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ABSTRACT
Data deduplication refers to the process of identifying tuples
in a relation that refer to the same real world entity. The
complexity of the problem is inherently quadratic with re-
spect to the number of tuples, since a similarity value must
be computed for every pair of tuples. To avoid compar-
ing tuple pairs that are obviously non-duplicates, blocking
techniques are used to divide the tuples into blocks and
only tuples within the same block are compared. How-
ever, even with the use of blocking, data deduplication re-
mains a costly problem for large datasets. In this paper,
we show how to further speed up data deduplication by
leveraging parallelism in a shared-nothing computing envi-
ronment. Our main contribution is a distribution strategy,
called Dis-Dedup, that minimizes the maximum workload
across all worker nodes and provides strong theoretical guar-
antees. We demonstrate the effectiveness of our proposed
strategy by performing extensive experiments on both syn-
thetic datasets with varying block size distributions, as well
as real world datasets.

1. INTRODUCTION
Data deduplication, also known as record linkage, or en-

tity resolution, refers to the process of identifying tuples in a
relation that refer to the same real world entity. Data dedu-
plication is a pervasive problem, and is extremely important
for data quality and data integration [12]. For example, find-
ing duplicate customers in enterprise databases is essential
in almost all levels of business. In our collaboration with
Thomson Reuters, we observed that a data deduplication
project takes 3-6 months to complete, mainly due to the
scale and variety of data sources.

Data deduplication techniques usually require computing
a similarity score of each tuple pair. For a dataset with n
tuples, näıvely comparing every tuple pair requires O(n2)
comparisons, a prohibitive cost when n is large. A com-
monly used technique to avoid the quadratic complexity is
blocking [4, 6, 16], which avoids comparing tuple pairs that
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are obviously not duplicates. Blocking methods first parti-
tion all records into blocks and then only records within the
same block are compared. A simple way to perform block-
ing is to scan all records and compute a hash value for each
record based on a subset of its attributes, commonly referred
to as blocking key attributes. The computed hash values are
called blocking key values. Records with the same blocking
key values are grouped into the same block. For example,
blocking key attributes can be the zipcode, or the first three
characters of the last name. Since one blocking function
might miss placing duplicate tuples in the same block, thus
resulting in a false negative (for example, zipcode can be
wrong or obsolete), multiple blocking functions [12] are of-
ten employed to reduce the number of false negatives.

Despite the use of blocking techniques, data deduplica-
tion remains a costly process that can take hours to days
to finish for real world datasets on a single machine [21].
Most of the previous work on data deduplication is situated
in a centralized setting [4, 6, 7], and does not leverage the
capabilities of a distributed environment to scale out compu-
tation; hence, it does not scale to large distributed data. Big
data often resides on a cluster of machines interconnected
by a fast network, commonly referred to as a “data lake”.
Therefore, it is natural to leverage this scale-out environ-
ment to develop efficient data distribution strategies that
parallelize data deduplication. Multiple challenges need to
be addressed to achieve this goal. First, unlike centralized
settings, where the dominating cost is almost always com-
puting the similarity scores of all tuple pairs, multiple fac-
tors contribute to the elapsed time in a distributed comput-
ing environment, including network transfer time, local disk
I/O time, and CPU time for pair-wise comparisons. These
costs also vary across different deployments. Second, as it
is typical in a distributed setting, any algorithm has to be
aware of data skew, and achieve load-balancing [5, 11]. Ev-
ery machine must perform a roughly equal amount of work
in order to avoid situations where some machines take much
longer than others to finish, a scenario that greatly affects
the overall running time. We show the effect of data skew
when we discuss distribution strategies in Section 4. Third,
the distribution strategy must be able to handle effectively
multiple blocking functions; as we show in this paper, the
use of multiple blocking functions impacts the number of
times each tuple is sent across nodes, and also induces re-
dundant comparisons when a tuple pair belongs to the same
block according to multiple blocking functions.

A recent work Dedoop [19, 20] uses MapReduce [10] for
data deduplication. However, it only optimizes for compu-



tation cost, and requires a large memory footprint to keep
the necessary statistics for its distribution strategy, thus lim-
iting its performance and applicability, as our experiments
show in Section 6. The problem of data deduplication is
also related to distributed join computation, which will be
discussed in detail in Section 7. However, parallel join algo-
rithms are not directly applicable to our setting: (1) most of
the work on parallel join processing [22, 2] is for two-table
joins, so the techniques are not directly applicable to self-
join without wasting almost half of the available workers,
as shown in Section 3; (2) even with an efficient self-join
implementation, applying it to every block directly without
considering the block sizes yields a sub-optimal strategy, as
shown in Section 4.2; and (3) to the best of our knowledge,
there is no existing work on processing a disjunction of join
queries, a problem we have to tackle in dealing with multiple
blocking functions.

In this paper, we propose a distribution strategy with op-
timality guarantees for distributed data deduplication in a
shared-nothing environment. Our proposed strategy aims at
minimizing elapsed time by minimizing the maximum cost
across all machines. Note that while blocking affects the
quality of results (by introducing false negatives), we do not
introduce a new blocking criteria, rather we show how to
execute a given set of blocking functions in a distributed en-
vironment. In other words, our technique does not change
the quality but tackles the performance of the deduplication
process. We make the following contributions:
•We introduce a cost model that consists of the maximum

number of input tuples any machine receives (X), and the
maximum number of tuple pair comparisons any machine
performs (Y ) (Section 2). We provide a lower bound analysis
for X and Y that is independent of the actual dominating
cost in a cluster.
• We propose a distribution strategy for distributing the

workload of comparing tuples in a single block (Section 3).
Both X and Y of our strategy are guaranteed to be within a
small constant factor from the lower bound Xlow and Ylow.
• We propose Dis-Dedup for distributing a set of blocks

produced by a single blocking function. TheX and Y of Dis-
Dedup are both within a small constant factor from Xlow
and Ylow, regardless of block-size skew (Section 4). Dis-
Dedup also handles multiple blocking functions effectively,
and avoids producing the same tuple pair more than once
even if that tuple pair is in the same block according to
multiple blocking functions (Section 5).

We perform extensive experiments on synthetic datasets
with varying block-size skew, and on real datasets. Our
experiments demonstrate the effectiveness of our proposed
distribution strategy (Section 6).

2. PROBLEM DEFINITION AND
SOLUTION OVERVIEW

In this section, we present the parallel computation model
we will use in this paper. We formally introduce the problem
definition, and provide an overview of our solution.

2.1 Parallel Computation Model
We focus on scale-out environments, where data is usually

stored in what is called a data lake. Such an environment
usually adopts a shared-nothing architecture, where multi-
ple machines, or nodes, communicate via a high-speed inter-
connect network, and each node has its own private memory

and disk. In every node there are typically multiple virtual
processors running together, so as to take advantage of the
multiple CPUs and disks available on each machine and thus
increase parallelism. These virtual processors that run in
parallel are called workers in this paper.

In a shared-nothing system, there is usually a trade-off be-
tween the communication cost and the computation cost [26].
For a particular data processing task, it is often hard to pre-
dict which type of cost is dominating, let alone constructing
an objective function that combines these two costs. In ad-
dition, the influence of each cost on the running time is
dependent on many parameters of the cluster configuration.
For example, there are more than 250 parameters that are
tunable in a Hadoop cluster1. In this paper, we follow a sim-
ilar strategy used in parallel join processing [22], and seek
to minimize both costs simultaneously.

Since all workers are running in parallel, to minimize the
overall elapsed time, we focus on minimizing the largest cost
across all workers. For worker i, let Xi be the communica-
tion cost, and Yi be the computation cost. Assume that
there are k workers available. We define X (resp. Y ) to be
the maximum Xi (resp. Yi) at any worker:

X = max
i∈[1,k]

Xi Y = max
i∈[1,k]

Yi (1)

A typical example of a parallel shared-nothing system is
MapReduce [10]. MapReduce has two types of workers: the
mapper and the reducer. A mapper takes a key-value pair,
and generates a list of key-value pairs; while a reducer takes
a key associated with a list of values, and generates another
list of key-value pairs. The input keys of the reducers are the
output keys of the mappers. Users have the option of imple-
menting a customized partitioner. Partitioners decide which
key-value pairs are sent to which reducers, based on the key.
MapReduce balances the load between mappers very well,
however, it is the programmers’ responsibility to ensure that
the workload across different reducers is balanced.

2.2 Formal Problem Definition
We are given a dataset I with n tuples, s blocking func-

tions h1, . . . , hs, and a tuple-pair similarity function f . Ev-
ery blocking function h ∈ {h1, . . . , hs} is applied to every
tuple t, and returns a blocking key value h(t). A block-
ing function h divides all n tuples into a set of m blocks
{B1, B2, . . . , Bm}, where tuples in the same block have the
same blocking key value. Tuple pairs in the same block are
compared using f to obtain a similarity score. Based on the
similarity scores, a clustering algorithm is then applied to
group tuples together.

We perform data deduplication using the computational
model described in Section 2.1. In this case, Xi represents
the number of tuples that Worker i receives; and Yi repre-
sents the number of tuple pair comparisons that Worker i
performs. We aim at designing a distribution strategy that
minimizes (a) the maximum number of tuples any worker
receives, namely, X, and (b) the maximum number of tu-
ple pair comparisons any worker performs, namely, Y , at
the same time. This may not be possible for a given data
deduplication task, but we show that we can always achieve
optimality for both X and Y within constant factors. Hence,
our algorithm will perform optimally independent of how the
runtime is as a function of X and Y .

1http://tinyurl.com/puqduqj
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Example 1. Consider a scenario where a single blocking
function produces few large blocks and many smaller blocks.
To keep the example simple, suppose that a blocking function
partitions a relation of n = 100 tuples into 5 blocks of size
10 and 25 blocks of size 2. The total number of comparisons
W in this case is W = 5 ·

(
10
2

)
+ 25 ·

(
2
2

)
= 250 comparisons.

Assume k = 10 workers. Consider first a strategy that
sends all tuples to every worker. In this case, Xi = 100
for every worker i, which results in X = 100 according to
Equation (1). We then assign Yi = W

k
= 25 comparisons to

worker i (for example by assigning to worker i tuple pairs
numbered [(i − 1)W

k
, iW

k
]). Therefore, Y = 25 according to

Equation (1).This strategy achieves the optimal Y , since W
is evenly distributed to all workers. However, it has a poor
X, since every tuple is replicated 10 times.

Consider a second strategy that assigns one block entirely
to one worker. For example, we could assign each of the 5
blocks of size 10 to the first 5 workers, and to each of the
remaining 5 workers we assign 5 blocks of size 2. In this
case, X = 10, since each worker receives exactly the same
number of tuples; moreover, each tuple is replicated exactly
once. However, even though the input is evenly distributed
across workers, the number of comparisons is not. Indeed,
the first 5 workers perform

(
10
2

)
= 45 comparisons, while

the last 5 workers perform only 5 ·
(
2
2

)
= 5 comparisons.

Therefore, Y = 45 according to Equation (1).

The above example demonstrates that the distribution strat-
egy has significant impact on both X and Y , even in the
case of a single blocking function. In the next three sec-
tions, we show how we can construct a distribution strategy
that achieves an optimal behavior for both X and Y for any
distribution of block sizes, and outperforms in practice any
alternative strategies.

2.3 Solution Overview
Consider a blocking function h that produces m blocks

B1, B2, . . . , Bm. A distribution strategy would have to as-
sign, for every block Bi a subset of the k workers of size
ki ≤ k to handle Bi.

A straightforward strategy assigns one block entirely to
one worker, i.e., ki = 1, ∀i ∈ [1,m], hence, parallelism hap-
pens only across blocks. Another straightforward strategy
uses all the available workers to handle every block, i.e.,
ki = k, ∀i ∈ [1,m], hence, parallelism is maximized for ev-
ery block, and uses an existing parallel join algorithms [2,
22] to handle every block. However, both strategies are not
optimal, as we will show in Section 4.2.

In light of these two straightforward strategies, we first
study how to distribute the workload of one block Bi to
ki workers to minimize X and Y (Section 3). Given the
distribution strategy for a single block, we then show how
to assign workers to blocks B1, . . . , Bm generated by a single
blocking function h, so as to minimize both X and Y across
all blocks (Section 4). Given the distribution strategy for
a single blocking function h, we will finally present how to
assign workers given multiple blocking functions h1, . . . , hs,
so that the overall X and Y are minimized (Section 5).

The optimality results we will show next for X and Y
hold as long as the distribution strategy can be implemented
in a shared-nothing system, where the distribution strategy
specifies (1) which tuples are sent to which workers; and
(2) which tuple pairs are compared inside each worker. We

provide in the Appendix of the full paper2 [9] the general
description of the distribution strategy. However, whether
our distribution strategy can be implemented in a particular
shared-nothing system depends on the APIs of the system.
For simplicity, we describe and implement our distribution
strategy using MapReduce, which uses mappers and parti-
tioners to specify (1) and uses reducers to specify (2). Other
example platforms where our distribution strategies could be
implemented include Spark [28], Apache Flink (previously
known as Stratosphere) [3], and Myria [15].

3. SINGLE BLOCK DEDUPLICATION
In this section, we study the problem of data dedupli-

cation for tuples in a single block that is produced by one
blocking function; in other words, we need to compare every
tuple with every other tuple in the block. The distribution
strategy presented in this section will serve as a building
block when discussing distribution strategies in Sections 4
and 5. Assume that there are n tuples in the block, and k
available reducers to compute the pair-wise similarities.

3.1 Lower Bounds
We first analyze the lower bounds Xlow and Ylow for X

and Y , respectively. The lower bounds are necessary to
reason about the optimality of our distribution strategies.

Theorem 1. For any distribution strategy that performs
data deduplication on a block of size n using k reducers,
the maximum input is X > Xlow = n√

k
and the maximum

number of comparisons is Y ≥ Ylow = n(n−1)
2k

.

Proof. To show the lower bound on the number of com-
parisons Y , observe that the total amount of comparisons

required is
(
n
2

)
= n(n−1)

2
. Since there are k available reduc-

ers, there must exist at least one reducer j with Yj ≥ n(n−1)
2k

.
For the lower bound on the input, suppose for the sake of

contradiction that the maximum input is n′ ≤ n/
√
k. Then,

each reducer will perform at most
(
n′

2

)
comparisons, which

means that the total number of comparisons will be at most

k
(
n′

2

)
= n(n −

√
k)/2 < n(n − 1)/2, a contradiction (since

the comparisons must be at least
(
n
2

)
).

As we show in Section 3.2, our algorithm matches the lower
bound Ylow, but not Xlow. The problem of designing a strat-
egy that matches Xlow is tightly related to an extensively
studied problem in combinatorics called covering design [25].
A (n, `, t)-covering design is a family F of subsets of size `
from the universe {1, . . . , n}, such that every subset of size t
from the universe is a subset of a set in F . The task in hand
is to compute the minimum size C(n, `, t) of such a family.
To see the connection with our distribution problem, con-
sider a (n,X, 2)-covering design F of size k. Then, we can
assign to each of the k reducers a set from the family (that
will be of size X); but now, we can perform every compar-
ison in some reducer, since the covering design guarantees
that every subset of size 2 (i.e., every pair) will be in some
set (i.e., in some reducer). Thus, designing a strategy that
achieves Xlow means finding a (n,Xlow, 2)-covering design,
such that C(n,Xlow, 2) ≤ k.

The lower bound for X presented in Theorem 1 is called
the Schönheim bound [25], but the only constructions that
match it are explicit constructions for fixed values of n, `.
There exists a large literature of such constructions [14],

2https://cs.uwaterloo.ca/~x4chu/CS-2016-02.pdf
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(a) R× S join (b) Self-join

Figure 1: Reducer arrangement. (The number in
the upper left corner of each cell is the reducer id.)

and it is an open problem to find tight upper and lower
bounds. Hence, instead of looking for an optimal solution,
our algorithm provides a constant-factor approximation of
the lower bound.

3.2 Triangle Distribution Strategy
We present here a distribution strategy, called triangle

distribution strategy, which guarantees with high probability
a small constant-factor approximation of the lower bounds.

The name of the distribution strategy comes from the fact
that we arrange the k reducers in a triangle whose two sides
have size l (thus k = l(l+1)/2 for some integer l). To explain
why we organize the reducers in such a fashion, consider the
scenario studied in [2, 5] where we compute the cartesian
product R × S of two relations of size n: in this case, the
reducers are organized in a

√
k ×
√
k square, as shown in

Figure 1(a) for k = 36. Each tuple from R is sent to the
reducers of a random row, and each tuple from S is sent to
all the reducers of a random column; the reducer function
then computes all pairs it receives. However, if we apply this
idea directly to a self-join (where R = S), the comparison
of each pair would be repeated twice, since if a tuple pair
ends up together in the reducer (i, j), it will also be in the
reducer (j, i). For example, in Figure 1(a) tuple t1 is sent to
all reducers in row 2 and column 2, and tuple t2 is sent to
all reducers in row 4 and column 4. Therefore, the joining of
t1 and t2 is duplicated at reducers (2, 4) and (4, 2). Because
of the symmetry, the lower left half of the reducers in the
square are doing redundant work. Arranging the reducers
in a triangle circumvents this problem and allows us to use
all available reducers.

Figure 1(b) gives an example of such an arrangement for
k = 21 reducers with l = 6. Every reducer is identified by
a two dimensional index (p, q), where p is the row index,
and q is the column index, and 1 ≤ p ≤ q ≤ l. Each
reducer (p, q) has a unique reducer ID, which is calculated
as (2l− p+ 2)(p− 1)/2 + (q− p+ 1). For example, Reducer
(2, 4) marked purple in Figure 1(b) is Reducer 9.

Algorithm 1 describes the distribution strategy given the
arrangement for the k reducers. For any tuple t, the mapper
randomly chooses an integer a, called an anchor, between
[1, l], and distributes t to all reducers whose row or column
index = a (Lines 3-11). By replicating each tuple l times,
we can ensure that for every tuple pair, there exists at least
one reducer that receives both tuples. In fact, if two tuples
have different anchor points, there is exactly one reducer
that receives both tuples; while if two tuples have the same
anchor point a, both tuples will be replicated on the same set
of reducers, but we only compare the tuple pair on reducer
(a, a). The key of the key-value pair of the mapper output

Algorithm 1 Triangle distribution strategy

1: class Mapper
2: method Map(Tuple t, null)
3: Int a← a random value from [1,l]
4: for all p ∈ [1, a) do
5: rid← rid of Reducer (p, a)
6: Emit(Int rid, L#Tuple t)

7: rid← rid of Reducer (a, a)
8: Emit(Int rid, S#Tuple t)
9: for all q ∈ (a, l] do
10: rid← rid of Reducer (a, q)
11: Emit(Int rid, R#Tuple t)

12: class Partitioner
13: method Partition(Key rid,Value v, k)
14: Return rid

15: class Reducer
16: method Reduce(Key rid,Values [v1, v2 . . .])
17: Left← ∅
18: Right← ∅
19: Self ← ∅
20: for all Value (v) ∈ Values [v1, v2 . . .] do
21: t← v.subString(2)
22: if v starts with L then
23: Left← Left + t
24: else if v starts with R then
25: Right← Right + t
26: else if v starts with S then
27: Self ← Self + t

28: if Left 6= ∅ and Right 6= ∅ then
29: for all (t1) ∈ Left do
30: for all (t2) ∈ Right do
31: compare t1 and t2
32: else
33: for all (t1) ∈ Self do
34: for all (t2) ∈ Self do
35: compare t1 and t2

is the reducer id, and the value of the key-value pair of the
mapper output is the tuple augmented with a flag L, S or R
to avoid comparing tuple pairs that have the same anchor
points a in reducers other than (a, a). Within each reducer,
tuples with flag L are compared with tuples with flag R
(Lines 28-31), and tuples with flag S are compared only
with each other (Lines 33-35).

Figure 2: Single block distribution example using
three tuples, given reducers in Figure 1(b)

Example 2. Figure 2 gives an example for three tuples
t1, t2, t3 given the arrangement of the reducers in Figure 1(b).
Suppose that tuple t1 has anchor point a = 2, and tuples



t2, t3 have the same anchor point a = 4. The mapping func-
tion takes t1 and generates the key-value pairs (2, L#t1),
(7, S#t1),(8, R#t1),(9, R#t1),(10, R#t1),(11, R#t1). Note
the different tags L, S,R for different key-value pairs. Re-
ducer 9 receives a list of values R#t1, L#t2, L#t3 associated
with key 9, and compares tuples marked with R with tuples
marked with L, but not tuples marked with the same tag. Re-
ducer 16 receives a list of values S#t2, S#t3, and performs
comparisons among all tuples marked with S.

Theorem 2. The distribution of Algorithm 1 achieves with
high probability3 maximum input X ≤ (1+o(1))

√
2Xlow and

maximum number of comparisons Y ≤ (1 + o(1))Ylow.

We present the detailed proof in the full paper [9], and we
provide the intuition here. Fix a reducer i = (p, q). If p 6= q,
the reducer will receive in expectation n/l tuples with flag
L (the ones with anchor p) and n/l tuples with flag R (the
ones with anchor R), therefore in expectation Xi = 2n/l and
Yi = n2/l2. If p = q, the reducer will receive in expectation
n/l tuples with flag S, therefore in expectation Xi = n/l
and Yi = n2/2l2. We can show that the Xi and Yi will
also be concentrated around the expectation, and since k =

l(l+ 1)/2, we have X ≈
√
2n√
k

and Y ≈ n2

2k
. Comparing X,Y

with the lower bounds in Theorem 1, we have Theorem 2.
What happens if the k reducers cannot be arranged in

a triangle? Following the same idea that applies when k
reducers cannot be arranged in a square for an R×S join [8],
we choose the largest possible integer l′, such that l′(l′ +
1)/2 ≤ k. We have l′(l′ + 1)/2 = k′ ≤ k and (l′ + 1)(l′ +
2)/2 > k. Since both (l′ + 1)(l′ + 2)/2 and k are integers,
we have (l′ + 1)(l′ + 2)/2 − 1 ≥ k. Therefore, the reducer

utilization rate is u = k′

k
≥ l′(l′+1)/2

(l′+1)(l′+2)/2−1
= 1− 2

l′+3
≥ 0.5.

Even for k = 50 reducers, we have l′ = 9, and u = 0.83.
Observe also that the utilization rate u increases as l′ grows.

4. DEDUPLICATION USING
SINGLE BLOCKING FUNCTION

In this section, we study distribution strategies to handle
a set of disjoint blocks {B1, . . . , Bm} produced by a single
blocking function h. Let m denote the number of blocks, and
for each block Bi, where i ∈ [1,m], we denote by Wi =

(|Bi|
2

)
the number of comparisons needed. Thus, the total number
of comparisons across all blocks is W =

∑m
i=1Wi.

We will discuss the case where a single blocking function
produces a set of overlapping blocks when we discuss multi-
ple blocking functions in Section 5.

4.1 Lower Bounds
We first prove a lower bound on the maximum input size

X and maximum number of comparisons Y for any reducer.

Theorem 3. For any distribution strategy that performs
data deduplication for n tuples and W total comparisons re-
sulting from a set of disjoint blocks using k reducers, we have

X ≥ Xlow ≥ max(n
k
,
√
2W√
k

) and Y ≥ Ylow = W
k

.

Proof. Since the total amount of comparisons required is
W , there must exist at least one reducer j such that Yj ≥ W

k
.

To prove a lower bound for the maximum input, consider

3The term “with high probability” means that the probabil-
ity of success is of the form 1− 1/f(n), where f(n) is some
polynomial function of the size of the dataset n.

the input size Xj of the reducer j. The maximum number
of comparisons that can be performed will then be Xj(Xj −
1)/2, which happens when all tuples of the input belong in
the same block. Hence, Yj ≤ Xj(Xj − 1)/2 < X2

j /2. Since

Yj ≥ W
k

, we obtain that X2
j > 2W/k. The X ≥ n/k bound

comes from the fact that every tuple will have to be sent to
at least one reducer, and thus the total size of the inputs
must be at least n.

Notice that Theorem 1 can be viewed as a simple corollary
of the above lower bound, since in the case of a self-join we
have a single block of size n, so W =

(
n
2

)
.

4.2 Baseline Distribution Strategies
Assume we have k reducers to handle a set of blocks

B1, B2, . . . , Bm produced by a single blocking function. We
analyze the baseline strategies Naive-Dedup and PJ-Dedup.

The first baseline strategy Naive-Dedup assigns every block
Bi entirely to one reducer. Consider the scenario where
there exists a single block B1 with |B1| = n; then, Naive-
Dedup assigns B1 to one reducer, resulting in X = n and
Y = W , which is k times worse than Xlow and Ylow (cf.
Section 4.1), completely defeating the purpose of having k
reducers. However, there are scenarios where Naive-Dedup
behaves optimally as we show in Example 3.

The second baseline strategy PJ-Dedup uses all k reducers
to handle every blockBi, and it uses the triangle distribution
strategy discussed in Section 3 to perform self-join for every
block. However, instead of invoking Algorithm 1 m times
for every block Bi, ∀i ∈ [1,m], which includes the overhead
of initializing m MapReduce jobs, we design PJ-Dedup to
distribute the tuples as if there was a single block (hence us-
ing the triangle distribution strategy of a self-join), and then
perform grouping into the smaller blocks inside the reducers.
The mapper of PJ-Dedup is similar to that of Algorithm 1,
except that the key of the mapper output is a composite key,
which includes both the reducer ID (as in Algorithm 1) and
the blocking key value. The partition function of PJ-Dedup
simply takes the composite key and returns the reducer
ID part. The reduce function of PJ-Dedup is exactly the
same as that of Algorithm 1, since the MapReduce frame-
work automatically groups by blocking key values within
each reducer. Regardless of the block sizes, PJ-Dedup has

X ≈
√
2n√
k

because the tuples are sent by the mappers in the

same way as Algorithm 1, and Y ≈ W
k

because the workload
W is roughly evenly distributed amongst k reducers. The
formal proof for the behavior of PJ-Dedup and an example
of PJ-Dedup are provided in the full paper [9].

Example 3. We consider three blocking functions that
generate blocks of different sizes. For each of them, we show
the lower bounds Xlow and Ylow, and analyze how Naive-
Dedup, and PJ-Dedup perform w.r.t. those lower bounds.

For PJ-Dedup, regardless of the blocking function, X ≈
√
2n√
k

and Y ≈ W
k

, as explained previously.
(1) The first blocking function h1 produces βk blocks of

equal size, for an integer β > 1, that is, |Bi| = n
βk

for

all i ∈ [1, βk]. In this case, W =
n
βk

( n
βk
−1)

2
βk, and thus

Theorem 3 gives us Xlow = n
k

and Ylow = W
k

. For Naive-

Dedup, every reducer receives βk
k

= β blocks. Therefore,

X = n
βk
β = n

k
and Y =

n
βk

( n
βk
−1)

2
β = W

k
, which is optimal.



(2) The second blocking function h2 produces only one

block of size n. In this case, W = n(n−1)
2

, and thus The-

orem 3 gives us Xlow ≈ n√
k

and Ylow = W
k

. For Naive-

Dedup, one reducer does all the work, and thus X = n and
Y = W .

(3) The third blocking function h3 produces k
β

blocks of

equal size for some 1 ≤ β < k, that is, |Bi| = βn
k

for all

i ∈ [1, k
β

]. In this case, W =
βn
k

( βn
k
−1)

2
k
β

, and thus The-

orem 3 gives us Xlow =
√
βn
k

and Ylow = W
k

. For Naive-
Dedup, since the number of blocks is less than the number
of reducers, one block is assigned to one reducer, leading to

X = βn
k

and Y =
βn
k

( βn
k
−1)

2
= βW

k
, both of which are not

bounded. For PJ-Dedup Y is optimal, but X is a factor√
2k
β

away from the lower bound.

The comparison is summarized in Table 1. For h1, Naive-
Dedup matches the lower bounds for both X and Y ; for h2,
PJ-Dedup matches the lower bounds; and for h3, neither
matches the lower bounds.

h1 h2 h3

X Y X Y X Y

Lower bounds n
k

W
k

n√
k

W
k

√
βn
k

W
k

Naive-Dedup n
k

W
k

n W βn
k

βW
k

PJ-Dedup
√
2n√
k

W
k

√
2n√
k

W
k

√
2n√
k

W
k

Table 1: Three example blocking functions

Example 3 demonstrates that (1) when the block sizes
are small and uniform, such as the ones produced by h1, we
should use one reducer to handle each block, as in Naive-
Dedup; (2) when there are dominating blocks, such as the
ones produced by h2, we should use multiple reducers to
divide the workload, as in PJ-Dedup; and (3) when there
are multiple relatively large blocks, we should use multiple
reducers to handle every large block to avoid unbalanced
computation. However, using all k reducers for every large
block sends more tuples than necessary, since tuples from
different blocks might be sent to same reducer, even though
they will not be compared, as in PJ-Dedup.

4.3 The Proposed Strategy
Dis-Dedup adopts a distribution strategy which guaran-

tees that both X and Y are always within a constant factor
from Xlow and Ylow, by assigning reducers to blocks in pro-
portion to the workload of every block.

Intuitively, since we want to balance computation, a block
of a larger size needs more reducers than a block of a smaller
size. Since the blocks are independent, we allocate the re-
ducers to blocks in proportion to their workload, namely,
block Bi will be assigned to ki = Wi

W
k reducers. However,

ki might not be an integer, and it is meaningless to allo-
cate a fraction of reducers. Thus, ki needs to be rounded
to an integer. If ki > 1, we can assign bkic ≥ 1 reducers to
Bi. On the other hand, if ki ≤ 1, which means bkic = 0,
we must still assign at least one reducer to Bi. The total
number of reducers after rounding might be greater than k,
in which case reducers have to be responsible for more than
one block. Therefore, we need an effective way of assigning
reducers to blocks, such that both X and Y are minimized.

If ki ≤ 1, we call Bi a single-reducer block ; otherwise, Bi
is a multi-reducer block. Let Bs and Bl be the set of single-
reducer blocks and multi-reducer blocks respectively. Next,

we show how to handle single-reducer blocks and multi-
reducer blocks separately, such that X and Y are bounded
by a constant factor.

Bs = {Bi |Wi ≤
W

k
}, Bl = {Bi |Wi >

W

k
}

For the sake of convenience, assume that we have ordered
the blocks in increasing order of their workload: W1 ≤W2 ≤
. . . ≤ Wc ≤ W

k
< Wc+1 ≤ . . . ≤ Wm. Let Wl =

∑m
i=c+1Bi

be the total amount of workload for multi-reducer blocks,
and Ws =

∑c
i=1Bi be the total amount of workload for

single-reducer blocks. Also, let Xs (resp. Xl) be the max-
imum number of tuples from single-reducer blocks (resp.
multi-reducer blocks) received by any reducer; and let Ys
(resp. Yl) be the maximum number of comparisons from
single-reducer blocks (resp. multi-reducer blocks) performed
by any reducer. Therefore, X ≤ Xs +Xl and Y ≤ Ys + Yl.

4.3.1 Handling multi-reducer blocks
Every block Bi ∈ Bl has ki ≥ 1 reducers assigned to it,

and we will use ki reducers to distribute Bi via the triangle
distribution strategy in Section 3. If ki is fractional, such
as ki = 3.1, we will simply use bkic reducers to handle Bi.
Since

∑m
i=c+1 ki ≤ k, every reducer will exclusively handle

at most one multi-reducer block.

Example 4. Recall the blocking function h3 in Exam-
ple 3: every block is large, since Wi >

W
k

. Instead of using

all k reducers to handle every block, we now use ki = Wi
W
k =

β reducers to handle block Bi. Thus, we have X = Xl =√
2√
ki
|Bi| =

√
2β
k
n, and Y = Yl = Wi

ki
= W

k
. Compared to the

lower bound, we see that Y is optimal, and X is only
√

2
away from optimal.

In fact, we can be even more aggressive in assigning re-
ducers to big blocks, by assigning ki = Wi

Wl
(instead of

ki = Wi
W

) reducers to Bi. This still guarantees that there
is at least one reducer for every multi-reducer block, and
one reducer handles at most one multi-reducer block, since∑m
i=c+1 ki = k. By handling multi-reducer blocks this way,

Dis-Dedup achieves the following bounds for Xl and Yl:

Theorem 4. Dis-Dedup has with high probability Yl ≤
(1 + o(1))2Ylow and Xl ≤ (1 + o(1))2Xlow

We present the detailed proof in the full paper [9].

4.3.2 Handling single-reducer blocks
For every block Bi ∈ Bs, since we assign ki ≤ 1 reducers

to it, we can use one reducer to handle every single-reducer
block, just like Naive-Dedup does. However, we must as-
sign single-reducer blocks to reducers to ensure that every
reducer has about the same amount of workload.

We first present a deterministic distribution strategy for
single-reducer blocks, which achieves a constant bound for
Xs and Ys. However, the deterministic strategy requires the
mappers to keep the ordering of the sizes of single-reducer
blocks in memory, which is very costly. We next consider
a randomized distribution, which is cheaper to implement,
but whose bound for X is dependent on k. Finally, we
introduce a hybrid distribution strategy that uses the ran-
domized distribution for most of the single-reducer blocks,
and the deterministic distribution for only a small subset of
the single-reducer blocks. The hybrid distribution requires



a small memory footprint, and in the same time achieves
constant bounds for both Xs and Ys.

Deterministic Distribution. In order to allocate the
single-reducer blocks evenly, we first order the c single-reducer
blocks according to their block sizes, and divide them into
g = c

k
groups4, where each group consists of consecutive k

blocks in the ordering. Then, we assign to each reducer g
blocks, one from each group.

Theorem 5. The deterministic distribution strategy for
single-reducer blocks achieves Ys ≤ 2Ylow and Xs ≤ 2Xlow.

We present the detailed proof in the full paper [9].
The problem with implementing the deterministic distri-

bution is that there can be a large number of single-reducer
blocks, and keeping track of the ordering of all block sizes is
an expensive task within each mapper, not to mention the
need to actually order all the single-reducer blocks.

Randomized Distribution. This algorithm simply dis-
tributes each single-reducer block to a reducer by using a
random hash function. In order to analyze the randomized
distribution, it suffices to consider the worst-case scenario,
which is when we have k single-reducer blocks, each with
|Bi| = n/k. In this case, the problem becomes a balls-into-
bins scenario, where we have k balls (blocks) that we dis-
tribute independently and uniformly at random into k bins
(reducers). It then holds [23] that with high probability each
reducer will receive a maximum of O(ln(k)) blocks. Thus:

Theorem 6. The randomized distribution strategy for single-
reducer blocks achieves Ys ≤ ln(k)Ylow and Xs ≤ ln(k)Xlow.

We present the detailed proof in the full paper [9].
The randomized method is efficient in practice, since we

do not have to keep track of the single-reducer blocks, but
we are adding (in the worst case) an additional ln(k) factor.

Hybrid Distribution. The hybrid algorithm combines
the randomized and deterministic distribution to achieve ef-
ficiency and almost optimal distribution. To start, we set a
threshold τ = W

3k ln(k)
.5 For the blocks where Wi ≥ τ (but

still Wi ≤ W
k

), we use the deterministic distribution, while
for the blocks where Wi < τ we use the randomized distri-
bution. Observe that now the deterministic option is much
cheaper, since we have to keep track of at most 3k ln(k)
blocks (which number depends only on the number of re-
ducers, and not n).

Theorem 7. The hybrid distribution strategy for single-
reducer blocks has with high probability Ys ≤ (1 + o(1))3Ylow
and Xs ≤ (1 + o(1))3Xlow.

We present the detailed proof in the full paper [9].

4.3.3 Implementation
Dis-Dedup combines the triangle distribution strategy for

multi-reducer blocks and the hybrid distribution for single-
reducer blocks. However, given a new tuple ingested by a
4We assume that c

k
is an integer; otherwise, we can con-

ceptually add less than k empty blocks to Bs to make c
k

an
integer, and the analysis remains intact.
5The threshold value is chosen as a result of the connection
to the weighted balls-into-bins problem. When we throw
k balls of weight W/k into k bins uniformly at random,
the expected maximum number of balls is O(ln(k)), and so
the maximum weight is O(W ln(k)/k). If we instead throw
k ln(k) balls of weight W/k ln(k), the expected maximum
number remains O(ln(k)), but since the balls are of smaller
weight the maximum weight decreases to O(W/k).

Algorithm 2 Dis-Dedup

1: class Mapper
2: BKV 2RIDs← empty dictionary
3: method MapperSetup(HM1, HM2)
4: Wl ←

∑
bkv∈HM1.keySet()

HM1[bkv]

5: S ← {1, 2, . . . , k}
6: for all bkv ∈ HM1.keySet() do

7: ki ← bHM1[bkv]
Wl

kc
8: RIDSi ← select ki elements from S
9: BKV 2RIDs[bkv]← RIDSi
10: S ← S − RIDSi
11: SortedBKV s← sort all keys in HM2

12: RID ← 0
13: for all bkv ∈ SortedBKV s do
14: BKV 2RIDs[bkv]← RID%k
15: RID ← RID + 1

16: method Map(Tuple t, null)
17: bkv ← h(t)
18: if BKV 2RIDs[bkv] 6= ∅ then
19: rid← a random number from [1, k]
20: Emit(Key rid#bkv, S#Tuple t)
21: else
22: RIDs← BKV 2RIDs[bkv]
23: ki ← RIDs.size()
24: li ← the large integer s.t. li(li − 1)/2 < ki
25: Int a← a random value from [1, li]
26: for all p ∈ [1, a) do
27: ridIndex← rid of Reducer [p, a]
28: rid← RIDs[ridIndex]
29: Emit(Key rid#bkv, L#Tuple t)

30: ridIndex← rid of Reducer [a, a]
31: rid← RIDs[ridIndex]
32: Emit(Key rid#bkv, S#Tuple t)
33: for all q ∈ (a, l] do
34: ridIndex← rid of Reducer [a, q]
35: rid← RIDs[ridIndex]
36: Emit(Key rid#bkv,R#Tuple t)

37: class Partitioner
38: method Partition(Key rid#bkv,Value v, k)
39: Return rid

40: class Reducer
41: method Reduce(Key rid#bkv,Values [v1, v2 . . .])
42: same as the reduce function in Algorithm 1

mapper, how does the mapper know whether the tuple be-
longs to a multi-reducer block or a single-reducer block? In
order to make this decision, we need some preprocessing to
collect statistics to be loaded into each mapper. In partic-
ular, we need to compute the blocking key values of every
multi-reducer block Bi ∈ Bl, and the associated workload
Wi. Let HM1 denote the HashMap data structure that
stores the mapping from a blocking key value in the multi-
reducer blocks to the size of the block. In addition, we
need the blocking key values of those single-reducer blocks
Bi ∈ Bl that have Wi ≥ τ , and the associated workload Wi,
in order to implement the hybrid distribution strategy for
the single-reducer blocks. Let HM2 denote the HashMap
data structure that stores the mapping from a blocking key
value to the size of the block.

To compute HM1 and HM2, we use three simple word-
count alike MapReduce jobs. The first job takes the original
dataset as input, and counts the size of every block Bi. The
second job takes as input the result of the first job, and
counts the total workload W . The third job takes as input
the result of the first job and W , and outputs the blocks for
which Wi >

W
k

, namely HM1, and also the blocks where
W

3k ln(k)
< Wi ≤ W

k
, namely HM2.

Algorithm 2 describes in detail Dis-Dedup. The mapper
now has a setup method that needs to be executed, which
allocates reducers to blocks in HM1 and HM2 (Lines 3-15).



To allocate reducers to blocks in HM1, we first compute
the sum of workload of all the multi-reducer blocks, i.e., Wl

(Line 4). For every blocking key value in HM1, we calcu-
late the number of reducers ki allocated to it, and select ki
reducers from the set of k reducers (Lines 5-10). For every
blocking key value in HM2, we first sort them based on their
workload (Line 11), and allocate one reducer to the sorted
blocks in a round-robin manner (Lines 12-15). In the actual
mapping function, given a new tuple t and its blocking key
value bkv, we check if we have a fixed set of reducers allo-
cated to it. If there is no such fixed allocation, bkv must the
block that is randomly distributed, and thus we randomly
choose a reducer to send the tuple (Lines 18-20). If there
is a fixed set of reducer RIDs allocated to it, we distribute
t according to PJ-Dedup, by arranging reducer RIDs in a
triangle (Lines 22-36). The partitioner sends a key-value
pair according to the rid part in the key (Lines 37-39). The
reducer is the same as that of Algorithm 1 (Lines 40-42).

Theorem 8. Dis-Dedup with hybrid distribution for single-
reducer blocks achieves with high probability X ≤ cxXlow,
and Y ≤ cyYlow, where cx = 5 + o(1) and cy = 5 + o(1).

Theorem 8 is obtained by combining Theorems 4 and 7.

5. DEDUPLICATION USING
MULTIPLE BLOCKING FUNCTIONS

Since a single blocking function might result in false nega-
tives by failing to assign duplicate tuples to the same block,
multiple blocking functions are often used to decrease the
likelihood of a false negative. In this section, we study how
to distribute the blocks produced by s different blocking
functions h1, h2, . . . , hs.

A straightforward strategy to handle s blocking functions
would be to apply Dis-Dedup s times (possibly simultane-
ously). However, this straightforward strategy has two prob-
lems: (1) it fails to leverage the independence of the blocking
functions, and the tuples from blocks generated by different
blocking functions might be sent to same reducer, where
they will not be compared. This is similar to PJ-Dedup’s
failure to leverage the independence of the set of blocks gen-
erated by a single blocking function, as shown in Example 3;
and (2) a tuple pair might be compared multiple times, if
that tuple pair belongs to multiple blocks, each from a dif-
ferent blocking function. We address these two problems
by two principles: (1) allocating reducers to blocking func-
tions proportional to their workload; and (2) imposing an
ordering of the blocking functions.

Reducer Allocation. We allocate one or more reducers
to a blocking function in proportion to the workload of that
blocking function, similar to Dis-Dedup discussed in Sec-
tion 4. Let mj denote the number of blocks generated by
a blocking function hj , B

j
i denote the i-th block generated

by hj , and W j
i =

(|Bji |
2

)
denote the workload of Bji . Let

W j =
∑mj
i=1W

j
i be the total amount of workload generated

by hj , and W =
∑t
j=1W

j be the total workload generated
by all t blocking functions. Therefore, the number of reduc-

ers Bji gets assigned is
W
j
i

W j · W
j

W
k, where W j

W
k is the number

of reducers for handling the blocking function hj . Thus,

the number of reducers assigned to Bji is
W
j
i

W
, regardless of

which blocking function it originates from.
This means that we can view the blocks from multiple

blocking functions as a set of (possibly overlapping) blocks
produced by one blocking function, and apply Dis-Dedup

as-is. The only modification needed is that in the mapper of
Dis-Dedup, instead of applying one hash function to obtain
one blocking key value, we apply s hash functions to obtain
s blocking key values (we also need to apply the body of the
mapping function for every blocking key value). We call the
slightly modified version of Dis-Dedup to handle multiple
blocking functions Dis-Dedup+.

Theorem 9. For t blocking functions, Dis-Dedup+ achieves
X < (5s+ o(1))Xlow, and Y = (5 + o(1))Ylow.

Proof. The lower bound forX and Y for s blocking func-
tions is the same lower bound for single blocking function, as
stated in Theorem 8, except W now denotes the total num-
ber of comparisons for all s blocking functions. The proof of
Theorem 9 follows the same line as the proof of Theorem 8.
The only difference is when we are dealing with Bs: instead
of having the inequality

∑c
i=1 |Bi| < n for a single blocking

function, we now have
∑c
i=1 |Bi| < sn, which leads to an

additional factor s in the bound for X.

The above analysis tells us that the number of compar-
isons will be optimal, but the input may have to be repli-
cated as many as s times. The reason for this increase is
that the blocks may overlap, in which case tuples that be-
long in multiple blocks may be replicated. The results from
Theorem 9 can be carried to a single blocking function that

produces a set of overlapping blocks, where s =
∑m
i=1 |Bi|
n

.
Blocking Function Ordering. Since a tuple pair can

have the same blocking key values according to multiple
blocking functions, a tuple pair can occur in multiple blocks.
To avoid producing the same tuple pair more than once, we
impose an ordering of the blocking functions, from h1 to
hs. Every reducer has knowledge of all s blocking functions,
and their fixed ordering. Inside every reducer, before a tuple
pair t1, t2 is compared according to the jth blocking func-
tion hj , it applies all of the the lower-numbered blocking
function hz,∀z ∈ [1, j − 1], to see if hz(t1) = hz(t2). If such
hz exists, then the tuple pair comparison according to hj is
skipped in that reducer, since we are sure that there must
exist a reducer that can see the same tuple pair according to
hz. In this way, every tuple pair is only compared according
to the lowest numbered blocking function that puts them in
the same block. The blocking function ordering technique
assumes that applying blocking functions is much cheaper
than applying the comparison function. If this is not true
(e.g., the pairs comparison is cheap) the ordering benefit
will not be obvious. Based on our discussion with Thomson
Reuters and Tamr, which are engaged in large-scale dedu-
plication projects, the assumption of expensive comparison
is often true in practice, since it is usually performed by
applying multiple classifiers and machine learning models.

Example 5. Suppose two tuples t1 and t2 are in the same
block according to the blocking functions h2, h3, h5, namely,
h2(t1) = h2(t2), h3(t1) = h3(t2) and h5(t1) = h5(t2). In
this case, we only compare t1 and t2 in the block generated
by h2, and omit the comparison of those two tuples in the
blocks generated by h3 and h5.
To recognize which blocking function generated a tuple pair
comparison, we augment the key of the mapper from rid#bkv
to rid#bkv#hIndex, where hIndex is the blocking function
number that generated this bkv. In the reduce function, be-
fore a tuple pair is compared, we check if there is another
blocking function whose index is smaller than the hIndex
that puts that tuple pair in the same block. If such a block-
ing function exists, we skip the comparison.



6. EXPERIMENTAL STUDY
In this section, we evaluate the effectiveness of our dis-

tribution strategies. All experiments are performed on a
cluster of eight machines, running Hadoop 2.6.0 [1]. Each
machine has 12 Intel Xeon CPUs at 1.6 GHz, 16MB cache
size, 64GB memory, and 4TB hard disk. All machines are
connected to the same gigabit switch. One machine is ded-
icated to serve as the resource manager for YARN and as
the HDFS namenode, while the other seven are slave nodes.
The HDFS block size is the default 64MB, and all machines
serve as data nodes for the DFS. Every node is configured
to be able to run 7 reduce tasks at the same time, and thus
in total, 49 reduce tasks can run in parallel. Our cluster re-
sembles the cluster that is used in production by Thomson
Reuters to perform data deduplication. We also use a real
dataset from that company, as described next.

Datasets. We design a synthetic data generator, which
takes as input the number of tuples n, the number of blocks
m, and a parameter θ controlling the distribution of block
sizes, following the zipfian distribution. Every generated
tuple has two columns {A,B}. Column A is the blocking
key attribute, whose values range from 1 to m. The blocking
function h for a tuple t in the synthetic dataset is h(t) = t[A].
Thus, tuples with the same value for A belong to the same
block. Column B is a randomly generated string of 1000
characters. The comparison between two tuples is the edit
distance between the two values for B.

We use two real datasets. The first one is a list of publica-
tion records from CITESEERX 6, called CSX. The second
one, called OA, is a private dataset from Thomson Reuters,
containing a list of organization names and their associ-
ated information, such as addresses and phone numbers, ex-
tracted from news articles. CSX uses the publication title as
the blocking key attribute, while OA uses the organization
name. The blocking function for both datasets uses min-
Hash [18]. A minHash signature is generated for each tuple,
and tuples with the same signature belong in the same block.
For each tuple in CSX or OA, the blocking function extracts
3-grams from the blocking key attribute, and applies a ran-
dom hash function to the set of 3-grams; the minimum hash
value for the set of 3-grams is used as the minHash signature
for that tuple. We can generate multiple blocking functions
by using different random hash functions. The comparison
between two tuples is the edit distance between the two val-
ues of the blocking key attributes.

Dataset # Tuples AVG block size MAX block size
CSX 1.4M 1.75 35021
OA 7.4M 1.31 7969
Synthetic 20M 4 3967

Table 2: Datasets Statistics

Table 2 summarizes the statistics for each dataset we used
for performing data deduplication using a single blocking
function in Section 6.2. We will use up to 20 blocking
functions for performing data deduplication using multiple
blocking functions in Section 6.3.

Algorithms. Dedoop [19, 20] is a state-of-the-art distri-
bution strategy for data deduplication, which has two main
drawbacks: (1) it only aims at optimizing Y , with no con-
sideration for X; and (2) it has large memory requirements
for mappers and reducers. Dedoop starts by assigning an
index to every tuple pair that needs to be compared. For

6 http://csxstatic.ist.psu.edu/about

example, for a block with four tuples t1, t2, t3, t4, tuple pair
〈t1, t2〉 has index 1, tuple pair 〈t1, t3〉 has index 2, and so on,
and tuple pair 〈t3, t4〉 has index 6. Dedoop then assigns each
reducer an equal number of tuple pairs to compare. If W
denotes the total number of tuple pairs, the ith reducer will
take care of tuple pairs whose indexes are in [(i−1)W

k
, iW

k
].

All the tuples necessary for a reducer to compare the tuple
pairs assigned to it are sent to that reducer. Dedoop always
achieves the optimal Y , but could be arbitrarily bad for X.
For example, consider a single block of size n. The first

reducer is responsible for tuple pairs numbered [0, n(n−1)
2k

].
Since usually n � k, the first reducer is responsible for at
least n tuple pairs. Since the first n tuple pairs contain all n
tuples, the first reducer will have to receive all n tuples. In
addition, in order for each mapper to decide which tuples to
send to which reducer, and for each reducer to decide which
tuple pairs to compare, Dedoop loads into the memory of
each mapper and reducer a pre-computed data structure,
called Block Distribution Matrix, which specifies the num-
ber of entities for every block every mapper processes. The
size of the block distribution matrix is linear w.r.t. the num-
ber of blocks. Indeed, the largest number of blocks reported
in evaluating Dedoop is less than 15,000 [20].

We compare the following distribution strategies: (1) Naive-
Dedup is the näıve distribution strategy, where every block
is assigned to one reducer; (2) PJ-Dedup is the proposed
strategy where every block is distributed using the triangle
distribution strategy, which is strictly better than applying
existing parallel join algorithms [2, 22]; (3) Dis-Dedup is the
proposed distribution strategy for a single blocking function,
which is theoretically optimal; (4) Dedoop; and (5) Dis-
Dedup+, Naive-Dedup+, PJ-Dedup+, Dedoop+ are exten-
sions of Dis-Dedup, Naive-Dedup, PJ-Dedup, and Dedoop+,
respectively for multiple blocking functions. Dis-Dedup+ is
described in Section 5. Naive-Dedup+, PJ-Dedup+, and
Dedoop+ employ the same blocking function ordering tech-
nique to avoid comparing a tuple pair multiple times.

Since the distribution strategies are random, we run each
experiment three times, and report the average. The time
to compute the statistics for Dis-Dedup and Dedoop is in-
cluded in the time of Dis-Dedup and Dedoop, respectively.

6.1 Single Block Deduplication Evaluation
In this section, we compare Naive-Dedup, PJ-Dedup, and

Dedoop when performing a self-join on the synthetic dataset.
We omit Dis-Dedup, since it is identical to PJ-Dedup when
there is only one block.

Exp-1: Varying number of tuples. Figure 3(a-c)
shows the parameters X, Y , and time for Naive-Dedup,
PJ-Dedup, and Dedoop for k = 45 reducers. We termi-
nate a job after 6000 seconds. As we can see in Figure 3(c),
Naive-Dedup exceeds this time limit after 30K tuples, since
the computation occurs only in a single reducer. In terms
of X, Figure 3(a) shows that PJ-Dedup achieves the best
behavior, while for Naive-Dedup and Dedoop X is equal to
the number of tuples n. Indeed, Naive-Dedup uses only one
reducer, and Dedoop has one reducer that gets assigned the

first n(n−1)
2k

tuple pairs, which need to access all n tuples.
In terms of Y , as depicted in Figure 3(b), Naive-Dedup per-
forms the worst. Dedoop is slightly better than PJ-Dedup,
since it distributes the comparisons evenly amongst all re-
ducers, while PJ-Dedup has more work for reducers indexed
(p, q) than reducers indexed (p, p).

http://csxstatic.ist.psu.edu/about
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Figure 3: Evaluating Distribution Strategies

The running time of all three algorithms is depicted in Fig-
ure 3(c), and it shows that PJ-Dedup achieves the best per-
formance. In fact, comparing Figure 3(a) with Figure 3(c),
we can see that as the number of tuples increases, the gap
between PJ-Dedup and Dedoop in terms of the input size
X grows, and so does the running time. This indicates that
when Y is similar for PJ-Dedup and Dedoop, the input size
X becomes the differentiating factor.

Exp-2: Varying number of reducers. Figure 3(d-f)
shows the effect of the number of reducers on the parame-
ters X, Y , and time for both PJ-Dedup and Dedoop. We
fix the number of tuples to be n = 50K. The first ob-
servation is that PJ-Dedup outperforms Dedoop for any
k, as shown in Figure 3(f). In fact, PJ-Dedup runs 2X
faster than Dedoop. Second, both X and Y are decreas-
ing for PJ-Dedup as k increases. However, the decrease is

not smooth across the values of k and we can observe a few
dips for k = 36, 45, 55, 66, 78. This behavior occurs because
PJ-Dedup arranges the k reducers in a triangle. Since for
certain values of k this is not possible, we choose then the
largest subset of reducers that can be arranged into a trian-
gle, and thus waste a small fraction of reducers.

Finally, as we can see from Figure 3(f), the running time
improves as k increases for k < 50, and fluctuates as k in-
creases when k > 50. This is because our cluster has a max-
imum number of 49 reducers being able to run in parallel.
If k > 50, not all reducers can start at once; some reducers
can only start after reducers in the first round finish.

Memory. An important requirement for any MapReduce
job is to have sufficient memory for each reducer. The maxi-
mum memory requirements for all algorithms are linear with
respect to X, since X represents the maximum number of



tuples that need to be stored in the heap space of a reducer.
As we can see from Figure 3(a), PJ-Dedup requires much
less memory than Dedoop. Indeed, for Dedoop at least
one reducer needs to store all n tuples, while the heap space
required for PJ-Dedup is O( n√

k
), which not only is much

smaller than O(n), but also decreases as k increases (this
can be seen in Figure 3(d)).

6.2 Single Blocking Function Evaluation
In this section, we compare Naive-Dedup, PJ-Dedup, Dis-

Dedup, and Dedoop for deduplication using a single block-
ing function on all three datasets.

Exp-3: Varying number of blocks. In this experi-
ment, we fix the number of tuples per block to be 4, and
then vary the number of blocks, using the synthetic dataset.
As shown in Figure 3(g), Dedoop fails (heap space error)
after 500,000 blocks. This is because Dedoop keeps in mem-
ory of every mapper the blocking distribution matrix, which
grows as the number of blocks increases.

Dis-Dedup is identical to Naive-Dedup in this experiment,
since all block sizes are the same, and hence no multi-reducer
blocks exist. Dis-Dedup is better than PJ-Dedup, since the
input size X for Dis-Dedup, which is n

k
, is smaller than that

for PJ-Dedup, which is
√
2n√
k

.

Exp-4: Varying block size distribution. In order
to test how different algorithms handle block-size skew, we
vary the distribution of the block sizes by varying the pa-
rameter θ for the synthetic dataset, using n = 20M tu-
ples, and 5M blocks. Figure 3(h) shows that Dis-Dedup
and Naive-Dedup send less tuples than PJ-Dedup, and Fig-
ure 3(i) shows that the number of comparisons Y increases
as the data becomes more skewed across all three algorithms.
However, Y for PJ-Dedup grows at the lowest rate, and Y
for Dis-Dedup is just a little worse than PJ-Dedup. In terms
of running time, Figure 3(j) shows that when the data is not
skewed (θ = 0.3, 0.4), Naive-Dedup and Dis-Dedup perform
the best, since X is now the differentiating factor. When
the data becomes more skewed (θ = 0.5), Dis-Dedup starts
performing better than Naive-Dedup, which is still better
than PJ-Dedup. As θ further increases (θ = 0.6, 0.7), Y be-
comes the dominating factor in terms of running time. Thus,
the running time for Naive-Dedup degrades fast, while Dis-
Dedup and PJ-Dedup have similar performance. This ob-
servation supports our theoretical analysis that Dis-Dedup
can adapt to all levels of skew, while Naive-Dedup and
PJ-Dedup perform well only at one end of the spectrum.
Note that Dedoop reports heap space error for this syn-
thetic under default memory settings; nevertheless, we in-
crease memory allocation for every mapper and reducer to
6G for Dedoop to compare with other distribution strate-
gies. Observe that Dedoop has the worst running time in
Figure 3(j) even though the X and Y of Dedoop are not the
worst; this is mainly because (1) the number of concurrent
mappers and reducers of Dedoop is less than that under the
default setting due to the increased memory requirement of
each mapper and reducer and (2) each mapper and reducer
of Dedoop has an additional initializing cost of processing
the block distribution matrix, whose size is linear w.r.t. the
number of blocks.

Exp-5: Varying number of reducers. In this ex-
periment, we vary the number of reducers k, and compare
Naive-Dedup, PJ-Dedup, Dis-Dedup and Dedoop using all
three datasets. For the synthetic dataset, we used n = 20M ,

Dataset 1 5 10 15 20
CSX 667.45 710.64 741.52 768.51 784.40
OA 66.16 67.24 67.92 68.00 68.06

Table 3: Total number of comparisons W (in mil-
lions), for different number of blocking functions

m = 5M , and θ = 0.5. Similar to the previous experiment,
for Dedoop to run, we increase the memory allocation for ev-
ery mapper and reducer to 6G for the OA and the synthetic
datasets, and to 3G for CSX.

Figure 3(k-m) shows that Dis-Dedup is consistently the
best algorithm for all three datasets, and any number of re-
ducers. Dedoop only performs better than Naive-Dedup on
CSX due to its small number of blocks, thus making the
initializing cost of processing the block distribution matrix
relatively cheap; but Dedoop has the worst performance in
other two datasets for the same reasons as explained in Exp-
4. For the synthetic dataset, Naive-Dedup performs better
than PJ-Dedup, while for the two real datasets the opposite
behavior occurs, since the number of multi-reducer blocks in
CSX and OA is bigger than that of the synthetic dataset.
Another interesting trend to note here is that as the num-
ber of reducers k increases, the difference in running time
between Dis-Dedup and PJ-Dedup also grows. The reason
for this behavior is that X for PJ-Dedup is a

√
2k factor

away from the bound Xlow, and thus dependent on k, while
X for Dis-Dedup is only a constant factor 2 away.

6.3 Multiple Blocking Functions Evaluation
In this section, we compare the algorithms Naive-Dedup+,

PJ-Dedup+, Dis-Dedup+ and Dedoop+, in the case of mul-
tiple blocking functions, using the two real datasets.

Exp-6: Varying the number of blocking functions.
Figure 3(n-p) shows the comparison using CSX. The in-
put size X of all four algorithms increases linearly w.r.t.
the number of blocking functions, as shown in Figure 3(n),
while the output Y of all three algorithms increases very
little, as shown in Figure 3(o). This behavior is observed
because many tuple pairs generated by a blocking function
have already been compared in previous blocking functions,
and are thus skipped. Table 3 shows the total number of
comparisons W for various numbers of blocking functions,
indicating that the new tuple pair comparisons generated by
20 blocking functions is not much larger than the compar-
isons generated by 1 blocking function.

Figure 3(p) shows the running time comparison. Dedoop+

performs the worst for multiple blocking functions due to
multiple reasons: (1) Dedoop+ has the worst X as shown in
Figure 3(n); (2) Dedoop+ has higher memory requirement,
which limits the number of concurrent mappers and reduc-
ers, as explained in Exp-4; and (3) Dedoop+ pays the extra
cost of initiating s (≥ 1) MapReduce job to handle s (≥ 1)
blocking functions, instead of using one MapReduce job to
handle s blocking functions as Naive-Dedup+, PJ-Dedup+,
and Dis-Dedup+ do. The reason is again the high mem-
ory requirement of Dedoop+; keeping the block distribution
matrix produced by all s blocking functions in memory ex-
ceeds the memory limit for s ≥ 5 even after we increase the
memory allocation of mappers and reducers to 6G.

Dis-Dedup+ achieves the best performance across any num-
ber of blocking functions. As the the number of block-
ing functions increases, the gap between Naive-Dedup+ and
Dis-Dedup+ becomes smaller, while the gap between PJ-
Dedup+ and Dis-Dedup+ becomes larger. The reason is



that the multi-reducer blocks for s1 blocking functions may
become single-reducer blocks for s2 > s1 blocking functions
as W becomes larger. Therefore, distributing those blocks
to one reducer, as Naive-Dedup+ does, instead of distribut-
ing them to multiple reducers, as PJ-Dedup+ does, becomes
more efficient. Varying number of blocking functions using
the OA dataset shows similar results, and is reported in the
full paper [9].

7. RELATED WORK
Data deduplication has been extensively covered in many

surveys [12, 13, 17]. To avoid n2 comparisons, blocking
methods are often employed [4, 6]. While blocking tech-
niques speed up computation by avoiding the comparison
between certain tuple pairs, performing deduplication us-
ing a parallel framework can obtain even further speed ups.
In this context, Dedoop [19, 20] targets deduplication on
MapReduce. As discussed in Section 6, Dedoop evenly dis-
tributes the comparisons Y at the cost of an increased input
size X, and has a very large memory footprint, rendering it
infeasible to run for large datasets.

Parallel join processing, such as similarity joins [24, 27],
theta-joins [22], and multi-way natural joins [2], is another
line of relevant work, since one can view the distributed
blocking problem as a self-join, where the joining attribute
is the blocking key attribute. However, most of the work
on parallel join processing [22, 2] is for two-table joins, so
the techniques are not directly applicable to self-join with-
out wasting almost half of the available workers, as shown
in Section 3. Our proposed triangle distribution strategy is
a non-trivial adaptation of the existing Shares distribution
strategy [2] for the R×S join with theoretical guarantees on
both the communication cost X and the computation cost
Y . Applying even the adapted self-join strategy on blocks
directly without considering the block sizes yields a strategy
without constant bound guarantee on X, as shown in Sec-
tion 4.2. Our proposed Dis-Dedup, however, assigns work-
ers in proportion to the workload of every block to achieve a
constant-bound X and Y . Furthermore, dealing with multi-
ple blocking functions basically means to process a disjunc-
tion of conjunctive queries, a problem, to the best of our
knowledge, is never considered in parallel join processing.

8. CONCLUSION AND FUTURE WORK
In this paper, we study the problem of performing block-

ing for data deduplication using a shared-nothing distributed
computing framework. We develop a cost model that cap-
tures both the communication cost X and computation cost
Y . Under this cost model, we propose the Dis-Dedup algo-
rithm, which guarantees both X and Y are within a small
constant factor from the lower bounds. Through extensive
experiments, we show that Dis-Dedup adapts to data skew,
and significantly outperforms any alternative strategy we
consider, including the state-of-the-art algorithm.

When there are multiple blocking functions, a large per-
centage of compared tuple pairs belong to the same block ac-
cording to more than one blocking functions. While our pro-
posed strategy avoids producing the same tuple pair more
than once, a tuple still needs to be sent as many times as the
number of blocking functions. Future work includes gath-
ering statistics about the overlapping of blocks, so that we
can merge largely overlapping blocks to further reduce the
communication cost.
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