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MATRIX PADI FRACTIONS AND THEIR COMPUTATION*

GEORGE LABAHN? AND STAN CABAY$

Abstract. For matrix power series with coefficients over a field, the notion of a matrix power series
remainder sequence and its corresponding cofactor sequence are introduced and developed. An algorithm
for constructing these sequences is presented.

It is shown that the cofactor sequence yields directly a sequence of Pad6 fractions for a matrix power
series represented as a quotient B(z)-lA(z). When B(z)-A(z) is normal, the complexity of the algorithm
for computing a Pad6 fraction of type (m, n) is O(p3(rn+ n)2), where p is the order of the matrices A(z)
and B(z).

For a power series that are abnormal for a given (m, n), Pad6 fractions may not exist. However, it is
shown that a generalized notion of Pad fraction, the Pad6 form, which is introduced in this paper, does
always exist and can be computed by the algorithm. In the abnormal case, the algorithm can reach a
complexity of O(p3(m + n)3), depending on the nature of the abnormalities. In the special case of a scalar
power series, however, the algorithm complexity is O((rn + n)2), even in the abnormal case.
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1. Introduction. Let

(1.1) A(z) E aizi,
i=0

where ai, 0, , is a p p matrix with coefficients from a field K, be a formal power
series. Loosely speaking, a matrix Pad6 approximant of A(z) is an expression of the
form U(z). V(z) -1, or V(z)-. U(z), where U(z) and V(z) are matrix polynomials
of degree at most m and n, respectively, whose expansion agrees with A(z) up to and
including the term zm+’.

The definition of a Pad6 approximant can be made more formal in a variety of
ways. For example, Rissanen [17] restricts V(z) to be a scalar polynomial and allows
U(z) to be a p q matrix. Typically, however, U(z) and V(z) are p p polynomial
matrices, and V(z) is further restricted by the condition that the constant term, V(0),
is invertible (cf., Bose and Basu [2], Bultheel [5], and Starkand [19]). In this paper,
we call such approximants matrix Pad6 fractions, which is consistent with the scalar
(p 1) case (cf., Gragg [12]).

For a particular rn and n, however, matrix Pad6 fractions need not exist. Therefore,
in this paper, we introduce the notion of a matrix Pad6 form, in which the condition
of invertibility of V(0) is relaxed. The definition is a generalization of a similar one
given for the scalar case (cf., Gragg [12]). It is shown that matrix Pad6 forms always
exist, but that they may not be unique. In general, matrix Pad6 forms need not have
an invertible denominator, V(z). However, for m and n given, by obtaining a basis
for all the Pad6 forms, we are also able to construct a matrix Pad6 form with an
invertible denominator, V(z), in the case that one does exist.
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Pad6 approximants have many applications in mathematics and in engineering-
related disciplines. Applications include numerical computations for special power
series such as the Gamma function (cf., Nemeth and Zimanyi [15]); algorithms in the
field of numerical analysis (cf., Gragg 12]); triangulation of block Hankel and Toeplitz
matrices (cf., Rissanen [18]); solving linear systems of equations with Hankel of
Toeplitz coefficient matrices (cf., Rissanen 16]); in digital filtering theory (cf., Bultheel
[7] and Brophy and Salazar [4]; and also in linear control theory (cf., Elgerd [11]).

In the one-dimensional case, examples of algorithms that calculate Pad6
approximants for normal power series (Gragg [12]) include the e-algorithm of Wynn
[21]; the Levinson-Durbin algorithm [10], [14]; and the algorithm of Trench [20].
Examples of algorithms that are successful in the degenerate nonnormal case include
those given by Brent, Gustavson, and Yun [3]; Bultheel [6]; Cabay and Choi [8]; and
Rissanen 16].

The matrix case parallels the scalar situation in that most algorithms are restricted
to normal power series. Algorithms that require the normality condition include those
of Bultheel [5], Bose and Basu [2], Starkand [19], and Rissanen [18]. An algorithm
that calculates Pad6 approximants in a nonnormal case is given by Labahn [13].
However, in his algorithm there are still strict conditions that need to be satisfied by
the power series before Pad6 approximants can be calculated.

The primary contribution of this paper is an algorithm, MPADE, for computing
matrix Pad6 forms for a matrix power series. Central to the development of MPADE
are the notions of a matrix power series remainder sequence and the corresponding
cofactor sequence, which are introduced in 4. These are generalizations of notions
developed by Cabay and Kossowski [9] for power series over an integral domain. The
cofactor sequence computed by MPADE yields a sequence of matrix Pad6 fractions
along a specific off-diagonal path of the Pad6 table for A(z).

Unlike other algorithms, there are no restrictions placed on the power series in
order that MPADE succeed. For normal power series, the complexity of MPADE is
O(p (m + n)2) operations in K. This is the same complexity as some of the algorithms
proposed by Bultheel [5], Bose and Basu [2], Starkand [19], and Rissanen [18]. In
the abnormal case, the complexity of the algorithm can reach O(p3. (m+n)3)
operations in K, depending on the nature of the abnormalities.

2. Matrix Pad6 forms. Let A(z) and B(z) be formal power series

(2.1) A(z)= aiZi, B(z)-- hiZi
=o i=o

with coefficients from the ring of p xp matrices over some field K. Throughout this
paper it is assumed that the leading coefficient, bo, of B(z) is an invertible matrix. For
nonnegative integers rn and n, let

(2.2) U(z): giZi, V(z)-- viZi
=o i=0

denote p x p matrix polynomials.
DEFINITION 2.1. The pair of matrix polynomials (U(z), V(z)) is defined to be a

right matrix Pad form (RMPFo) of type (m, n) for the pair (A(z), B(z)) if
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I. O(U(z)) <= m, O(V(z)) <- n,’

(2.3) II. A(z). V(z)+ B(z). U(z)= z"+"+ W(z), where W(z) is a formal matrix

power series, and

III. The columns of V(z) are linearly independent over the field K. [3

The matrix polynomials U(z), V(z), and W(z) are usually called the right numerator,
denominator, and residual (all of type (rn, n)), respectively.

There is an equivalent definition for a left matrix Pad6 form (LMPFo). Condition
Ii is replaced with an equivalent version with matrix multiplication by U(z) and V(z)
being on the left. Condition III is replaced with the condition that the rows, rather
than the columns, of the denominator are linearly independent over the base field K.

However, there is a one-to-one correspondence between RMPFo’s and LMPFo’s.
By taking the transposes of the matrices on both sides of (2.3), it follows that

(2.4) V’(z) A’(z)+ U’(z) B’(z)= zm+’+l W’(z).

The degree and order conditions are identical. It is clear that if (U(z), V(z)) is a
RMPFo for (a(z), B(z)), then (U’(z), V’(z)) is a LMPFo for (a’(z), B’(z)). Thus,
any algorithm that calculates a right matrix Pad6 form of a certain type can also be
used to calculate the left matrix Pad6 form of the same type.

For ease of discussion, we use the following notation. For any matrix polynomial

(2.5) U(z) Uo+ uz +. + UkZ k,

we write U (i.e., the same symbol but without the z variable) to mean the p(k + 1) by
p vector of matrix coefficients

(2.6) U

or, equivalently, U= [u0, u,. u
Let

b/0

ao bo

(2.7) Sm,

i aoi bo.
a +n am bm+n in

denote a Sylvester matrix for A(z) and B(z) of type (m, n). Then (2.3) can be written
as

THEOREM 2.2 (Existence of matrix Pad6 forms). For any pair of power series
A z ), B z and anypair ofnonzero integers m, n ), there exists a RMPFo oftype tn, n ).

0( denotes the degree of a matrix polynomial. This is the power of the largest nonzero coefficient

of the polynomial.
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Proof Let X denote a vector oflength p(m + n + 2), and consider the homogeneous
system of linear equations

(2.9) Sin,," X O.

Because Sm, has p(m + n + 1) rows, it follows that (2.9) has at least p linearly indepen-
dent solutions. Let [V’, U’]’ denote p such solutions arranged by columns. Then
IV’, U’]’ satisfies (2.8); consequently U(z) and V(z), determined according to the
convention (2.5) and (2.6), satisfy (2.3). Clearly, the pair (U(z), V(z)) also satisfies
conditions I in Definition 2.1. Finally, bo being nonsingular implies that the linear
independence of the columns of V’, U’] is equivalent to the linear independence of
the columns of V(z). Thus condition III is satisfied. V]

From the proof of Theorem 2.2, it follows that if Sm, has maximal rank, then
Pad6 forms are unique up to multiplication of U(z) and V(z) on the right by a
nonsingular matrix. On the other hand, if the rank of S,,,, is less than maximal, then
more than one independent Pad6 form exists.

Example 2.3. Let B(z) I and

(2.10) A(z)=
0

+ + + +’’’"
0

With rn 2 and n 3, a basis for the solution space of (2.9) is given by the two vectors

(2.11) X1 =[0, 1, 0, 0, 0,-1, 0, 0, 0, 1, 0, 0, 0, 0]’
and

(2.12) X2 [0, O, O, l, O, O, O,-1, O, O, O, 1, O, 0]’.
Thus,

0 0 0 0 -1 0 OJ(2.13) V=
0 0 0 0 0 0 -1

and

0 0 0 0 0]’(2.14) U=
0 0 0 0 0

is a solution of (2.8), and the pair (U(z), V(z)), where

z z z
and U(z)=

is a Pad6 form of type (2.3) for (A(z), B(z)). Vl

In Example 2.3, note that the columns of V(z) are linearly independent over the
field K, but that they are linearly dependent over the ring of polynomials K[z] (i.e.,
V(z) is singular). Indeed, for this example, a RMPFo (U(z), V(z)) of type (2, 3), for
which V(z) is nonsingular, cannot be found. The problem occurs because, although
the solution space has dimension 2 when considered as a vector space over the field
K, it has only dimension 1 when considered as a module over the ring K[z].

We note that having an invertible denominator is highly desirable, since often the
purpose of Pad6 forms is to approximate the infinite power series

(2.16) -(B(z)) -1. A(z)

by the finite rational form

(2.17) U(z).(V(z))-’,
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where the approximation is to be exact for the first m+n+l terms. When the
denominator is singular, we cannot form this rational expression and this limits the
usefulness of Pad0 approximation. For example, a singular denominator gives no
information from the poles since every point is a pole in this case.

3. Matrix Pad fractions. One case when the denominator of a RMPFo is invertible
is given by

DEFINITION 3.1. A pair (U(z), V(z)) of p p matrix polynomials is said to be a
right matrix Pad6 fraction (RMPFr) of type (m, n) for the pair (A(z), B(z)) if

I. (U(z), V(z)) is a RMPFo of type (m, n) for (A(z), B(z)), and
II. The constant term, V(0), of the denominator is an invertible matrix.

Condition II ensures that the denominator, V(z) is an invertible matrix polynomial.
As in the case of Pad6 forms, there is an equivalent definition for a left matrix

Pad fraction (LMPFr). Also, there is a correspondence between RMPFr for
(A(z), B(z)) and LMPFr for (A(z)’, B(z)’). It is interesting to note that a power series
may have a matrix Pad6 fraction on one side but not on the other. In Example 2.3,
the power series A(z) does not have a right matrix Pad6 fraction of type (2, 3), but it
does have a left matrix Pad6 fraction of type (2, 3). When a power series does have
both a right and a left matrix Pad6 fraction of the same type, then the two resulting
rational forms are equal (cf., Baker [1]).

The problem with PadO fractions, as mentioned in the previous section, is that
they do not always exist. However, let

(3.1) Tin,

ao

am n--1

ao

bo

bm+n_l

Oo

and define

(3.2) d,,n={l’ m=0, n=0,
det Tin,n), otherwise.

Then, a sufficient condition for the existence of a RMPFr is given by the Theorem 3.2.
THEOREM 3.2. If dm, O, then every RMPFo of type m, n) is an RMPFr of type

m, n ). In addition, a RMPFr of type m, n) is unique up to multiplication on the right
by a nonsingular p x p matrix having coefficients from the field K.

Proof Equation (2.8) may be written as follows:

0 bo "Vl ao
ao

ao Vn

bo Uo

am+n--1 am bb+n" b .Urn_ .am+n.

(3.3)

The matrix on the left of (3.3) is nonsingular, since din, 0 and bo is nonsingular.
Thus, all the solutions of (3.3) can be obtained by assigning Vo arbitrarily and solving
(3.3) for the remaining components vl,"’, v,, Uo,’", Urn. If VO is chosen to be a
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singular matrix, then the solution obtained by solving (3.3) violates condition III in
the definition of Pad6 form. Thus, in this case, all RMPFo’s are RMPFr’s.

To show uniqueness, suppose (U(z), V(z)) and (U’(z), V’(z)) are two RMPFr’s
for (A(z), B(z)). Then, Vo and v are both nonsingular matrices with coefficients from
the field K. Thus, there exists a nonsingular matrix M with coefficients from K satisfying

(3.4) Vo v/. M.

It follows from (3.3) that

(3.5) V(z)= V’(z). M and U(z)= U’(z). M,

and so uniqueness holds.
In the next section we also require the following theorem.
THEOREM 3.3. Let A(z) and B(z) be given by (2.1). lfm and n are positive integers

such that d,,,, O, then RMPFo’s (P(z), Q(z)) of type (m- 1, n 1) for (a(z), B(z))
are unique up to multiplication of P(z) and Q(z) on the right by a nonsingular matrix

from K. In addition, the leading term R(O) of the residual in condition II for RMPFo’s,

(3.6) a(z) Q(z)+ B(z) P(z)= zm+"-lR(z),
is a nonsingular matrix.

Proof S(,,-,(n-) can be obtained from T,,, by deleting the last block row (i.e.,
the last p rows). Since T,,,, is of maximal rank p(m+ n), then S(m-1),(,- has rank
p(m + n- 1). Consequently, the dimension of the solution space to

(3.7) S(m_l),(n_l) X 0

is exactly p. Then, Q’, P’]’ is obtained by collecting by columns a basis for the solution
space of (3.7). Clearly, if Q", P"]’ and Q’, P’]’ are two such collections, then there
exists a nonsingular matrix M from K such that

(3.8) [Q’, P’]’ [O", P"]’" M.

Thus, P(z)= P’(z)" M and Q(z)= O’(z)" M, proving uniqueness.
To prove the invertibility of R(0) in (3.6), let ro R(0) and suppose that ro is a

singular p x p matrix. Then, there is a nonzero p x 1 vector X that satisfies

(3.9) to" X O.

But, from (3.6) and (3.7), it follows that

o

Thus,

Since the coefficient matrix for the above system is invertible, we deduce that

But this contradicts the fact that the columns of [Q’, P’]’ are made up of linearly
independent vectors. This implies that ro is invertible. VI
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The fact that PadO forms of type (m, n) and (m 1, n 1) are uniquely determined
after suitable normalizations, when T,,n is nonsingular, allows us to prove such
properties as argument invariance (cf., Baker [1]) for the Pad6 forms computed by
the algorithm MPADE given in 5.

4. Matrix power series remainder sequences. We define a right matrix Pad table
for (A(z), B(z)) to be any infinite two-dimensional collection of RMPFo’s of type
(m, n) for (A(z), B(z)) with m 0, 1, and n 0, 1, . It is assumed that there is
precisely one entry (i.e., one RMPFo) assigned to each position in the table. From
Theorem 2.2, it follows that a right matrix Pad6 table exists for any given (A(z), B(z)).
However, the table is not unique, because RMPFo’s are not unique. This is unlike the
definition of a Pad6 table for scalar power series (cf., Gragg [12]), since here a Pad6
table consists of a collection of Pad6 fractions, which are unique.

A matrix power series pair (A(z), B(z)) is said to be normal (ef., Bultheel [5]) if
dm, # 0 for all m, n. For normal power series, it follows from Theorem 3.2 that every
entry in the right matrix PadO table is a RMPFr. Consequently, from condition II in
Definition 3.1 of RMPFr’s a right-matrix PadO table for normal power series may be
made unique by insisting that the constant term V(0) in the denominator of any Pad6
fraction be the identity matrix.

Following the convention used in the scalar case (cf., Gragg [12]), we also define

(4.1) (U(z), V(z))=(z"I,O) for m=>-l, n--l,

and

(4.2) (U(z), V(z)) (0, z"I) for m -1, n -> 0.

A right matrix Pad6 table appended with (4.1) and (4.2) is called an extended right
matrix Pad table. The use of an extended table is strictly for initialization purposes.
The entries given by (4.1) and (4.2) are not right matrix PadO forms (indeed, the
(-1,-1) entry is not even a matrix polynomial). However, they do satisfy property II
of Definition 2.1. For example, for rn->-1 and n =-1, we have that

(4.3) a(z) V(z)+ B(z) U(z)= z"+"+1W(z)
with

(4.4) W(z)=B(z);

whereas, for rn =-1 and n >-0, we obtain (4.3) with

(4.5) W(z)=a(z).

Given the power series (2.1) and any nonnegative integers rn and n, we introduce
a sequence of points

(4.6) (m0, no), (ml, n,), (m2, n2),

in the extended right matrix Pad6 table by setting

’(m-n-1,-1) forrn>-n
(4.7) (,no, no)

(-1, n-m-I) form<n

and

(4.8)

where si >-1. Observe that

mi+ hi+l) mi + si, ni + si O, 1, 2,

(4.9) mi- ni rn n, 0, 1, 2, .,
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and consequently the sequence (4.6) lies along the rn-n off-diagonal path of the
extended right matrix Pad6 table. In (4.8), the si are selected so that

(4.10)

and

(4.11 d(mi+j),(n,+j) O,

for j 1, 2, , si- 1.
For i= 1,2,..., let (Ui(z), V(z)) be the unique RMPFr (cf., Theorem 3.2) of

type mi, n for (a(z), B (z)). Thus VI, U’] satisfies

(4.12) SITIi,li"
Ui

and, according to (2.3), there exists a matrix power series W(z) such that

(4.13) A(z) V(z)+ B(z) Ui(z)= 2 tni+ni+l Wi(z).

Generalizing the notions of Cabay and Kossowski [9], we introduce the following
definition.

DEFINITION 4.1. The sequence

(4.14) W/(z)}, i=1,2,...,

is called the power series remainder sequence for the pair (A(z), B(z)). The sequence
of pairs

(4.15) {(U(z), V/(z))}, i= 1, 2,...,

is called the corresponding cofactor sequence. The integer pairs {(mi, ni)} are called
nonsingular nodes along the rn n off-diagonal path of the extended right matrix Pad6
table for (A(z), B(z)).

We note that each term of a power series remainder sequence is unique up to
multiplication on the right by a nonsingular matrix. This is also true for each term of
the corresponding cofactor sequence.

Initially, when rn >_- n, observe that ml rn- n and nl 0 (i.e., So 1), because in
(3.2) the nonsingularity of bo implies that d(m-n),o O. Thus, VI(z) is some arbitrary
nonsingular matrix from K and, using (4.12), Ul(z) can be obtained by solving

(4.16) "’.
bin, bo am,

That is, Ul(z) can be obtained by multiplying the first ml + terms of the quotient
power series B-l(z) A(z) on the right by -Vl(z).

Initially, when rn < n, depending on ao there are two cases to consider. The simple
case, when det (a0) 0, yields

ao
(4.17) do,(n-m) det ". O.

an_m_ a0
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Thus, So 1, ml =0, and nl n m. Then, the RMPFr (U(z), V(z)) of type (rn, n)
is determined by setting U(z) to be an arbitrary nonsingular matrix from K and then
solving

(4.18) .. V U.
an ao )n

That is, when rn < n and det (ao) # 0, V(z) can be obtained from the first nl + 1 terms
of the quotient power series A-l(z) B(z) multiplied on the right by -U(z).

When rn < n and det (ao) 0, we must first determine the smallest positive integer
So (i.e., the smallest ml rno+ So and n no+ So) so that d,,,n, # 0. Notice that here

So> 1. Once So has been obtained, then (U(z), V(z)) is obtained by solving

(4.19) Sm, n,’[V1]--O.U

In 5, we give an algorithm which computes a RMPFo of type (m, n) for
(A(z), B(z)) by performing a sequence of the above types of initializations (albeit,
each for different power series).

When the power series pair (A(z), B(z)) is normal, only the initializations corre-
sponding to (4.16) and (4.18) are required. Thus, for normal power series si for all
i_>- 1, and the algorithm reduces to a sequence of truncated power series divisions.

There are also some nonnormal power series that share this property. For each
pair of integers rn and n, let rrn, be the rank of the matrix Tm, Then normality is
equivalent to

(4.20) rm,n=(m+n) "p

for all m and n. A matrix power series pair (A(z), B(z)) is said to be nearly normal
(cf., Labahn [13]) if, for all integers rn and n,

(4.21) rm,n=krn,n’p

for some integer kn,n. Clearly, every normal power series is also a nearly normal power
series. In addition, all scalar power series are nearly normal.

For a nearly normal power series pair (A(z), B(z)) it is easy to see that when ao
is singular, then ao 0. This follows from the observation that the rank of ao is just
ro,, which, if it is not p, must be zero. Also, if ao ak_l 0 and ak # 0, then a
must be a nonsingular matrix for similar reasons. When k > rn this implies that there
are no nonsingular nodes along the rn-n off-diagonal path before and including the
node (m, n). Otherwise, when k<=m, the initialization (4.19) becomes

0 bo

(4.22) am’. "’" V1 O,
".. bo U

am+n am, bm+n
where So- k + 1, ml k, and nl n m + k. Consequently the RMPFr (U(z), V(z))
of type (ml, n) is obtained from (4.22) first by setting Ul(Z)= z m’’ U, where U is any
nonsingular matrix from K. Then, V(z) is obtained by multiplying the first n + terms
of the quotient power series (z-,. A(z))-. B(z) on the right by -U. Thus, also for
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nearly normal power series (and therefore also for all scalar power series), all initializ-
ations reduce to truncated power series divisions.

Corresponding to the power series remainder sequence, we introduce
Definition 4.2.

DEFINITION 4.2. The sequence

(4.23) {(Pi(z), Q,(z))}, i= 1, 2,. ,
where (P(z), Q(z)) is the (m-1, ni-1) entry in the extended matrix Pad6 table for
(A(z),B(z)), is called a predecessor sequence of the power series remainder
sequence.

The pair (P(z), Q(z)) satisfies the equation

(4.24) A(z). Qi(z)+ B(z). Pi(z)= z",+’,-’. Ri(z).

THEOREM 4.3. For i= 1, 2,’.., the predecessors (Pi(z), Qi(z)) are unique up to
right multiplication by a nonsingular matrix from K. In addition, the leading term of the
residual, Ri (0), is nonsingular.

Proof For m > 0 and n > 0, the predecessors are right matrix Pad6 forms and
the result is a direct consequence of Theorem 3.3. Thus, it remains only to show that
the result holds when either m or nl is zero.

When n 0, from (4.7) and (4.8) m _-> n, and the predecessor node is the (m n
1,-1) entry of the extended right matrix Pad6 table. By (4.1), this entry is given
uniquely by

(4.25) (P,(z), Q(z)) (z’-"-I, 0).

From (4.4), the residual R(z) is B(z) and the theorem therefore holds for n 0, since
det (bo) # 0.

When m 0, then from (4.7) and (4.8) n n m > 0, and the predecessor node
is the (-1, n-m-1) entry of the extended table. By (4.2), this is uniquely given by

(4.26) (P,(z), Ql(Z))= (0, zn-m-’I).

From (4.5) the residual of this node, R(z), is A(z). But by (4.17), (0, n-m) is the
first nonsingular node if and only if det (ao) # 0. Hence the leading term of the residual
is nonsingular.

The main result of this section is given in Theorem 4.4.
THEOREM 4.4. For any positive integer k, (k-1, k) is a nonsingular node in the

Padd table for Wi (z), R (g)) if and only if mi q- k, ni q- k) is a nonsingular node in the
Padd table for (A(z), B(z)).

Proof. Let M, M2, M2, and M22 be matrices of dimension p(ni+ k)pk,
p(m + k) pk, p(n + k) p(k- 1), and p(mi + k) x p(k- 1), respectively, defined by

(4.27) MI

/3o

Oon

o

0

0

qo

qni- qo

qni-
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(4.28) M2

0

P-1

l’lmi. Pmi-1
In (4.28), p_ =0 except when m =0 and n =0, in which case, according to (4.25),
P-1---1. Let M be

(4.29) M=
M21 M22j,

if we set

(4.30) R,(z) Z t3zJ, with det (ro) 0, and W(z) Z wiz,
=o =o

then, from (4.13) and (4.24), it follows that

(4.31)

T(rni+k),(ni+k) M

Wo

0 0

0 0

ro

Wk- r2k-2W2k-2

T(k-l),kl’
where 0 represents a zero matrix of size p(mi + ni + 1) x p(2k 1) and

(4.32) Tk-).k

Wo ro

Wo ro
W2k-2 Wk- r2k-2 rk

ro

We are now in a position to prove the theorem. Assume T(mi+k),(ni+k is nonsingular.
We show that Tk-),k is then also nonsingular. Let

(4.33) X=[X,,

be a p(2k- 1) x vector that satisfies

(4.34) Tk- 1),k X 0.

Since T,,,+g).n,+k)is nonsingular, (4.31) implies

(4.35) M. X 0.

From (4.35), we then obtain that

(4.36) Vo" X 0,
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and consequently X1 =0, because Vo is nonsingular. The first block equation from
(4.34) then implies

(4.37) r0" Xk+l 0.

Thus, Xk+ 0 because ro is nonsingular. In a similar fashion, it follows that X2 0
and X+2 0. Continuing in this way, we obtain that X 0, that is, TI_), is nonsin-
gular.

Conversely, suppose that Ti_,k is nonsingular. Let X (X,..., Xzk_l) be a
p(2k- 1) vector, Y=(Y1,’", Y,,i+n,) a 1 p(mi+ni) vector, and Z a 1 p vector.

Consider

(4.38) (Z, Y, X). T(,,i+g,(,i+=O.

Multiplying both sides of (4.38) on the right by M, and using equation (4.31), it follows
that

(4.39) X. TI_1), 0.

Since Tik_, is nonsingular, then X =0. Then, in (4.38), using block columns 2 through
ni + and block columns ni + k + 2 through to mi + n + k + of T(m+),(+), we obtain

(4.40) Y" Tmi,,i 0.

Since Tm,i is nonsingular, Y 0. Finally, block column n + k + of T(m+,(i+k now
yields

(4.41) Z. b0 0.

Since bo is nonsingular, Z 0. Hence, T(+,(ni+ is nonsingular.
Theorem 4.4 allows us to calculate nonsingular nodes of a pair of power series

by calculating nonsingular nodes of the residual pair of power series. This gives us an

iterative method of calculating nonsingular nodes.
TVEOREM 4.5. The cofactor and predecessor sequences for (A(z), B(z)) satisfy

(4.42) [U/+,(z) P+l(z)]=[U(z) P/(z)l [ 0 ]. [V’(z) O’(z)]Vi+ (Z) Qi+l( z Vi(z) Qi( z Z2" I Ut(z)

where (U’(z), V’(z)) is the RMPFr of type (s-l, s) for (W(z), R(z)) and
(P’(z), Q’(z)) is its predecessor.

Proof Since (Ui(z), V(z)) and (U+l(z), V+(z)) are successive elements of the
cofactor sequence (4.14), then, according to (4.10) and (4.11), (m, ni) and (mi+, n+)
are successive nonsingular nodes along the m n off-diagonal path of the Pad4 table
for (A(z), B(z)). By Theorem 4.4, then si is the smallest positive integer for which
(si- 1, s) is a nonsingular node in the Pad4 table for (W(z), Ri(z)). Accordingly, we
can determine (U’(z), V’(z)) to be the RMPFr of type (s-1, si) for (W(z), Rg(z))
and (P’(z), Q’(z)) to be its predecessor.

Let U(z), V(z), P(z), and Q(z) be defined by

(4.43) [U(z) P(z)]=[U(z)Pi(z)l.[ 0 l. IV’(z)O’(z)]V(z) O(z) Vi(z) Oi(z) z2.[ U’(z) P’(z)"

We shall first show that (U(z), V(z)) given by (4.43) is the RMPFr of type (m+l, ni+)
for (A(z), B(z)). Because RMPFr"s are unique, then (U(z), V(z)) must be the (i+ 1)st
term in the cofactor sequence.

Since (U’(z), V’(z)) is a RMPFr of type (si-1, s) for (W(z), R(z)), it satisfies

(4.44) Wi(z) V’(z)+ R(z) U’(z)= z2",W’(z),



MATRIX PADI FRACTIONS AND THEIR COMPUTATION 651

where V’(0) is nonsingular. Then, using (4.13), (4.24), (4.43), and (4.44), we get

A(z) V(z)+ B(z) U(z)

=A(z). {V/(z) V’(z)+zZQi(z) U’(z)}

+(z). {U(z) V’(z)+ze(z) U’(z)}

(4.45) ={A(z)" V/(z)+B(z)" Us(z)}" V’(z)

+{a(z)" O(z)+ (z)" /’(z)}" zU’(z)

=z+"+’. {(z) V’(z)+n(z). U’(z)}

Z(mi+si)+(ni+si)+l Wt(Z).

Thus, condition II for a RMPFo of type (rni+ sg, ni+ si) for (A(z), B(z)) is satisfied.
To verify condition I, expanding (4.43) gives

(4.46) U(z)= U(z). V’(z)+z_p(z) U’(z),

so that

(4.47)
O(U(z))<-max (m+s,2+(m-l)+si-1)

mi + si.

Similarly,

(4.48) O(V(z)) <- ni + si.

Finally, to verify condition II for a RMPFr (and, thus, condition III for a RMPFo,
as well), observe that

(4.49) V(0) V(0) V’(0),

and, consequently, V(0) is invertible since both V/(0) and V’(0) are invertible. Notice
that we have a somewhat stronger result here, namely that if V(z) and V’(z) are both
normalized with V(0)= I and V’(0)=/, then so is V(z).

Therefore, (U(z), V(z)) is a RMPFr of type (mi + si, n + s) for (A(z), B(z)).
Thus, it is the (i+ 1)st term in the cofactor sequence and W’(z) is the (i+ 1)st term in
the power series remainder sequence for (A(z), B(z)).

Notice that the above arguments also hold in the special case when m n and
i= 1. In this case P(z)= z-lI which is not a matrix polynomial. However, the right
side of equation (4.43) immediately multiplies the predecessor by z2 which subsequently
results in a matrix polynomial.

A similar argument shows that (P(z), Q(z)) given in (4.43) is the predecessor of
the nonsingular node (m+, n+). Hence the recurrence relation (4.42) holds. V]

For purposes of the algorithm given in the next section, observe that if
(U’(z), V’(z)) is a RMPFo of type (s-l, s) for (W(z), R(z)) and (P’(z), Q’(z))
(0, I) then in (4.43) (U(z), V(z)) yields a RMPFo (rather than a RMPFr) of type
(mi + s, ni + s) for (a(z), B(z)) and (P(z), Q(z)) (U(z), V(z)).

5. The algorithm. Given nonnegative integers rn and n, the algorithm MPADE
below makes use of Theorem 4.5 to compute the cofactor and predecessor sequences
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(4.10) and (4.18), respectively. Thus, intermediate results available from MPADE
include those RMPFr’s (Ui(z), Vi(z)) for (A(z), B(z)) at all the nonsingular nodes
(mi, hi), 1, 2,. , k- 1, smaller than (m, n), along the off-diagonal path rni- ni
rn- n. The output gives results associated with the final node (mk, nk). If (m, n) is also
a nonsignular node, then the output (Uk(Z), Vk(Z)) is a RMPFr of type (m, n) for
(A(z), B(z)), and (Pk(Z), Qk(Z)) is a RMPFo of type (m-l, n-l). If (m, n) is a
singular node, then the output (Uk(Z), Vk(Z)) is simply a RMPFo of type (m, n) for
(A(z), B(z)), and now (Pk(Z), Qk(Z)) is set to be the RMPFr of type (mk-1, nk-1). An
exception occurs in the latter case when k 0 and m < n. Here, all nodes along the
off-diagonal path must have been singular, and for (Pk(Z), Qk(Z)) the algorithm returns
instead the initial value (0, zn-m-!I).

Note that, when (m, n) is not a nonsingular node, a simple modification ofMPADE
allows the computation of all RMPFo’s of type (m, n) for (A(z), B(z)). It is only
necessary to arrange to compute q columns of V,, U,], rather than p, in order to
form a basis for the solution space of the equation n step 3.1 of MPADE. From this
basis, it is then possible to construct a p x p matrix V(z), and a corresponding U(z),
for which (U(z), V(z)) is a RMPFo of type (rn, n) for (A(z), B(z)) and has the property
that V(z) is an invertible matrix, assuming such a RMPFo exists. This enhancement
is not included in MPADE primarily to simplify the presentation of the algorithm.

MPADE(A, B, m, n)
If m>-n

M1)

M2)

M3)

M4)

MS)

M6)
M7)
MS)
M9)

M10)

then

else

Mll)

M12)

M13)

mo m-n-l]
SO’ gl(z p,(7)

/,no

( [ U(z)PI(Z)])INITIAL_PADE(A(z)B(z),m,n)So,
V,(z) Q,(z)

/11 no + So d

i<-I
Do while mi < m

Compute Ri(z) satisfying (4.24)
Compute W/(z) satisfying (4.13)

Si’ Vt( z Q’(z)
<- INITIAL_PADE W’ (z), Ri (Z), m mi 1, n rt

i-i+l
End do

Q,(z) o z2. I U’(z) P’(z)
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M14) k-i

M15) Return
Vk(z)

End MPADE

INITIAL_PADE(W(z), R(z), m’, n’)
I1) s<-0
I2) d -0
I3) Do while s-< m’ and d =0
I4) Compute d - det Ts,n,_m,+s
I5) s-s+l

End do
I6) Solve

Ss_l,n,_m,+s_ Ut
---0

Ifs>l and de0
then

I7) Solve

Ss_2,n,__m,+s_ p, =0

else

I8)
P’ - 0

I9) Return s,
V’ Q’

End INITIAL_PADE

THEOREM 5.1. The MPADE algorithm is valid.

Proof The argument is by induction on i.
Initially, in step M2 of MPADE, where m_-> n, the parameters input to

INITIAL_PADE are W(z)= B(z), R(z)=A(z), m’= n and n’= m. Consequently,
INITIAL_PADE computes s 1, since in step I5

(5.1) d det To,,,- det ".. 0

bm_n_ bo

when m > n, and d when m n. In step I6, the algorithm solves

(5.2) So, U’ U’
=0

bm-n bo a._,,

and step I8 yields

(5.3)
P’ 0
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Since the substitution in step M2 of MPADE yields So s and

Vl Q1 U! P’

it follows that the initialization for rn => n is exactly that given by (4.16) and (4.25).
Alternately, when rn < n, initialization is accomplished by step M4. In this case,

the parameters input to INITIAL_PADE are W(z)= A(z), R(z)= B(z), m’= m, and
n’= n. If det (ao) # 0, INITIAL_PADE again computes s 1, since in step I5

Iao(5.5) d det (T0.n-m) det ",. # 0.

an-m-1 ao
Step I6 then solves (4.18) with U1 U’ and V1 V’, and, with the substitution (P1, Q1)
(P’, Q’), step I7 yields the required predecessor (4.26). If det (ao)=0, then step I5
determines the smallest integer s _-> 2, if one exists, for which d det (Ts-l,n_,,,+.-) # 0.
Consequently, step I6 solves exactly the system (4.19) and step I7 must then yield the
correct predecessor.

Assume that, for i>_-1, MPADE calculates (Ui(z), V(z)) and (Pi(z), Qi(z)) cor-
rectly. We shall show that one pass through the while loop M7 correctly computes
(Ui+l(z), V/+(z)) and its predecessor.

In step M10 and MPADE, the parameters input to INITIAL_PADE are W(z)=
W(z), R(z).= Ri(z), m’= m-mi-1, and n’= n-hi. Noting (4.9), step I4 computes
the smallest positive integer s, if one exists, for which d det (Ts_.,) # 0. Clearly, then
I6 computes a RMPFr of type (s-1, s) for (W(z), Ri(z)), and steps I7 and I8 its
predecessor. Thus, the matrix polynomials in step M11 correspond exactly to those of
(4.42); that is, the algorithm correctly computes (Ui+(z), V+m(Z)) and its predecessor.

To complete the proof of algorithm validity, consideration must be given to the
case for which there exists no s such that d # 0 in the while loop I3 of INITIAL_PADE.
On exit from the while loop, observe that s=m’+l. Step I6 then computes
(U’(z), V’(z)) to bea RMPFo oftype (m’, n’) for(W(z), R(z)) and sets (P’(z), Q’(z))
(O,z"-"-I).

The case where there exists no s such that d 0 can occur when INITIAL_PADE
is invoked in steps M4 and M10 of MPADE, only. If it occurs at step M4, then
(U(z), V(z)) becomes a RMPFo of type (m, n) for (A(z), B(z)) as computed by
INITIAL_PADE, and (P(z),Q(z)=(O,z"-m-I). Since step M5 next yields
(m, n) (m, n), the algorithm immediately terminates. On the other hand, if it occurs
at step M10, then si=m-mi, (U’(z), V’(z)) is a RMPFo of type (si-l, si) for
(W(z), Ri(z) and (P’(z), Q’(z))=(0, I). Accordingly (cf., last paragraph of 4),
(Ui+(z), V+(z)) computed in step Mll is a RMPFo of type (m, n) for (A(z), B(z))
and (P+l(z), Qi+l(Z)) (Ui(z), V(z)). Since step M12 yields (mi+, ni+) (m, n), the
algorithm terminates.

6. Complexity of the MPADE algorithm. Note that, in steps M8 and M9 of
MPADE, only the first rn + n mi- rti terms in Ri(z) and W/(z) are required to ensure
the subsequent success of step M10. Indeed, only the first 2si terms, si <= m-mi, are
sufficient, but unfortunately si is not known prior to step M10. Nevertheless, an efficient
implementation can take advantage of this observation by delaying the computation
of Ri(z) and W/(z). Declaring (A(z), B(z)), Ui(z), Vi(z)) (Pi(z), Qi(z)) to be global
variables, the coefficients of Ri(z) and W,.(z) can be computed in INITIAL_PADE

only when they become necessary. The cost analysis below assumes that the algorithm
has been implemented in such a fashion.
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In assessing the costs of MPADE, it is assumed that classical algorithms are used
for the multiplication of polynomials. Only the more costly steps are considered. For
these steps, Table 6.1 below provides cruder upper bounds on the number of multiplica-
tions in K required. The table provides separate bounds for the normal and abnormal
cases.

In step 15 of INITIAL_PADE, it is assumed that the Gaussian elimination method
is used to obtain the LU decomposition of T(s-l,n,-,,,+s-1. In addition, it is assumed
that Gaussian elimination is accompanied with bordering techniques. Thus, as s
increases by in step 14, the results of the previous pass through the while loop are
used to achieve the current LU decomposition. The bound for step 15 in Table 6.1 for
the abnormal case assumes we do not take any advantage of the special nature of
T(s_l),n,_m,+s_ 1. In the normal case s 1, and To,n,-,,, is already in triangular form, and
so no computation is required in step 15.

For step 16, it is assumed that the LU decomposition of T(s-l,n,-,,,+s-1 from step
15, is used to simplify the triangulation of S(,-l,n,-m,/s-. The solution IV’, U’] is
obtained finally by solving this triangularized S. Similar observations apply to step 17
in the abnormal case.

Since steps M2, M4, and M10 simply invoke INITIAL_PADE, estimates of their
costs are obtained by summing the costs of steps 15, 16, and 17 with appropriate
substitutions of variables. Note that the cost of M2 is the same in both the normal
and abnormal case, since for m => n it is always true that So 1.

An upper bound for the number of multiplications in K required by MPADE is
obtained by summing the costs of the last six rows in Table 6.1 for i= 0, 1,...,/C We
use the fact that

k k

(6.1) si=m, ifrn-->n, and si=n, ifrn<n.
=o =0

In addition,
k k

(6.2) mi Si <--m and r/i --r/

=0 =o

Then, steps M4 and M10 in the abnormal case have a complexity of O(p3(m+ n)3)
and the remaining steps a complexity of O(p3(m at- n)2), at worst. When (A(z), B(z))
is normal, then due to the fact that T,-1,n’-m’+-I is always in triangular form, the
complexity of MPADE reduces to O(p3(m + n)2). This is also true when (A(z), B(z))
is nearly normal. In this case si is often larger than 1, but the matrix T,-,n’-m’+,-1 is

TABLE 6.1
Bounds on operations per step.

Step Normal case Abnormal case

I5 0 p3(n’- m’- +2(s- 1))3/3
I6 p3(n’- m’+ 1)2/2 p3(n’- m’+ 2s- 1)2/2
I7 0 p3(n’-m’+2s-l)2/2
M2 p3(m-n)2 p3(m-n)2
M4 p3(m n) p3[(n m + 2(So- ))3/3 + (n m + 2s )2]
M8 2p3(mi + n + 2) 2p3(mi + n + 2)s
M9 2p3(mi + n + 2) 2p3(mi + ni + 2)s
MIO 0 8p3(si--1)3/3
Mll 8p3(m; + n + 2) 8p3(mi + n + 2)si
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also always in triangular form and so again the complexity is O(p3(m+ n)2). In
particular, in the scalar case the complexity of MPADE is O((m + n)2).

The algorithm gives the worst performance when no nonsingular nodes are encoun-
tered along the rn n off-diagonal path. In this case, with m < n, the algorithm reduces
to solving one Sylvester system

V1]=O(6.3) S,,n U,

in step M4 of MPADE. In Table 6.1, with So m + 1, then the cost is simply that of
Gaussian elimination, namely, approximately p3(m+n)3/3. Note that with the
existence of even one nonsingular node the cost of MPADE can be dramatically
reduced. If, for example, this one nonsingular node is (ml, n) (m/2, n m/2), where
m is even, then So 1 + m/2, s m/2 and the algorithm reduces essentially to solving
(in steps M4 and M10) two Sylvester systems, each of approximately half the total
size. This results in a saving of a factor of 4 over the simple use of Gaussian elimination.
Algorithms requiring normality, on the other hand, break down when even one
intermediate node is singular.

7. Conclusions. We have considered the problem of determining an adequate
definition for a rational approximant of a formal matrix power series and also, given
a suitable definition, the problem of computing it. We have restricted our attention to
square matrix power series.

In attempting to extend the notion of Pad6 approximation to matrix power series,
we have followed the classical theory of Pad6 approximants for scalar power series.
We introduce the notion of a Pad6 form, which always exist but may not be unique,
and also the notion of Pad6 fraction, which is unique but need not exist. The definition
of Pad6 form is meant to be as broad as possible. By constructing all the Pad6 forms
of type (m, n), it is always possible to determine ones for which the denominator is
invertible, should one exist.

The notion of a matrix power series remainder sequence introduced in this paper
is a generalization of one given by Cabay and Kossowski [9] for scalar power series.
The cofactor sequence, which is shown to be associated with the remainder sequence,
yields directly all the Pad6 fractions at the nonsingular nodes of a particular off-diagonal
path of the Pad6 table. By determining also the (unique) Pad6 form at nodes preceding
the nonsingular nodes, we are able to compute Pad6 fractions iteratively from one
nonsingular node to the next. The resulting algorithm is at least as fast as other
algorithms for computing matrix Pad6 fractions, and it is the only one that succeeds
in the abnormal case.

The algorithm can be improved in a number of ways. We expect that the cost of
the decomposition of Ts-,n,-m,+s- in step 15 and, consequently, of S._,,_,,+.-1 in
step I6 can be improved by taking advantage of the special structure of Sylvester
matrices. The algorithm would also experience an improvement if it were possible to
identify additional points between nonsingular nodes for which Theorem 4.5 is valid.
This would improve the algorithm by decreasing the si. This, and in general the nature
of Pad6 forms between nonsingular nodes, is a subject for further research. Finally,
by appealing to fast methods for polynomial arithmetic, it is of interest to attempt to
develop a recursive divide-and-conquer version of MPADE.

For normal and nearly normal power series, progressing from one nonsingular
node to the next is equivalent to power series division of the residuals associated with
the nonsingular nodes (because S_l,,_m,+,,._ in step I5 of INITIAL_PADE, with the
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exception of one column, reduces to a triangular matrix). Thus, in this case and in
addition when A(z) and B(z) are matrix polynomials, there is a strong analogy between
MPADE and Euclid’s algorithm. It is a subject for future research to investigate the
possibility of using MPADE to compute the greatest common divisor of two matrix
polynomials in the abnormal case.
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