org/4154663/> geo:lat "25.3128967"

SameLocEqualLat

<http://data.nytimes.com/N38716320602102563861> owl:sameAs <http://sws.geonames.org/4154663/>

<http://data.nytimes.com/N38716320602102563861> geo:lat "25.3128967"^^<http://www.w3.org/2001/XMLSchema#double>

<http://sws.geonames.org/4154663/> geo:lat "25.3128967"

<http://data.nytimes.com/21142141218493299101> owl:sameAs <http://sws.geonames.org/4154663/>

Keep Edit Delete

Keep Edit Delete

Figure 7: Detected Violations and User Feedback for Repair

Cleaning RDF Data in the Lake
 Logged in

Send Feedback HDFS

There cannot exist a person entity with birthdate
value greater than the value 2016-01-01

Accept

Modify

There cannot exist two state entities t1 and t2 such
that the code of t1 equals the code of t2 and the
abbreviation of t1 not equals the abbreviation of t2

Accept

Modify

Same locations must have equals latitudes
Accept

Modify

Constraint Query

?state <http://data-gov.tw.rpi.edu/vocab/p/1356/state_code> ?code

?state <http://data-gov.tw.rpi.edu/vocab/p/1356/state_abbrv> ?abbreviation

Constraint Predicates

∀ t , t ∈ R, ¬ (t1.?code = t2.?code

∧ t1.?abbreviation != t2.?abbreviation)

1 2

Figure 6: Discovered Constraints and User Verification

• Users can register RDF data (Figure 5) that is already
loaded on HDFS (large datasets), upload RDF data
files or select extractors for other data formats.
• CLAMS shows the registered datasets and allows users

to see samples of them.

Discovering and Building Constraints. The next step is
to define the constraints that apply on the dataset. CLAMS
supports two methods to create constraints.
Discovered Constraints. First, users can trigger the au-
tomatic constraint discovery from the underlying datasets
as explained in Section 2.2.

• The discovered constraints are presented to the user
with simple English translations (Figure 6).
• Users can see the details of a constraint (its query and

predicates) by hovering over it, and can modify it or
directly add it (accept) to the system catalog.

User-Defined Constraints. The second approach is to
use the interactive constraint building tool of CLAMS to
explore a sample of the data and define manual constraints.

• Users interact with data to build the constraint query.
• Users define the constraint predicates based on the

variables in the query. The predicates can be defined
on a single tuple or on pairs of tuples.

Constraint Enforcement. Given a set of defined constraints
and a set of registered data sources, users can run our con-
straint enforcement algorithm to detect violations.
• Users select the constraints to enforce and the data

sources to enfoce them on, then start the constriant
enforcement process.
• CLAMS runs the enforcement Spark jobs on the clus-

ter and returns the detected violations (Figure 7).
• The system displays the violating RDF triples, ranked

by their accumulated violations (cf. Section 2.3).
• Upon clicking on a triple, all the violations that this

triple is involved in are displayed to the user.
• The user decides whether to keep, edit, or delete a

triple from the data. If deleted, CLAMS excludes that
triple when performing further constraint enforcement.

4. CONCLUSION
We presented CLAMS—a system to discover and to en-

force quality constraints on large RDF datasets that reside
in data lakes. CLAMS uses a new integrity constraint for-
malism to capture both relational model-like constraints and
more expressive quality rules based on graph patterns. We
showed how CLAMS holistically combines the signals from
diverse constraints spanning over multiple datasets and uti-
lize user feedback to obtain accurate repairs.

5. ACKNOWLEDGEMENTS
This work is generously funded by Thomson Reuters. The

company has also provided us with valuable data that was
used to validate CLAMS and feedback about the imple-
mented prototype.

6. REFERENCES
[1] A. Chalamalla, I. F. Ilyas, M. Ouzzani, and P. Papotti.

Descriptive and Prescriptive Data Cleaning. In
SIGMOD, 2014.

[2] S. Chaudhuri and U. Dayal. An Overview of Data
Warehousing and OLAP Technology. SIGMOD Rec.,
26(1):65–74, Mar. 1997.

[3] X. Chu, I. F. Ilyas, and P. Papotti. Discovering Denial
Constraints. Proc. VLDB Endow., 6(13):1498–1509,
Aug. 2013.

[4] X. Chu, I. F. Ilyas, and P. Papotti. Holistic Data
Cleaning: Put Violations Into Context. In ICDE, 2013.

[5] I. F. Ilyas and X. Chu. Trends in cleaning relational
data: Consistency and deduplication. Foundations and
Trends in Databases, 5(4):281–393, 2015.

2092

	Introduction
	CLAMS System Overview
	Data Ingestion
	Constraint Building
	Violation Detection and Holistic Repair
	Implementation Details

	Demonstration Scenario
	Conclusion
	Acknowledgements
	References

