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Abstract

XML database systems are expected to handle increas-
ingly complex queries over increasingly large and highly
structured XML databases. An important problem that
needs to be solved for these systems is how to choose the
best set of indexes for a given workload. In this paper, we
present an XML Index Advisor that solves this XML index
recommendation problem, and has the key characteristic of
being tightly coupled with the query optimizer. We rely on
the optimizer to enumerate candidate indexes and to esti-
mate the benefit gained from potential index configurations.
We expand the set of candidate indexes obtained from the
query optimizer to include more general indexes that can be
useful for queries other than those in the training workload.
To recommended an index configuration, we introduce two
new search algorithms. The first algorithm finds the best set
of indexes for the specific training workload, and the second
algorithm finds a general set of indexes that can benefit the
training workload as well as other similar workloads. We
have implemented our XML Index Advisor in a prototype
version of IBMR© DB2 R© 9, which supports both relational
and XML data, and we experimentally demonstrate the ef-
fectiveness of our advisor using this implementation.

1 Introduction

There are currently several native XML database sys-
tems [14, 17], and XML support has also been added to
most commercial relational database systems [6, 31, 35].
All these systems employ various types of structural and
value XML indexes to improve performance, potentially by
orders of magnitude.

Users of XML database systems now face the problem
of deciding on the set of indexes to create for a given XML

∗This work was done while the author was at the IBM Toronto Lab

database and query workload. This is of particular impor-
tance for XML database systems that allow forpartial in-
dexingof XML documents. A partial index is an index on
parts of an XML document that matchindex patternsspec-
ified by the user. These patterns can be represented, for
example, by XPath path expressions, in which case only the
XML elements that are reachable by these path expressions
are included in the index [5]. Partial XML indexing leads
to smaller indexes that include only the paths in a document
that are relevant to user queries. This makes index mainte-
nance on database updates more efficient, and significantly
improves index lookup performance over indexes that in-
clude all the paths in a document. This useful feature is
supported in database systems such as DB2 9 [5] and the
upcoming Oracle 11g [32]. However, users now face the
problem of choosing the set of XML patterns to include in
an index. In this paper, we present an XML Index Advisor
that addresses this problem by automatically recommend-
ing the best set of XML index patterns for a given database
and query workload, also taking into account the cost of
updating the index on data modification.

Recommending indexes as part of the physical database
design process has previously been studied extensively in
the context of relational databases, and most commercial
database systems now includeIndex Advisorsthat automat-
ically recommend indexes [9, 38]. The high-level outline
of the index recommendation process for XML databases
is similar to that for relational databases. However, recom-
mending indexes for XML databases presents some unique
challenges that make the problem more difficult than the re-
lational case, and that lead to the details of the solutions
being significantly different.

An Index Advisor needs to address three questions: (1)
how to determine the candidate indexes that would be use-
ful for a query or a workload consisting of a set of queries,
(2) how to estimate the benefit for a given query of a par-
ticular index configuration(i.e., a set of indexes), and (3)



how to search the space of possible index configurations for
the optimal configuration that provides the maximum bene-
fit to the workload, taking into account the increased cost
of update statements due to indexes, and satisfying disk,
schema, and other system constraints. In this paper, we
present novel techniques to address each of these questions,
and we integrate these techniques into an XML Index Ad-
visor. We have implemented our XML Index Advisor in a
prototype version of IBMR© DB2 R© 9 for Linux, Unix, and
Windows (henceforth referred to simply as DB2), which
supports both relational and XML databases, and we have
used this implementation to verify the efficiency of our In-
dex Advisor and the high quality of the index configurations
that it recommends.

The challenges for XML index recommendation stem
from the richness of XML query languages and the po-
tential complexity of the structure of XML data. XPath
supports wildcards and descendant navigation, and XML
data can be recursive. Thus, for any query, there can be
several potentially useful indexes and index patterns. For
example, the XPath query/Security[Yield>4.5]
can benefit from a value index on the index patterns
/Security/Yield , /Security/ * or //Yield 1.
The rich structure of XML also leads to an exponential in-
crease in the number of candidate index configurations that
need to be searched to find the optimal one, which places
additional importance on the search algorithm used, and
makes it important to try to minimize the number of opti-
mizer calls to evaluate the benefit of index configurations.

One of the key features of our Index Advisor is that it is
tightly coupled with the query optimizer of the XML data-
base system. We rely on the query optimizer to enumerate
the candidate index patterns for a query, and to evaluate the
benefit to a query of having a particular index configuration.
This tight coupling with the query optimizer helps us lever-
age its index selection and cost estimation capabilities, and
provides a solid and easy way for ensuring that the indexes
that we recommend are actuallyusedby the optimizer in
the query execution plans that it generates. Moreover, we
can easily support the different query languages supported
by the optimizer. For example, our XML Index Advisor im-
plementation in DB2 supports both XQuery and SQL/XML
simply by virtue of the fact that the DB2 query optimizer
supports both of these languages. Developing an Index Ad-
visor independent of the query optimizer entails emulating
– outside of the optimizer – the parsing, access path selec-
tion, and cost estimation steps performed by the optimizer.
This involves a significant amount of work, and creates the
possibility of having inconsistencies between the Index Ad-
visor and query optimizer, which can lead the advisor to
recommend indexes that are never used by the optimizer.

1Throughout this paper, we use examples from the TPoX bench-
mark [29].

Tight coupling between index recommendation and query
optimization has been a feature of relational index recom-
menders for a long time [18], and one of our contributions
in this paper is to extend this coupling to XML.

The rest of the paper is organized as follows. We present
related work in Section 2. Section 3 presents our framework
for index recommendation. Next, we present our contribu-
tions, which can be summarized as follows:

• An algorithm for enumerating candidate XML indexes
for a query that leverages the index matching capabili-
ties of the query optimizer. These indexes are the basis
of our space of index configurations (Section 4).

• A generalization algorithm that expands the set of can-
didate indexes by deriving new candidates from exist-
ing ones, such that the derived candidates can benefit
multiple queries in the current workload and also sim-
ilar queries in future workloads (Section 5).

• A technique for estimating the benefit of candidate
XML indexes or index configurations, relying on the
query optimizer. Our technique takes index interac-
tion into account, and attempts to reduce the number
of calls to the query optimizer (Section 6).

• Two novel algorithms for searching the space of pos-
sible index configurations to find the best one that fits
within the available disk budget. The first algorithm is
based on greedy search augmented with heuristics that
maximize the number of queries in the workload that
use the selected indexes. The second algorithm has the
objective of selecting as many general indexes as pos-
sible to fit in the disk space budget (Section 7).

• An implementation of the XML Index Advisor in a
prototype version of DB2 and an experimental study
using the TPoX [29] and XMARK [36] benchmarks
(Section 8).

2 Related Work

Several XML indexing schemes have been proposed, and
many of these schemes allow partial indexing of XML doc-
uments and so would benefit from an XML Index Advisor
to help in selecting index patterns [10, 25, 30, 31, 33]. In
the past few years, there has been a considerable amount
of work on index advisors for relational data [1, 9, 38, 40].
Unfortunately, none of these works extend directly to XML
databases.

A few attempts were made to recommend indexes for
XML data that are shredded and stored in relational data-
bases [8, 19]. In [19], the proposed approach focuses on a
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specific type of structural index that can be used over rela-
tional databases. The proposed solution cannot be gener-
alized to other types of database systems and the proposed
cost model is independent from the database system which
can lead to inaccurate estimates. In [8], a new approach to
take the interplay of logical and physical design into consid-
eration when shredding XML data into relational databases
is proposed. The physical design targets relational database
systems and so cannot be adopted in database systems that
store XML data natively.

Two recent works have made preliminary attempts to
tackle the index recommendation problem for XML data-
bases [22, 34]. They both suffer from having rudimentary
techniques for candidate generation, cost estimation, and
configuration enumeration. Furthermore, the index advi-
sors proposed in these works are independent of the data-
base system query optimizer, so there is no guarantee that
the recommended indexes will be of use to the optimizer,
and no guarantee that the benefits of candidate index config-
urations are estimated with any accuracy. In addition, nei-
ther of them tackles the issue of generalizing the initial set
of candidates, which is equivalent to merging physical de-
sign structures in relational databases [1]. We address these
shortcomings and we also propose a configuration enumer-
ation algorithm that takes into account the interaction be-
tween indexes and yet is efficient in the number of optimizer
calls it makes.

In [34], a tool is proposed for selecting indexes for an
XML database system. The main focus of the work is to
find a good cost model for selecting the best set of indexes
for a query workload, making use of structural information
and data statistics. In our work, we adopt a simple and pow-
erful solution to the cost estimation problem by leveraging
the query optimizer cost model. The candidate indexes used
in [34] are all paths that occur in the data, with some group-
ing of structurally equivalent candidates based on schema
information if this information is available. This method
is inefficient because it leads to an uncontrolled explosion
of the space to search for the best set of candidates. The
candidate generation process does not attempt to generate
candidates that are useful for multiple queries. In our work,
we rely on the query optimizer to enumerate only the rel-
evant candidate indexes, and we generalize the candidates
to generate additional candidates that are useful to similar
queries that may appear in future workloads. This results
in a much smaller search space of possible configurations,
with much more relevant indexes.

Another index recommender for XML is presented
in [21, 22]. This index recommender analyzes the work-
load periodically and creates or drops XML indexes on the
fly. As in [34], the cost model used is independent of the
query optimizer and hence likely to be inaccurate. Candi-
date enumeration is not described. For configuration enu-

meration, [21] proposes using either a greedy search, which
can be inaccurate, or an exhaustive search, which is slow.
The configuration enumeration step in [21, 22] also ignores
the penalty for updates, inserts, and deletes.

3 Overview and Architecture

3.1 XML Databases and XML Indexes

With the increasing need of storing data in XML for-
mat, different approaches have been proposed for XML data
storage. One approach is to store the XML data natively
in systems that support only XML [14, 15, 20, 24]. An-
other approach attempts to benefit from the mature technol-
ogy in relational database systems by shredding XML data
and storing it in relational tables [7, 11, 12, 37]. Another
technique is to store XML as BLOB columns [13]. On the
other side of the spectrum, XML can be used to publish
relational data [16]. Recently, an XML column data type
has been added to several commercial database systems so
XML data can now be stored natively in relational database
systems. Such database systems are referred to as hybrid
relational/XML database systems [6, 28, 35].

XML query languages use XPath path expressions to re-
trieve elements in the data. This retrieval can be helped by
the presence of an XML index, and there have been many
proposals for different types of XML indexes over the past
few years. XML indexes can be categorized intostructural
indexesthat speed up navigation through the hierarchical
structure of the XML data (e.g., [26]), andvalue indexes
that help in retrieving XML elements based on some con-
dition on the values they contain (e.g., [30, 31]). A struc-
tural index can help in answering an XPath query such as
/Security/Symbol (find all security symbols), while
a value index can help in answering an XPath query like
/Security[Yield >= 4.5] (find all securities with
yield greater than 4.5).

Several of these XML indexes have the ability topar-
tially index the XML data to improve the speed of index
maintenance and lookups. In this case, the index includes
only the XML elements that are reachable via specificindex
patterns[5, 25]. These index patterns are typically spec-
ified as XPath expressions. For example, we can have an
index that includes only XML elements that are reachable
by the pattern/Security/ * . This index would be useful
for answering queries such as the example queries above,
but it would not be useful in answering queries on, say,
/Security/SecInfo//Sector .

An example of a system that allows partial indexing of
XML data is DB2. In DB2 [5, 6], XML data are stored na-
tively in columns with XML data type. In the create table
statement, one or more columns can be defined to be of type
XML. For every row in the data, a well formed XML doc-
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Figure 1. XML Index Advisor architecture.

ument is stored for each XML column. XML indexes are
created for one XML column and would only include ele-
ments from all documents of that column that are reachable
by a pattern that is given in the create index statement. For
example, the data definition language statement for creat-
ing an index on an XML columnSDOC(of type XML) of
tableSecurity , with index pattern/Security/ * , is as
follows:
Example: DDL for creating XML index

CREATE INDEX securityVals ON Security(SDOC)
GENERATE KEY USING XMLPATTERN /Security/*
AS SQL DOUBLE

3.2 XML Index Advisor Architecture

The architecture of the XML Index Advisor is presented
in Figure 1. The high-level framework of the index recom-
mendation process is as follows: First, for every query in
the workload, we rely on the query optimizer to enumer-
ate a set of candidate indexes that would be useful for this
particular query. Next, we expand the enumerated set of
candidate indexes to include more general indexes, each of
which can potentially benefit multiple queries from the cur-
rent workload or from future, yet-unseen workloads. Fi-
nally, we search the space of possible index configurations
to find the optimal configuration, which maximizes the per-
formance benefit to the workload while satisfying the disk
space constraint provided by the user.

Much of the functionality of the advisor is implemented
in a client-side application. However, to be able to use the

query optimizer for index recommendation, we need to ex-
tend it with two newquery optimizer modes. In the first
mode, which we call theEnumerate Indexesmode, the op-
timizer takes a query and enumerates the indexes that can
help this query, hence enabling us to start with a basic set
of candidate indexes known to be useful. In the second
mode, which we call theEvaluate Indexesmode, the op-
timizer simulates an index configuration and estimates the
cost of a query under this configuration. These optimizer
modes are the only server-side extensions required for the
XML Index Advisor. They allow us to tightly couple the in-
dex recommendation process with the query optimizer, and
they eliminate the need to replicate any functionality that is
already available in the optimizer.

In the new modes, the optimizer needs to work with hy-
pothetical indexes that do not exist, but are still needed to
accomplish its task. To enable this, we modify the query
optimizer to allow it to createvirtual indexesthat can then
be used during query optimization. These virtual indexes
are added to the database catalog and to all the internal data
structures of the optimizer, but they are not physically cre-
ated on disk and no data is inserted into them. The virtual
indexes cannot be used for query execution, and so they are
only created in the special query optimizer modes, where
the goal is not to generate query execution plans. Virtual
indexes are used in relational index advisors to enable the
optimizer to estimate the cost of candidate index configu-
rations [9, 38]. In our XML Index Advisor, we use virtual
indexes for cost estimation, but a novel feature of our work
is that we also use them for enumerating candidate indexes
for workload queries.

In the rest of the paper, we use as a running example, a
workload consisting of the following two queries from the
TPoX benchmark [29].
Q1: Return a security having a specified Symbol

for $sec in SECURITY(’SDOC’)/Security
where $sec/Symbol= "BCIIPRC"
return $sec

Q2: List securities in a particular sector given a yield
range

for $sec in
SECURITY(’SDOC’)/Security[Yield>4.5]

where $sec/SecInfo/ * /Sector= "Energy"
return <Security>{$sec/Name}</Security>

4 Basic Candidate Set

XQuery and SQL/XML are fairly complex languages. In
these languages, XML patterns can appear in different parts
of the statement, but indexes cannot be used for some of
them [2]. In addition, the process of deciding on which in-
dexes can benefit which patterns in the query is dependent
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on the XML query optimizer implementation. To obtain
the basic candidate set of indexes that are useful to a given
query, we tightly couple the process of generating candidate
indexes in the XML Index Advisor with the process ofindex
matchingin the optimizer. Index matching is a fundamen-
tal process performed by query optimizers. In this process,
the optimizer decides which of the available indexes can be
used by the query being optimized, and how they can be
used (e.g., for which predicates in the query) [4, 27, 39].

Coupling candidate enumeration with index matching al-
lows us to leverage the fairly elaborate query parsing, index
matching, type checking, and query rewriting functionality
of the query optimizer, without the need to replicate this
functionality. In addition, we can support any type checks
or type casts that the optimizer performs when using an in-
dex, and we can enumerate indexes that are only exposed by
query rewrites in the optimizer. Moreover, we are assured
that the candidate indexes considered by the Index Advisor
can actually be matched and used by the optimizer. Adding
our proposed index enumeration mode to the query opti-
mizer of any database system allows our Index Advisor to
recommend usable indexes by this system.

To leverage the index matching capability of the query
optimizer for enumerating candidate XML indexes, we
modify the optimizer to create a special Enumerate Indexes
query optimizer mode. In this mode, we create avirtual
universal indexover the XML data, which is a virtual index
whose index pattern is// * . This // * virtual index, (virtu-
ally) indexes all elements in the document and hence can be
matched with any XPath pattern that can be answered using
an index. Next, the query optimizer optimizes the workload
query with the// * virtual index in place. After the index
matching step of the optimizer, we collect all the index pat-
terns in the query that were matched with the// * virtual
index. Essentially, we have enabled the optimizer to an-
swer the question: “If all possible indexes were available,
which ones would be considered for this query?”

To conform with the XPath standard, DB2 uses different
indexes for different data types, and different indexes for
elements and attributes [5, 6]. Thus, in our implementation
of the XML Index Advisor in DB2, we create several// *
indexes. For each data type, we create an index with the
pattern// * ( for elements) and an index with the pattern
//@ * (for attributes). All of these indexes are used by the
optimizer in Enumerate Indexes mode to recommend can-
didate index patterns.

The candidate index patterns enumerated by the opti-
mizer will already take predicates into account and include
indexes that are only exposed by query rewrites. For exam-
ple, C1, C2, and C3 in Table 1 are the patterns enumerated
by the DB2 optimizer for our example queries, Q1 and Q2.
C1 and C2 are only exposed by query rewrites of Q1 and
Q2, respectively. All three candidates take predicates into

C1 /Security/Symbol string
C2 /Security/SecInfo/*/Sector string
C3 /Security/Yield numerical

Table 1. Basic set of candidates.

account to determine the target nodes of the index patterns.
The XML Index Advisor optimizes each workload query

in Enumerate Indexes mode. The resulting candidate index
patterns of all queries are considered as a basic candidate
set that is expanded in the generalization step.

5 Generalizing the Candidates

The optimizer helps us identify linear index patterns spe-
cific to each query. However, it is unable to identify in-
dex patterns that can benefit multiple queries in the cur-
rent workload and also future queries with similar patterns.
To address this shortcoming of relying on the optimizer
for candidate enumeration, we expand the set of candidates
generated by the optimizer by applying a set ofgeneraliza-
tion rules. These rules allow us to generate more general
candidate indexes that can be useful for multiple queries
from the specific index patterns enumerated by the opti-
mizer for individual queries.

For example, in queries Q1 and Q2 the following two
XPath path expressions are identified by the query opti-
mizer as candidates for indexing:/Security/Symbol
and/Security/SecInfo/ * /Sector . Based on these
two path expressions, we expand the set of candidates to in-
clude the more general pattern/Security// * . This new
path expression covers the two original path expressions as
well as other path expressions that could potentially exist in
the data, such as/Security//Industry . This more
general candidate index is a new alternative that can be rec-
ommended by our Index Advisor instead of the two original
candidate indexes. This new candidate index will generally
have a size that is greater than or equal to the total size of the
two original candidate indexes, since it potentially covers
more elements in the data than they do. But this new gen-
eral index has the advantage that it can answer more queries
than the two original indexes and so it can potentially be
useful for queries beyond the training workload.

In Section 5.1, we focus on index patterns that
are expressed aslinear XPath path expressions
that do not contain predicates. For example, we
would handle an XML index with index pattern
/Security/Yield , which can be used to answer a
query like /Security[Yield >= 4.5] . Database
systems such as DB2 and Oracle currently support only
these linear XPath path expressions for their index pat-
terns [30, 32] and so their query optimizer would only
enumerate such index patterns in the Enumerate Indexes
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mode. Indexes with linear XPath index patterns are an
important class of indexes, analogous to single-column
indexes in the relational case. It is important to point out
that while theindex patternsenumerated by the optimizer
contains no predicates, the XPath expressions in thequery
workload can contain predicates at arbitrary locations.
Next, in Section 5.2, we extend our approach to handle
branching XPath index patterns that include predicates
(analogous to multi-column relational indexes). In Section
5.3, we present an approach for generalizing index patterns
in the basic candidate set individually, even if they cannot
be generalized with other path expressions in the basic
candidate set.

The candidate generalization algorithm attempts to find
more generalized index patterns by iteratively applying sev-
eral generalization rules to each pair of basic candidate in-
dexes and to the resulting generalized indexes. The process
continues until no new generalized XML index patterns can
be found. The rules consider two XPath expressions con-
currently and try to find common path nodes (representing
common subexpressions) between these two paths. This
commonality is captured in a newly formed, generalized
XPath expression. We add this newly formed XPath expres-
sion to our set of candidates. Before attempting to general-
ize two patterns together, we check their compatibility un-
der any other constraints, such as data type and namespace.
The steps we follow to generalize the XPath expressions in
a candidate set are presented in Algorithm 1. During the
generalization of a pair of expressions, we divide each path
into two parts: the last step, which represents the nodes we
are indexing, and the steps leading to this last step.

Algorithm 1 generalizeXPCandidates(XPset)
1: start ← 0
2: end ← XPset .size
3: repeat
4: genXPathNo ← 0
5: for i = start to end − 1 do
6: for j = i + 1 to end do
7: if pi andpj have same data type, namespace,

and defined on same table and columnthen
8: genXPath ← generalizeStep(null , pi, pj)
9: if genXPath /∈ XPset then

10: addgenXPath to XPset
11: genXPathNo ← genXPathNo + 1
12: end if
13: end if
14: end for
15: end for
16: start ← end + 1
17: end ← end+ genXPathNo.size
18: until genXPathNo = 0

5.1 Generalizing Pairs of Linear Candi-
dates

For the case when all candidate indexes are linear XPath
path expressions, we represent path expression patterns as
linked lists in which each node represents a path step. Our
pair generalization process is divided into two functions:
generalizeStep andadvanceStep. Each of these functions
returns one or more linked lists representing generalized
patterns. We refer to the generalized pattern currently being
built asgenXPath. To generalize a pair of path expressions,
we make an initial callgeneralizeStep(null , pi, pj) (Algo-
rithm 2), wherepi andpj are pointers to the head nodes of
the linked lists representing the path expressions (the ini-
tial steps of the two XPaths). The algorithm generalizes the
nodes pointed to bypi andpj to newNode, and appends
this new node to thegenXPath path expression built up to
this point. To perform this generalization, we check ifpi

andpj have the same name test. If so, the newly generated
node retains the same name test as these nodes. If not, we
replace the name test with a wildcard label,* . The navi-
gation axis ofnewNode is determined by calling a function
genAxis(pi .axis, pj .axis), which returnsdescendant axis
(// ) if at least one of the inputs is a descendant axis, and
returnschild axis (/ ) otherwise. We also use a function
isLast(p) to test whetherp points to the last step of a path
expression (the target of the navigation).

Algorithm 2 generalizeStep(genXPath, pi, pj)

1: if (isLast(pi) and !isLast(pj)) or (!isLast(pi) and
isLast(pj)) then

2: return {advanceStep(genXPath, pi, pj)}
3: end if
4: createnewNode
5: if pi.nameTest = pj .nameTest then
6: newNode.nameTest = pi.nameTest
7: else
8: newNode.nameTest = " * "
9: end if

10: newNode.axis = genAxis(pi.axis , pj .axis )
11: appendnewNode to genXPath
12: return {advanceStep(genXPath, pi, pj)}

The other function,advanceStep, plays the role of tra-
versing the expression lists by advancing the pointerspi and
pj according to the rules summarized in Table 2, which are
designed to generate candidates that are as general as possi-
ble. In the first rule, we terminate the navigation of the two
expressions once we finish generalizing their last steps. A
last step node can only be generalized with another last step
node, so Rules 2 and 3 test for the case that one expression
has reached its last step while the other has not and advance
the pointer of the latter to reach its last step. Rule 4 han-
dles the case when we are generalizing two middle steps. In
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1 isLast(pi) and isLast(pj)
return{genXPath}

2 isLast(pi) and !isLast(pj)
pjL ⇐ last step inpj expression.
genXPath⇐ Append/ * ontogenXPath
returngeneralizeStep(genXPath, pi.next,pjL)

3 !isLast(pi) and isLast(pj)
piL ⇐ last step inpi expression.
genXPath⇐ Append/ * ontogenXPath
returngeneralizeStep(genXPath, piL, pj .next)

4 Otherwise
pin ⇐ first occurrence of root node ofpj in pi.next
pjn ⇐ first occurrence of root node ofpi in pj .next
genXPath⇐ Append/ * ontogenXPath
return{generalizeStep(genXPath, pi.next,pj .next),
generalizeStep(genXPath, pin, pj .next),
generalizeStep(genXPath, pi.next,pjn)}

0 Rewrite Rule
Replace any middle step node having/ * or // *
with a // axis in the next step.

Table 2. Rules used by advanceStep.

this case, we return the results of three generalizations: (1)
advance the pointers of both expressions one step and gen-
eralize them, (2) and (3) try to find an occurrence of the first
node of the first (second) expression in the second (first) ex-
pression and generalize them together. In cases (2) and (3),
no generalization is performed if the search fails. These two
cases handle the reoccurrence of nodes in an expression, for
example generalizing/a/b/d and/a/d/b/d will return
/a//d and/a//b/d . Rule 0 in Table 2, is a final rewrite
step that we do before returning an XPath. Rule 0 replaces
every occurrence of one or more contiguous/ * steps ap-
pearing in the middle of an expression with a descendant
axis in the step following it. For example, we rewrite both
/a/ * /b and/a/ * / * /b to /a//b .

For example, to generalize candidates C1
and C2 from Table 1, we initially make a call
generalizeStep(null , /Security/Symbol ,
/Security/SecInfo/ * /Sector ). generalizeStep
looks at the nodes/Security in both paths and recog-
nizes that they have the same name tests, therefore it
creates a node with a/Security name test and ap-
pends it to thegenXPath being produced. It then calls
advanceStep(/Security , /Security/Symbol ,
/Security/SecInfo/ * /Sector ) to complete
processing these expressions. In this call, Rule 4
of advanceStep fires, and we have three possible
generated XPath expressions. The first is the re-
sult of advancing the pointer of each of them to the
next step: generalizeStep(/Security , /Symbol ,
/SecInfo/ * /Sector ). This call will result in

C4 /Security// * string
C5 /Security/ * numerical

Table 3. Generalized candidates.

another call advanceStep(/Security , /Symbol ,
/SecInfo/ * /Sector ) because we are trying to
generalize a last step with a middle step. Rule
2 is now fired and the pointer of the second ex-
pression is advanced until its last step and a call
generalizeStep(/Security/ * , /Symbol , /Sector )
is issued. Finally, advanceStep(/Security/ * / * ,
/Symbol , /Sector ) is called from line 12 of Algo-
rithm 2, Rule 1 is fired, a rewrite step is performed,
and /Security// * is returned. The second and
third alternatives generated by Rule 4 are to search for
/Symbol in /SecInfo/ * /Sector and for/SecInfo
in /Symbol , but as both searches fail, no generalized path
expressions is produced. Based on these results, we can
extend the basic candidates in Table 1 to include candidate
C4 in Table 3. Candidate C3 cannot be generalized with
either C1 or C2 because it is of a different data type.

5.2 Generalizing Pairs of Multi-value
(Branching) Candidates

5.2.1 Representing Multi-value XML Index Patterns

XPath patterns can be used to specify more than one value
to be indexed. For example, we can recommend an in-
dex /Security[Yield]/SecInfo/ * [Sector]
for query Q2. This pattern indicates indexing
the values of elements reachable by the XPath
/Security/Yield as well as those reachable by
the XPath /Security/SecInfo/ * /Sector . This
more general class of index patterns is analogous to
multi-column indexes in relational databases. Due to
the rich structure of this new class of indexes, we need
to change the internal representation of an index pattern
from a list to a tree to accommodate the multiple values.
This class of index patterns contains navigational steps
and specifies the indexed elements in predicates. When
indexing more than one element with the same ancestors,
we use conjuncts to represent this. For example, to
build an index on the patterns/Security/Yield and
/Security/PE together, we represent this by the pattern
/Security[Yield and PE] . For uniformity, we also
change the representation of linear patterns, hence to index
elements reachable by the XPath/Security/Yield we
use the pattern/Security[Yield] to represent them.
We make the assumption that there is at least one indexable
element (one predicate) in a given XML pattern.

The query optimizer of a database system that supports
multi-valued XML indexes would generate such indexes in
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Figure 2. XPath XPS tree example.

its Enumerate Indexesmode. Our focus in this section is on
generalizing such indexes to create more candidates.

Our revised version of the generalization algorithms
works on XPath path expressions represented as expression
trees with the same structure as the XPS trees defined in
[4]. An XPS tree (XPathStep tree) is composed of labeled
nodes. Each node is labeled with its navigation axis and
its node test, where the navigation axis is the special axis
root or one of:child , descendant , or attribute .
The test can be either a name test or a wildcard test. Each
node can have two children, the left child represents any
predicate on the node, while the right child represents the
next step in the expression. To navigate the tree, we ad-
vance the navigational pointer to the right children of nodes.
Also, to check a predicate of a node, we check its left
child. In the current implementation, we do not allow pred-
icates to be nested. Figure 2 shows an example of an
XPS tree representing a path expression. In the example,
we are indexing the values of/Security/Symbol and
/Security//Sector together in the same index. We
consider XPath index patterns that can contain both navi-
gational steps and predicate branching. The navigation can
contain label wildcards," * " , child axis navigation,"/" ,
and descendant navigation,"//" . The predicates can in-
volve conjunctions to indicate the indexing of more than one
element with the same ancestors. We obtain this tree repre-
sentation of the path expressions by parsing the path expres-
sions in the basic candidate set. We perform a postprocess-
ing step after generalization to obtain the path expression of
the generalized tree in a linear format. We describe next the
versions of Algorithm 2 and the rules in Table 2.

5.2.2 Generalizing Multi-value Patterns

To generalize a pair of expressions we rely on the function
generalizeTreeStep, which generalizes the roots of the pair
of expression trees passed to it, and then navigates to the
next nodes in the trees and recursively calls itself to gener-
alize them.generalizeTreeStep takes two expression trees
pi andpj and a list of general expression trees built to this
point, and returns a list of all general expression trees con-
structed after adding the generalization of the current steps
of pi andpj . The initial call to generalize a pair of expres-
sions isgeneralizeTreeStep(null , pi, pj). Recursive calls
are made ingeneralizeTreeStep to generalize all the steps
of the expression trees. The rules for generalizing a pair of
nodes and advancing the path expression pointers are de-
scribed in Table 4 and continued in Table 5. In Rule 1,
we terminate the navigation of the two expressions when at
least of them reaches its end. Rule 2 handles the case of two
steps with no predicates. In this case we try to find an oc-
currence of the root node of the first (second) expression in
the second (first) expression and generalize them together.
If both searches fail, we only generalize the current steps
together. In these two cases, a copy of the new general node
is appended to all the existing general tree expressions that
are under construction, and the new trees are returned to the
calling function. In Rules 3 and 4, we generalize two steps
where only one of them has a predicate. In these two cases,
we try to advance the pointer of the step with no predicate
to a step with a predicate similar to the one in the other ex-
pression. If this fails, we try to find a matching step with
a similar name to generalize with. If the previous two at-
tempts fail, the current two steps are generalized together
while ignoring the predicate. Rule 5 deals with the case of
two steps having predicates. In this case an attempt to gen-
eralize each one of them with a similar predicate is made. If
these attempts fail, the two nodes are generalized together
and a new predicate with a conjunction of the original two
predicates is created.

In order to accomplish the task ofgeneralizeTreeStep,
some helper functions are used. hasPred is a
boolean function that returns true if the current step
of the expression has a predicate child. For ex-
ample, hasPred(/Security[Yield] ) returns true.
appendStep navigates to the last step of an expres-
sion and appends a next step child to it. For
example,appendStep(/Security , /SecInfo ) returns
/Security/SecInfo . Similar to appendStep is
appendPred , which navigates to the last step of an
expression and then appends a predicate child to it.
For example,appendPred(/Security , /Yield ) returns
/Security[Yield] . generalizeNode, which is de-
scribed in Algorithm 3, takes two nodes and generalizes
them to newNode, and returnsnewNode. To perform
this generalization, we check if the two nodes have the
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1 pi=null or pj=null
return{genXPathTree}

2 not(hasPred(pi)) and not(hasPred(pj))
pin ⇐ first occurrence of root node ofpj in pi

pjn ⇐ first occurrence of root node ofpi in pj

if (pin != null) then
genTree1⇐

generalizeStepNoPred(genXPathTree, pin, pj , " * " )
pi ⇐ pin

end if
if (pjn != null) then
genTree2⇐

generalizeStepNoPred(genXPathTree, pi, pjn, " * " )
pj ⇐ pjn

end if
if (pin = null and pjn = null) then
genTree3⇐

generalizeStepNoPred(genXPathTree, pi, pj , null)
end if
genTrees⇐ genTree1∪ genTree2∪ genTree3
return generalizeTreeStep(genTrees, pi.next, pj .next)

3 hasPred(pi) and not(hasPred(pj))
pjn ⇐ first occurrence of root node ofpi in pj

pjpn ⇐ first occurrence inpj wherepjpn.pred= pi.pred
if (pjpn != null) then
genTree1⇐

generalizeStepPred(genXPathTree, pi, pjpn, " * " )
pj ⇐ pjpn

end if
if (pjn != null and pjpn = null) then
genTree2⇐

generalizeStepNoPred(genXPathTree, pi, pjn, " * " )
pj ⇐ pjn

end if
if (pjn = null and pjpn = null) then
genTree3⇐

generalizeStepNoPred(genXPathTree, pi, pj , null)
end if
genTrees⇐ genTree1∪ genTree2∪ genTree3
return generalizeTreeStep(genTrees, pi.next, pj .next)

4 not(hasPred(pi)) and hasPred(pj)
similar to Rule 3 after switchingpi with pj

Table 4. Rules used by generalizeTreeStep.

5 hasPred(pi) and hasPred(pj)
pjpn ⇐ first occurrence inpj wherepjpn.pred= pi.pred
pipn ⇐ first occurrence inpi wherepipn.pred= pj .pred
if (pjpn != null) then
genTree1⇐

generalizeStepPred(genXPathTree, pi, pjpn, " * " )
pj ⇐ pjpn

end if
if (pipn != null) then
genTree2⇐

generalizeStepPred(genXPathTree, pipn, pj , " * " )
pi ⇐ pipn

end if
if (pipn = null and pjpn = null) then
genTree3⇐

generalizeStepPred(genXPathTree, pi, pj , null)
end if
genTrees⇐ genTree1∪ genTree2∪ genTree3
return generalizeTreeStep(genTrees, pi.next, pj .next)

Table 5. Rules used by generalizeTreeStep(con-
tinued).

same name test. If so, the newly generated node re-
tains the same name test as these nodes. If not, we
replace the name test with a wildcard label,* . The
navigation axis ofnewNode is determined by calling a
function genAxis(pi .axis, pj .axis), which returnsdescen-
dant axis(// ) if at least one of the inputs is a descen-
dant axis, and returnschild axis (/ ) otherwise. We use
generalizeStepNoPred , outlined in Algorithm 4, to gener-
alize two nodes and add their generalization to all the gen-
eral expressions being constructed as a next step. A similar
function isgeneralizeStepPred (Algorithm 5), which gen-
eralizes two nodesand their predicatesand then appends
the new generalized step and predicate to all the general ex-
pressions being constructed .

Algorithm 3 generalizeNode(pi, pj)

1: createnewNode
2: if pi.nameTest = pj .nameTest then
3: newNode.nameTest = pi.nameTest
4: else
5: newNode.nameTest = " * "
6: end if
7: newNode.axis = genAxis(pi.axis , pj .axis )
8: appendnewNode to genXPath
9: return newNode

We illustrate candidate generalization for multi-valued
indexes using the following two queries on the TPoX data,
Q3 and Q4:
Q3: List securities with a particular industry type given a yield
range
for $sec in SECURITY(’SDOC’)/Security
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where $sec/Yield < 3
and $sec/SecInfo/ * /Industry= "Personal"

return $sec

Q4: List security names in a particular sector given a yield
range

for $sec in
SECURITY(’SDOC’)/Security[Yield > 4.5]

where $sec/SecInfo/ * /Sector= "Energy"
return <Security>{$sec/Name}</Security>

For these two queries, the enumerated indexes are:
/Security[Yield]/SecInfo/ * [Industry]
and /Security[Yield]/SecInfo/ * [Sector] .
Initially we make a call generalizeTreeStep(null ,
/Security[Yield]/SecInfo/ * [Industry] ,
/Security[Yield]/SecInfo/ * [Sector] ). Since
the roots of both expressions have predicates, Rule 5 is
fired. We attempt to findSecurity in the first expression,
and alsoSecurity in the second expression. Since
the result is the same as the root node, we continue with
only one of the result paths.generalizeStepPred (null ,
/Security[Yield] , /Security[Yield] ) is
called and a new expression/Security[Yield] is
returned. Next, the pointers of the two expressions are ad-
vanced andgeneralizeTreeStep(/Security[Yield] ,
/SecInfo/ * [Industry] , /SecInfo/ * [Sector] )
is called again to continue processing the expressions. The
current steps have no predicates, so Rule 2 is fired. The
two nodes are the same so only one path is used and a new
node is appended to the current general expression. Then
generalizeTreeStep(/Security[Yield]/SecInfo ,
/ * [Industry] , / * [Sector] ) is called. Rule 5
is fired as the two expressions have predicates. But
the two predicatesIndustry and Sector are not
equal. Hence, a new predicate node with a conjunction
of Industry and Sector is created. Finally a new
expression of /Security[Yield]/SecInfo/ *
[Industry and Sector] is returned and the gener-
alization is terminated by Rule 1 when we encounter null
steps.

5.3 Generalizing Individual Candidates

Some path expressions in the basic candidate set might
not be generalized with any other path expression. An ex-
ample of this is candidate C3 in Table 1. To get more gen-
eral candidates even from these individual candidate paths
that have no common sub-expressions with other candi-
dates, we use a heuristic technique that predicts the ex-
istence of other expressions similar to a candidate. The
heuristic replaces the last non-* navigation step in the can-
didate path with a* navigation step. For example, we can
generalize path C3 to/Security/ * , C5 in Table 3. This

Algorithm 4 generalizeStepNoPred(genXPathTree, pi,
pj , preNode)

1: genXPathTreeNew ⇐ {}
2: newNode⇐ generalizeNode(pi , pj)
3: for all t such thatt ∈ genXPathTree do
4: if preNode 6= null then
5: tnew ⇐ appendStep( t, preNode)
6: tnew ⇐ appendStep(tnew, newNode)
7: else
8: tnew ⇐ appendStep(t, newNode)
9: end if

10: genXPathTreeNew ⇐ genXPathTreeNew ∪ tnew

11: end for
12: return genXPathTreeNew

Algorithm 5 generalizeStepPred(genXPathTree, pi, pj ,
preNode)

1: genXPathTreeNew ⇐ {}
2: newNode ⇐ generalizeNode(pi , pj)
3: newPred ⇐ generalizeNode(pi.pred , pj .pred )
4: for all t such thatt ∈ genXPathTree do
5: if preNode 6= null then
6: tnew ⇐ appendStep( t, preNode)
7: tnew ⇐ appendStep( tnew, newNode)
8: else
9: tnew ⇐ appendStep( t, newNode)

10: end if
11: if newPred 6= null then
12: tnew ⇐ appendPred( tnew, newPred )
13: else
14: tnew ⇐ appendConjunctPred( pi.pred , pj .pred ,

tnew)
15: end if
16: genXPathTreeNew ⇐ genXPathTreeNew ∪ tnew

17: end for
18: return genXPathTreeNew
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approach could be extended to consult the data to deter-
mine the usefulness of such a generalization and recom-
mend other generalizations. In the latter case, a* replace-
ment would only be performed when there are other paths
in the data with the same common leading path.

6 Estimating the Benefit of XML Indexes

Relational index advisors leverage the query optimizer to
estimate the benefit to a query workload of having a particu-
lar index configuration [9, 38]. To do the same in our XML
Index Advisor, we added a new query optimizer mode that
we call the Evaluate Indexes mode. This mode relies on
creating virtual indexes and estimating the cost of workload
queries with these virtual indexes in place. The optimizer
can include the virtual indexes with other existing real in-
dexes when performing index matching to find the possible
indexes to be used in a query, and when determining a query
execution plan for this query. After optimizing a query in
Evaluate Indexes mode, the optimizer returns the set of in-
dexes that were used, plus their statistics and the new cost
information of the evaluated query. This information is used
by our index advisor to determine the benefit of using an in-
dex or a configuration consisting of multiple indexes.

The XML Index Advisor architecture allows us to rely
completely on the query optimizer for cost estimation by
using its Evaluate Indexes mode, leveraging its tuned, well-
developed cost model. It is beyond the scope of this paper
to discuss XML cost models, an active area of research in
its own right. Moreover, a detailed description of the cost
model of the DB2 optimizer, which we use in our prototype,
can be found in [3]. Next, we describe the general approach
used in the Evaluate Indexes mode, and the details of the
Evaluate Index mode that we have implemented in the DB2
query optimizer, and then we describe how we use the in-
formation returned by the optimizer in our Index Advisor
application.

6.1 Evaluate Mode Implementation

While finding the query execution plan in the presence
of one or more virtual indexes, the optimizer needs statis-
tics about these virtual indexes to get better cost estimates.
Some of these statistics aredata statistics, such as the dis-
tinct XPaths in the data that are being indexed and their fre-
quencies, while others areindex statisticssuch as the num-
ber of disk pages occupied by the index. Our approach is to
collect all the necessary data statistics if needed using the
query optimizer’s normal (i.e., non-virtual) statistics collec-
tion module (RUNSTATSin DB2). We then use these data
statistics to estimate the index statistics for the virtual in-
dexes. We use the same approach for estimating an XML
index cardinality that is described in [3].

DB2 implements XML indexing using a B-tree index,
and the query optimizer requires two statistics for an XML
index: its cardinality and its size on disk [3]. The cardi-
nality, or total number of entries, of an index is the total
number of XML nodes in all the XML documents that are
stored in the column of the table that the index is defined
on that match the index pattern. As described in [3], to es-
timate the XML column cardinality, a count of all linear
rooted pathes occurring in the documents of that column is
collected. But because the number of occurring rooted paths
can be huge, this count is only kept for the most frequently
occurring paths. To estimate the cardinality of an XML pat-
tern, we check all the most frequent occurring paths, stored
in the catalog, for the ones that can be matched with this
pattern, and calculate their average. The calculated aver-
age is used as an estimate of the number of nodes that are
reachable by this XML pattern.

To estimate the size of an index, we again use the data
statistics to estimate the different components needed: the
size of the index key and the number of keys. While the
number of keys for an index entry is fixed and based on the
index implementation, the size of the index key is calculated
as the average size of the index keys for the most frequently
occurring paths. Multiplying the size of the index key by
the number of keys gives us an estimate of the total size
of the index. With the cardinality and index size statistics
of a virtual index in place, this index can be used for cost
estimation like any real index.

6.2 Estimating the Benefit of an Index
Configuration

In the XML Index Advisor application, we make use of
the information returned by the optimizer after evaluating a
query in the Evaluate Indexes mode with a specific virtual
index configuration in place. The benefit of using an index
is estimated as the reduction in query execution cost when
the index is created. The benefit of indexx to queryq is
calculated as the difference between the initial cost of query
Cold(q) and its cost after creating the indexCnew (q). Thus,
benefit of indexx to queryq is Benefit(x; q) = Cold(q) −
Cnew (q). We use the Evaluate Indexes mode to evaluate the
cost of a query when an index is in place without actually
creating the index.

To evaluate the benefit of an index for a work-
load of queries, we generalize the above calculation to:
Benefit(x;W ) =

∑
q∈W (C(q)old − C(q)new ). Further-

more, to calculate the benefit of a configuration consisting
of multiple indexes, we create all the indexes in the configu-
ration as virtual indexes and then optimize all queries in the
workload in Evaluate Indexes mode to estimate their new
costs. Thus, we have

Benefit(x1, x2, . . . , xn;W ) =
∑

q∈W (Cold(q)− Cnew (q)).
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6.3 Update, Delete, and Insert Costing

Our workloads may contain update, delete, and insert
(UDI) statements in addition to queries. Any index we rec-
ommend must be maintained for each of the UDI statements
in the workload. At the same time, update and delete state-
ments may benefit from an index that helps them identify
the data that needs to be updated or deleted. The benefit
of having an index for update or delete statements is esti-
mated just like the benefit of indexes for queries. If the cost
of updating indexes is included in the optimizer cost esti-
mates of these statements, no special processing is required
for them. In some database systems, such as DB2, the op-
timizer cost estimates do not include the cost of updating
indexes. Hence, we have special techniques in our applica-
tion to estimate the maintenance cost of indexes under UDI
statements.

To estimate the maintenance cost for an indexxi because
of a UDI statement, we use the data statistics to estimate
the number of XML documents that have changes because
of this update statements, docChanged(s), and the total
number of elements included in this indexnumElement(xi).
Given the total number of XML documents in the database
numDocs, we can estimate the number of elements that the
statement will affect in the index asnodesUpdated(xi, s) =
(numElement(xi)/numDocs) × docChanged(s). We
are assuming that the number of indexed XML elements
from different documents is the same. We are also as-
suming that all the index entries corresponding to these
XML elements will need to be updated, and we use the
docChanged(s)value to estimate the maintenance cost for
this index because of statements. Based on the system,
two calibration constants are used (1)CPUCostPerNode:
number of CPU operations performed per an index node
and (2) IOCostPerNode: number of I/O operations per-
formed per an index node. Thus the total maintenance
cost of an indexxi because of a statements is calculated as:
mc(xi, s) = nodesUpdated(xi, s)× CPUCostPerNode+

nodesUpdated(xi, s)× numBTreeLevels×
IOCostPerNode

Putting it together, to account for the index mainte-
nance cost, we subtract from the calculated benefit the
maintenance cost (mc) of all indexes in the configura-
tion. Thus, for indexesx1, x2, . . . , xn and workloadW :
Benefit(x1, x2, . . . , xn;W ) =∑

s∈W ((Cold(s)− Cnew (s))−Pn
i=1mc(xi, s))

6.4 Efficient Index Configuration Evalua-
tion

To evaluate the benefit of a configuration consisting of
multiple indexes, we can simply estimate the benefit of
the individual indexes independently and add up these es-

timated benefits. However, this method ignores theinterac-
tion between indexes: The benefit of an index will change
depending on what other indexes are available because the
query optimizer can use multiple indexes in its plans. A
simplistic approach for taking index interaction into account
is to evaluate the entire workload with all indexes in the con-
figuration created as virtual indexes. Since we evaluate the
benefit of index configurations repeatedly during our search
for the optimal index configuration, we have developed a
more efficient approach that reduces the number of calls to
the optimizer while taking index interaction into account.

While we are generating the set of candidate indexes
(basic and generalized), we keep track for each index,x,
of which (XQuery or SQL/XML) workload statements pro-
duced basic candidate index patterns that are covered by this
index. These are the statements that can benefit fromx, and
we call this set of statements theaffected setof x. To eval-
uate the benefit of a configuration, we only need to call the
optimizer for the union of the affected sets of its indexes.

Furthermore, we divide a configuration into smaller sub-
configurations, where each sub-configuration includes in-
dexes that may interact with each other, which are indexes
that have overlapping affected sets. We maintain a cache of
previously evaluated sub-configurations and we only eval-
uate a sub-configuration if it is not found in this cache. To
create the set of sub-configurations for a given configura-
tion, we start with a sub-configuration for each index, and
we iteratively merge the sub-configurations whose affected
sets overlap, until there can be no more merging.

For example, to evaluate the benefit of the indexes con-
figuration containing C1, C2 and C3 from Table 1, we ini-
tially have each one of them in a separate sub-configuration.
Because C2 and C3 are enumerated from the same query
Q2, we merge their sub-configurations, which gives us the
two sub-configurations{C1} and {C2, C3}. To evaluate
the {C1} sub-configuration, we only need to optimize Q1
while C1 is created as virtual index. Similarly, to evaluate
the{C2, C3} sub-configuration, we only need to optimize
Q2 while C2 and C3 are created as virtual indexes. The
benefit of the configuration{C1, C2, C3} will be the sum
of the individual benefits of{C1} and {C2, C3}. When
evaluating a configuration of, say,{C1, C2, C5}, we split it
into the two sub-configurations,{C1} and{C2, C5}. Since
{C1} was evaluated in the previous step, we only need to
evaluate{C2, C5}.

7 Searching for the Optimal Configuration

After the candidate enumeration and generalization
steps, we have in hand an expanded set of candidate in-
dexes. We need to search the space of possible index con-
figurations consisting of indexes from this candidate set to
find the index configuration with the maximum benefit, sub-
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ject to a constraint specified by the user on the disk space
available for the configuration.

This combinatorial search problem can be modeled as
a 0/1 knapsack problem [38], which is NP-complete. The
size of the knapsack is the disk space budget specified by the
user. Each candidate index – which is an “item” that can be
placed in the knapsack – has acost, which is its estimated
size, and abenefitcomputed as described in Section 6.

The problem is further complicated by the fact that in-
dexes interact with each other. The benefit of an index for
a query can change depending on whether or not other in-
dexes exist. The simplest approach to solving the 0/1 knap-
sack problem is to use agreedy searchthat ignores index
interaction. To take index interaction into account, we have
added someheuristicsto the greedy search to ensure that
we use as many indexes with high benefit as we can, and
that they are all actually used in the optimizer plans. We
have also implemented atop downsearch that chooses as
many general indexes as it can fit into the disk budget. The
goals of the greedy search with heuristics and the top down
search are fundamentally different: The greedy search with
heuristics attempts to find the best possible set of indexes
for the given workload, without any consideration for the
generality of these indexes, while the top down search at-
tempts to find configurations that are as general as possible
so that they can benefit not only the given workload but also
any similar future workloads. We describe these search al-
gorithms next and then we describe a technique to reduce
the number of calls to the optimizer.

Figure 3 illustrates the relation between the queries in the
workload, extracted XML pattern, and the generalized can-
didates. For queriesq1, q2, . . . qn we enumerate a basic set
of candidatesp1, p2, . . . pm as described in Section 4. One
basic candidate can be enumerated because of more than
one query, and one query can produce more than one candi-
date, so we associate with each candidate the set of queries
that produced it. We build the next levels in the graph until
we reach the most general candidates as shown in the figure.
For each new candidate, we associate with it a list of XML
patterns that were the cause of generating it as well as their
descendant patterns. Hence, for any candidate index pattern
in the graph, it will have associated to it a list of all candi-
dates in the subtree rooted at this pattern, which we call the
coverage list. Along with the coverage list, we keep a list of
affected queries (described in Section 6.4). The affected list
of a generalized pattern is the concatenation of the affected
lists of its children.

7.1 Greedy Search with Heuristics

The greedy approximation of the NP-complete 0/1 knap-
sack problem works as follows. First, we estimate the size
of each candidate index, and the total benefit of this index

for the workload. We then sort the candidate indexes ac-
cording to their benefit/size ratio. Finally, we add candi-
dates to the output configuration in sorted order of bene-
fit/size ratio, starting with the highest ratio, and we continue
until the available disk space budget is exhausted. As this
is an approximate solution, we try to improve it by skip-
ping candidates that do not fit into the available disk space
budget and continuing to add other candidates that can fit
into the budget, trying to accommodate as many indexes as
possible.

The greedy approximation has proven to be effective for
relational index advisors [38], but it was not effective for
our XML Index Advisor. The benefit of an index is highly
dependent on the existence of other indexes in the configu-
ration. Moreover, the greedy search can select general in-
dexes that can be used for path expressions already covered
by other indexes in the configuration. Unfortunately, the
optimizer can use only one of these indexes in its plan. A
possible solution to this problem is to compile all workload
queries after the indexes in the configuration are selected,
and then to eliminate indexes that are never used. The prob-
lem with this solution is that we free up extra disk space that
we never use again for adding more indexes, even though
this space could be very useful.

To address the index interaction problem, we evaluate
the benefit of the entire configuration to decide on adding a
new candidate to it or not. The configuration evaluation is
optimized using the technique described in Section 6.4.

To address the index redundancy problem described
above, we add one more objective to our search problem:
maximizing the number of workload XPath expressions
that use indexes in the selected configuration. Maximizing
the workload benefit remains the primary objective of the
search, and heuristics are added to attempt to enforce the
new objective in a best effort manner.

This new search algorithm maintains a bitmap of XPath
patterns in the workload queries that have indexes on them.
Then, before adding any general index to our configura-
tion we use this bitmap to make sure that this index will
not be a replication of others already chosen. When a gen-
eral index,xgeneral, is added to the recommended index
configuration, it must be “better” than the indexes it gener-
alizes,x1, x2, . . . , xn. Algorithm 6 outlines the procedure
we follow to search all candidates. We defineIB(X), the
improved benefitof the set of indexesX, as the benefit of
the current configuration whenX is added to it. A general
index is added to the configuration only if the following two
heuristic conditions are satisfied (lines 14 and 19 in Algo-
rithm 6):

IB(xgeneral) ≥ IB(x1, x2, . . . , xn)

Size(xgeneral) ≤ (1 + β)

nX

i=1

Size(xi)
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Figure 3. Relation between workload queries and candidate XML patterns

Algorithm 6 heuristicSearch(candidates)
1: sortcandidates according to theirbenefit/size ratio
2: recommended ← φ
3: currSize ← 0
4: currCoverage ← φ
5: while currSize < diskConstraint do
6: best ← pick the next bestcand in candidates
7: if currCoverage = φ then
8: recommended ← recommended ∪ cand
9: currCoverage ← currCoverage ∪

cand .coverage
10: else ifcurrCoverage ∩ best .coverage = φ then
11: addbest to recommended
12: else ifcurrCoverage = best .coverage then
13: evaluaterecommended andbest
14: select thebestConf according tobenefit andsize
15: recommended ← bestConf
16: else ifcurrCoverage ∩ best .coverage 6= φ then
17: constructtentative with recommended after re-

moving indexes with a coverage subsumed bybest
18: evaluaterecommended andtentative
19: select thebestConf according tobenefit andsize
20: recommended ← bestConf
21: end if
22: end while
23: return recommended

Most of the time, general indexes are larger than specific
indexes because they contain more nodes from the data. The
second heuristic restricts the expansion in size that we allow
when we choose a general index, and the first heuristic en-
sures that the general index is at least as good as the specific
indexes. Hence, we are biased towards choosing the small-
est configuration that is the best for the current workload.
The valueβ is a threshold that specifies how much increase
in size we are willing to allow. We have foundβ = 10% to
work well in our experiments.

7.2 Top Down Search

The greedy search with heuristics recommends the best
configuration that fits the specific given workload. Because
of that, it can be viewed asover-trainingfor the given work-
load. If the workload changes even slightly, the recom-
mended configuration may not be of use. This is acceptable
if the DBA knows that the workload will not change at all.
For example, if the workload is all the queries in a particu-
lar application. However, another likely scenario is that the
DBA has assembled a representative training workload, but
that the actual workload may be a variation on this training
workload. This is true for relational data, but it is of added
importance for XML, because the rich structure of XML al-
lows users to pose queries that retrieve different paths of the
data with slight variations. If this is the case, and the work-
load presented to the Index Advisor is a representative of
a larger class of possible workloads, then we posit that the
goal of the Index Advisor should be to choose a set of in-
dexes that is as general as possible, while still benefiting the
workload queries. We have developed atop down search
algorithm to achieve this goal.
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Figure 4. Directed acyclic graph of the candi-
dates.

In the top down search, we construct aDirected
Acyclic Graph (DAG) of the candidate indexes while
generalizing them. Each node in the DAG represents
an XML pattern, and has as its parents the possible
generalizations of this pattern, based on our candidate
generalization algorithm. For example, when gener-
alizing the two candidates/Security/Symbol and
/Security/SecurityInformation/ * /Industry
to get/Security// * , a node will be created in the DAG
for /Security// * and this node will be a parent of the
two candidates. At the end of this construction phase, we
will have a DAG rooted at the most general indexes that
can be obtained from the workload. Figure 4 illustrates
the DAG constructed for the expanded set of candidates
for our running example. We start with the roots of the
DAG as our current configuration. Since general indexes
are typically large in size, this starting configuration is
likely to exceed the available disk space budget, but it
likely has the maximum benefit that can be achieved.
General indexes can have zero or negative benefit for two
reasons: (1) high maintenance cost because of update,
delete, and insert statements in the workload, and (2) not
being used in optimizer plans. To handle this, we add a
preprocessing phase to remove any indexes with zero or
negative benefit from our search space. Next, we iteratively
replace a general index from the current configuration with
its specific (and smaller) child indexes, and we repeat this
step until the configuration that we have fits within the disk
space budget.

To choose the general index to replace, we introduce
two new metrics∆B and ∆C. Assume that candidates
x1, x2, . . . , xn are generalized to a candidatexgeneral.
There will be nodes in the DAG for each of these candi-
dates, andxgeneral will be a parent ofx1, x2, . . . , xn. We
define∆B and∆C as follows:

∆B = IB(xgeneral)− IB(x1, . . . , xn)

∆C = Size(xgeneral)− Σ0≤i≤nSize(xi)

Since our goal is to obtain the maximum total benefit for
the workload with the most general configuration that fits
in the disk space budget, we iteratively choose the general
index with the smallest∆B/∆C ratio and we replace it
with its (more specific) children in the DAG (Algorithm 7).
That is, we replace general indexes whose additional benefit
per unit cost over their children is the lowest. In case of ties,
we select the index with the largest∆C. If we run out of
general candidates to replace and do not yet meet the disk
space budget, we use greedy search. Note that in this case
we do not need to apply our heuristics since none of the
indexes we are searching is general.

We implemented two versions of the top down algo-
rithm. In the first, we ignore index interaction when cal-
culating∆B. The benefit of a configuration is calculated as
the sum of the benefits of its indexes. We call this version
top down lite. In the second version, we evaluate the ben-
efit of every configuration using the technique described in
Section 6.4. We refer to this version of the search algorithm
astop down full.

Algorithm 7 topDownSearch(topCandidates)
1: candidates ← topCandidates
2: currSize ← candidates.size
3: while currSize > diskConstraint do
4: for all cand ∈ candidates do
5: calculate∆B/∆C of cand
6: end for
7: candidates ←configuration after replacing the can-

didate with minimum (∆B/∆C) with its children
8: currSize ← candidates.size
9: end while

7.3 Dynamic Programming

Both algorithms described above find approximations to
the optimal solution. To find an optimal solution, we use
a dynamic programming algorithm that searches the expo-
nential space of possible configurations but does not con-
sider all possible index interactions.

We implemented a dynamic programming algorithm
given in [23], which has a time and space complexity of
O(min{2n, n

∑
1≤i≤n pi, nm}). To decide whether to in-

clude an index in the solution, this algorithm tries to add
it to all configurations that were computed so far, keeping
a dynamic programming table that caches the optimal sub-
configurations that were evaluated so far. To account for
index interaction, we evaluate the benefit to the workload
of having all the indexes in a configuration. Since we con-
sult the optimizer to evaluate the workload execution cost
for each configuration, this adds a high overhead to the so-
lution. This solution suffers from pruning some configura-
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tions in the space because of their low overall benefit. But
because indexes can have higher benefit to a query when
combined with other indexes, the low benefit configurations
might turn to be the best ones later on.

8 Experiments

8.1 Experimental Setup

IBM DB2 9 (pureXML) supports both relational and
XML data [6, 30]. We have modified the DB2 9 query
optimizer to create a prototype version that supports the
two new optimizer modes that our Index Advisor requires.
These new modes are implemented asEXPLAIN modes in
the optimizer. The client side XML Index Advisor is imple-
mented in Java 1.5, and communicates with the prototype
server via JDBC. We have conducted our experiments on a
Dell PowerEdge 2850 server with two Intel Xeon 2.8GHz
CPUs (with hyperthreading) and 4GB of memory running
SuSER© Linux 10. The database is stored on a 146GB 10K
RPM SCSI drive.

We used two XML benchmarks for our experiments: the
recent TPoX [29] benchmark and XMark [36]. We generate
the data for both benchmarks using a scale factor of 1GB.
For both benchmarks, we evaluate our XML Index Advi-
sor on the standard queries that are part of the benchmark
specification: 11 XQuery queries for TPoX and 16 XQuery
queries for XMark. To illustrate the effectiveness of our
generalization algorithm, we also use synthetic queries on
the TPoX data in Section 8.3.

DB2 stores XML data in XML-typed columns of tables,
and it can create XML indexes on these columns with spe-
cific index patterns that are given as XPath path expres-
sions [30]. The indexes can be used to answer structural
or value queries on the data. Hence, the goal of the XML
Index Advisor is to recommend index patterns for indexes
on XML-typed columns, based on the workload queries.

Our metric for evaluating the recommendations of the
XML Index Advisor is estimated speedup: The estimated
execution time of the workload with no XML indexes di-
vided by the estimated execution time of the workload with
the index configuration recommended by the Index Advisor.

In the following sections, we illustrate that our XML In-
dex Advisor makes good index recommendations that ef-
fectively use the available disk space budget and that it is
efficient in terms of run-time. We also show that by using
the top down search algorithm, the advisor can recommend
general configurations that are useful beyond the training
workload. Furthermore, we demonstrate the accuracy of
the statistics we create for cost estimation in the Evaluate
Indexes mode, and of our estimation of the cost of updating
indexes.

8.2 Effectiveness of Recommendations

We have implemented five different combinatorial search
strategies in our Index Advisor. The five strategies are de-
scribed in Section 7: (1) greedy search (without heuristics),
(2) greedy search with the heuristics, (3) top down lite, (4)
top down full, and (5) dynamic programming.

Figures 5 and 6 show the estimated speedup for the dif-
ferent search strategies with varying disk space budgets for
the TPoX and XMark benchmarks, respectively. The fig-
ures also show the speedup for a configuration in which we
have XML indexes for every indexable XPath expression in
the query workloads (theAll Index configuration). This is
the best possible configuration for a workload that consists
of queries with no updates. The size of this configuration is
95MB for TPoX and 149MB for XMark. In these figures,
there is no generalization to unseen queries in the work-
loads. We use the benchmark queries (11 for TPoX and
16 for XMark) for recommending the indexes and also for
evaluating the recommendations.

As expected, speedup increases as we increase the avail-
able disk space budget, until it reaches the best possible
speedup of theAll Index configuration. Greedy search
requires significantly more disk space thanAll Index to
match its performance. The reason is that greedy search of-
ten chooses multiple indexes that answer the same query,
thereby wasting some of the available disk space budget
without gaining any benefit. The heuristics we use with
greedy search are designed to avoid such errors, as can be
seen from Figure 5. Greedy search with heuristics and top
down lite search are both able to achieve better speedups
than greedy search, approaching the performance of dy-
namic programming. These two search strategies achieve
similar speedups in this experiment, but as we see in the
next section, the recommended configurations can be differ-
ent. Top down full search has the best performance because
it takes into account index interaction. This makes it per-
form even better than dynamic programming (which does
not take index interaction into account) for some cases.

Figure 7 shows that the superior recommendations of the
top down full search come at a cost. The figure shows the
run time of the Index Advisor for varying disk space bud-
gets on the TPoX workload. Top down full search takes up
to 7 times more than greedy search with heuristics. How-
ever, the run time of top down full search improves as the
available disk space increases because it needs to explore
fewer nodes in the DAG of candidate indexes before arriv-
ing at a configuration that fits within the disk space bud-
get. The figure does not show the run time of greedy search
or dynamic programming. Greedy search is faster than the
greedy search with heuristics, and dynamic programming is
more than 5 times slower than top down full search.
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Figure 5. Estimated speedup (TPoX).

Figure 6. Estimated speedup (XMark).

8.3 Recommending General Indexes

In this section, we demonstrate that our Index Advisor
can recommend indexes that are more general than the can-
didates appearing in the workload, and that these indexes
can benefit future queries different from those in the train-
ing workload. This is a key feature of our Index Advisor.

The first question we address is how many generalized
indexes can potentially be found in a workload. To address
this question, we generated synthetic workloads consisting
of random XPath path expressions that occur in the data.
Table 6 shows for TPoX the number of basic candidate in-
dexes generated by the query optimizer in Enumerate In-
dexes mode for these workloads as the number of workload
queries increases, and also the total number of candidate
indexes after candidate generalization. The numbers show
that, even for these random workloads with little or no local-
ity, we are able to expand the number of candidate indexes
by more than 25% to 50% by adding general candidate in-
dexes.

The next question we address is how many of the general
candidate indexes we generate can be recommended by our
top down algorithm, and how useful these recommended
indexes are. Recall that the goal of top down search is to

Figure 7. Advisor runtime (TPoX).

Queries Basic Cands. Total Cands.

10 12 16
20 23 34
30 33 49
40 42 60
50 52 81

Table 6. Number of candidates (TPoX).

recommend a set of indexes that is useful for the workload
and as general as possible given the disk space budget. The
generality of these indexes is typically not expected to add
any benefit to the workload queries, but it will make the
configuration more usable if the workload has new unseen
queries added to it in the future.

Tables 7 and 8 show the number of general and specific
indexes recommended for different disk space budgets by
greedy search with heuristics, top down lite search, and top
down full search for the 11 TPoX and the 16 XMark bench-
mark queries, respectively. Greedy search with heuristics is
not designed with the explicit goal of recommending gen-
eral indexes and so it is very conservative about recom-
mending them. Top down search, on the other hand, rec-
ommends more general indexes the more disk space it has.

To show the effect of recommending general indexes
on speedup for different workloads, we perform an exper-
iment where the training workload used by the Index Ad-
visor for recommending indexes is different from the test

Disk Budget Heuristics Top Down Lite Top Down Full

100MB G: 0, S:15 G: 1, S: 14 G: 1, S: 14
500MB G: 0, S: 15 G: 3, S: 9 G: 2, S: 11
1000MB G: 0, S: 15 G: 4, S: 7 G: 3, S: 8
2000MB G: 1, S: 13 G: 8, S: 0 G: 8, S: 0

Table 7. Number of general (G) and specific
(S) indexes recommended (TPoX).
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Disk Budget Heuristics Top Down Lite Top Down Full

100MB G: 1, S:10 G: 0, S: 13 G: 0, S: 13
500MB G: 1, S: 11 G: 3, S: 5 G: 5, S: 5
1000MB G: 2, S: 4 G: 3, S: 5 G: 5, S: 5

Table 8. Number of general (G) and specific
(S) indexes recommended (XMark).

workload used to evaluate the recommended configuration.
For TPoX, we used a workload of 20 queries, the 11 TPoX
queries followed by 9 synthetic queries generated as de-
scribed above to increase workload diversity. For XMark,
we used the 16 benchmark queries. We train (i.e., recom-
mend configurations) based onn queries, and we test based
on the entire workload, and we varyn from 1 to the number
of queries (20 in our experiments). Figures 8 and 9 show the
estimated speedup on the test workload as we vary the train-
ing workload size for TPoX and XMark respectively, with a
disk space budget of 2GB. The figures show the speedup for
top down lite search, greedy search with heuristics, and an
All Indexconfiguration that is based on the entire test work-
load. In this case, the speedup of top down full is similar
to that of top down lite, so we eliminate it from the figure
for clarity. The figure shows that as the advisor sees more
and more of the test workload, it can recommend a configu-
ration approaching theAll Indexconfiguration using either
search strategy. However, it is clear from the TPoX data
that top down search is quite effective at using the available
disk space to generalize from the queries seen in the train-
ing workload to the unseen queries in the test workload,
whereas greedy search with heuristics is unable to perform
such generalization.

Figure 10 shows theactual speedup corresponding to
Figure 8. When computing actual speedup, we had to elim-
inate from the workload two queries that we timed out af-
ter 10 hours when there were no indexes, but that finished
in less than 30 seconds using the index configuration rec-
ommended for them by our Index Advisor. These queries
gain the maximum benefit from our Index Advisor, but they
cannot be plotted on the figure since their speedup is infi-
nite! The figure shows actual speedup for the remaining 9
queries of the TPoX benchmark, and we can see that the ac-
tual speedup corroborates the conclusions drawn from our
estimated speedup experiments.

8.4 Evaluating Candidate Configurations

The quality of the configurations recommended by the
XML Index Advisor depends on how accurate we are in
estimating the benefit of candidate configurations in the
Evaluate Indexes optimizer mode, and in estimating in our
client-side application the penalty of updating the index

Figure 8. Generalization to unseen queries
(TPoX).

Figure 9. Generalization to unseen queries
(XMark).

when updating the database with update, insert, or delete
(UDI) statements.

The key statistic used by Evaluate Indexes mode is
the size of a virtual index. We have found that for the
TPoX and XMark workloads, the median relative estima-
tion error for this statistic is 12% and 11%, respectively.
Notably, we are able to estimate size of large indexes –
which have the most impact on performance – with a very
small error. For example, the largest candidate indexes
for TPoX were indexes on/FIXML/Order/OrdQty/@ *
and/FIXML/Order//@ * , and we were able to estimate
their size with 3.7% and 5.5% error, respectively.

In our client-side application, we estimate the penalty of
updating candidate configurations if the workload contains
UDI statements. Figure 11 illustrates the effect of this esti-
mation. We add to the TPoX workload a varying number of
UDI statements that insert documents into one of the tables
(the Order table), and we use the Index Advisor to rec-
ommend a configuration with a 500MB disk space budget.
The figure shows execution times (in millions of optimizer
time units, ortimerons) as we vary the number of UDI state-
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Figure 10. Generalization to unseen queries -
Actual speedup (TPoX).

Figure 11. Effect of updates (TPoX).

ments. The figure shows the case where the design advisor
ignores UDI statements while recommending a configura-
tion, and for the case where the design advisor takes UDI
statements into account. As the number of UDI statements
increases, workload execution time increases in all cases,
but the advisor that takes into account UDI statements is
able to reduce the increase in execution time by dropping
indexes when the penalty for updating them exceeds their
benefit (which happens when insertions are around 80% of
the table size). The figure also shows that the queries in the
workload suffer when indexes are dropped, but dropping the
indexes saves overall time.

9 Conclusions

In this paper, we have presented an XML Index Advisor
that recommends the best set of XML indexes for a given
database and query workload. Three key features of our In-
dex Advisor are (1) it is tightly coupled with the query opti-
mizer, (2) the search algorithms it employs can recommend
indexes that are useful not only for the given workload, but

also for other similar workloads that may be seen in the fu-
ture, and (3) we always minimize the number of optimizer
calls.

Our index advisor uses the novel notion of a virtual uni-
versal index to leverage the query optimizer for recom-
mending candidate indexes. The advisor expands the set
of candidate indexes recommended by the optimizer to in-
clude additional, more general candidates that could benefit
multiple queries in the workload or other queries not seen
in the workload. From this set of candidates, our XML In-
dex Advisor chooses an optimal index configuration, taking
into account the disk space consumed by the indexes and
the additional cost they impose on update, delete, and insert
statements. The advisor leverages the costing capabilities
of the optimizer to estimate the benefit of candidate index
configurations.

Our index advisor can employ a variety of combinatorial
search algorithms to find the optimal configuration depend-
ing on the goal of the user, whether it is finding a configu-
ration that is best only for the given workload, or finding a
configuration that is as general as possible and so can help a
wide variety of workloads. If the run time of the advisor is
not a concern, then top down full search is an algorithm that
can simultaneously accomplish both goals as best as possi-
ble, depending on the training workload and the available
disk space budget. For a more efficient search that reduces
the advisor run time, greedy search with heuristics is the al-
gorithm of choice for finding configurations that are useful
only for the specific workload, and top down lite search is
the algorithm of choice for finding general configurations
that make the best possible use of the available disk space.

We have implemented our XML Index Advisor in a pro-
totype version of DB2, and our experiments with this im-
plementation show that our Index Advisor can effectively
recommend indexes that result in significant speedups for
workload queries.
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path to efficient XML queries. InVLDB, 2006.

[3] A. Balmin, T. Eliaz, J. Hornibrook, L. Lim, G. M. Lohman,
D. E. Simmen, M. Wang, and C. Zhang. Cost-based opti-
mization in DB2 XML. IBM Systems Journal, 45(2), 2006.
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comprehensive XQuery to SQL translation using dynamic
interval encoding. InSIGMOD, pages 623–634, 2003.

[13] L. Ennser, C. Delporte, M. Oba, and K. M. Sunil.
Integrating XML with DB2 XML Extender and DB2
Text Extender. IBM Redbooks, 2000. Available
at: http://www.redbooks.ibm.com/redbooks/
pdfs/sg246130.pdf .

[14] eXist: An Open Source Native XML Database. Available
at: http://exist.sourceforge.net/ .

[15] G. Feinberg. Native XML data storage and retrieval.Linux
Journal, 2005.
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