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Abstract

The fair price for an American option where the underlying asset follows a jump diffusion
process can be formulated as a partial integral differential linear complementarity problem. We
develop an implicit discretization method for pricing such American options. The jump diffusion
correlation integral term is computed using an iterative method coupled with an FFT while the
American constraint is imposed by using a penalty method. We derive sufficient conditions for
global convergence of the discrete penalized equations at each timestep. Finally, we present
numerical tests which illustrate such convergence.
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1 Introduction

The pricing and hedging of derivative securities, also known as contingent claims, is a subject of
much practical importance. One basic type of derivative is an option. The owner of a call option
has the right but not the obligation to purchase an underlying asset (such as a stock) for a specified
price (called the exercise price or strike price) on or before a specified expiry date. A put option
is similar except the owner of such a contract has the right but not the obligation to sell. Options
which can be exercised only on the expiry date are called European, whereas options which can be
exercised any time up to and including the expiry date are classified as American.

The standard approach to valuation of derivatives begins with specifying a stochastic process
for the underlying asset. Then, a suitably managed (usually dynamic) self-financing portfolio is
constructed to minimize the risk for the holder of this portfolio. The initial cost of constructing this
portfolio is then the fair value of the contingent claim. The management of the portfolio (hedging)
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requires buying and selling various amounts of the underlying security. These hedging strategies
require evaluation of the (mathematical) derivatives of the solution for the fair value.

It is common knowledge that the constant volatility Black-Scholes model is not consistent with
market prices. In order to match observed market prices for options, traders use a matrix of implied
volatilities [28], or generate a volatility surface [5]. However, as discussed in [2], volatility surfaces
tend not to be very stable as a function of time. In particular, the surface obtained by matching
today’s prices, tends to become very flat as one looks out farther in time. This is a significant
problem if this surface is used to price and hedge options which are very sensitive to the volatility
in the future (forward start options for example).

A richer model which has attracted attention is based on the jump diffusion process, first
suggested in [18]. Empirical studies of stock market behavior seem to indicate that geometric
Brownian motion should be augmented by a discontinuous jump model using jumps based on a
Poisson distribution, in order to reproduce the observed behavior [17]. For example, using a jump
diffusion model, Andersen and Andreasen [2] fit S&P 500 option prices, and obtain excellent fits
with stable parameters. If the same fitting exercise is attempted without the Poisson jumps, then
the parameters are much less stable.

In the case of European options with jump diffusion, Anderson and Andreasen [2] use an
operator splitting approach coupled with an FFT for evaluation of the jump integral term. This
method is unconditionally stable, second order in time, and does not require solution of a dense
matrix at each timestep.

The objective of this article is to develop a robust numerical method for pricing American
options with jump diffusion. Most options traded on exchanges have the American early exercises
feature, so being able to price these types of options under a jump diffusion model clearly is of
practical importance.

Theoretical work on the properties of solutions to American option pricing problems under
various assumptions for the jump process is reviewed in [21]. Approximation methods are discussed
in [20]. However, most approximation methods require that the volatility surface be a function of
time only. Numerical methods for American options with a finite number of jump states are
described in [19]. A technique based on binomial lattices, which are essentially explicit finite
difference methods, is discussed in [1]. Explicit methods, of course, suffer from timestep limitations
due to stability considerations.

Previous work on numerical methods for American options under jump diffusion used an explicit
timestepping method for the jump integral term, and used a standard linear complementarity solver
to solve the algebraic linear complementarity problem at each timestep [32]. This method is only
first order correct in time, and conditionally stable.

We are particularly interested in developing a method which can be used to price complex, path
dependent options with American type constraints. Examples of these types of contingent claims
include shout options [29], insurance guarantees [30], and convertible bonds [3]. It is also desirable
that the method can be easily extended to handle true nonlinear effects, such as transaction costs
and uncertain volatility [22].

In this paper we develop an implicit timestepping approach, which has the potential of second
order accuracy in the time direction. Although there are various methods which can be used to
efficiently solve linear complementarity problems [6] for one dimensional Partial Differential Equa-
tions (PDEs), we use a penalty method [12, 33] to enforce the American constraint. As discussed in
[12], a penalty method can be easily extended to multifactor models [33], and to nonlinear models
such as uncertain volatility and transaction costs [22]. It is a common misconception that penalty
methods result in poorly conditioned algebraic problems. This is shown not to be the case in [12].



In this paper, we also give detailed convergence proofs of the convergence of the iteration
for solution of the algebraic penalized equations at each timestep. These proofs require that the
discretized PDE is an M-matrix. However, we have observed computationally that the method
developed here also converges rapidly even if the discretized equations are not M-matrices. This
is consistent with the observed convergence of the penalty method for American options under a
stochastic volatility model [33].

The remainder of the paper is organized as follows. In the next section we give the mathematical
model for options with jump diffusion processes given in terms of a partial integral differential
equation. Section 3 gives a discretization for this equation in the case of European options. Section
4 extends the partial integral differential equation for use in the case of American options using
the penalty method and shows that the resulting iteration is convergent. Section 5 gives some
numerical examples. The paper ends with a conclusion and topics for future research.

2 Mathematical model

In this section we give the mathematical model for options with jump diffusion processes. We do this
for both European and American options. Thus let S represent the underlying stock price. Then
potential stock paths followed by the stock can be modeled by a stochastic differential equation

given by
% =¢&dt +odZ + (n—1)dg (2.1)

where

19 is the drift rate,
0 with probability 1 — Adt
1 with probability Adt,

A is the mean arrival time of the Poisson process,

dq is the independent Poisson process, = {

n—1 is an impulse function producing a jump from S to S7,
o is the volatility,

dz is an increment of the standard Gauss-Wiener process.

Let V(S,t) be the value of a European contract that depends on the underlying stock price S
and time ¢t. The following backward Partial Integral Differential Equation (PIDE) for the value of
V (S, 1) is found to be [2, 18, 28]

02 SQ 00
V= 5 Vss + (r — Ak)SVg —rV + ()\/ V(Sn)g(n)dn — )\V> , (2.2)
0
where

T is the expiry/maturity date,

r is the risk free interest rate (assumed to be positive),

7 = T —t,where t is the current time,

g(n) is the probability density function of the jump amplitude 7, thus

for all n,g(n) > 0, and / g(n)dn = 1.
0



As a specific example, consider the probability density function suggested by [18, 26]:

_ (og(n)—p)?
e 272

gn) = ——F———. (2.3)
V27
If E[] is the expectation operator,
Bl = [ o) dy (2.4

then, E[n] = exp(u + v%/2), which means that the expected relative change in the stock price is
given by k = E[n — 1] = exp(u +~+2%/2) — 1.

For brevity, the details of the derivation of equation (2.2) have been omitted (see [2, 18, 28]).
Equation (2.2) can be rewritten as

0252

V==

Vss + (r — Ak)SVs — (r + M)V + A /OOO V(Sn)g(n)dn. (2.5)

Note that if we set A = 0 in (2.5), then the classical Black-Scholes partial differential equation for
pricing European option contracts is recovered [14, 28].
If we define

2Q2

2

gvzm_<a v@+@;A@&@—@+»V+AAmemﬂmw> (2.6)

and if V*(S,7) is the payoff, then the American option pricing problem can be stated as

LV >0
(V-V*>0
(LV =0)V (V= V*=0) (2.7)

where the notation (LV = 0) VvV (V —V* = 0) denotes that either (LV = 0) or (V —V* = 0) at each
point in the solution domain.
In the case of a put option, the boundary conditions are

V(S,7)=0 ; 8- o0, (2.8)
LV =V, —rV S — 0. (2.9)

and the payoff for a put is
V*(S)=V(S,7=0) =max(K — S,0) (2.10)

where K is the strike price. Other types of payoffs (e.g. call, digital) can be priced by suitable
modifications to the payoff (2.10) and the boundary condition (2.8).

3 Implicit Discretization Methods: European Options

In this section we show how to discretized equation (2.5) for the case of a European option where
there is no problem with early exercise. We do this by separately looking at the integral and partial
differential equation components.



3.1 Discretization of the Integral Term

Straightforward discretization of equation (2.5) could use standard numerical discretization meth-
ods [26, 34, 35] for the differential operator combined with numerical integration methods such as
Simpson’s rule or Gaussian quadrature [24] for the integral term. However, this straightforward
approach is computationally expensive [26]. Instead we transform the integral in equation (2.5)
into a correlation integral. This allows efficient Fast Fourier Transform (FFT) methods to be used
to evaluate the integral for all values of S.

Let o
7(5) = | V(snatman. (31)
and set x = log(S). Then using the change of variable
y =log(n),n=¢eY and dn = e’dy, (3.2)
gives
1) = [ Vie+ )iy 33)

where f(y) = g(e¥)e¥ and V(y,7) = V(e¥, 7). Note that f(y) is the probability density of a jump of
size y = log(n). For example, with the density function given in (2.3) we would have a probability
density given by
(7 y—m? >
e\ 27°

fly) = o (3.4)

Equation (3.3) corresponds to the correlation product of V(y) and f(y).
The discrete form of the correlation integral is

N
2
I = Z VirifiAy + O(Ay?), (3.5)
N
-2

where Z; = Z(iAx), V;j = V(jAx), x; = jAz, and

x]‘+%

fo= | 1w (36)
T;j— 5S¢

We have assumed that Ay = Az, and that V(logS) = V(S). We have also assumed in equation

(3.5) that N is selected sufficiently large so that the solution in areas of interest is unaffected by

the application of an asymptotic boundary condition for large values of S. In particular, we assume

that Vi 4 for 5 > 0 can be approximated by an asymptotic boundary condition. In practice,
2

since f; decays rapidly for |j| > 0, this does not cause any difficulty. Note that 77% +7 for j <0,

can be interpolated from known values V4, since these points represent values near S = 0.
An important property to note, which will be used in later sections, is that

N
2
fj >0 forall j and Z fi Ay <1, (3.7)
N
-3



since f(y) is a probability density, and f; is defined by equation (3.6). The inequality (3.7) arises
since we have truncated the infinite integral (3.3).

The discrete form of the correlation integral (3.5) uses an equally spaced grid in log .S coordi-
nates. While this is convenient for FF'T evaluation of the correlation integral, this is not particularly
convenient for discretizing the PDE. We use an unequally spaced grid in .S coordinates for the PDE
discretization [So, ..., Sp]. Let
Vh o= V(Si, ) . (3.8)

)

Now, Vj will not necessarily coincide with any of the discrete values V} in equation (3.8). Con-
sequently, we linearly interpolate (using linear Lagrange basis functions defined on the S grid) to
determine the appropriate values, that is, if

Spj < eij < Spj+1a (39)
then
V=, Vo, + (1=, Vs + O((Si1 — 5)%), (3.10)

where 1), is a non-negative interpolation weight. We are now faced with the problem that the
integral I; is evaluated at a point S = e” which does not coincide with a grid point S;. We handle
this by simply linearly interpolating the I; to get the desired value. If

e < S < ePatt, (3.11)
then
Z(Sk) = ¢q.Tq + (1= dg) g1+ O((e™n —e™nr1)%) (3.12)
where ¢4, is an interpolation weight. Note that
0<¢;<land 0<y; <1. (3.13)

Putting equations (3.5), (3.10), and (3.12) together gives
5
I(Se) = Y. wi(V)fAy, (3.14)
N
)

where V = [Vp, Vi, ..., V,]T and

RV = galtnVh + (1 — ) Viga] + (1 — @a) [theVe + (1 — 1) V]
= ¢a¢b% + ¢a(1 - ¢b)%+1 + (1 - gba)"vbcvc + (1 - ¢a)(1 - ¢c)‘/c+1 (3'15)

where a = gy, b = pg,+; and ¢ = pg, +j+1. Note that w;?(V) is linear in V, and that if 1 = [1,1,..., 1],
then it follows from properties (3.13) that

wf(l) = 1 forallk,j .

The discrete sum (3.5) can be conveniently evaluated for all ¢ using an FFT in O(Nlog N)
flops, where N is the number of nodes in the log .S grid. For details concerning the FF'T method



used to evaluate the sum (3.5), in particular about the choice of grid which minimizes wrap around
effects, we refer the reader to [8]. While there are various methods for carrying out both forward
and reverse FFTs for unequally spaced data [10, 27, 23], for our purposes these methods do not
appear to be any more efficient than the straightforward interpolation approach described here (cf.
[8]) . Essentially, this is because it is only necessary to evaluate the integral (3.5) correct to second
order. It is not necessary to obtain highly accurate Fourier coefficients. The interpolation method
described here will also allow us to prove convergence properties of the iterative algorithm used to
solve the discrete nonlinear algebraic equations.

We also note for the special case of a Gaussian log normal probability density for the jump
size, a Fast Gauss Transform [13, 4] could also be used to evaluate the correlation integral in O(N)
flops. However, recent work has indicated that non-log normal jump size probability densities may
fit market data better than Gaussian log normal densities [16]. It is suggested in [4] that it may be
possible to extend the Fast Gauss Transform to handle the density suggested in [16]. However, in
this work, we will use an FFT method to compute the correlation integral, since this is a standard
approach with readily available software. In any case, if a Fast Gauss Transform is used instead of
an FFT, all the convergence results in subsequent sections are unchanged.

3.2 Discretization of the Full PIDE

Equation (2.5) can now be approximated by replacing derivatives by difference approximations.
The integral term is approximated using equation (3.14). To avoid algebraic complexity, at this
stage, we use a fully implicit method for the usual PDE, and use a weighted timestepping method
for the jump integral term. The discrete equations can then be written as

Vi"Jrl 14 (a; + Bi + 7+ NAT] — AT@ Zr_ﬁl - ATaZ-Vrf{l

N
2
=V 4+ (1—0)ATA Z VTN Ay + 08T D WiV fAy, (3.16)

where 0 is a timeweighting such that 0 < 6; <1 and where oy, 5; depend on the type of approxi-
mations used for the derivatives and second derivatives. Note that discretization (3.16) is only first
order accurate in time.

There are a number of different discretizations of the derivative terms leading to various choices
for a; and ;. Discretizing the first derivative term of equation (2.5) with central differences leads
to

N B O'?Siz B (r — Ak)S;
i,central — (Sz — Sifl)(SiJrl _ Sifl) S,L'Jrl — Sifl
0757 L r= )5 (3.17)

Bi,centml = (Si—i—l _ Si)(Si—',-l — Si—l) Sit1 — Si—l'

However if o centrai O Bi,central is negative, oscillations may appear in the solution. The oscillations
can be avoided by using forward or backward differences at the problem nodes, leading to (forward
difference)

o252
O forward = Lt
Jorwart (8, = 8;1) (Si1 — Si—1)
0'7;253 N (r —Ak)S;
(Sit1 — Si)(Six1 — Si—1)  Siz1 — S

Bi,forward = (318)



or, (backward difference)

o _ 0?5} _ (r=Ak)S;
Hhackward G S ) (Sig1 — Sic1)  Sip1 — S
o252

i, backward — . 3.19
B sackard (Si1 — Si)(Six1 — Si—1) (8.19)

Algorithmically, we decide between a central or forward discretization at each node for equation
(3.16) as follows:

If [ centrat > 0 and B; centrar > 0] then
QG = O central
Bi = Bi,central

Elself [3; forwara > 0] then

Q= Q4 forward (3 20)
/Bi = ﬁi,forward

Else
O = O backward

/81' = 6i,backwa7’d
EndIf

Note that the test condition (3.20) guarantees that a; and [; are non-negative. For typical
values of o,r and grid spacing, forward differencing is rarely required for single factor options. In
practice, since this occurs at only a small number of nodes remote from the region of interest, the
limited use of a low order scheme does not result in poor convergence as the mesh is refined. For
situations where the low order method causes excessive numerical diffusion, a flux limiter can be
used [35, 9]. As we shall see, requiring that all o; and (; are non-negative has important theoretical
ramifications.

As S — 0, equation (2.2) reduces to

V, = —rV, (3.21)

which is simply incorporated into the discrete equations (3.16) by setting «;, 3;, A = 0 at S; = 0.
In practice we truncate the S grid at some large value S, = Sy42, where we impose Dirichlet
conditions. This is imposed replacing equation (3.16) at S = Spae = Sp, by

Vil = gpecified. 3.22
P

In [8], it is shown that the fully implicit scheme (3.16) is unconditionally stable for any 6,
0 < 07 < 1. Note that this unconditional stability is due to fully implicit treatment of the term
AV in equation (2.5). In [32], this term is treated explicitly.

3.3 Crank-Nicolson Discretization

The discretization method used in the previous subsection is only first order correct in the time
direction. In order to improve the timestepping error, we can use a Crank-Nicolson method in the



following

14+ (a; + 6 +7+N)(1—0)AT] VinJrl - (1- H)AT@-V”H - (1- H)ATai‘/iT{l

i+1
=1 — (i + B + 7+ NOAT| V" + AT Vi + OATS VL,
-__ N -__ N
=3 =3
HA=0)AAT > WV fAy+ 0 AT Y WV fiAy. (3.23)
j=—5+1 j=—5+1

where 057 =0 = % for Crank-Nicolson timestepping.

Remark 3.1 (Crank-Nicolson timestepping stability) In the European case with jumps (i.e.
A #0) it is shown in [8] that Crank-Nicolson timestepping is unconditionally algebraically stable.
3.4 Matrix Formulation

For our purposes it is best to formulate our discretization using a more compact notation. To this
end we can write equation (3.23) in matrix form as follows. Define matrices A and B such that

[A- V™ = AtV — (o + Bi + 17+ NATV + AT8 V4, (3.24)
7
[B-V'i = DY bVi= Y wi(V") Ay (3.25)
J =—4+1

We can then write a fully implicit (§ = 6; = 0) or Crank Nicolson (6 = 6; = 1) discretization as
[I—(1—0)AV™ = [T+ 0AV™ + (1 — 0,)AATBV" ™ + 0;AATBV". (3.26)
We remark that the entries of the matrix B have the property

0<bj<land Y by <1, (3.27)
J

a fact that will be important in the error analysis given later.

4 American Options

We can extend equation (3.26) to the American option case by using a penalty method [12]. In
this section, we develop an iterative algorithm for solution of the nonlinear discretized equations
that result from such a penalty method. We also show that this algorithm is globally convergent.

4.1 The Penalty Method

The basic idea of the penalty method is simple. We replace problem (2.7) by the nonlinear PIDE
[11]
25?2
2

V. = Vss + (r — Ak)SVs — (r+ NV + )\/ V(Sn)g(n)dn + pmax(V* = V,0), (4.1)
0



where, in the limit as the positive penalty parameter p — oo, the solution satisfies V' > V*.

As shown in [12], in the case where A = 0 (no jumps) the penalty method can be used to obtain
an approximate solution to the discretized complementarity problem (2.7) at each timestep. For
details regarding the penalty method, we refer the reader to [12].

Let V* be the vector of payoffs obtained upon exercise, and let the diagonal matrix P be given
by

PV, = Large if V" < V¥ (4.2)
"o otherwise. )

Then the matrix form of the discrete equations for the penalized method is given by

[I—(1—0)A+4 P(VHhyntl =
[+ 0AV™ 4+ (1 — 0)AATBV™ ! + 9, 0ATBV" + [P(V™"TH] V*. (4.3)

Dirichlet boundary conditions are enforced at ¢ = imax by setting

Ay = 0 i=1imax
P, = 0 ; i=1imax
bij = 0 ; i=1imax
n+1 n
Vvimam - immax* (44)

In order to avoid algebraic complication, we assume that the Dirichlet condition at Sjq. is inde-
pendent of time.

Remark 4.1 (Stability of a fully implicit discretization) It is straightforward to show, via a
mazximum analysis, that setting 0 = 0 in equation (4.3) results in an unconditionally stable method
forany 8y, 0<0; <1.

4.2 The Matrix Iteration

In order to solve equation (4.3), we use the following iteration scheme (assuming 6 = 6 ;)

Iteration

Let (V") =y
Let V* = (Vrthk
Let P* = p((V"hF)
For k=0,1,2,... until convergence
Solve

I—(1-0)A+ PF| vV (4.5)

= [+ 0A| V" + PFV*

+ (1 = AATBVF + OAATBV"
‘Vk-i-l _ f/k‘

If max L

—r 2 < tolerance then quit
i max(1, [V

EndFor

10



Note that the matrix vector multiplies in iteration (4.5) (BV*) can be computed in O(N log N)
operations using an FFT. As a result, work for each step of this iteration consists of

e Interpolation of the solution of the original S grid onto an equally spaced log S grid.

e A forward FF'T of the interpolated solution.

Evaluation of the correlation product in the frequency domain,

e An inverse FFT.

Interpolation of the correlation product from the log S grid onto the original S grid.
e A factor and solve of the tridiagonal matrix |I — (1 — 0)A + P*| .

Consequently, the work for each iteration is dominated by the forward and back FFTs.

4.3 Convergence of the Iteration

In this subsection we consider the problem of convergence of the iteration scheme (4.5). Convergence
is proved by a number of properties of the intermediate quantities V*.

Lemma 4.1 (Bounded iterates) Suppose that a;,3; > 0 for all i in the discretization (3.23)
and that B has the properties (3.27). Then, for a given timestep, all iterates VFT' in scheme (4.5)
are bounded independent of k.

Proof. Writing iteration (4.5) in component form gives

1+ (1= 0) (s + By + A+ 1) AT+ PR VFL = BV 4 (1— 0)pAr Y by 7
J
(1 - 0)AT [a,-f/i’“fll + @-V/ﬁl] . (4.6)
where
ci=(I+0A V" +0ONATBV"),. (4.7)
From the component form (4.6), it follows that (i < imax)

(14 (1= 0)(@i + B+ A+ AT+ P [V < Jlelloo + PEIV oo + (1 = ATV o

+(1 = 0)AT [ + Bi] [V o (4.8)
Let m be an index such that
VA = max V) = 74 (49)
Note that if m = imax then we have
V¥ e = [Vimaal < V" loo- (4.10)

Assume now that m < imaz. Then from equations (4.8) and (4.9) we obtain

[14+ (1= )+ 1)AT+ Bl 1V o < lelloo + BlnllVElloo + (1= ATV . (4.11)

11



Equation (4.11) then gives

Tl Iellos + PlhmllV*[loc (1= ONAT|[ Vo
T I+ -0AN+r)AT+PE, 1+ (1—-0)(\+7)AT+ Pk
(4.12)
het (1 )AA
- T
Cy = 0os IV |loo) and Co = 4.13
1= max(ee, [V 1) a0 O = 1 —gi s (413)
so that
- 1 — ONAT|VE|| .
Vv, < C© ( % < Cy 4 G|Vl oo 4.14
Vo e = Ot g0k A+ B, = AV (4.14)
Summing over the index k, equation (4.14) gives
A k: . A
Ve < C1Y - Ch+ Voo
i=0
(4.15)
Noting that V9 = V" and that Cy < 1, equation (4.15) then gives
~ Cl
VA < V" 4.16
1754 e < Voo + T (4.10)

where C, Cy are independent of k. From equation (4.10) we see that bound (4.16) is also valid for
m = imax and therefore for all m. O

After some manipulation, we can write iteration (4.5) as
[1 —(1-0)A+ P’f] (VFFT k) = (PR — PR=1y(V* — V%) (1 — )AATB(VF — VA1) . (4.17)

In order to prove convergence of the scheme (4.5), it will be convenient to determine the sign of
(P* — PF=1(V* — VF) in equation (4.17).

Lemma 4.2 (Positive penalty term) Given the definition of the penalty matrix Pk from equa-
tion (4.2), and the iteration scheme (4.5), we have that

(P —PELy(v* —VF > 0 forallk>1. (4.18)

Proof. For each index ¢ we have two possible cases. If ‘A/Zk < V;* for component ¢ then f’jj = Large
so that ) X R A A
(P — PEH(V = V8 = (Large — PEH(V* = VF); > 0.

On the other hand if f/;k > V* then ]55 = 0 hence
(B = PV = VM) = =B (v = VM) > 0.
Thus for all £ > 1 we always have

(PF — PE=1y(v* — V) > 0. (4.19)

12
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Recall that an M-matriz has positive diagonals, non-positive off-diagonals, the row sums are
non-negative with at least one such sum being positive. Such a matrix has the useful property that
all the entries in its inverse are non-negative.

Lemma 4.3 (M-matrices) Let A, B and P* be given by (8.24), (3.25) and (4.2), respectively.
Assume that a; > 0, 3; > 0 in equation (3.23), that B has the properties (3.27) and that we use a
Dirichlet boundary condition in (4.4). Then both

[I—(1—0)A+P* and [I — (1 —0)A+ P* — (1 — )AATB] (4.20)
are M matrices.

Proof . Tt follows from equations (3.23), (3.24) and (3.27) that both of the above matrices have
positive diagonals, non-positive off-diagonals and with row sum non-negative. Since a Dirichlet
condition is imposed at i = imax (4.4), for both matrices there is at least one row which has a
strictly positive row sum. O

Recall that the discrete equations can be written as (6 = 6)
I — (1 —0)A+ P — (1 — O)AATBIV™L = [I + 0A]V™ + OAATBV™ + PPHIv* (4.21)

We can now prove the following result

Theorem 4.1 (Uniqueness of solution) Under the conditions required for Lemmas 4.2 and 4.3,
any solution to equation (4.21) for a given timestep is unique.

Proof. Suppose that we have two solutions Vi,V to equation (4.21). Let P = P(V7) and
P, = P(V3) so that

[I—(1—0)A+P —(1—0NATB]Vi = [[+0AV"+O\ATBV" + P,V* (4.22)
and
I—(1-60)A+P,—(1-0)NATB)Va = [[+0AV" +0AATBV" + BV*.  (4.23)

Equation (4.22) can be written as
I —(1=0)A+Py— (1 -0)NATB|VI + (P, — P)Vy = [I + 0A]V" + OAATBV"™ + PLV*  (4.24)
which after subtracting (4.23) from (4.24) gives
I—(1—0)A+P,—(1-0NATB|(Vi = Vo) = (P —P)(V*=1). (4.25)

Using the same arguments as in the proof of Lemma 4.2 we have that (P, — P,)(V*—V;) > 0. From
Lemma 4.3 it follows that I — (1 —6)A+ P, — (1 —0)AA7TB is an M-matrix and hence (Vi —V3) > 0.
Interchanging subscripts, we also have that (Vo — V1) > 0 and hence V; = V5. O

Before we prove our main convergence result, we need the following Lemma.
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Lemma 4.4 (Norm of an iteration matrix) Let A, B and P* be given by (3.24), (3.25) and
(4.2), respectively. Assume that o; > 0,3; > 0 in equation (3.23), that B has the properties (3.27)
and that we use a Dirichlet boundary condition in (4.4). Then for QF = [I — (1 — 0)A + P*] we
have

1
1+ (1 -0+ NAT

I[Q" !Bl < (4.26)

Proof. Let y, z be vectors, z arbitrary, satisfying Q¥y = Bz. Then in component form we have
that Yimaee = 0 and for i < imax:

[+ (1= 0)(ci+ Bi + 7+ NAT+ Py = (1= 0)asAry; 1+ (1 - 0)Bi ATy + > biz. (4.27)
J

From the properties of «;, (3;, Pk, B, we then immediately have that

2]l

1+ (1—6)(r + VAT’

[Ylle < (4.28)

giving (4.26). O

We are now in a position to prove our main convergence result

Theorem 4.2 (Convergence of iteration (4.5)) Let A, B and P* be given by (3.24), (3.25)
and (4.2), respectively. Assume that a; > 0,53; > 0 in equation (3.23), that B has the properties
(3.27) and that we use a Dirichlet boundary condition in (4.4). Then iteration (4.5) is globally
convergent to the unique solution of equation (4.21) for any initial iterate Vo,

Proof . Iteration (4.5) can be written as
QEWVHL vk = (PY—PEF OV —VH) + 1 —0NATB(VF —VF 1)k >1,  (4.29)

where QF = I — (1 — 0)A + P*. For any k > 1 we can then write

(VL vk = UF Wk (v = V0, (4.30)
with
Uk _ [Qk]fl(pk o pkfl)[v* _ f/—k}
+(1 - 9))\AT[Qk]_1B[Qk_1]_1(Pk_1 _ pk—Q)[V* . Vk—l]
+ ...
(1= OAATFHQN T BIQM TR L (@Y B(P - POV -V,
Wk = [(1-60)ATF[QF B[O 7IB ... [Q']'B. (4.31)

We show that both U* and W tend to zero as k gets large.

Note first that both U*¥ > 0 and W* > 0. To show this we have that Lemma 4.2 implies
(Pk — PE=1)(v* — V) > 0 for all k > 1 while from Lemma 4.3, we have that [Q¥]~* > 0. Since
B > 0 we have that all the components in U” are non-negative. A similar statement is true for W*
since Qk is an M-matrix and since B > 0.
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From Lemma 4.4 and equation (4.31) we have that for each ¢

(1 —0)AAT

[Wi|oo < [1 e A)AT} 7 s2)
and hence . ) |
i (1 —60)\AT v (1 —O)AAT
H;W HOOS;[1+(19)(T+)\)AT} = |:1+(19)7’AT:| - (4.33)

Thus {Zle Wi}k:17_._ is a sequence of non-decreasing terms which are bounded from above. As
such the sequence converges. In particular we have that W* tends to zero as k tends to infinity.
Summing over the index k equation (4.30) gives

k k
A vo I Z Ul + Z Wi (VE=V0). (4.34)
i=1 i=1

From equation (4.32) we have that (Zle Wi (V! — V09 ) converges to a finite value, further-
more from Lemma 4.1 the left hand side of equation (4.34) is bounded from above. Thus the
sequence {Zle U i}kz:l,... is both non-decreasing and bounded from above. Hence this sequence
also converges and so U* approaches 0 as k approaches infinity.

Thus a convergent limit exists, and from Theorem 4.1, this is the unique solution to equation

(4.21). 0

Remark 4.2 (Monotonicity) Previous convergence results for penalty methods have typically re-
quired that the quantities V¥ are monotonic (cf. [12]). From equation (4.30) we see that we do
not necessarily have this property if Vi< Vo, Of course we could ensure monotonicity by forcing
V1 > VO However the proof of Theorem 4.2 shows that this is not really required. In addition,
numerical experiments demonstrate that forcing monotonicity does not improve convergence.

Remark 4.3 (Speed of convergence) Typically, A\AT < 1. For example, for S&P 500 data,
A~ .1 [2], and a typical timestep is AT < .1, giving AAT ~ .01. For AAT < 1, equation (4.32)
becomes

Wil =~ ((1-0)AAT),
so that the term

k
ZWZ ) (Vl - VO);
i=1

in equation (4.34) converges very rapidly. Our experience with the penalty method for American
options with Brownian motion [12] (no jumps) indicates that the term

2 U
i=1

in equation (4.34) also converges rapidly. This rapid convergence will be confirmed with the nu-
merical examples of the next section.
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Remark 4.4 (Non M-matrices) Our proof of convergence relies on the fact that the discretiza-
tion of the PDE resulted in an M-matriz. However, we have observed (experimentally) that con-
vergence is still rapid even if the coefficient matriz is not an M-matrix.

An example where our discretization is not an M-matrix appears naturally as follows. It is often
convenient to impose an asymptotic linearity boundary condition [28]

Vss = 0 ; S—o00 (4.35)

This boundary condition is particularly useful in complex path dependent cases where it is difficult
to determine the asymptotic form of the solution [30].

Condition (4.35) is enforced by setting (Vsg)? = 0 at i = imazx, and using a backward difference
approximation for Vg. A little thought shows that for r > 0, this corresponds to using downwind
weighting of the first order term at i = imax. This method can be shown to be stable [31], and the
matriz solution can be obtained using Gaussian elimination without pivoting as long as the order of
elimination is 1 = 0,1,... . However, in this case the coefficient matriz is no longer an M-matrix.
In fact iterative methods for obtaining complementarity solutions may fail due to a small pivot
since these methods [7] require repeated elimination steps in the forward (i = 0,1,...) and reverse
(i = imax,imazx — 1,...) directions.

5 Numerical Examples

In this section we give a number of numerical examples which illustrate the performance and con-
vergence of our iteration scheme. The examples are chosen to demonstrate that for practical values
of the parameters, the iterative method for solving the discrete nonlinear algebraic equations at
each timestep converges rapidly. In fact, the number of iterations required for convergence of Eu-
ropean options (with jumps) is on average, almost the same as the corresponding American option.
We also verify that quadratic convergence is obtained as the grid and timesteps are refined, for
Crank-Nicolson timestepping. In [12] the authors showed experimentally that in order to restore
quadratic convergence when pricing American put option, a timestep selector must be used. Con-
sequently, as in [12] we use a timestep selector based on a modified form of that suggested in [15].
Given an initial timestep A7"1, then a new timestep is selected so that

dnorm
n+2 __ :
AT™" = | min [V (So,r t AT )V (S5,m)]
max( D,[V(S;,rn+Arnt)[|V(S;,m)|)

AT (5.1)

where dnorm is a target relative change (during the timestep) specified by the user. The scale D
prevents the timestep selector from taking an excessive number of timesteps in regions where the
value is small. In general it is set to D = 1.0 for options valued in dollars.

5.1 American Put Option Example

As a first example, we consider the case of an American put option under a jump diffusion process.
Table 1 lists the data used for this example. This data is essentially the (rounded) data obtained in
[2] by matching option prices on the S& P 500. As discussed in [2], the magnitude of and frequency
of the jumps obtained by calibration with option prices is larger than historical data would suggest,
indicating an effect of risk preferences of investors.
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T .25
A .10
¥ 45
7 -9
o .15
T .05
K 100
B-S Implied Volatility | .1886

Table 1: Data used in the put option example.

Nodes | Timesteps | Itns Value Change | Ratio
127 40 121 | 3.2373512

254 100 239 | 3.2404239 | .0030727

508 218 507 | 3.2410657 | .0006418 | 4.8
1016 453 1044 | 3.2412099 | .0001442 | 4.5
2032 924 2106 | 3.2412435 | .0000336 | 4.3

Table 2: Value of an American put, under jump diffusion process, S = 100, t = 0, data as in Table
1. Itns is the total number of iterations required in algorithm (4.5), for all timesteps. Change is
the change from one level of refinement and the next. Ratio is ratio of changes. Crank-Nicolson
timestepping is used with the timestep selector defined by (5.1), where dnorm = .05 and the initial
timestep dt .+ = .005, on the coarsest grid.

Following [2], we assume that the jump magnitude density is given by the log normal distribution
(3.4). We also compare the option pricing solution obtained by a jump diffusion model to a constant
volatility Black-Scholes solution. In order to make a fair comparison between these two approaches,
the constant volatility Black-Scholes solution is computed using the implied volatility shown in
Table 1. This implied volatility is the constant volatility which reproduces the jump-diffusion price
at S = K = 100 for a European call (assuming no jumps). The tolerance used in algorithm (4.5)
is tolerance = 1075, and, as suggested in [12], we use Large = 1/tolerance in equation (4.2).
It is shown in [12] that the relative error in enforcing the American constraint is approximately
O(1/Large), so that the computed results should have at least six digit accuracy. This was verified
in some numerical tests with Large = 10'%, which showed no change in the solution (compared
to Large = 10°) to about eight digits. We have set S,,.; = 10K, where K is the strike. Some
experiments with solutions computed with S, = 50K resulted in no change to the solution to
eight digits.

Table 2 shows the results for a convergence study. The timestep selector (5.1) is used. The
modification for Crank-Nicolson timestepping suggested in [25] (initial two steps fully implicit,
followed by Crank-Nicolson thereafter) is used, since the payoff is non-smooth.

On each grid refinement, new nodes are inserted between each pair of coarse grid nodes. The
timestep selector parameter dnorm (5.1) and the initial timestep are also halved on each refinement,
so that the timesteps are approximately halved on each refinement. Since the ratio of changes in
Table 2 appears to be approaching four as the grid and timesteps are refined, this indicates that
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Nodes | Timesteps | Itns Value Change | Ratio
127 40 120 | 3.14666646
254 99 250 | 3.14849763 | .0018312
508 216 456 | 3.14889738 | .0003998 | 4.6
1016 448 896 | 3.14899401 | .0000967 | 4.1
2032 913 1826 | 3.14901783 | .0000238 | 4.1

Table 3: Value of a Furopean put, jump diffusion, S = 100, t = 0, data as in Table 1. Iins is
the total number of iterations required in algorithm (4.5), for all timesteps. Change is the change
from one level of refinement and the next. Ratio is ratio of changes. Crank-Nicolson timestepping
is used with the timestep selector defined by (5.1), where dnorm = .05 and the initial timestep
dt ;¢ = -005, on the coarsest grid.

convergence is approximately quadratic in AS and A7, where
AS = max (Si+1 - S,)
(2

AT = max (T"‘H —7") . (5.2)
n

Table 2 also indicates that the average number of iterations per timestep for algorithm (4.5) is of
the order 2 — 3.

Table 3 shows similar convergence results for a European option using the same data as in Table
1. Comparing Tables 2 and 3, we can see that the average number of iterations per step is also
2 — 3, indicating that the influence of the penalty term on the iteration (4.5) is quite small.

Figure 1 compares the jump diffusion solution (jumps) for an American option with a constant
volatility Black-Scholes solution (no jumps). The volatility used in the no-jump model is the implied
volatility which reproduces the jump model price at S = K = 100 for a European call. Note that
the jump model is significantly more valuable than the non-jump model at S = 110, due to the
high probability that a downward jump in the asset price can occur. Figure 2 show the delta (V)
and gamma (Vgg) for the jump and no-jump models. Delta and gamma are hedging parameters
[28].

5.2 American Butterfly Example

A more challenging numerical example is given by the solution to an American butterfly. A butterfly
option has the payoff

V* = max(S — K1,0) — 2max(S — (K1 + K3)/2,0) + max(S — K2,0) . (5.3)

In our example, we choose K1 = 90, Ko = 110. This payoff can be constructed by holding a long
position in two calls struck at K7, K5, and short position in two calls struck at (K7 4+ K3)/2. In our
example, we assume the existence of an American style contract which specifies the payoff (5.3),
and we assume that the option can only be early exercised as a unit.

Table 4 shows a convergence study for the American butterfly. On each refinement, new nodes
are inserted between each two coarse grid nodes and the timestep size is approximately halved.
Two timestepping methods were used. The implicit American constraint used the algorithm (4.5).
The explicit American constraint used the following modification. Using the notation introduced
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Figure 1: American put option value, jump diffusion model compared with model with no jumps.
The no jump model has an implied volatility which gives the same price as the jump model for a
FEuropean option at the money. Data as in Table 1.
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Figure 2: American put option delta (Vs), and gamma (Vss), jump diffusion model compared with
model with no jumps. The no jump model has an implied volatility which gives the same price as
the jump model for a European option at the money. Data as in Table 1.
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in equation (4.3), we iterate for V¥+1 (setting the penalty term to zero)

A A AA AA
[[— S = 1+ Zyn + 22l pyk 4 22T gy, (5.4)
2 2 2 2
After the iteration has converged, we then set
Vvt = max(V*, VL) | (5.5)

In this case, we would expect that the time truncation error is O(A7). In fact, this is clearly
demonstrated in Table 4, since the ratio of changes appears to be asymptotically 4 for the implicit
American approach (which indicates quadratic convergence) compared to the asymptotic ratio of 2
(linear convergence) for the explicit American method. It is interesting to see from Table 4 that the
number of iterations for the implicit American method is only slightly greater than for the explicit
American technique. This indicates that we can impose the American constraint implicitly at very
little computational expense compared to an explicit constraint method.

For comparison, we also show in Table 4 the results for a fully implicit discretization of the PDE
term, an explicit evaluation of the correlation integral, and an explicit application of the American
constraint. More precisely,

[I— A" = V" £ AATBV"?
Vol = max (VY (5.6)

This method is unconditionally stable (a straightforward extension of the proofs in [8] shows
this), and is clearly the cheapest method (per timestep). However, convergence is clearly only first
order. As shown in [12], an explicit application of the American constraint can result in oscillations
in gamma near the exercise boundary.

Figure 3 shows the value of an American butterfly, with the jump diffusion model (jumps) and
the constant volatility Black-Scholes model (no-jumps). As described above, the constant volatility
Black-Scholes model uses an implied volatility which reproduces the jump model price at .S = 100
for a vanilla European call. The corresponding delta and gamma are shown in Figure 4.

6 Conclusion

In this article, we have developed an iterative method for solution of the discrete penalized equations
which result from discretization of the differential-integral complementarity problem for pricing
American options on assets which follow a jump diffusion process. We have also derived sufficient
conditions for the global convergence of this iteration (at each timestep).

Unlike previous work, the method developed here uses implicit timestepping for both the correla-
tion integral term and the American constraint. Consequently, we expect higher order convergence
(in terms of timestepping error) compared with previous methods which treat the correlation in-
tegral or the American constraint explicitly. Quadratic convergence is observed in our numerical
tests, compared to linear convergence which occurs if explicit methods are used.

A sufficient condition for global convergence of the iterative method for solution of the dis-
cretized penalized jump diffusion equations (at each timestep) is that the coefficient matrix is an
M-matrix. However, on the basis of numerous numerical experiments, this does not appear to be
a necessary condition. For single factor options, the commonly used Vgg = 0 boundary condition
destroys the M-matrix property. For two factor options (such as stochastic volatility models), the
M-matrix property no longer holds if there is a non-zero correlation between the asset price and
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Nodes | Timesteps ’ Itns ‘ Value ‘ Change ‘ Ratio
Implicit American constraint

127 44 133 | 5.2490795

254 111 249 | 5.2511148 | .0020353

508 246 546 | 5.2515158 | .0004010 | 5.1
1016 511 1130 | 5.2515839 | .0000689 | 5.8
2032 1042 2280 | 5.2516010 | .0000171 | 4.0

Method (5.4-5.5)

127 43 129 | 5.2296200

254 111 222 | 5.2429331 | .0179502

508 246 492 | 5.2475702 | .0046371 | 3.9
1016 511 1022 | 5.2496169 | .0020467 | 2.3
2032 1041 2082 | 5.2506144 | .0009975 | 2.1

Method (5.6)

127 43 43 | 5.1997845

254 111 111 | 5.2310288 | .0312443

508 246 246 | 5.2423694 | .0113406 | 2.8
1016 511 511 | 5.2471667 | .0047973 | 2.4
2932 1041 1041 | 5.2493929 | .0022262 | 2.0

Table 4: Value of an American butterfly, S = 105, t = 0, jump diffusion, data as in Table 1. Im-
plicit constraint, American constraint solved implicitly. Algorithm (5.4-5.5): American constraint
imposed explicitly. Algorithm (5.6): fully implicit PDE, explicit correlation integral, explicit Amer-
ican constraint. Itns is the total number of iterations required in algorithm (4.5), for all timesteps.
Change is the change from one level of refinement and the next. Ratio is ratio of changes. Data as
in Table 1. Crank-Nicolson timestepping is used with the timestep selector defined by (5.1), where
dnorm = .05 and the initial timestep dt;,;+ = .005, on the coarsest grid.
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Figure 3: American butterfly option value, jump diffusion model compared with model with no
jumps. The no jump model has an implied volatility which gives the same price as the jump model
for a European option at the money. Data as in Table 1.
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Figure 4: American butterfly option delta (Vs), gamma (Vsg), jump diffusion model, compared with
model with no jumps. The no jump model has an implied volatility which gives the same price as
the jump model for a European option at the money. Data as in Table 1.

the volatility [33]. However, we have observed that the penalty method for imposing the American
constraint appears to be globally (and rapidly) convergent for models with stochastic volatility, but
no jumps [33].

A model which includes stochastic volatility as well as jumps in asset price and volatility is
thought to be an excellent model of asset price evolution. We conjecture that a suitable generaliza-
tion of the penalty iteration in this two factor case will also be rapidly convergent, even though the
coefficient matrix is not an M-matrix. In addition, the coefficient matrix is no longer tridiagonal (a
two dimensional PDE). We will be reporting on results for American option pricing with stochastic
volatility and jumps in future work.
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