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COMPUTATION OF INVARIANTS

OF FINITE ABELIAN GROUPS

EVELYNE HUBERT AND GEORGE LABAHN

Abstract. We investigate the computation and applications of rational in-
variants of the linear action of a finite abelian group in the nonmodular case.
By diagonalization, such a group action can be described by integer matrices
of orders and exponents. We make use of integer linear algebra to compute
a minimal generating set of invariants along with the substitution needed to
rewrite any invariant in terms of this generating set. In addition, we show
how to construct a minimal generating set that consists only of polynomial
invariants. As an application, we provide a symmetry reduction scheme for

polynomial systems whose solution set is invariant by a finite abelian group
action. Finally, we also provide an algorithm to find such symmetries given a
polynomial system.

1. Introduction

Recently Faugère and Svartz [10] demonstrated how to reduce the complexity
of Gröbner bases computations for ideals stable by the linear action of a finite
abelian group in the nonmodular case. A typical example used is a cyclic group of
permutations of the variables. Their strategy is based on the diagonalization of the
group. It turns out that these diagonal actions have strong similarities with scalings
that the present authors previously investigated in [21, 22]. Scalings are diagonal
representations of tori and can be defined by a matrix of exponents. Integer linear
algebra was used to compute the invariants of scalings and develop their applications
in [21,22]. It was shown that the unimodular multipliers associated to the Hermite
form of the exponent matrix provide the exponents of monomials that describe a
minimal generating set of invariants and rewrite rules.

The field of rational invariants of abelian groups has been thoroughly examined,
in particular with respect to Noether’s problem that questions the existence of an
algebraically independent generating set [3, 4, 11, 12, 26, 39]. In this paper we first
address the constructive aspect of this problem. In the light of the treatment of
scalings we specify diagonal representations of finitely generated abelian groups with
an exponent matrix. But now, when performing linear algebra operations on this
exponent matrix, each row needs to be understood modulo the order of a group
generator. This is elegantly handled by introducing those orders in a diagonal
matrix. With this succinct presentation of the problem we establish analogous
constructions : From a unimodular multiplier associated to the Hermite form of the
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exponent and order matrices, we can compute a minimal set of generating rational
invariants. The rationality of the field of invariants [11] is thus established as a
byproduct of our direct and constructive proof. An additional important feature
is that we can compute a minimal generating set of invariants that consists of
monomials with nonnegative powers. Only the existence of such a set was previously
established in [4]. Our minimal generating set comes with a triangular shape and
provides generators for an algebra that is an explicit localization of the polynomial
ring of invariants. They can be further exploited to compute the generators for the
ring of polynomial invariants. Furthermore, for any generating set computed with
our construction, any other invariant can be written in terms of these by an explicit
substitution, one that is computed simultaneously.

As an application we show how one can reduce a system of polynomial equations
whose solution set is invariant by the linear action of a finite abelian group to a
reduced system of polynomial equations, with the invariants as new variables. The
reduced system thus has the same number of variables, and to each of its solutions
corresponds an orbit of solutions of the original system. The latter are retrieved as
the solutions of a binomial triangular set. To compute the reduced system, we first
adapt a concept of degree from [10] in order to split the polynomials in the system
into invariants. We then use our special set of polynomial invariants along with
the associated rewrite rules to obtain the reduced system. The main cost of the
reduction is a Hermite form computation, which in our case is O((n+s)4d) where n
is the number of variables in the polynomial system, s is the number of generators
of the finite group and d is the log of the order of the group. A distinctive feature
of our approach is that it organizes the solutions of the original system in orbits of
solutions. They can thus be presented qualitatively, in particular when ultimately
dealing with groups of permutations.

The above polynomial system solving strategy contrasts with that of [10], where
there is no change of variables. Instead, the invariance gives a block diagonal
structure of the matrices arising in the F4, F5 and FGLM algorithms used to
compute the Gröbner basis [6–8]. Both approaches start from the knowledge of the
symmetry of the solution set. Although it is sometimes intrinsically known, we also
provide a way to determine this symmetry. We had previously solved the analogous
problem for scaling symmetry in [22] through the computation of a Hermite form.
The problem in the present case is to determine both the exponent matrix and
the orders of the group. This is solved by computing the Smith normal form of
the matrix of exponent differences of the terms in the polynomials. We show that
the order matrix is read from the Smith normal form itself, while the exponent
matrix is read from the left unimodular multiplier. Additionally, a generating set
of invariants for the symmetry group defined in this way is also obtained directly
from the left unimodular multiplier. The Smith normal form and its unimodular
multipliers thus provide all the ingredients for a symmetry reduction scheme.

The computational efforts for invariant theory have focused on the ring of poly-
nomial invariants [5, 38]. Yet some applications can be approached with rational
invariants.1 Indeed a generating set of rational invariants separates generic or-
bits. It is therefore applicable to the equivalence problems that come in many
guises. Furthermore, the class of rational invariants can address a wider class of

1For instance multi-homogeneous polynomial system solving in [21] and parameter reduction
in dynamical models [22].
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nonlinear actions, such as those central in differential geometry,2 and algebraically
characterize classical differential invariants [17,20]. General algorithms to compute
rational invariants of a (rational) action of algebraic groups [18,19,23,25,29] rely on
Gröbner bases computations. It is remarkable how much simpler and more effective
the present approach is for use with finite abelian groups.

The remainder of the paper is organized as follows. Preliminary information
about abelian group actions, their defining exponent and order matrices, as well
as integer linear algebra are to be found in the next section. Section 3 shows the
use of integer linear algebra to determine invariants of the diagonal action of finite
groups, giving the details of invariant generation and rewrite rules. Section 5 gives
the details of the symmetry reduction scheme for polynomial systems, including an
example of solving a polynomial system coming from neural networks. Section 6
considers the problem of finding a diagonal representation of a finite abelian group
that provides a symmetry for the solution set of a given system of polynomial
equations. Finally, we present a conclusion along with topics for future research.

2. Preliminaries

In this section we introduce our notation for finite groups of diagonal matrices
and their linear actions. In addition we will present the various notions from integer
linear algebra used later in this work. We shall use the matrix notation that was
already introduced in [21, 22].

2.1. Matrix notation for monomial maps. Let K be a field and denote K\{0}
by K∗. If a = t[a1, . . . , as] is a column vector of integers and λ = [λ1, . . . , λs] is a
row vector with entries in K∗, then λa denotes the scalar

λa = λa1
1 · · ·λas

s .

If λ = [λ1, . . . , λs] is a row vector of s indeterminates, then λa can be understood
as a monomial in the Laurent polynomial ring K[λ, λ−1], a domain isomorphic to
K[λ, μ]/(λ1μ1 − 1, . . . , λsμs − 1). We extend this notation to matrices. If A is an
s× n matrix with entries in Z, then λA is the row vector

λA = [λA·,1 , · · · , λA·,n ]

where A·,1, . . . , A·,n are the n columns of A.
If x = [x1, . . . , xn] and y = [y1, . . . , yn] are two row vectors, we write x � y for

the row vector obtained by component-wise multiplication:

x � y = [x1y1, . . . , xnyn].

Assume A and B are integer matrices of size s× n and C of size n× r; λ, x and
y are row vectors with s components. It is then easy to prove [21] that

λA+B = λA � λB, λAC = (λA)C , (y � z)A = yA � zA.

Furthermore, if A = [A1, A2] is a partition of the columns of A, then λA =
[λA1 , λA2 ].

2For example, conformal transformations or prolonged actions to the jet spaces.
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2.2. Finite groups of diagonal matrices. Consider the group Z = Zp1
× · · · ×

Zps
. Throughout this paper we assume that the characteristic of K does not divide

p = lcm(p1, . . . , ps) and that K contains a pth primitive root of unity ξ. Then K

also contains a pith primitive root of unity, which can be taken as ξi = ξ
p
pi , for all

1 ≤ i ≤ s.
An integer matrix B ∈ Zs×n defines an n-dimensional diagonal representation

of the group Z given as

Zp1
× · · · × Zps

→ GLn(K)

(m1, . . . ,ms) �→ diag
(
[ξm1

1 , . . . , ξms
s ]B

)
.

The image of the group morphism above is a subgroup D of GLn(K). We shall
speak of D as the finite group of diagonal matrices defined by the exponent matrix
B ∈ Zs×n and order matrix P = diag (p1, . . . , ps) ∈ Zs×s.

Let Upi
be the group of the pith roots of unity. The group Z = Zp1

×· · ·×Zps
is

isomorphic to the group U = Up1
× · · · ×Ups

, with an isomorphism given explicitly
by (m1, . . . ,ms) �→ (ξm1

1 , . . . , ξms
s ). The group D of diagonal matrices defined by

an exponent matrix B ∈ Zs×n is also the image of the representation

U → GLn(K)
λ �→ diag (λB).

The induced linear action of U on K
n is then conveniently noted:

U ×K
n → K

n

(λ, z) �→ λB � z.

We shall alternatively use the two representations for convenience of notation. With
the latter, one draws a clear analogy with [21, 22], where we dealt with the group
(K∗)r rather than U . But now the ith row of B is to be understood modulo pi.

Example 2.1. Let D be the subgroup of GL3(K) generated by

Iξ =

⎡
⎣ ξ

ξ
ξ

⎤
⎦ and Mξ =

⎡
⎣ ξ

ξ2

1

⎤
⎦ ,

where ξ2 + ξ + 1 = 0; that is, ξ is a primitive 3rd root of unity. D is then the

(diagonal matrix) group specified by the exponent matrix B =

[
1 1 1
1 2 0

]
and

order matrix P =

[
3

3

]
. In other words D is the image of the representation of

Z3 × Z3 explicitly given by

(m,n) ∈ Z2 × Z3 �→

⎡
⎣ ξmξn

ξmξ2n

ξm

⎤
⎦ ∈ D.

Any finite abelian group is isomorphic to Zp1
× · · · × Zps

where p1|p2| . . . |ps.
However, in this article we do not enforce this canonical divisibility condition. It
nonetheless appears naturally when we look for the group of homogeneity of a set
of rational functions in Section 6.
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2.3. Integer linear algebra. Every s× (n+s) integer matrix can be transformed
via integer column operations to obtain a unique column Hermite form [34]. In the
case of a full rank matrix the Hermite normal form is an upper triangular matrix
with positive nonzero entries on the diagonal, nonnegative entries in the rest of the
first s columns and zeros in the last n columns. Furthermore, the diagonal entries
are bigger than the corresponding entries in each row.

The column operations for constructing a Hermite normal form are encoded in
unimodular matrices, that is, invertible integer matrices whose inverses are also
integer matrices. Thus for each B̂ ∈ Zs×(n+s) there exists a unimodular matrix
V ∈ Z(n+s)×(n+s) such that B̂ V is in Hermite normal form. In this paper the
unimodular multiplier plays a bigger role than the Hermite form itself. For ease of
presentation a unimodular matrix V such that B̂ V is in Hermite normal form will
be referred to as a Hermite multiplier for B̂.

We consider the group D of diagonal matrices determined by the exponent matrix
B ∈ Zs×n and the order matrix P ∈ Zs×s. Consider the Hermite normal form

[
B −P

]
V =

[
H 0

]
with H ∈ Zs×s and a Hermite multiplier V partitioned as

(1) V =

[
Vi Vn

Pi Pn

]

with Vi ∈ Zn×s, Vn ∈ Zn×n, Pi ∈ Zs×s, Pn ∈ Zs×n. Breaking the inverse of V into
the following blocks:

(2) V −1 = W =

[
Wu Pu

Wd Pd

]
,

where Wu ∈ Zs×n, Wd ∈ Zn×n, Pu ∈ Zs×s, Pd ∈ Zn×s, we then have the identities

ViWu + VnWd = In, ViPu + VnPd = 0, PiWu + PnWd = 0, PiPu + PnPd = 0

and

WuVi + PuPi = I, WuVn + PnPd = 0, WdVi + PdPi = 0, WdVn + PdPn = I.

Furthermore,

BVi − PPi = H, BVn − PPn = 0, B = HWu and P = −HPu.

From the last equality we see that Pu is upper triangular and the ith diagonal entry
of H divides pi.

The indices were chosen in analogy to [21, 22]. The index i and n stand re-
spectively for image and nullspace, while u and d stand respectively for up and
down.

Example 2.2. Let B ∈ Z2×3 and P = diag(3, 3) be the exponent and order
matrices that defined the group of diagonal matrices in Example 2.1. In this case
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3034 EVELYNE HUBERT AND GEORGE LABAHN

[B − P ] has Hermite form [I2 0] with Hermite multiplier

V =

[
Vi Vn

Pi Pn

]
=

⎡
⎢⎢⎢⎣

0 1 1 2 −2
0 3 −2 2 1
1 −1 1 −1 1

0 1 0 1 0
0 2 −1 2 0

⎤
⎥⎥⎥⎦

and inverse W =

[
Wu Pu

Wd Pd

]
=

⎡
⎢⎢⎢⎣

1 1 1 −3 0
1 2 0 0 −3

0 0 0 2 −1
−1 −2 0 1 3
−1 −1 0 2 1

⎤
⎥⎥⎥⎦.

The Hermite multiplier is not unique. For example in this case a second set of
unimodular multipliers satisfying [B − P ]V = [I2 0] and W = V −1 are given by

V =

[
Vi Vn

Pi Pn

]
=

⎡
⎢⎢⎢⎣

2 2 3 0 1
2 1 0 3 1
0 0 0 0 1

1 1 1 1 1
2 1 1 2 1

⎤
⎥⎥⎥⎦,

W =

[
Wu Pu

Wd Pd

]
=

⎡
⎢⎢⎢⎣

1 1 1 −3 0
1 2 0 0 −3

−1 −2 −1 2 2
−1 −1 −1 2 1
0 0 1 0 0

⎤
⎥⎥⎥⎦.

The fact that Hermite multipliers are not unique is not surprising. Indeed any
column operations on the last n columns leaves the Hermite form intact. Similarly
one can use any of the last n columns to eliminate entries in the first s columns
without affecting the Hermite form. We say V is a normalized Hermite multiplier if
it is a Hermite multiplier where Vn is also in Hermite form and where Vi is reduced
with respect to the columns of Vn.

Lemma 2.3. We can always choose a Hermite multiplier V =

[
Vi Vn

Pi Pn

]
for

[B − P ] such that

(3)

[
0 In

−P B

]
·
[

Pn Pi

Vn Vi

]
=

[
Vn Vi

0 H

]
is in column Hermite form. Then V is the normalized Hermite multiplier for
[B − P ].

Taking determinants on both sides of equation (3) combined with the fact that
diagonal entries of a Hermite form are positive gives the following corollary.

Corollary 2.4. Let V be the normalized Hermite multiplier for [B − P ] with
Hermite form [H 0]. Then Vn is nonsingular and p1 ·p2 · · · ps = det (H) · det (Vn).

The uniqueness of Vn in the normalized Hermite multiplier is guaranteed by the
uniqueness of the Hermite form for full rank square matrices. While the notion of
normalized Hermite multiplier appears to involve only Vi and Vn and does not say
anything about Pi or Pn, it is the additional fact that V is a Hermite multiplier
that ensures uniqueness.
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Lemma 2.3 also tells us about the cost of finding a normalized Hermite form.
Indeed the cost is O((n + s)4d) where d is the size of the largest pi (cf. [35, 36]).
Furthermore, since V is produced from column operations the W matrix can be
computed simultaneously with minimal cost by the inverse column operations.

It will also be useful later to have a formula for the inverse of Vn.

Lemma 2.5. With V and W partitioned as (1) and (2) we have that

V −1
n = Wd − PdP

−1B = Wd − PdP
−1
u Wu.

Proof. We show first that (Wd − PdP
−1B)Vn = In. From W V = In+s we deduce

WdVn + PdPn = In, while from
[
B −P

]
V =

[
H 0

]
we deduce BVn = P Pn.

Hence (Wd − PdP
−1B)Vn = In.

Consider now the equality
[
B −P

]
=

[
H 0

]
W . This implies B = H Wu and

P = −H Pu. Since H is nonsingular, so is Pu. Hence B = −PP−1
u Wu so that

P−1B = −P−1
u Wu. �

Since we can compute V and its inverse W simultaneously, the formula in
Lemma 2.5 for the inverse of Vn has the advantage that it requires only the in-
version of the s× s diagonal matrix P . As a side remark, note that the equality

(4)

[
Wu Pu

Wd Pd

] [
I 0

−P−1
u Wu P−1

u

]
=

[
0 I

Wd − PdP
−1
u Wu PdP

−1
u

]

implies that the inverse of Vn is in fact the Schur complement of the block Pu in
the matrix W written as in (2). The Schur complement in this case describes the
column operations that eliminate the top left matrix in W .

3. Invariants of finite groups of diagonal matrices

Let B ∈ Zs×n and P = diag (p1, . . . , ps) where pi ∈ N, pi �= 0, and K is a field
whose characteristic does not divide p = lcm(p1, . . . , ps). In addition we assume
that K contains a pth primitive root of unity. The pair (B,P ) thus defines a finite
group D of diagonal matrices that can be seen as an n-dimensional representation
of U = Up1

× · · · × Ups
, where Upi

is the group of pith roots of unity. With the
matrix notation introduced in Section 2, the induced linear action is given as

U ×Kn → Kn

(λ, z) �→ λB � z.

A rational invariant is an element f of K(z) such that f(λB � z) = f(z) for all
λ ∈ U . Rational invariants form a subfield K(z)D of K(z). In this section we show
how a Hermite multiplier V of [B −P ] provides a complete description of the field
of rational invariants. Indeed we show that the matrix V along with its inverse W
provides both a generating set of rational invariants and a simple rewriting of any
invariant in terms of this generating set. In a second stage we exhibit a generating
set that consists of a triangular set of monomials with nonnegative powers for which
we can bound the degrees. This leads us to also discuss the invariant polynomial
ring.
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3036 EVELYNE HUBERT AND GEORGE LABAHN

3.1. Generating invariants and rewriting. We recall our notation for the Her-
mite form introduced in the previous section :

[
B −P

]
V =

[
H 0

]
with a Her-

mite multiplier V and its inverse W partitioned as

V =

[
Vi Vn

Pi Pn

]
, W =

[
Wu Pu

Wd Pd

]
.

A Laurent monomial zv, v ∈ Zn, is invariant if (λB � z)v = zv for any λ ∈ U .
This amounts to λBv = 1, for all λ ∈ U . When we considered in [21, 22] the action
of (K∗)r determined by A ∈ Zr×n, zv was invariant if and only if Av = 0. In the
present case we have:

Lemma 3.1. For v ∈ Z
n, the Laurent monomial zv is invariant if and only if

v ∈ colspan
Z
Vn.

Proof. Assume zv is invariant. Then Bv = 0 mod
t
(p1, . . . , ps); that is, there exists

k ∈ Z
s such that

[
v
k

]
∈ kerZ

[
B −P

]
= colspan

Z

[
Vn

Pn

]
. Hence v ∈ colspan

Z
Vn.

Conversely if v ∈ colspan
Z
Vn there exists u ∈ Zn such that v = Vnu. Since BVn =

PPn we have Bv = Pk for k = Pnu ∈ Z
s. Thus zv is invariant. �

The following lemma shows that rational invariants of a diagonal action can be
written as a rational function of invariant Laurent monomials. This can be proved
by specializing more general results on generating sets of rational invariants and the
multiplicative groups of monomials [33]. We choose to present this simple and direct
proof as it guides us when building a group of symmetry for a set of polynomials
of rational functions in Section 6.

Lemma 3.2. Suppose p
q ∈ K(z)D, with p, q ∈ K[z] relatively prime. Then there

exists u ∈ Z
n such that

p(z) =
∑

v ∈ colspan
Z
Vn

av z
u+v and q(z) =

∑
v∈ colspan

Z
Vn

bv z
u+v

where the families of coefficients, (av)v and (bv)v, have finite support.3

Proof. We take advantage of the more general fact that rational invariants of a
linear action on K

n are quotients of semi-invariants. Indeed, if p/q is a rational
invariant, then

p(z) q(λB � z) = p(λB � z) q(z)

in K(λ)[z]. As p and q are relatively prime, p(z) divides p(λB � z), and since
these two polynomials have the same degree, there exists χ(λ) ∈ K such that
p(λB � z) = χ(λ) p(z). It then also follows that q(λB � z) = χ(λ) q(z).

Let us now look at the specific case of a diagonal action. Then

p(z) =
∑

w∈Zn

aw zw ⇒ p(λB � z) =
∑

w∈Zn

awλ
Bw zw.

For p(λB � z) to factor as χ(λ)p(z) we must have λBw = λBu for any two vectors
u,w ∈ Z

n with av and au in the support of p. Let us fix u. Then using the
same argument as in Lemma 3.1 we have w − u ∈ colspan

Z
Vn and χ(λ) = λBu.

From the previous paragraph we have
∑

w∈ Zn bwλ
Bw zw = q(λB � z) = λBuq(z) =

λBu
∑

w∈Zn bw zw. Thus Bu = Bw and therefore there exists v ∈ colspan
Z
Vn such

that w = u+ v for all w with bw in the support of q. �
3In particular av = 0 (respectively bv = 0) when u+ v /∈ Nn.
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Theorem 3.3. The n components of g = zVn form a minimal generating set of
invariants. Furthermore, if f ∈ K(z1, . . . , zn) is a rational invariant, then

f(z) = f
(
g(Wd−PdP

−1B)
)

can be reorganized as a rational function of (g1, . . . , gn), meaning that the fractional
powers disappear.

Proof. The result follows directly from the representation of the rational invariants
in Lemma 3.2 combined with the observation that for v ∈ colspan

Z
(Vn) we have

v = Vn

(
Wd − PdP

−1B
)
v, which follows directly from Lemma 2.5. �

We therefore retrieve in a constructive way the fact that K(z)D is rational. The
rationality of the field of invariants of a diagonal representation was established
in [11] by observing that the monomial invariants formed a subgroup of the free
abelian group of Laurent monomials. Monomial invariants thus form a free group.
Rationality of the field of invariants was also proved for more general classes of
actions [3, 24, 27], [33, Section 2.9].

Example 3.4. Consider the three polynomials in K[z1, z2, z3] given by

f1 = z1
2z2

2z3
2 − z2

3 − z1 z2 z3 + 8, f2 = z1
2z2

2z3
2 − z2

3 + 7,

f3 = z61z
3
2z

3
3 − 3z41z

4
2z3 + z61 + 32z31 + z32 .

They are invariants for the group of diagonal matrices defined by the exponent
matrix and order matrix of Example 2.2. Thus a generating set of invariants is
given by g1 = z31 , g2 = z32 , g3 = z1z2z3, and a set of rewrite rules is given by

(z1, z2, z3) →
(

g
1/3
1 , g

1/3
2 ,

g3

g
1/3
1 g

1/3
2

)
.

In this case one can rewrite the polynomials f1, f2 and f3 in terms of the three
generating invariants as

f1 = g3
2−g2 − g3 + 8, f2 = g3

2−g2 + 7, f3 = g1g3
3 − 3g1g2g3 + g21 + 32g1 + g2.

Note that the set of generators is polynomial and triangular. This is actually a
general feature that is uncovered with the use of normalized Hermite multipliers.

3.2. Polynomial generators. Just as a Hermite multiplier is not unique, the set
of generating rational invariants is not canonical. For each order of the variables
(z1, . . . , zn) there is nonetheless a generating set with desirable features. This leads
us to discuss polynomial invariants.

Theorem 3.5. There is a minimal generating set of invariants that consists of a
triangular set of monomials with nonnegative powers, that is, of the form
(5){

zm1
1 , z

v1,2
1 zm2

2 , . . . , z
v1,n
1 · · · zvn−1,n

n−1 zmn
n

}
, where 0 ≤ vi,j < mi for all i < j.

More specifically this set of generators is given by zVn where Vn is the right upper
block in the normalized Hermite multiplier for [B − P ]. Hence the exponents mi

satisfy

(6) m1 . . .mn =
p1 . . . ps
detH

.
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Proof. From Lemma 2.3 there exists a normalized Hermite multiplier V for [B −
P ]. Equation (5), then follows since Vn is in Hermite form. The second identity,
equation (6) then follows from Corollary 2.4 since p1 ·p2 · · · ps = det (H) ·

∏n
i=1 mi.

�

The existence of a minimal generating set consisting of polynomials was already
known in [4]. There the existence proof proceeds recursively so that the triangular
shape of such a generating set was already established also. The above approach
provides a more direct proof with the great benefit of being constructive.

The total degree of the jth monomial is at most
∑n

j=1(mj − j + 1) ≤
∏s

i=1 pi

detH .
When detH = 1 we thus do not improve on Noether’s bound. It is not difficult to
find examples where this bound can be reached. As pointed out by a referee, this
bound on the degree of the polynomial generators of the field of rational invariants
also exists for the regular actions of any finite group, even in the modular case.
For example, in [13, Section 2] one finds an elegantly simple construction for such
a generating set of bounded degree. However the set is not minimal, is not a set of
monomials as in the case of interest here, and finally does not come with rewrite
rules.

Note that Theorem 3.3 does not imply that we have a generating set for the ring
of polynomial invariants K[z]D. It only implies that we can rewrite any invariant
(Laurent) polynomial as a Laurent polynomial in the (polynomial) generators of
K(z)D provided by Theorem 3.5.

If we wish to obtain generators for K[z]D, there are several general algorithms
[5,13,38]. We can also extend our construction by applying the results in [5, Section
4.2.1] since the rewrite rules contain the following additional information. Let
h ∈ K[x]D be the product of the generators gi that appear with a negative power
in the rewrite rules. Then Theorem 3.3 implies that the localization K[x]Dh is equal
to K[h−1, g1, . . . , gn].

4. Invariants of finite abelian groups of matrices

In the nonmodular case, representations of finite abelian groups can be diagonal-
ized so that we can apply the results described so far. In this section we illustrate
such a diagonalization process and work out two relevant examples.

Consider G a finite abelian subgroup of GLn(K) of order p. Assume that the
characteristic of K does not divide p and that K contains a primitive pth root of
unity. Let G1, . . . , Gs ∈ GLn(K) be a set of generators for G whose respective
orders are p1, . . . , ps. Then G is the image of the representation

Zp1
× · · · × Zps

→ GLn(K)
(m1, . . . ,ms) �→ Gm1

1 · · ·Gms
s

.

For any element G of G we have Gp = In. The minimal polynomial of G thus
has only simple factors. Therefore G is diagonalizable and the eigenvalues of G
are pth roots of unity. Since the elements of G commute, they are simultaneously
diagonalizable [15] : there exists an invertible matrix Ξ with entries in K such that
Ξ−1 · G · Ξ is diagonal for all G ∈ G. We introduce D = Ξ−1 · G · Ξ, the finite
subgroup of diagonal matrices in GLn(K) generated by Di = Ξ−1 ·Gi ·Ξ, 1 ≤ i ≤ s.

Proposition 4.1. Take f, g ∈ K(z1, . . . , zn) with f(Ξz) = g(z) ⇔ f(z) = g(Ξ−1z).
Then g is invariant for D if and only if f is an invariant for G.
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As a consequence of Theorem 3.5, any n-dimensional representation of G over K
admits a set of n polynomials in K[z]G as generators of the field K(z)G of rational
invariants. We can furthermore compute the polynomial generators explicitly, as
well as the rewrite rules, by first diagonalizing the representation of the group.

Example 4.2. Let G be the subgroup of GLn(K) generated by the single element

Mσ =

⎡
⎢⎢⎢⎢⎢⎣

0 1 0 . . . 0
0 0 1 . . . 0
...

. . .
. . .

...
0 . . . . . . 0 1
1 0 . . . . . . 0

⎤
⎥⎥⎥⎥⎥⎦ .

G is the natural linear representation of the cyclic group of permutations (n,
n− 1, . . . , 1). Mσ is the companion matrix of the polynomial λn − 1, so its eigen-
values are the nth roots of unity. If ξ is a primitive nth root, then a matrix of
eigenvectors is given by Ξ(ξ) =

(
ξij

)
1≤i,j≤n

. Hence

G =
{
Ξdiag

(
ξ, . . . , ξn−1, 1

)�
Ξ−1, � = 0, . . . , n− 1

}
.

The group D is specified by the exponent matrix B =
[
1 2 3 . . . n− 1 0

]
and the order matrix P =

[
n
]
. The Hermite form, normal Hermite multiplier and

inverse for [B,−P ] gives H = [ 1 0 · · · 0],

V =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 n n−2 · · · · · · 1 0
0 0 1 0 · · · · · · 0
0 0 0 1 0 · · · 0
...

...
...

. . .
. . .

. . .
...

...
...

...
. . .

. . . 0
... 0 0 · · · · · · 0 1
0 1 1 . . . . . . 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and W =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2 3 · · · n−1 0 −n
0 −1 −1 · · · −1 0 1
0 1 0 0 · · · 0 0
0 0 1 0 . . . 0 0
...

. . .
. . .

. . .
...

...
...

. . . 1 0
...

0 . . . . . . . . . 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

This gives a set of generating invariants as

g = zVn =
(
zn1 , zn−2

1 z2, zn−3
1 z3, . . . , z1zn−1, zn

)
,

that is, gk = zn−k
1 zk for 1 ≤ k ≤ n, and associated rewrite rules

z → gWd−PdP
−1
u Wu =

(
g

1
n
1 ,

g2

g
n−2
n

1

, . . . ,
gn−1

g
1
n
1

, gn

)
,
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that is,

zk → gk

g
n−k
n

1

, 1 ≤ k ≤ n.

The following n polynomials then generate the field of rational invariants for G:

gk =

(
n∑

i=1

zi
ξi

)n−k ( n∑
i=1

zi
ξki

)
, 1 ≤ k ≤ n,

where ξ is a primitive nth root of unity.
Furthermore, any rational invariants of G can be written in terms of (g1, . . . , gn)

with the substitution(
z1 z2 z3 · · · zn

)t → Ξ(ξ)−1
(
g

1
n
1 , g2 g

2−n
n

1 , . . . , gn−1 g
−1
n

1 , gn

)t

and Ξ(ξ)−1 = 1
n Ξ

(
ξ−1

)
.

Example 4.3. Let G be the subgroup of GLn(K) generated by the matrices ξIn
and Mσ from the previous example, where ξ is a primitive nth root of unity. We
consider its obvious linear action on Kn. As in the previous example this group is
diagonalized via the matrix Ξ(ξ) =

(
ξij

)
1≤i,j≤n

with the corresponding diagonal

subgroup D of GLn(K) generated by

ξIn and Dξ = diag (ξ, ξ2, . . . , ξn−1, 1).

D is then specified by the exponent and order matricesB=

[
1 1 1 . . . 1 1
1 2 3 . . . n− 1 0

]

and P =

[
n 0
0 n

]
. Computing the Hermite form, normal Hermite multiplier and its

inverse for [B,−P ] gives [I2, 0],

V =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 −1 n 0 1 2 · · · n− 2
−1 1 0 n n− 2 n− 3 · · · 2 1
0 0 0 0 1 0 · · · 0 0
0 0 0 0 0 1 0
...

...
. . .

...
...

...
... 1 0

...
... 1

0 0 1 1 1 · · · · · · 1 1
0 0 1 2 2 · · · · · · 2 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

W =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 · · · 1 1 −n 0
1 2 3 · · · n− 1 0 0 −n
0 0 0 · · · 0 −1 2 −1
0 0 −1 · · · −1 0 −1 1
0 0 1 0 · · · 0 0 0
...

... 1
...

...
...

...
. . .

...
...

0 0 1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.
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This gives a set of generating invariants as

g = zVn =
(
zn1 , zn2 , z1z

n−2
2 z3, z21z

n−3
2 z4, . . . , zn−3

1 z22zn−1, zn−2
1 z2zn

)
,

with associated rewrite rules as

z → gWd−PdP
−1B =

(
g

1
n
1 , g

1
n
2 ,

g3

g
1
n
1 g

n−2
n

2

, . . . ,
gn−1

g
n−3
n

1 g
2
n
2

,
gn

g
n−2
n

1 g
1
n
2

)
.

Thus the following n polynomials generate the field of rational invariants of G:

g1 =

(
n∑

i=1

zi
ξi

)n

and gk =

(
n∑

i=1

zi
ξi

)k−2( n∑
i=1

zi
ξ2i

)n−k+1 ( n∑
i=1

zi
ξki

)
, 2 ≤ k ≤ n.

Furthermore, any rational invariants of G can be written in terms of (g1, . . . , gn)
with the substitution(
z1 z2 z3 · · · zn

)t → Ξ(ξ)−1

(
g

1
n
1 g

1
n
2

g3

g
1
n
1 g

n−2
n

2

, . . . , gn−1

g
n−3
n

1 g
2
n
2

gn

g
n−2
n

1 g
1
n
2

)t

.

5. Solving invariant systems of polynomials

We adopt the assumptions of Section 3 regarding K, U = Up1
×· · ·×Ups

, B and
P . In addition let K̄ be an algebraically closed field extension of K.

We consider a set of Laurent polynomials F ⊂ K[z, z−1] and assume that its
set of toric zeros is invariant by the linear (diagonal) action of U defined by B. In
other words we assume that if z ∈ (K∗)n is such that f(z) = 0 for all f ∈ F , then
f(λB � z) = 0, for all λ ∈ U and f ∈ F .

We first show how to obtain an equivalent system of invariant Laurent poly-
nomials. The strategy here partly follows [10, Section 3]. We then show how to
find the toric zeros of a system of invariant Laurent polynomials through a reduced
system of polynomials and a triangular set of binomials. Each solution of the re-
duced system determines an orbit of solutions of the original system. Each orbit
is determined by values for the rational invariants. The elements in each orbit of
solutions is then obtained by solving the binomial triangular set.

Given that we have to partially restrict to toric solutions, it would be natural to
consider methods that deal with Laurent polynomials [28, 32].

The proposed strategy extends to systems of polynomial equations whose solu-
tion set is invariant under a finite abelian group, as for instance cyclic permutations.
We illustrate this with a relevant example.

5.1. Invariant systems of polynomials. We consider a set of Laurent polyno-
mials F ⊂ K[z, z−1] and assume that its set of toric zeros is invariant under the
n-dimensional diagonal representation defined by the exponent matrix B ∈ Z

s×n

and the order matrix P = diag (p1, . . . , ps). In other words, if z ∈ (K̄∗)n is such
that f(z) = 0, ∀f ∈ F , then f(λB � z) = 0, ∀f ∈ F and ∀λ ∈ U = Up1

× · · · × Ups
.

Definition 5.1. The (B,P )-degree of a monomial zu = zu1
1 . . . zun

n defined by

u ∈ Zn is the element of Z = Zp1
× · · · × Zps

given by B u mod t(p1, . . . , ps).
A Laurent polynomial f ∈ K[z, z−1] is (B,P )-homogeneous of (B,P )-degree

d ∈ Z if all the monomials of its support are of (B,P )-degree d.
A Laurent polynomial f ∈ K[z, z−1] can be written as the sum f =

∑
d∈Z fd

where fd is (B,P )-homogeneous of (B,P )-degree d. The Laurent polynomials fd
are the (B,P )-homogeneous components of f .
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The following proposition shows that our simple definition of (B,P )-degree
matches the notion of Z-degree in [10, Section 3.1].

Proposition 5.2. f ∈ K[z, z−1] is (B,P )-homogeneous of (B,P )-degree d if and
only if f

(
λB � z

)
= λdf for all λ ∈ U .

Proof. Consider a monomial zu of (B,P )-degree d, that is, Bu=d mod (p1, . . . , ps).

Then
(
λB � z

)u
= λBuzu = λdzu.

Conversely f
(
λB � z

)u
= λdf implies that all the monomials zu in f are such

that
(
λB � z

)u
= λdzu. Hence B u = d mod

t
(p1, . . . , ps). �

A question raised in [10] is whether there are monomials of any given (B,P )-
degree. If the Hermite normal form of

[
B −P

]
is
[
Is 0

]
, then for any d ∈ Z we

can find monomials of (B,P )-degree d. These are the zu+Vnv where u = Vi d and
v ∈ Z

n. In this section we do not make this assumption as we assume the group
representation given. Yet in Section 6 we show how to obtain a pair of exponent
and order matrices (C,Q) that defines the same group of diagonal n × n matrices
and for which

[
Is 0

]
is the Hermite normal form of

[
C −Q

]
.

The following proposition is a variation on [10, Theorem 4], from which we
borrow the main idea of the proof.

Proposition 5.3. Let F ⊂ K[z, z−1] and Fh = {fd |f ∈ F, d ∈ Zp1
× · · · × Zps

}
be the set of the homogeneous components of the elements of F . If the set of toric
zeros of F is invariant by the diagonal action of U defined by B, then it is equal to
the set of toric zeros of Fh.

Proof. Obviously we have the ideal inclusion (F ) ⊂ (Fh), and thus the zeros of Fh

are included in the set of zeros of F .
Conversely, since f(λB � z) =

∑
d λ

d fd(z) for all λ ∈ U we have a square linear
system (

f(λB � z)
)
λ∈U =

(
λd

)
λ∈U,d∈Z (fd)d∈Z .

With an appropriate ordering of the elements of U and Z the square matrix(
λd

)
λ∈U,d∈Z is the Kronecker product of the Vandermonde matrices(

ξ
(k−1)(l−1)
i

)
1≤k,l≤pi

, for 1 ≤ i ≤ s and ξi a primitive pith root of unity. It is

therefore invertible.
By hypothesis, if z is a toric zero of F , then λB � z is also a toric zero of F for

any λ ∈ U : for f in F and z a toric zero of F , f(λB � z) = 0 for all λ ∈ U . It
follows that fd(z) = 0, for all d. The set of toric zeros of F is thus included in the
set of toric zeros of Fh. �

Proposition 5.4. If f ∈ K[z, z−1] is (B,P )-homogeneous, then there is a u ∈ Z
n

such that f = zuf̄ where f̄ ∈ K[z, z−1] is (B,P )-homogeneous of (B,P )-degree 0,
that is, is invariant.

Starting from a set F of (Laurent) polynomials we can thus deduce a set F̄ of
invariant Laurent polynomials that admit the same set of zeros in (K̄∗)n.

5.2. Systems of invariant polynomials. We consider now a set F of invariant
Laurent polynomials for the diagonal action of U = Up1

× · · · × Ups
given by the

exponent matrix B ∈ Zs×n and the order matrix P = diag (p1, . . . , ps).
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Consider the normalized Hermite multiplier for
[
B −P

]
:

V =

[
Vi Vn

Pi Pn

]
with inverse W =

[
Wu Pu

Wd Pd

]
.

Recall from Lemma 2.3 that Vn is triangular with nonnegative entries. By Theo-
rem 3.3, for each f ∈ F ,

f(z1, . . . , zn) = f
(
(g1(z), . . . , gn(z))

Wd−PdP
−1B

)
,

so there exists a Laurent polynomial f ∈ K[y1, . . . , yn, y
−1
1 , . . . , y−1

n ] such that
f(z1, . . . , zn) = f(g1(z), . . . , gn(z)). This polynomial is given symbolically by

f(y1, . . . , yn) = f
(
(y1, . . . , yn)

Wd−PdP
−1B

)
,

meaning that the fractional powers disappear upon substitution. The polynomial f
is the symmetry reduction of f .

Theorem 5.5. Let F be a set of invariant Laurent polynomials in K[z, z−1] and
consider the set F ⊂ K[y, y−1] of their symmetry reductions.

If z ∈ (K̄∗)n is a zero of F , then zVn is a solution of F. Conversely, if y ∈ (K̄∗)n

is a zero of F, then there exists p1...ps

detH zeros of F in (K̄∗)n that are the solutions of

the triangular system zVn = y.

Proof. The first part comes from the definition of the symmetry reduction: f(z) =
f
(
zVn

)
.

The fact that zVn is triangular follows from Theorem 3.5. Furthermore, the
product of the diagonal entries of Vn equals

∏s
i=1 pi/detH by Corollary 2.4. Hence,

for any y ∈ (K̄∗)n, the system zVn = y has the announced number of solutions in
(K̄∗)n.

For y ∈ (K̄∗)n a zero of F and z ∈ (K̄∗)n a solution of zVn = y we have f(z) =
f(zVn) = f(y) = 0. �

Example 5.6. Continuing with Example 3.4, we have that the symmetry reduc-
tions of F = {f1, f2, f3},

f1 = z1
2z2

2z3
2 − z2

3 − z1 z2 z3 + 8, f2 = z1
2z2

2z3
2 − z2

3 + 7,

f3 = z61z
3
2z

3
3 − 3z41z

4
2z3 + z61 + 32z31 + z32 ,

are given by F = {f1, f2, f3} where

f1 = y3
2−y2 − y3 + 8, f2 = y3

2−y2 + 7, f3 = y1y3
3 − 3y1y2y3 + y21 + 32y1 + y2.

The toric zeros of F are the two points (y1, y2, y3) = (−8, 8, 1) and (y1, y2, y3) =
( −1, 8, 1). Solving the triangular systems

z31 = −8, z32 = 8, z1z2z3 = 1 and z31 = −1, z32 = 8, z1z2z3 = 1

then gives eighteen toric zeros of F .
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5.3. Extension to nondiagonal representations - an example. In view of
Section 4 it is obvious that we can extend our scheme to solve polynomial systems
to the case where the zeros are invariant under any linear action of a finite abelian
group. We illustrate this in an example.

Consider the following system of polynomial equations:

1− cx1 − x1x
2
2 − x1x

2
3 = 0

1− cx2 − x2x
2
1 − x2x

2
3 = 0(7)

1− cx3 − x3x
2
1 − x3x

2
2 = 0

with c a parameter. This is a system describing a neural network model given in
[31], and the solutions were given in Gatermann [14]. The strategy there was to
use the symmetry to find a factorization of polynomials in the ideal and split the
Gröbner basis computation accordingly. As a result, the twenty-one solutions of
the system are given by five triangular sets. We use this system to illustrate our
alternate scheme.

Our approach is a symmetry reduction scheme. It first characterizes the orbits of
solutions by computing the values of the rational invariants on the solutions. The
elements of each orbit of solutions are then retrieved through a triangular system.

The set of zeros of this neural network system are easily seen to be invariant
under the cyclic group generated by the permutation σ = (321). Diagonalizing
this linear group action is done via the matrix Ξ(ξ) =

(
ξij

)
1≤i,j≤3

where ξ is a

primitive cube root of unity. It implies the change of variable x = Ξ(ξ) z. The
diagonal action of the group is determined by the exponent matrix B = [1 2 0] and
order matrix P = [3] with invariants and rewrite rules then determined in Example
4.2.

Applying the change of variables to the polynomials in system (7) we obtain
polynomials f0 − ξf1 − ξ2f2, f0 − ξ2f1 − ξf2, and f0 − f1 − f2, where

f0 = 1− cz3 + z31 + z32 − 2z33

f1 = cz1 + 3z21z2 − 3z22z3(8)

f2 = cz2 + 3z1z
2
2 − 3z21z3.

Note that fi is (B,P )-homogeneous of degree i, for 0 ≤ i ≤ 2. By Proposition 5.3
the original system is thus equivalent to the system given by f0, f1 and f2.

The statement in Theorem 5.5 is made for toric zeros, but one can refine this
statement by tracking the denominators involved in the rewriting rules. Here, one
can refine to the statement for the solutions (z1, z2, z3) ∈ C∗×C×C and localize at z1
only (i.e. allow ourselves to divide by z1 only). The reduced system corresponding

to the set of invariants
{
f0,

f1
z1
, f2

z2
1

}
is given by

f0 = 1 + y1 − cy3 − 2y23 +
y32
y1

, f1 = c+ 3y2 − 3
y22y3
y1

, f2 = −3y3 + c
y2
y1

+ 3
y22
y1

.

This system has 6 = 2 + 4 zeros. They are given as the union of the solutions of
the two triangular sets4

(9) y3 = 0, y2 =
c

3
, y21 + y1 −

c3

27
= 0;

4These were quickly computed with Gröbner bases and factorization.
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and

162 c y43 − 54 y33 + 81 c2 y23 − 108 c y3 + 4 c3 + 27 = 0,

y2 = − 81 c

49 c3 − 27
y33 −

14 c3

49c3 − 27
y23 −

93 c2

2(49 c3 − 27)
y3 −

c (70 c3 − 243)

6 (49 c3 − 27)
,(10)

y1 = y33 +
c

2
y3 −

1

2
.

Recall that the variable yi stands for the generating invariants. The polynomial
set (8) thus has six orbits of zeros, that is, eighteen solutions, where x1

ξ + x2

ξ2 +x3 �= 0.

The elements of an orbit determined by a solution (y1, y2, y3) of either (9) or (10)
are obtained by additionally solving the binomial triangular system given by the
generating invariants:

z31 = y1, z1z2 = y2, z3 = y3.

By linear combinations x = Ξ z we obtain eighteen solutions of the original system
(7) organized in six orbits.

For completeness one should also examine the solutions of (8) for which z1 = 0.
Here, it is immediate to see that there are three solutions satisfying z1 = 0, z2 =
0, 2 z33 + c z3 − 1 = 0. They each form an orbit. The corresponding solutions of the
original system are then

x1 = x2 = x3 = η, for 2 η3 + c η − 1 = 0.

6. Determining groups of homogeneity

In this section we consider the problem of finding the diagonal matrix groups
that leave a finite set of rational functions invariant. This can be used to determine
weights and orders that make a system of (Laurent) polynomial equations homoge-
neous for a grading by an abelian group. Indeed f = a0x

u0 + a1x
u1 + · · ·+ adx

ud ,
with a0 �= 0, is homogeneous if and only if f̃ = a0 + a1x

u1−u0 + · · · + adx
ud−u0 is

invariant for the diagonal representations considered.
This is somehow the inverse problem to Section 3. For the symmetry reduc-

tion scheme offered in Section 5, the group action was assumed to be known. On
one hand, indeed, permutation groups naturally arise in the formulation of some
problems, and it is reasonable to assume that some symmetries of the solution set
are known. This is the case of the system presented in Section 5.3. On the other
hand, different concepts of homogeneity come as a practical means for enhancing
the efficiency of Gröbner bases computations [9,10] or to propose symmetry reduc-
tion schemes as in [21, Section 5] and Section 5 above. Given the simplicity of the
algorithm we give here to determine the weights of homogeneity, it is worth going
through this preliminary step before attempting to solve a polynomial system.

A remarkable feature is that we determine simultaneously a generating set of
invariants for the underlying representation and the rewrite rules. Also, the group
obtained is given in its normalized form and its representation is faithful. The same
construction provides a canonical representation for a given finite group of diagonal
matrices.

Consider f = p
q ∈ K(z), where p, q ∈ K[z] are relatively prime, and pick w in the

support of p or q. Let Kf be the matrix whose columns consist of the vectors v−w
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for all v in the support of p and q (with v �= w). By Lemma 3.2, f is invariant for
the diagonal group action determined by the exponent matrix B and order matrix

P = diag (p1, . . . , ps) if BKf = 0 mod
t [
p1 . . . ps

]
.

In the case of a finite set F of rational functions we can associate a matrix
Kf to each element f ∈ F as previously described and define the block matrix
K = [Kf |f ∈ F ]. If K does not have full row rank, then there exists a diagonal
action of some (K∗)r; i.e. a scaling, that leaves the rational functions f ∈ F
invariants. This situation is dealt with in [22, Section 5]. A related construction
appears in [1] for initial ideals. Hence, for the rest of this section, we assume that
K has full row rank and we look for the diagonal representations of finite abelian
groups that leave each element of F invariant.

ForK ∈ Zn×m a full row rank matrix of integers, there exist unimodular matrices
U ∈ Zn×n, V ∈ Zm×m such that U K V is in Smith normal form; i.e. U K V =[
S 0

]
where either S = In or there exists s ≤ n such that

S = diag (1, . . . , 1, p1, . . . , ps) with pi �= 1 and pi | pi+1 for i = 1 . . . s− 1.

The former case cannot happen when there is a group of diagonal matrices for
which F is invariant.

Proposition 6.1. If there exists a = [a1, . . . , an] ∈ Z1×n and p ∈ N such that
gcd(a1, . . . , an, p) = 1 and aK = 0 mod p, then the Smith normal form of K has
a diagonal entry different from 1.

Proof. Let U and V be the unimodular multipliers for the Smith normal form; i.e.
U K V = [S 0] where S = diag (s1, . . . , sn). Then aK V = (aU−1)U K V = 0
mod p. Since U is unimodular, gcd(b1, . . . , bn, p) = 1 where [b1, . . . , bn] = aU−1.
Therefore at least one bi is not a multiple of p. Yet we have bi si = 0 mod p.
Therefore si cannot be equal to 1. �

Theorem 6.2. Consider F a set of rational functions in K(z1, . . . , zn) such that
an associated matrix K for the exponents in F is of full row rank. Suppose the
Smith normal form of K is given by U K V =

[
S 0

]
where

S = diag (1, . . . , 1, p1, . . . , ps) with pi �= 1 and pi | pi+1 for i = 1 . . . s− 1.

Consider the partitions

U =

[
C
B

]
and U−1 =

[
U0 U1

]
where C ∈ Z

(n−s)×n, B ∈ Z
s×n

and U0 ∈ Z
n×(n−s), U1 ∈ Z

n×s.

Then :

(i) The elements of F are invariants for the diagonal representation deter-
mined by the order matrix P = diag (p1, . . . , ps) and the exponent matrix B
consisting of the last s rows of U .

(ii) The components of [g1, . . . , gn] = z[U0 U1P ] form a minimal generating
set of invariants for the diagonal representation defined by B and P .

(iii) For any invariant f ∈ K(z) of the diagonal representation defined by B and
P ,

f(z) = f

(
g

[
C

P−1B

])
.
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Proof. Write U K =
[
S 0

]
V −1 and partition V −1 as

V −1 =

⎡
⎣V0

V1

V2

⎤
⎦

where V0 has n− s rows and V1 has s rows. Then BK = PV1 and that proves (i).
For (ii) and (iii) we apply Theorem 3.3. The Hermite form and multiplier of[

B −P
]
is given by

[
B −P

] [U1 U0 U1P
0 0 Is

]
=

[
Is 0

]
,

and the inverse of the above Hermite multiplier is determined via⎡
⎣B −P
C 0
0 Is

⎤
⎦[

U1 U0 U1P
0 0 Is

]
= In+s.

Thus Vn =
[
U0 U1P

]
, Wd =

[
C
0

]
, Pd =

[
0
Is

]
, so that Wd − PdP

−1B =[
C

P−1B

]
. �

We remark that a similar proof shows that there exists a different Hermite mul-
tipler such that Vn = K V̂ , where V̂ consists of the n first columns of V . This gives
an alternative set of generating invariants.

Theorem 6.2 thus allows one to construct the matrices defining a diagonal rep-
resentation of a finite group of symmetry while at the same time constructing the
matrices defining respectively a generating set of invariants and the rewrite rules.
The Smith form in Theorem 6.2 thus gives all the information needed for the sym-
metry reduction of the polynomial system defining K as described in Section 5.

Example 6.3. In order to find an exponent matrix B and order matrix P deter-
mining the symmetry for the equations in Example 3.4 the matrix of differences on
the exponents of the terms is given by

K =

⎡
⎣ 2 1 0 2 0 3 −3 3 1

2 1 3 2 3 0 3 3 4
2 1 0 2 0 0 0 3 1

⎤
⎦ .

The Smith normal form S of K along with its left unimodular multiplier U are

S =

⎡
⎣ 1 0 0 0 0 0 0 0 0

0 3 0 0 0 0 0 0 0
0 0 3 0 0 0 0 0 0

⎤
⎦ and U =

⎡
⎣ 1 0 0

−2 1 1
1 −1 0

⎤
⎦ .

Taking the last two rows of U and S then gives the exponent and order matrices.
They are equivalent to

B =

[
1 1 1
1 2 0

]
and P =

[
3 0
0 3

]
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since ξ−1 = ξ2 for any cubic root of unity. The underlying symmetry group is
Z3 × Z3. In this case

Vn = [ U0 U1P ] =

⎡
⎣ 1 0 0

1 0 −3
1 3 3

⎤
⎦ ,

which, after normalization, is column equivalent to the Vn given in Example 3.4.

7. Conclusion

In this paper we have investigated the computational aspects of rational invari-
ants of the linear actions of finite abelian groups taking advantage of their diagonal
representations. The close relation of such group actions to scalings previously
studied by the authors [21, 22] prompted us to make use of integer linear algebra
to compute invariants and rewrite rules. The primary tool used is the Hermite
normal form of a matrix derived from both the exponents of the diagonal represen-
tations and the orders of the generators of the group. The unimodular multipliers
determine both invariants and rewrite rules. As an application of our methods
we showed how to reduce a system of polynomial equations to a new system of
polynomial equations in the invariants.

We provided a minimal set of generators for the field of rational invariants of
the linear action of a finite abelian group in terms of polynomials and discussed
how to extend it to a set of generators for the ring of polynomial invariants. Our
construction could also be applied to compute the separating set described in [30]
by running the computation with different orderings of the variables.

In the present approach for abelian groups, we obtained a minimal set of gener-
ating invariants by introducing a root ξ of unity. This gives a direct constructive
proof of the rationality of the field of invariants over K(ξ) [4,12]. A significant ben-
efit of our approach is that it provides a simple mechanism to rewrite any rational
invariants in terms of the exhibited generators. The question we might address is to
determine a generating set of invariants over K, in which case the field of invariants
no longer needs to be rational [26, 39].

As for integer linear algebra, we are curious about the possible use of alternate
unimodular multipliers. For example what does it mean in this context to normalize
Vn by LLL reduction rather than by Hermite computation. Similarly the Hermite
form of [B − P ] is closely related (c.f. [2]) to the Howell form of the matrix B
[16,37], and a similar question can be asked here. Finally, in some applications the
matrix of exponents is sparse, and hence there is a need to make use of normalized
Hermite forms for sparse matrices.
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Gröbner bases by change of ordering, J. Symbolic Comput. 16 (1993), no. 4, 329–344, DOI
10.1006/jsco.1993.1051. MR1263871 (94k:68095)

[9] J.-C. Faugère, M. Safey El Din, and T. Verron, On the complexity of computing Gröbner
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