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Chapter 1

Introduction

1.1 Why a list of Frequently Asked Questions?

The Net, as users call the Internet, and specially newsgroups, (i.e. Usenet) created a demand of
knowledge without parallel since the invention of the printing press. Surprisingly, the type of
knowledge demanded from and by the Usenet community had, in most cases, little in common –
both in structure and content– with that of printed in current publications. This defined Usenet
as more of an alternative to books rather than a replacement thereof1

In the Net, questions posed are, more often than not, at the level of an amateur practitioner
–even in cases where the question was posed by a professional in the field. Similarly, the quality
of the answers varies greatly, ranging from the incorrect or disrespectful, to summaries of the
state of the art in the topic in question.

Other characteristics of communication on the Net are simply inherited from restrictions of
the medium. The unit of knowledge is a screenful worth of text (a scrit, from screen and bit).
Articles exceeding that limit are usually disregarded.

The lack of memory of the medium generates a repetition of topics, much to the chagrin of
old time citizens of the Net. Frequently asked questions lists palliate some of these deficiencies
by providing a record of relevant information while at the same time never being outdated.

Thus, typically a list of frequently asked questions is “posted” at least once a month, and
updated at least as frequently. And, in what must be a first for an information based product,
FAQ lists “expire” on a given date, very much like any other perishable item.

1.2 Frequently Asked Questions in Mathematics?

If I had to describe the contents of the FAQ in Mathematics in a single sentence, I would call it
mathematical gossip or perhaps non-trivial mathematical trivia.

The FAQ list is a compilation of knowledge of interest to most professional and amateur
mathematicians, ranging from advanced topics such as Wiles’ proposed proof to Fermat’s Last
Theorem to the list of Fields Medal winners.

1It could be argued that books fulfill their mandate and purpose to everybody’s satisfaction. Thus, even
though the Net could, in principle, replace the need for books, people choose not to do so. Instead it’s domain is
defined, by its very nature to be disjoint from books.
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Chapter 2

Fundamentals

2.1 Algebraic structures

We will attempt to give a brief explanation of the following concepts:

• N is a monoid

• Z is an integral domain

• Q is a field

• in the field R the order is complete

• the field C is algebraically complete

If you have been asked by a child to give them arithmetic problems, so they could show off
their newly learned skills in addition and subtraction I’m sure that after a few problems such
as: 2 + 3, 9− 5, 10 + 2 and 6− 4, you tried tossing them something a little more difficult: 4− 7
only to be told “That’s not allowed.”

What you may not have realized is that you and the child did not just have different objects
in mind (negative numbers) but entirely different algebraic systems. In other words a set of
objects (they could be natural numbers, integers or reals) and a set of operations, or rules
regarding how the numbers can be combined.

We will take a very informal tour of some algebraic systems, but before we define some of
the terms, let us build a structure which will have some necessary properties for examples and
counterexamples that will help us clarify some of the definitions.

We know that any number that is divided by six will either leave a remainder, or will be
divided exactly (which is after all the remainder 0). Let us write any number by the remainder
n it leaves after division by six, denoting it as [n]. This means that, 7, 55 and 1 will all be
written [1], which we call the class to which they all belong: i.e. 7 ∈ [1], 55 ∈ [1], or, a bit more
technically, they are all equivalent to 1 modulo 6. The complete set of class will contain six
elements, and this is called partitioning numbers into equivalent classes because it separates (or
partitions) all of our numbers into these classes, and any one number in a class is equivalent to
any other in the same class.

One interesting thing we can do with these classes is to try to add or to multiply them. What
can [1] + [3] mean? We can, rather naively try out what they mean in “normal” arithmetic:
[1] + [3] = [1 + 3] = [4]. So far so good, let us try a second example 25 ∈ [1] and 45 ∈ [3], their
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sum is 70 which certainly belongs to [4]. Here we see what we meant above by equivalence, 25
is equivalent to 1 as far as this addition is concerned. Of course this is just one example, but
fortunately it can be proven that the sum of two classes is always the class of the sums.

Now this is the kind of thing we all do when we add hours for example, 7 (o’ clock) plus 6
hours is 1 (o’ clock), and all we are really doing is adding hours (modulo 12).

The neat part comes with multiplication, as we will see later on. But for now just remember,
it can be proven that something like [4] × [5] = [2] will work: the product of two classes is the
class of the product.

Now for some of the necessary terminology.

2.1.1 Monoids and Groups

We need to define a group.
Let us take a set of objects and a rule (called a binary operation) which allows us to combine

any two elements of this set. Addition is an example from math, or ANDing in some computer
language.

The set must be closed under the operation. That means that when two elements are
combined the result must also be in the set. For example the set containing even numbers
will always give us an even number when two elements are added together. But if we restrict
ourselves to odd numbers, their sum is not an odd number and so we know right off the bat
that the set of odd numbers and addition cannot constitute a group. Some books will consider
closure in the definition of binary operation, and others add it as one of the requirements for a
group along with the ones that follow below.

The set and the operation is called a group if the binary operation satisfies the following
criteria:

• the operation is associative, which means it doesn’t matter how you group the elements
you are operating on, for example in our set of remainders: [1]+([3]+[4]) = ([1]+[3])+[4]

• there is an identity element, meaning: one of the elements combined with the others in
the set doesn’t change them in the least. For example the zero in addition, or the one in
multiplication.

• every element has an inverse with respect to that operation. If you combine an element
and its inverse you get the identity (of that operation) back.

(Be careful with this last one, −3 is the inverse of 3 in addition, since they give us 0 when
added, but 1/3 is the inverse of 3 with respect to multiplication, since 3× 1/3 = 1 the identity
under multiplication.)

So we can see that the set of natural numbers N(with the operation of addition) is not even
a group, since there is no inverse for 5, for example. (In other words there is no natural number
which added to 5 will give us zero.) And so the third rule for our operation is violated. But it
still has some structure, even if it is not as rich as the ones we’ll see later on.

Sets with an associative operation (the first condition above) are called semigroups, and if
they also have an identity element (the second condition) then they are called monoids.

Our set of natural numbers under addition is then an example of a monoid, a structure that
is not quite a group because it is missing the requirement that every element have an inverse
under the operation (Which is why in elementary school 4− 7 is not allowed.)
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What about the set of integers, is it a group?
By itself this question is nonsensical. Why? Well, we have not mentioned under what

operation. OK, let us say: the set of integers with addition.
Now, addition is associative, the zero does not change any number when added to it, and

for every number n we can add −n and get zero. So it’s a group all right.
In fact it is a special kind of group. When we can perform the operation on the two elements

in any order (e.g a + b = b + a) then the group is called commutative, or Abelian in honor of
Abel. Not every operation is commutative, for example three minus two is certainly not the
same as two minus three. Our set of integers under addition is then an Abelian group.

2.1.2 Rings

If we take an Abelian group (remember: a set with a binary operation) and we define a second
operation on it we get a bit more of a structure than we had with just a group.

If the second operation is associative, and it is distributive over the first then we have a
ring. Note that the second operation may not have an identity element, nor do we need to find
an inverse for every element with respect to this second operation. As for what distributive
means, intuitively it is what we do in math when perform the following change: a × (b + c) =
(a× b) + (a× c).

If the second operation is also commutative then we have what is called a commutative
ring. The set of integers (with addition and multiplication) is a commutative ring (with even
an identity - called unit element - for multiplication).

Now let us go back to our set of remainders. What happens if we multiply [5]× [1]? We see
that we get [5], in fact we can see a number of things according to our definitions above, [5] is its
own inverse, and [1] is the multiplicative element. We can also show easily enough (by creating
a complete multiplication table) that it is commutative. But notice that if we take [3] and [2],
neither of which are equal to the class that the zero belongs to [0], and we multiply them, we
get [3] × [2] = [0]. This bring us to the next definition. In a commutative ring, let us take an
element which is not equal to zero and call it a. If we can find a non-zero element, say b that
combined with a equals zero ( a× b = 0) then a is called a zero divisor.

A commutative ring is called an integral domain if it has no zero divisors. Well the set Z
with addition and multiplication fullfills all the necessary requirements, and so it is an integral
domain. Notice that our set of remainders is not an integral domain, but we can build a similar
set with remainders of division by five, for example, and voilà, we have an integral domain.

Let us take, for example, the set Q of rational numbers with addition and multiplication -
I’ll leave out the proof that it is a ring, but I think you should be able to verify it easily enough
with the above definitions. But to give you a head start, notice the addition of rationals follow
all the requirements for an abelian group. If we remove the zero we will have another abelian
group, and that implies that we have something more than a ring, in fact, as we will see in the
next section.

2.1.3 Fields

Now we can make one step further. If the elements of a ring, excluding the zero, form an abelian
group (with the second operation) then it is a field. For example, write the multiplication table
of the remainders of division by 5, and you will see that it satisfies all the requirements for a
group: (You will probably have noticed that the group does not contain the number five itself
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since [5] = [0].)
1 2 3 4

1 1 2 3 4
2 2 4 1 3
3 3 1 4 2
4 4 3 2 1

(Why isn’t the set of divisors of six - excluding the zero and under multiplication - a group?
That’s easy enough, since we have excluded the zero we do not have the result of [2]× [3] in our
set, so it isn’t closed.)

2.1.4 Ordering

Given a ring, we can say that it is ordered when you have a special subset of that ring behaves
in a very special way. If any two elements of that special subset are added or multiplied their
sum and their product are again in the special subset. Take the negative numbers in R, can
they be that special subset? Well the sum seems to be allright, it is also a negative number.
But things don’t work with the product: it is positive. What about the positive numbers? Yep,
and in fact we call that special subset, the set of positive elements. Now, we gave the definition
for an ordered ring, we can also define an ordered field the same way.

But what does a complete ordered field mean? Well the definition looks rather nasty: it is
complete if every non-empty subset which posesses an upper bound has a least upper bound.

Let’s translate some of that, trying to lose as little information on the way. A bound is
something that guarantees that all of the elements of your set are on one side of it (reasonably
enough). For example, certainly all negative reals are less than 100, so 100 is a bound (it is in
fact an upper bound ’cause all negatives are “below” it). But there are lots of other bounds, 1,
5, 26 will all do nicely. The question now is, of all of these (upper bounds) which is the smallest,
that is which one is “the border” so to speak? Does it always exists?

Let’s take the rationals, and look at the following numbers:

1.4, 1.41, 1.414, 1.4142, 1.41421, . . .

Now each of these is a rational number (it can be written as a fraction), and they are getting
closer and closer to a number we’ve probably seen before (just take out your calculator and find
the square root of two). So we can write the shorthand for this series as

√
2. Certainly we can

find an upper bound for this series, 3 will do nicely, but so can 1.5, or 1.42. But what is the
smallest. Well there isn’t any. Not among the rational at least, because no matter what fraction
you give I can give you one closer to the square root of two. What about the square root of
two itself? Well it’s not a rational number (I’ll skip the proof, but it is really rather easy) so
you can’t use it. If you want another series which is really neat look at the section on “Euler’s
formula” in the FAQ.

And that is where the reals come in. Any set or reals that is bounded you can certainly find
the smallest of these bounds. (By the way this “least upper bound” is abbreviated “l.u.b.”, or
“sup” for supremum.) We can also turn things around and talk of lower bounds, and of the
largest of these etc. but most of that will be just a mirror image of what we have dealt with so
far.

So that should be it. And for years that did seem to be it, we seemed to have all the numbers
we’d ever care to have.
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There was just one small stick in the works, but most people just sort of pretended not to
notice, and that was that not all polynomials had solutions. One simple polynomial of this
kind is x2 + 1 = 0. It’s so simple, yet there’s no self respecting number that would solve this
polynomial. There were these funny answers which seemed like they should be solutions but no
one could make any sense out of them, so they were considered imaginary solutions. Which was
really too bad because they were given the name of imaginary numbers and now that the name
stuck we realize that they are numbers just as good as any of the ones we have been using for
centuries. And in fact that takes us to the last great pinnacle in this short excursion. The field
of complex numbers.

We can define an algebraically closed field as a field where every nonconstant polynomial
(i.e. one with an x in it from high school days) has a zero in the field. Whew! This in short
means that as long as the polynomial is not a constant number (which is no fun anyways) but
something which looks like it wants a solution, like 5x3 − 2x2 + 6 = 0 it will always have one, if
you are working with complex numbers and not just reals.

There is another definition which is probably just as good, but may or may not be easier:
A field is algebraically closed if every polynomial splits into linear factors. Linear factors are
briefly factors not containing x to any power of two or higher, in other words in the form: ax+b.
For example x2 + x − 6 can be factored as (x + 3)(x − 2), but if we are in the field of reals we
cannot factor x2 + 1, but we can in the field of complex numbers: x2 + 1 = (x− i)(x+ i), where,
you may recall, i2 = −1.

2.2 What are numbers?

2.2.1 Introduction

Informally:

• N = {0, 1, . . .} or N = {1, 2, . . .}
Wether 0 is in N depends on where you live and what is your field of interest. At the
informal level it is a religious topic.

• Z = {. . . ,−1, 0, 1, . . .}

• Q = {p/q|p, q ∈ Z and q 6= 0}

• R = {d0.d1d2 . . . |d0 ∈ Z and 0 ≤ di ≤ 9 for i > 0}

• C = {a+ b · i|a, b ∈ R and i2 = −1}

2.2.2 Construction of the Number System

Formally (following the mainstream in math) the numbers are constructed from scratch out of the
axioms of Zermelo Fraenkel set theory (a.k.a. ZF set theory) [Enderton77, Henle86, Hrbacek84].
The only things that can be derived from the axioms are sets with the empty set at the bottom
of the hierarchy. This will mean that any number is a set (it is the only thing you can derive from
the axioms). It doesn’t mean that you always have to use set notation when you use numbers:
just introduce the numerals as an abbreviation of the formal counterparts.

The construction starts with N and algebraically speaking, N with its operations and order
is quite a weak structure. In the following constructions the structures will be strengthen one
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step at the time: Z will be an integral domain, Q will be a field, for the field R the order will
be made complete, and field C will be made algebraically complete.

Before we start, first some notational stuff:

• a pair (a, b) = {{a}, {a, b}},

• an equivalence class [a] = {b|a ≡ b},

• the successor of a is s(a) = a ∪ {a}.

Although the previous notations and the constructions that follow are the de facto standard
ones, there are different definitions possible.

2.2.3 Construction of N

• {} ∈ N

• if a ∈ N then s(a) ∈ N

• N is the smallest possible set such that the preceding rules hold.

Informally n = {0, . . . , n− 1} (thus 0 = {}, 1 = {0}, 2 = {0, 1}, 3 = {0, 1, 2}). We will refer to
the elements of N by giving them a subscript n. The relation <n on N is defined as: an <n bn
iff an ∈ bn. We can define +n as follows:

• an +n 0n = an

• an +n s(bn) = s(an +n bn)

Define ∗n as:

• an ∗n 0n = 0n

• an ∗n s(bn) = (an ∗n bn) +n an

2.2.4 Construction of Z

We define an equivalence relation on N ×N : (an, bn) ≡z (cn, dn) iff an +n dn = cn +n bn. Note
that ≡z “simulates” a subtraction in N . Z = {[(an, bn)]z|an, bn ∈ N}. We will refer to the
elements of Z by giving them a subscript z. The elements of N can be embedded as follows:
embedn : N → Z such that embedn(an) = [(an, 0n)]z. Furthermore we can define:

• [(an, bn)]z <z [(cn, dn)]z iff an +n dn <n cn +n bn

• [(an, bn)]z +z [(cn, dn)]z = [(an +n cn, bn +n dn)]z

• [(an, bn)]z ∗z [(cn, dn)]z =
[((an ∗n cn) +n (bn ∗n dn), (an ∗n dn) +n (cn ∗n bn))]z
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2.2.5 Construction of Q

We define an equivalence relation on Z × (Z\{0z}): (az, bz) ≡q (cz, dz) iff az ∗z dz = cz ∗z bz.
Note that ≡q “simulates” a division in Z. Q = {[(az, bz)]q|az ∈ Z and bz ∈ Z\{0z}}. We will
refer to the elements of Q by giving them a subscript q. The elements of Z can be embedded as
follows: embedz : Z → Q such that embedz(az) = [(az, 1z)]q. Furthermore we can define:

• [(az, bz)]q <q [(cz, dz)]q iff az ∗z dz <z cz ∗z bz
when 0z <z bz and 0z <z dz

• [(az, bz)]q +q [(cz, dz)]q = [((az ∗z dz) +z (cz ∗z bz), bz ∗z dz)]q

• [(az, bz)]q ∗q [(cz, dz)]q = [(az ∗z cz, bz ∗z dz)]q

2.2.6 Construction of R

The construction of R is different (and more awkward to understand) because we must ensure
that the cardinality of R is greater than that of Q.
Set c is a Dedekind cut iff

• {} ⊂ c ⊂ Q (strict inclusions!)

• c is closed downward:
if aq ∈ c and bq <q aq then bq ∈ c

• c has no largest element:
there isn’t an element aq ∈ c such that bq <q aq for all bq 6= aq ∈ c

You can think of a cut as taking a pair of scissors and cutting Q in two parts such that one
part contains all the small numbers and the other part contains all large numbers. If the part
with the small numbers was cut in such a way that it doesn’t have a largest element, it is called
a Dedekind cut. R = {c|c is a Dedekind cut}. We will refer to the elements of R by giving
them a subscript r. The elements of Q can be embedded as follows: embedq : Q→ R such that
embedq(aq) = {bq|bq <q aq}. Furthermore we can define:

• ar <r br iff ar ⊂ br (strict inclusion!)

• ar +r br = {cq +q dq|cq ∈ ar and dq ∈ br}

• −rar =
{bq| there exists an cq ∈ Q such that bq <q cq and (−1)q ∗q cq 6∈ ar}

• |ar|r = ar ∪ −rar

• ∗r is defined as:

– if not ar <r 0r and not br <r 0r
then ar ∗r br = 0r ∪ {cq ∗q dq|cq ∈ ar and dq ∈ br}

– if ar <r 0r and br <r 0r then ar ∗r br = |ar|r ∗r |br|r
– otherwise ar ∗r br = −r(|ar|r ∗r |br|r)
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There exists an alternative definition of R using Cauchy sequences: a Cauchy sequence is a
s : N → Q such that s(in)+q ((−1)q ∗q s(jn)) can be made arbitrary near to 0q for all sufficiently
large in and jn. We will define an equivalence relation ≡r on the set of Cauchy sequences as:
r ≡r s iff r(mn)+q ((−1)q ∗q s(mn)) can be made arbitrary close to 0q for all sufficiently large mn.
R = {[s]r|s is a Cauchy sequence}. Note that this definition is close to “decimal” expansions.

2.2.7 Construction of C

C = R × R. We will refer to the elements of C by giving them a subscript c. The elements of
R can be embedded as follows: embedr : R → C such that embedr(ar) = (ar, 0r). Furthermore
we can define:

• (ar, br) +c (cr, dr) = (ar +r cr, br +r dr)

• (ar, br) ∗c (cr, dr) = ((ar ∗r cr) +r −r(br ∗ dr), (ar ∗r dr) +r (br ∗r cr))

There exists an elegant alternative definition using ideals. To be a bit sloppy: C = R[x]/ <
(x ∗r x) +r 1r >, i.e. C is the resulting quotient ring of factoring ideal < (x ∗r x) +r 1r > out
of the ring R[x] of polynomials over R. The sloppy part is that we need to define concepts like
quotient ring, ideal, and ring of polynomials. Note that this definition is close to working with
i2 = −1: (x ∗r x) +r 1r = 0r can be rewritten as (x ∗r x) = (−1)r.

2.2.8 Rounding things up

At this moment we don’t have that N is a subset of Z, Z of Q, etc. But we can get the inclusions
if we look at the embedded copies of N , Z, etc. Let

• N ′ = ran embedr ◦ embedq ◦ embedz ◦ embedn

• Z ′ = ran embedr ◦ embedq ◦ embedz

• Q′ = ran embedr ◦ embedq

• R′ = ran embedr

For these sets we have N ′ ⊆ Z ′ ⊆ Q′ ⊆ R′ ⊆ C. Furthermore these sets have all the properties
that the “informal” numbers have.

2.2.9 What’s next?

Well, for some of the more alien parts of math we can extend this standard number system with
some exotic types of numbers. To name a few:

• Cardinals and ordinals
Both are numbers in ZF set theory [Enderton77, Henle86, Hrbacek84] and so they are sets
as well. Cardinals are numbers that represent the sizes of sets, and ordinals are numbers
that represent well ordered sets. Finite cardinals and ordinals are the same as the natural
numbers. Cardinals, ordinals, and their arithmetic get interesting and “tricky” in the case
of infinite sets.
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• Hyperreals
These numbers are constructed by means of ultrafilters [Henle86] and they are used in
non-standard analysis. With hyperreals you can treat numbers like Leibnitz and Newton
did by using infinitesimals.

• Quaternions and octonions
Normally these are constructed by algebraic means (like the alternative C definition that
uses ideals) [Shapiro75, Dixon94]. Quaternions are used to model rotations in 3 dimensions.
Octonions, a.k.a. Cayley numbers, are just esoteric artifacts :-). Well, if you know where
they are used for, feel free to contribute to the FAQ.

• Miscellaneous
Just to name some others: algebraic numbers [Shapiro75], p-adic numbers [Shapiro75],
and surreal numbers (a.k.a. Conway numbers) [Conway76].

Cardinals and ordinals are commonly used in math. Most mortals won’t encounter (let alone
use) hyperreals, quaternions, and octonions.
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Chapter 3

Number Theory

3.1 Fermat’s Last Theorem

3.1.1 History of Fermat’s Last Theorem

Pierre de Fermat (1601-1665) was a lawyer and amateur mathematician. In about 1637, he
annotated his copy (now lost) of Bachet’s translation of Diophantus’ Arithmetika with the
following statement:

Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et
generaliter nullam in infinitum ultra quadratum potestatem in duos ejusdem nominis
fas est dividere: cujus rei demonstrationem mirabilem sane detexi. Hanc marginis
exiguitas non caperet.

In English, and using modern terminology, the paragraph above reads as:

There are no positive integers such that xn + yn = zn for n > 2. I’ve found a
remarkable proof of this fact, but there is not enough space in the margin [of the
book] to write it.

Fermat never published a proof of this statement. It became to be known as Fermat’s Last
Theorem (FLT) not because it was his last piece of work, but because it is the last remaining
statement in the post-humous list of Fermat’s works that needed to be proven or independently
verified. All others have either been shown to be true or disproven long ago.

3.1.2 What is the current status of FLT?

Theorem 1 (Fermat’s Last Theorem) There are no positive integers x, y, z, and n > 2
such that xn + yn = zn.

Andrew Wiles, a researcher at Princeton, claims to have found a proof. The proof was presented
in Cambridge, UK during a three day seminar to an audience which included some of the
leading experts in the field. The proof was found to be wanting. In summer 1994, Prof. Wiles
acknowledged that a gap existed. On October 25th, 1994, Prof. Andrew Wiles released two
preprints, Modular elliptic curves and Fermat’s Last Theorem, by Andrew Wiles, and Ring
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theoretic properties of certain Hecke algebras, by Richard Taylor and Andrew Wiles. The first
one (long) announces a proof of, among other things, Fermat’s Last Theorem, relying on the
second one (short) for one crucial step.

The argument described by Wiles in his Cambridge lectures had a serious gap, namely the
construction of an Euler system. After trying unsuccessfully to repair that construction, Wiles
went back to a different approach he had tried earlier but abandoned in favor of the Euler system
idea. He was able to complete his proof, under the hypothesis that certain Hecke algebras are
local complete intersections. This and the rest of the ideas described in Wiles’ Cambridge
lectures are written up in the first manuscript. Jointly, Taylor and Wiles establish the necessary
property of the Hecke algebras in the second paper.

The new approach turns out to be significantly simpler and shorter than the original one,
because of the removal of the Euler system. (In fact, after seeing these manuscripts Faltings has
apparently come up with a further significant simplification of that part of the argument.)

The papers were published in the May 1995 issue of Annals of Mathematics. For single copies
of the issues send e-mail to jlorder@jhunix.hcf.jhu.edu for further directions.

In summary:
Both manuscripts have been published. Thousands of people have a read them. About

a hundred understand it very well. Faltings has simplified the argument already. Diamond
has generalized it. People can read it. The immensely complicated geometry has mostly been
replaced by simpler algebra. The proof is now generally accepted. There was a gap in this
second proof as well, but it has been filled since October 1994.

3.1.3 Related Conjectures

A related conjecture from Euler

xn + yn + zn = cn has no solution if n is ≥ 4

Noam Elkies gave a counterexample, namely 26824404+153656394+187967604 = 206156734.
Subsequently, Roger Frye found the absolutely smallest solution by (more or less) brute force:
it is 958004 + 2175194 + 4145604 = 4224814. ”Several years”, Math. Comp. 51 (1988) 825-835.

This synopsis is quite brief. A full survey would run too many pages.
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3.1.4 Did Fermat prove this theorem?

No he did not. Fermat claimed to have found a proof of the theorem at an early stage in his
career. Much later he spent time and effort proving the cases n = 4 and n = 5. Had he had a
proof to his theorem earlier, there would have been no need for him to study specific cases.

Fermat may have had one of the following “proofs” in mind when he wrote his famous
comment.

• Fermat discovered and applied the method of infinite descent, which, in particular can
be used to prove FLT for n = 4. This method can actually be used to prove a stronger
statement than FLT for n = 4, viz, x4 + y4 = z2 has no non-trivial integer solutions. It is
possible and even likely that he had an incorrect proof of FLT using this method when he
wrote the famous “theorem”.

• He had a wrong proof in mind. The following proof, proposed first by Lame’ was thought
to be correct, until Liouville pointed out the flaw, and by Kummer which latter became
and expert in the field. It is based on the incorrect assumption that prime decomposition
is unique in all domains.

The incorrect proof goes something like this:

We only need to consider prime exponents (this is true). So consider xp + yp = zp. Let r
be a primitive p-th root of unity (complex number)

Then the equation is the same as:

(x+ y)(x+ ry)(x+ r2y)...(x+ rp−1y) = zp

Now consider the ring of the form:

a1 + a2r + a3r
2 + ...+ ap−1r

p−1

where each ai is an integer

Now if this ring is a unique factorization ring (UFR), then it is true that each of the above
factors is relatively prime.

From this it can be proven that each factor is a pth power from which FLT follows. This
is usually done by considering two cases, the first where p divides none of x, y, z; the
second where p divides some of x, y, z. For the first case, if x + yr = u ∗ tp, where
u is a unit in Z[r] and t is in Z[r], it follows that x = y(modp). Writing the original
equation as xp + (−z)p = (−y)p, it follows in a similar fashion that x = −z(modp). Thus
2 ∗ xp = xp + yp = zp = −xp(modp) which implies 3 ∗ xp = 0(modp) and from there p
divides one of x or 3|x. But p > 3 and p does not divides x; contradiction. The second
case is harder.

The problem is that the above ring is not an UFR in general.

Another argument for the belief that Fermat had no proof —and, furthermore, that he knew
that he had no proof— is that the only place he ever mentioned the result was in that marginal
comment in Bachet’s Diophantus. If he really thought he had a proof, he would have announced
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the result publicly, or challenged some English mathematician to prove it. It is likely that
he found the flaw in his own proof before he had a chance to announce the result, and never
bothered to erase the marginal comment because it never occurred to him that anyone would
see it there.

Some other famous mathematicians have speculated on this question. Andre Weil, writes:

Only on one ill-fated occasion did Fermat ever mention a curve of higher genus
xn + yn = zn, and then hardly remains any doubt that this was due to some misap-
prehension on his part [. . .] for a brief moment perhaps [. . .] he must have deluded
himself into thinking he had the principle of a general proof.

Winfried Scharlau and Hans Opolka report:

Whether Fermat knew a proof or not has been the subject of many speculations.
The truth seems obvious . . . [Fermat’s marginal note] was made at the time of his
first letters concerning number theory [1637]. . . as far as we know he never repeated
his general remark, but repeatedly made the statement for the cases n = 3 and 4
and posed these cases as problems to his correspondents [. . .] he formulated the case
n = 3 in a letter to Carcavi in 1659 [. . .] All these facts indicate that Fermat quickly
became aware of the incompleteness of the [general] “proof” of 1637. Of course, there
was no reason for a public retraction of his privately made conjecture.

However it is important to keep in mind that Fermat’s “proof” predates the Publish or Perish
period of scientific research in which we are still living.
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3.2 Prime Numbers

3.2.1 Largest known Mersenne prime

Mersenne primes are primes of the form 2p − 1. For 2p − 1 to be prime we must have that p is
prime.

22976221 − 1 is prime. It was discovered in 1997.

3.2.2 Largest known prime

The largest known prime is the Mersenne prime described above. The largest known non-
Mersenne prime, is 391581 ∗ 2216193 − 1, discovered by Brown, Noll, Parady, Smith, Smith, and
Zarantonello.

Throughout history, the largest known prime has almost always been a Mersenne prime; the
period between Brown et al’s discovery in August 1989 and Slowinski & Gage’s in March 1992
is one of the few exceptions.

You can help find more primes. For more information see: The Great Internet Mersenne
Prime Search home page on http://www.mersenne.org
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ematical Monthly, vol. 97, 1990, p. 214.

3.2.3 Largest known twin primes

The two largest known twin primes are 242206083 ∗ 238880 ± 1. with 11713 digits, found by
Indlekofer and Ja’rai in November, 1995. They are also the first known gigantic twin primes
(primes with at least 10,000 digits).

Recent record holders are:

• 190116 ∗ 3003 ∗ 105120 ± 1, with 5129 digits, by Harvey Dubner.

• 697053813 ∗ 216352 ± 1, with 4932 digits, found by Indlekofer and Ja’rai in 1994.

• 1691232 ∗ 1001 ∗ 104020 ± 1 with 4030 digits, found by H. Dubner.

• 4650828 ∗ 1001 ∗ 103429 ± 1. Found by H. Dubner as well.

The two largest Sophie Germain primes (i.e. p and 2p+1 are both primes) are p = 2687145∗
3003 ∗ 105072 − 1 and q = 2p+ 1, found by Harvey Dubner, in October 3, 1995.
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3.2.4 Largest Fermat number with known factorization

F11 = (2211
) + 1 which was factored by Brent & Morain in 1988. F9 = (229

) + 1 = 2512 + 1 was
factored by A.K. Lenstra, H.W. Lenstra Jr., M.S. Manasse & J.M. Pollard in 1990. F10 was
factored by Richard Brent who found a 40-digit factor of 21024 + 1 on October 20, 1995. The
cofactor is a 252 digit number, which is not so easy to factor. Luckily, this number was also
prime.

3.2.5 Algorithms to factor integer numbers

There are several known algorithms that have subexponential estimated running time, to men-
tion just a few:

• Continued fraction algorithm.

• Quadratic sieve algorithm.

• Class Group method.

• Elliptic curve algorithm.

• Number field sieve.
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• Dixon’s random squares algorithm.

• Valle’s two-thirds algorithm.

• Seysen’s class group algorithm.
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3.2.6 Primality Testing

The problem of primality testing and factorization are two distinct problems. If we concentrate
on primality testing, we never need to know the actual factors. The only question to be answered
is ”is the number in question prime or composite.”

Wilson’s Theorem: The integer p is prime if and only if (p− 1)! is congruent to −1(modp)
Since there is no known method for rapidly computing (N − 1)!(modN) in, say, logN steps,

so Wilson’s characterization of primes is of no practical value to the testing of the primality of
N .

There are many different primality tests and they can be classified in at least three different
ways:

1. Tests for numbers of special forms
versus
Tests for generic numbers

2. Tests with full justification
versus
Tests with justification based on conjectures

3. Deterministic tests
versus
Probabilistic or Monte Carlo tests

Miller’s Test
In 1976, G. L. Miller proposed a primality test, which was justified using a generalized form

of Riemann’s hypothesis.
The APR Test
The primality test devised by L. M. Adleman, C. Pomerance and R. S. Rumely (1983), also

known as the APR test, represents a breakthrough because:

1. It is applicable to arbitrary natural numbers N, without requiring the knowledge of factors
of N − 1 or N + 1.

2. The running time t(N) is almost polynomial.
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3. The test is justified rigorously, and for the first time ever in this domain, it is necessary
to appeal to deep results in the theory of algebraic numbers; it involves calculations with
roots of unity and the general reciprocity law for the power residue symbol.

The running time of the APR is at the present the world record for a deterministic primality
test.

Soon afterwards, H. Cohen & A. K. Lenstra (1984) modified the APR test, making it more
flexible, using Gauss sums in the proof (instead of the reciprocity law), and having the new
test programmed for practical applications. It was the first primality test in existence that can
routinely handle numbers of up 100 decimal digits, and it does so in about 45 seconds.

Monte Carlo methods
Ribenboim mentions three Monte Carlo tests, due to R. Baillie & Wagstaff, Jr. (1980), R.

Solovay & V. Strassen (1977), and M. O. Rabin (1976, 1980).
Elliptic Curves Primality Proving, ECPP
ECPP stands for ”Elliptic Curves and Primality Proving”. The algorithm is described in:

A. O. L. Atkin and F. Morain
"Elliptic curves and primality proving"
To appear.

It is a deterministic algorithm that gives a certificate of primality for numbers that can be
as large as 10**1000 (one thousand).
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3.2.7 List of record numbers

Chris Caldwell (caldwell@utm.edu) maintains a list called ”The Largest Known Primes.” Some
of the ways to get this list are:

web: http://www.utm.edu/research/primes/largest.html
gopher: unix1.utm.edu, directory 1/user/Public_FTP/pub/math/primes
ftp: math.utm.edu, directory /pub/math/primes

Finger primes@math.utm.edu for a few record primes and the current ways to get the lists. He
would like to know of any new titanic primes (over 1000 digits) so that he can add them to his
list.
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3.2.8 What is the current status on Mersenne primes?

The following Mersenne primes are known.

Number p Year Discoverer
1-4 2,3,5,7 pre-1500

5 13 1461 Anonymous
6-7 17,19 1588 Cataldi

8 31 1750 Euler
9 61 1883 I.M. Pervushin

10 89 1911 Powers
11 107 1914 Powers
12 127 1876 Lucas

13-14 521,607 1952 Robinson
15-17 1279,2203,2281 1952 R. M. Robinson

18 3217 1957 Riesel
19-20 4253,4423 1961 Hurwitz & Selfridge
21-23 9689,9941,11213 1963 Gillies

24 19937 1971 Tuckerman
25 21701 1978 Noll & Nickel
26 23209 1979 Noll
27 44497 1979 Slowinski & Nelson
28 86243 1982 Slowinski
29 110503 1988 Colquitt & Welsh
30 132049 1983 Slowinski
31 216091 1985 Slowinski
32 756839 1992 Slowinski & Gage
33 859433 1994 Slowinski & Gage
34 1257787 1996 Slowinski & Gage
35 1398269 1996 Armengaud, Woltman, et. al.

36??? 2976221 1996 Spence, Woltman, et. al.

The way to determine if 2p − 1 is prime is to use the Lucas-Lehmer test:

Lucas_Lehmer_Test(p):
u := 4
for i from 3 to p do

u := u^2-2 mod 2^p-1
od
if u == 0 then

2^p-1 is prime
else

2^p-1 is composite
fi

All exponents less than 1,481,800 have now been tested at least once.
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3.2.9 Formulae to compute prime numbers

There is no polynomial which gives all the prime numbers. This is a simple exercise to prove.
There is no non-constant polynomial that only takes on prime values. The proof is simple enough
that an high school student could probably discover it. See, for example, Ribenboim’s book The
Book of Prime Number Records.

Note, however, by the work of Jones, Sato, Wada, and Wiens, there is a polynomial in
26 variables such that the set of primes coincides with the set of positive values taken by this
polynomial. See Ribenboim, pp. 147-150.

But most people would object to the term “formula” restricted to mean polynomial. Can we
not use summation signs, factorial, and the floor function in our “formula”? If so, then indeed,
there are formulas for the prime numbers. Some of them are listed below.

A reasonable interpretation of the word “formula” is simply “Turing machine that halts
on all inputs”. Under this interpretation, there certainly are halting Turing machines which
compute the n-th prime number. However, nobody knows how to compute the n-th prime in
time polynomial in logn. That’s still an open question.

Herb Wilf has addressed the question, “What is a formula?” in his article, “What is an
answer?” which appeared in the American Mathematical Monthly, 89 (1982), 289-292. He
draws a distinction between “formula” and “good formula”. Anyone who claims “there is no
formula for the prime numbers” should read this article.

Here are just a few articles that discuss “formulas” for primes. Almost all of these do not
require computation of the primes ahead of time. Most of them rely on standard mathematical
functions such as summation, factorial, greatest integer function, etc.
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Chapter 4

Special Numbers and Functions

4.1 How to compute digits of π?

Symbolic Computation software such as Maple or Mathematica can compute 10,000 digits of π
in a blink, and another 20,000-1,000,000 digits overnight (range depends on hardware platform).

It is possible to retrieve 1.25+ million digits of π via anonymous ftp from the site wuarchive.wustl.edu,
in the files pi.doc.Z and pi.dat.Z which reside in subdirectory doc/misc/pi. New York’s Chud-
novsky brothers have computed 2 billion digits of π on a homebrew computer.

The current record is held by Yasumasa Kanada and Daisuke Takahashi from the University
of Tokyo with 51 billion digits of π (51,539,600,000 decimal digits to be precise).

Nick Johnson-Hill has an interesting page of π trivia at: http://www.users.globalnet.co.uk/ nickjh/Pi.htm
The new record for the number of digits of π is 4.29496 billion decimal digits of pi were

calculated and verified by 28th August ’95.
Related documents are available with anonymous ftp to www.cc.u-tokyo.ac.jp.

ftp://www.cc.u-tokyo.ac.jp/

This computations were made by Yasumasa Kanada, at the University of Tokyo.
There are essentially 3 different methods to calculate π to many decimals.

1. One of the oldest is to use the power series expansion of atan(x) = x− x3/3 + x5/5− . . .
together with formulas like π = 16 ∗ atan(1/5) − 4 ∗ atan(1/239). This gives about 1.4
decimals per term.

2. A second is to use formulas coming from Arithmetic-Geometric mean computations. A
beautiful compendium of such formulas is given in the book π and the AGM, (see refer-
ences). They have the advantage of converging quadratically, i.e. you double the number
of decimals per iteration. For instance, to obtain 1 000 000 decimals, around 20 itera-
tions are sufficient. The disadvantage is that you need FFT type multiplication to get a
reasonable speed, and this is not so easy to program.

3. A third one comes from the theory of complex multiplication of elliptic curves, and was
discovered by S. Ramanujan. This gives a number of beautiful formulas, but the most
useful was missed by Ramanujan and discovered by the Chudnovsky’s. It is the following
(slightly modified for ease of programming):
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Set k1 = 545140134; k2 = 13591409; k3 = 640320; k4 = 100100025; k5 = 327843840;
k6 = 53360;

Then π = k6
√
k3

S , where

S =
∞∑
n=0

(−1)n
(6n)!(k2 + nk1)
n!3(3n)!(8k4k5)n

The great advantages of this formula are that

1) It converges linearly, but very fast (more than 14 decimal digits per term).

2) The way it is written, all operations to compute S can be programmed very simply.
This is why the constant 8k4k5 appearing in the denominator has been written this way
instead of 262537412640768000. This is how the Chudnovsky’s have computed several
billion decimals.

An interesting new method was recently proposed by David Bailey, Peter Borwein and Simon
Plouffe. It can compute the Nth hexadecimal digit of Pi efficiently without the previous N−1
digits. The method is based on the formula:

π =
∞∑
i=0

1
16i

(
4

8i+ 1
− 2

8i+ 4
− 1

8i+ 5
− 1

8i+ 6

)

in O(N) time and O(logN) space. (See references.)
The following 160 character C program, written by Dik T. Winter at CWI, computes π to

800 decimal digits.

int a=10000,b,c=2800,d,e,f[2801],g;main(){for(;b-c;)f[b++]=a/5;
for(;d=0,g=c*2;c-=14,printf("%.4d",e+d/a),e=d%a)for(b=c;d+=f[b]*a,
f[b]=d%--g,d/=g--,--b;d*=b);}
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4.2 Euler’s formula: eiπ = −1

The definition and domain of exponentiation has been changed several times. The original
operation xy was only defined when y was a positive integer. The domain of the operation of
exponentation has been extended, not so much because the original definition made sense in the
extended domain, but because there were (almost) unique ways to extend exponentation which
preserved many of what seemed to be the “important” properties of the original operation. So
in part, these definitions are only convention, motivated by reasons of aesthetics and utility.

The original definition of exponentiation is, of course, that xy = 1 ∗ x ∗ x ∗ ... ∗ x, where 1
is multiplied by x, y times. This is only a reasonable definition for y = 1, 2, 3, ... (It could be
argued that it is reasonable when y = 0, but that issue is taken up in a different part of the
FAQ). This operation has a number of properties, including

1. x1 = x

2. For any x, n, m, xnxm = xn+m.

3. If x is positive, then xn is positive.

Now, we can try to see how far we can extend the domain of exponentiation so that the
above properties (and others) still hold. This naturally leads to defining the operation
xy on the domain x positive real; y rational, by setting xp/q = the qth root of xp. This
operation agrees with the original definition of exponentiation on their common domain,
and also satisfies (1), (2) and (3). In fact, it is the unique operation on this domain that
does so. This operation also has some other properties:

4. If x > 1, then xy is an increasing function of y.
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5. If 0 < x < 1, then xy is a decreasing function of y.

Again, we can again see how far we can extend the domain of exponentiation while still
preserving properties (1)-(5). This leads naturally to the following definition of xy on the
domain x positive real; y real:

If x > 1, xy is defined to be supq{xq}, where q runs over a ll rationals less than or equal
to y.

If x < 1, xy is defined to be infq{xq}, where q runs over a ll rationals bigger than or equal
to y.

If x = 1, xy is defined to be 1.

Again, this operation satisfies (1)-(5), and is in fact the only operation on this domain to
do so.

The next extension is somewhat more complicated. As can be proved using the methods
of calculus or combinatorics, if we define e to be the number

e = 1 + 1/1! + 1/2! + 1/3! + ... = 2.71828...

it turns out that for every real number x,

6. ex = 1 + x/1! + x2/2! + x3/3! + ...

ex is also denoted exp(x). (This series always converges regardless of the value of x).

One can also define an operation ln(x) on the positive reals, which is the inverse of the
operation of exponentiation by e. In other words, exp(ln(x)) = x for all positive x.
Moreover,

7. If x is positive, then xy = exp(y ln(x)). Because of this, the natural extension of exponen-
tiation to complex exponents, seems to be to define

exp(z) = 1 + z/1! + z2/2! + z3/3! + ...

for all complex z (not just the reals, as before), and to define

xz = exp(z ln(x))

when x is a positive real and z is complex.

This is the only operation xy on the domain x positive real, y complex which satisfies all
of (1)-(7). Because of this and other reasons, it is accepted as the modern definition of
exponentiation.

From the identities

sinx = x− x3/3! + x5/5!− x7/7! + ...

cosx = 1− x2/2! + x4/4!− x6/6! + ...

which are the Taylor series expansion of the trigonometric sine and cosine functions re-
spectively. From this, one sees that, for any real x,
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8. exp(ix) = cosx+ i sinx.

Thus, we get Euler’s famous formula

eπi = −1

and

e2πi = e0 = 1.

One can also obtain the classical addition formulae for sine and cosine from (8) and (1).

All of the above extensions have been restricted to a positive real for the base. When the
base x is not a positive real, it is not as clear-cut how to extend the definition of exponentiation.
For example, (−1)1/2 could well be i or -i, (−1)1/3 could be −1, 1/2+

√
(3)i/2, or 1/2−

√
(3)i/2,

and so on. Some values of x and y give infinitely many candidates for xy, all equally plausible.
And of course x = 0 has its own special problems. These problems can all be traced to the fact
that the exp function is not injective on the complex plane, so that ln is not well defined outside
the real line. There are ways around these difficulties (defining branches of the logarithm, for
example), but we shall not go into this here.

The operation of exponentiation has also been extended to other systems like matrices and
operators. The key is to define an exponential function by (6) and work from there. [Some
reference on operator calculus and/or advanced linear algebra?]
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4.3 What is 00

According to some Calculus textbooks, 00 is an “indeterminate form”. When evaluating a
limit of the form 00, then you need to know that limits of that form are called “indeterminate
forms”, and that you need to use a special technique such as L’Hopital’s rule to evaluate them.
Otherwise, 00 = 1 seems to be the most useful choice for 00. This convention allows us to extend
definitions in different areas of mathematics that otherwise would require treating 0 as a special
case. Notice that 00 is a discontinuity of the function xy. More importantly, keep in mind that
the value of a function and its limit need not be the same thing, and functions need not be
continous, if that serves a purpose (see Dirac’s delta).

This means that depending on the context where 00 occurs, you might wish to substitute it
with 1, indeterminate or undefined/nonexistent.

Some people feel that giving a value to a function with an essential discontinuity at a point,
such as xy at (0, 0), is an inelegant patch and should not be done. Others point out correctly that
in mathematics, usefulness and consistency are very important, and that under these parameters
00 = 1 is the natural choice.

The following is a list of reasons why 00 should be 1.
Rotando & Korn show that if f and g are real functions that vanish at the origin and

are analytic at 0 (infinitely differentiable is not sufficient), then f(x)g(x) approaches 1 as x
approaches 0 from the right.

From Concrete Mathematics p.162 (R. Graham, D. Knuth, O. Patashnik):
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Some textbooks leave the quantity 00 undefined, because the functions x0 and 0x

have different limiting values when x decreases to 0. But this is a mistake. We
must define x0 = 1 for all x, if the binomial theorem is to be valid when x = 0,
y = 0, and/or x = −y. The theorem is too important to be arbitrarily restricted!
By contrast, the function 0x is quite unimportant.

Published by Addison-Wesley, 2nd printing Dec, 1988.
As a rule of thumb, one can say that 00 = 1, but 0.00.0 is undefined, meaning that when

approaching from a different direction there is no clearly predetermined value to assign to 0.00.0;
but Kahan has argued that 0.00.0 should be 1, because if f(x), g(x) → 0 as x approaches some
limit, and f(x) and g(x) are analytic functions, then f(x)g(x)→ 1.

The discussion on 00 is very old, Euler argues for 00 = 1 since a0 = 1 for a 6= 0. The
controversy raged throughout the nineteenth century, but was mainly conducted in the pages of
the lesser journals: Grunert’s Archiv and Schlomilch’s Zeitschrift für Mathematik und Physik.
Consensus has recently been built around setting the value of 00 = 1.

On a discussion of the use of the function 00x
by an Italian mathematician named Guglielmo

Libri.

[T]he paper [33] did produce several ripples in mathematical waters when it originally
appeared, because it stirred up a controversy about whether 00 is defined. Most
mathematicians agreed that 00 = 1, but Cauchy [5, page 70] had listed 00 together
with other expressions like 0/0 and ∞ −∞ in a table of undefined forms. Libri’s
justification for the equation 00 = 1 was far from convincing, and a commentator
who signed his name simply “S” rose to the attack [45]. August Möbius [36] defended
Libri, by presenting his former professor’s reason for believing that 00 = 1 (basically
a proof that limx→0+ x

x = 1). Möbius also went further and presented a supposed
proof that limx→0+ f(x)g(x) whenever limx→0+ f(x) = limx→0+g(x) = 0. Of course
“S” then asked [3] whether Möbius knew about functions such as f(x) = e−1/x and
g(x) = x. (And paper [36] was quietly omitted from the historical record when the
collected words of Möbius were ultimately published.) The debate stopped there,
apparently with the conclusion that 00 should be undefined.

But no, no, ten thousand times no! Anybody who wants the binomial theorem
(x + y)n =

∑n
k=0

(n
k

)
xkyn−k to hold for at least one nonnegative integer n must

believe that 00 = 1, for we can plug in x = 0 and y = 1 to get 1 on the left and 00

on the right.

The number of mappings from the empty set to the empty set is 00. It has to be 1.

On the other hand, Cauchy had good reason to consider 00 as an undefined limiting
form, in the sense that the limiting value of f(x)g(x) is not known a priori when f(x)
and g(x) approach 0 independently. In this much stronger sense, the value of 00 is
less defined than, say, the value of 0 + 0. Both Cauchy and Libri were right, but
Libri and his defenders did not understand why truth was on their side.

[3] Anonymous and S. . . Bemerkungen zu den Aufsatze überschrieben, ‘Be-
weis der Gleichung 00 = 1, nach J. F. Pfaff’, im zweiten Hefte dieses Bandes, S.
134, Journal für die reine und angewandte Mathematik, 12 (1834), 292–294.

[5] Œuvres Complètes. Augustin-Louis Cauchy. Cours d’Analyse de l’Ecole Royale
Polytechnique (1821). Series 2, volume 3.
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[33] Guillaume Libri. Mémoire sur les fonctions discontinues, Journal für
die reine und angewandte Mathematik, 10 (1833), 303–316.

[36] A. F. Möbius. Beweis der Gleichung 00 = 1, nach J. F. Pfaff. Journal für
die reine und angewandte Mathematik,

12 (1834), 134–136.

[45] S. . . Sur la valeur de 00. Journal für die reine und angewandte Mathematik 11,
(1834), 272–273.
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4.3.1 Why is 0.9999 . . . = 1?

In modern mathematics, the string of symbols 0.9999 . . . is understood to be a shorthand for
“the infinite sum 9/10 + 9/100 + 9/1000 + . . .”. This in turn is shorthand for “the limit of the
sequence of real numbers 9/10, 9/10 + 9/100, 9/10 + 9/100 + 9/1000, . . .”. Using the well-known
epsilon-delta definition of the limit (you can find it in any of the given references on analysis), one
can easily show that this limit is 1. The statement that 0.9999 . . . = 1 is simply an abbreviation
of this fact.

0.9999 . . . =
∞∑
n=1

9
10n

= lim
m→∞

m∑
n=1

9
10n

Choose ε > 0. Suppose δ = 1/− log10 ε, thus ε = 10−1/δ. For every m > 1/δ we have that∣∣∣∣∣
m∑
n=1

9
10n
− 1

∣∣∣∣∣ =
1

10m
<

1
101/δ

= ε
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So by the ε− δ definition of the limit we have

lim
m→∞

m∑
n=1

9
10n

= 1

Not formal enough? In that case you need to go back to the construction of the number
system. After you have constructed the reals (Cauchy sequences are well suited for this case,
see [Shapiro75]), you can indeed verify that the preceding proof correctly shows 0.9999 . . . = 1.

An informal argument could be given by noticing that the following sequence of “natural”
operations has as a consequence 0.9999 . . . = 1. Therefore it’s “natural” to assume 0.9999 . . . = 1.

x = 0.9999 . . .
10x = 10 · 0.9999 . . .
10x = 9.9999 . . .

10x− x = 9.9999 . . .− 0.9999 . . .
9x = 9
x = 1

Thus 0.9999 . . . = 1.
An even easier argument multiplies both sides of 0.3333 . . . = 1/3 by 3. The result is

0.9999 . . . = 3/3 = 1.
Another informal argument is to notice that all periodic numbers such as 0.46464646 . . . are

equal to the period divided over the same number of 9s. Thus 0.46464646 . . . = 46/99. Applying
the same argument to 0.9999 . . . = 9/9 = 1.

Although the three informal arguments might convince you that 0.9999 . . . = 1, they are
not complete proofs. Basically, you need to prove that each step on the way is allowed and
is correct. They are also “clumsy” ways to prove the equality since they go around the bush:
proving 0.9999 . . . = 1 directly is much easier.

You can even have that while you are proving it the “clumsy” way, you get proof of the result
in another way. For instance, in the first argument the first step is showing that 0.9999 . . . is real
indeed. You can do this by giving the formal proof stated in the beginning of this FAQ question.
But then you have 0.9999 . . . = 1 as corollary. So the rest of the argument is irrelevant: you
already proved what you wanted to prove.
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4.4 Name for f(x)f(x) = x

Solving for f one finds a “continued fraction”-like answer

f(x) =
log x

log log x

log log x
log...

(4.1)

This question has been repeated here from time to time over the years, and no one seems to
have heard of any published work on it, nor a published name for it.

This function is the inverse of f(x) = xx. It might be argued that such description is good
enough as far as mathematical names go: ”the inverse of the function f(x) = xx” seems to be
clear and succint.

Another possible name is lx(x). This comes from the fact that the inverse of ex is ln(x) thus
the inverse of xx could be named lx(x).

It’s not an analytic function.
The “continued fraction” form for its numeric solution is highly unstable in the region of its

minimum at 1/e (because the graph is quite flat there yet logarithmic approximation oscillates
wildly), although it converges fairly quickly elsewhere. To compute its value near 1/e, use the
bisection method which gives good results. Bisection in other regions converges much more
slowly than the logarithmic continued fraction form, so a hybrid of the two seems suitable. Note
that it’s dual valued for the reals (and many valued complex for negative reals).

A similar function is a built-in function in MAPLE called W (x) or Lambert’s W function.
MAPLE considers a solution in terms of W (x) as a closed form (like the erf function). W is
defined as W (x)eW (x) = x.

Notice that f(x) = exp(W (log(x))) is the solution to f(x)f (x) = x
An extensive treatise on the known facts of Lambert’s W function is available for anonymous

ftp at dragon.uwaterloo.ca at /cs-archive/CS-93-03/W.ps.Z.

4.5 Some Famous Mathematical Constants

A table of 120 known constants in math, such as Pi, e, sqrt(2), parking constant, Feigenbaum
constant, etc. each of them is with references, and up to 1024 digits when possible can be
found at the Centre for Experimental and Constructive Mathematics, Simon Fraser University
at http://www.cecm.sfu.ca/projects/ISC.html

Another source of mathematical constants is:
http://www.mathsoft.com/asolve/constant/constant.html
maintained by Steve Finch.
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Chapter 5

Human Interest

5.1 Indiana bill sets the value of π to 3

The bill House Bill No. 246, Indiana State Legislature, 1897, reportedly set the value of π to
an incorrect rational approximation.

The following is the text of the bill:

HOUSE BILL NO. 246

”A bill for an act introducing a new mathematical truth and offered as a contribution
to education to be used only by the State of Indiana free of cost by paying any
royalties whatever on the same, provided it is accepted and adopted by the official
action of the legislature of 1897.

”Section 1. Be it enacted by the General Assembly of the State of Indiana: It has
been found that a circular area is to the square on a line equal to the quadrant of
the circumference, as the area of an equilateral rectangle is to the square on one
side. The diameter employed as the linear unit according to the present rule in
computing the circle’s area is entirely wrong, as it represents the circles area one and
one-fifths times the area of a square whose perimeter is equal to the circumference of
the circle. This is because one-fifth of the diameter fils to be represented four times
in the circle’s circumference. For example: if we multiply the perimeter of a square
by one-fourth of any line one-fifth greater than one side, we can, in like manner make
the square’s area to appear one fifth greater than the fact, as is done by taking the
diameter for the linear unit instead of the quadrant of the circle’s circumference.

”Section 2. It is impossible to compute the area of a circle on the diameter as
the linear unit without trespassing upon the area outside the circle to the extent
of including one-fifth more area than is contained within the circle’s circumference,
because the square on the diameter produces the side of a square which equals nine
when the arc of ninety degrees equals eight. By taking the quadrant of the circle’s
circumference for the linear unit, we fulfill the requirements of both quadrature and
rectification of the circle’s circumference. Furthermore, it has revealed the ratio of
the chord and arc of ninety degrees, which is as seven to eight, and also the ratio of
the diagonal and one side of a square which is as ten to seven, disclosing the fourth
important fact, that the ratio of the diameter and circumference is as five-fourths
to four; and because of these facts and the further fact that the rule in present use
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fails to work both ways mathematically, it should be discarded as wholly wanting
and misleading in its practical applications.

”Section 3. In further proof of the value of the author’s proposed contribution to
education, and offered as a gift to the State of Indiana, is the fact of his solutions of
the trisection of the angle, duplication of the cube and quadrature having been al-
ready accepted as contributions to science by the American Mathematical Monthly,
the leading exponent of mathematical thought in this country. And be it remem-
bered that these noted problems had been long since given up by scientific bodies as
unsolvable mysteries and above man’s ability to comprehend.”

Will E. Edington in an article published in the Proceedings of the Indiana Academy of
Science describes the fate of the bill in the committees of the Indiana legislature. First it was
referred to the House Committee on Canals, which was also referred to as the Committee on
Swamp Lands. Notices of the bill appeared in the Indianapolis Journal and the Indianapolis
Sentinel on Jan. 19, 1897, both of which described it a a bill telling how to square circles. On
the same day, ”Representative M.B.Butler, of Steuben County, chairman of the Committee on
Canals, submitted the following report:

”Your Committee on Canals, to which was referred House Bill No.246, entitled an act
for the introduction of a mathematical truth, etc., has had the same under consider-
ation and begs leave to report the same back to the House with the recommendation
that said bill be referred to the Committee on Education.”

The next day, the following article appeared in the Indianapolis Sentinel:

”To SQUARE THE CIRCLE

”Claims Made That This Old Problem Has Been Solved. ”The bill telling how to
square a circle, introduced in the House by Mr.Record, is not intended to be a hoax.
Mr. Record knows nothing of the bill with the exception that he introduced it by
request of Dr.Edwin Goodwin of Posey County, who is the author of the demonstra-
tion. The latter and State Superintendent of Public Instruction Geeting believe that
it is the long-sought solution of the problem, and they are seeking to have it adopted
by the legislature. Dr. Goodwin, the author, is a mathematician of note. He has
it copyrighted and his proposition is that if the legislature will indorse the solution,
he will allow the state to use the demonstration in its textbooks free of charge. The
author is lobbying for the bill.”

On ”February 2, 1897, ...Representative S.E. Nicholson, of Howard County, chairman
of the Committee on Education, reported to the House.

”Your Committee on Education, to which was referred House Bill No.246, entitled a
a bill for an act entitled an act introducing a new mathematical truth, has had same
under consideration, and begs leave to report the same back to the House with the
recommendation that said bill do pass.

”The report was concurred in, and on February 8, 1897, it was brought up for the
second reading, following which it was considered engrossed. Then ’Mr. Nicholson
moved that the constitutional rule requiring bills to be read on three days be sus-
pended, that the bill may be read a third time now.’ The constitutional rule was
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suspended by a vote of 72 to 0 and the bill was then read a third time. It was passed
by a vote of 67 to 0, and the Clerk of the House was directed to inform the Senate
of the passage of the bill.”

The newspapers reported the suspension of the consitutional rules and the unanimous passage
of the bill matter-of-factly, except for one line in the Indianapolis Journal to the effect that ”this
is the strangest bill that has ever passed an Indiana Assembly.”

The bill was referred to the Senate on Feb.10, 1897, and was read for the first time on Feb.11
and referred to the Committee on Temperance. ”On Feb.12 Senator Harry S. New, of Marion
County, Chairman of the Committee on Temperance, made the following report to the Senate:

”Your committee on Temperance, to which was referred House Bill No.246, intro-
duced by Mr.Record, has had the same under consideration and begs leave to report
the same back to the Senate with the recommendation that said bill do pass.”

The Senate Journal mentions only that the bill was read a second time on Feb.12, 1897,
that there was an unsuccessful attempt to amend the bill by strike out the enacting clause, and
finally it was postponed indefinitely. That the bill was killed appears to be a matter of dumb
luck rather than the superior education or wisdom of the Senate. It is true that the bill was
widely ridiculed in Indiana and other states, but what actually brought about the defeat of the
bill is recorded by Prof. C.A. Waldo in an article he wrote for the Proceedings of the Indiana
Academy of Science in 1916. The reason he knows is that he happened to be at the State Capitol
lobbying for the appropriation of the Indiana Academy of Science, on the day the Housed passed
House Bill 246. When he walked in the found the debate on House Bill 246 already in progress.
In his article, he writes (according to Edington):

”An ex-teacher from the eastern part of the state was saying: ’The case is perfectly
simple. If we pass this bill which establishes a new and correct value for π, the author
offers to our state without cost the use of his discovery and its free publication in
our school text books, while everyone else must pay him a royalty.’”

The roll was then called and the bill passed its third and final reading in the lower house.
A member then showed the writer [i.e. Waldo] a copy of the bill just passed and asked him if
he would like an introduction to the learned doctor, its author. He declined the courtesy with
thanks remarking that he was acquainted with as many crazy people as he cared to know.

”That evening the senators were properly coached and shortly thereafter as it came to its final
reading in the upper house they threw out with much merriment the epoch making discovery of
the Wise Man from the Pocket.”

The bill implies four different values for π and one for
√

2, as follows: π′ = 16/
√

3, 2
√

5π/6,
16
√

2/7, 16/5( 9.24, 3.236, 3.232, 3.2 respectively.)
√

2
′
= 10/7.

It has been found that a circular area is to the square on a line equal to the quadrant
of the circumference, as the area of an equilateral rectangle is to the square on one
side.

π′ : (π′/2)2 =
√

3/4 : 1 i.e. π′ = 16/
√

3 = 9.24.
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The diameter employed as the linear unit according to the present rule in computing
the circle’s area is entirely wrong, as it represents the circles area one and one-fifths
times the area of a square whose perimeter is equal to the circumference of the
circle. This is because one-fifth of the diameter fails to be represented four times in
the circle’s circumference.

Bit tricky to decipher, but it seems to say (2π′/4)26/5 = π i.e. π′ = 2
√

5π/6 = 3.236

Furthermore, it has revealed the ratio of the chord and arc of ninety degrees, which
is as seven to eight,
√

2 : π/2 = 7 : 8 i.e. π = 16
√

2/7 = 3.232

and also the ratio of the diagonal and one side of a square which is as ten to seven

i.e.
√

2 = 10/7 = 1.429

that the ratio of the diameter and circumference is as five-fourths to four

i.e. π = 16/5 = 3.2

5.2 Fields Medal

5.2.1 Historical Introduction

This is the original letter by Fields creating the endowment for the medals that bear his name.
It is thought to have been written during the few months before his death. Notice that no
mention is made about the age of the recipients (currently there is a 40 year-old limit), and that
the medal should not be attached to any person, private or public, meaning that it shouldn’t
bear anybody’s name.

It is proposed to found two gold medals to be awarded at successive International
Mathematical Congress for outstanding achievements in mathematics. Because of
the multiplicity of the branches of mathematics and taking into account the fact that
the interval between such congresses is four years it is felt that at least two medals
should be available. The awards would be open to the whole world and would be
made by an International Committee.

The fund for the founding of the medals is constituted by balance left over after
financing the Toronto congress held in 1924. This must be held in trust by the
Government or by some body authorized by government to hold and invest such
funds. It would seem that a dignified method for handling the matter and one
which in this changing world should most nearly secure permanency would be for
the Canadian Government to take over the fund and appoint as his custodian say
the Prime Minister of the Dominion or the Prime Minister in association with the
Minister of Finance. The medals would be struck at the Mint in Ottawa and the
duty of the custodian would be simply to hand over the medals at the proper time
to the accredited International Committee.
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As things are at present a practical course of procedure would seem to be for the
Executive Committee of a Congress to appoint a small international committee au-
thorized to add to its number and call into consultation other mathematicians as it
might deem expedient. The Committee would be expected to decide on the ones to
whom the awards should be made thirty months in advance of the following Congress.
Its decisions would be communicated to the President and Secretary of the Organiz-
ing Committee of the Congress, this Committee having the duty of communicating
to the Prime Minister of Canada the names of the recipients in order that the medal
might be prepared in time and forwarded to the president of the Organizing Commit-
tee. Immediately on the appointment of the Executive Committee of the Congress
the medals would be handed over to its President. The presentation of the medals
would constitute a special feature at some general meeting of the Congress.

In the above arrangements the role of the Organizing Committee might be taken
over by the Executive of the International Mathematical Union at some time in the
future when that organization has been generally accepted.

In coming to its decision the hands of the IC should be left as free as possible. It
would be understood, however, that in making the awards while it was in recognition
of work already done it was at the same time intended to be an encouragement for
further achievement on the part of the recipients and a stimulus to renewed effort
on the part of others.

In commenting on the work of the medalists it might be well to be conservative in
one’s statements to avoid envidious comparisons explicit or implied. The Committee
might ease matters by saying they have decided to make the awards along certain
lines not alone because of the outstanding character of the achievement but also
with a view to encouraging further development along these lines. In this connection
the Committee might say that they had elected to select subjects in Analysis, in
Geometry, in the Theory of Groups, in the Theory of Numbers etc. as the case
might be. When the Committee had come to an agreement in this sense the claims
for recognition of work done along the special lines in question could be considered
in detail by two smaller groups or subcommittees with specialized qualifications who
would have authority to take into consultation or add to the subcommittees other
mathematicians of specialized knowledge.

With regard to the medals themselves, I might say that they should each contain at
least 200 dollars worth of gold and be of a fair size, probably 7.5 centimeters in di-
ameter. Because of the international character the language to be employed it would
seem should be Latin or Greek? The design has still to be definitely determined.
It will have to be decided on by artists in consultation with mathematicians. The
suggestions made in the preceding are tentative and open to consideration on the
part of mathematicians.

It is not contemplated to make an award until 1936 at the Congress following that
at Zurich during which an international Medal Committee should be named.

The above programme means a new departure in the matter of international scientific
cooperation and is likely to be the precursor of moves along like lines in other sciences
than mathematics.
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One would hear again emphasized the fact that the medals should be of a character
as purely international and impersonal as possible. There should not be attached to
them in any way the name of any country, institution or person.

Perhaps provision could be made as soon as possible after the appointment of the
Executive of the Zurich Congress for the consideration by it of the subject of the
medals, and the appointment without undue delay of a Committee and the awards
of the medals to be made in connection with the Congress of 1936.

Suggestions with regard to the design of the medals will be welcome.

(signed) J.C. Fields Research Professor of Mathematics University of Toronto

More information may also be found at

URL: http://www.math.toronto.edu/fields.html
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5.2.2 Table of Awardees

Year Name Birthplace Country Age
1936 Ahlfors, Lars Helsinki Finland 29
1936 Douglas, Jesse New York, NY USA 39
1950 Schwartz, Laurent Paris France 35
1950 Selberg, Atle Langesund Norway 33
1954 Kodaira, Kunihiko Tokyo Japan 39
1954 Serre, Jean-Pierre Bages France 27
1958 Roth, Klaus Breslau Germany 32
1958 Thom, Rene Montbeliard France 35
1962 Hormander, Lars Mjallby Sweden 31
1962 Milnor, John Orange, NJ USA 31
1966 Atiyah, Michael London UK 37
1966 Cohen, Paul Long Branch NJ USA 32
1966 Grothendieck, Alex. Berlin Germany 38
1966 Smale, Stephen Flint, MI USA 36
1970 Baker, Alan London UK 31
1970 Hironaka, Heisuke Yamaguchi-ken Japan 39
1970 Novikov, Serge Gorki USSR 32
1970 Thompson, John Ottawa, KA USA 37
1974 Bombieri, Enrico Milan Italy 33
1974 Mumford, David Worth, Sussex UK 37
1978 Deligne, Pierre Brussels Belgium 33
1978 Fefferman, Charles Washington DC USA 29
1978 Margulis, Gregori Moscow USSR 32
1978 Quillen, Daniel Orange, NJ USA 38
1982 Connes, Alain Draguignan France 35
1982 Thurston, William Washington DC USA 35
1982 Yau, Shing-Tung Kwuntung China 33
1986 Donaldson, Simon Cambridge UK 27
1986 Faltings, Gerd 1954 Germany 32
1986 Freedman, Michael Los Angeles USA 35

Year Name Birthplace Country Age
1990 Drinfeld, Vladimir Kharkov USSR 36
1990 Jones, Vaughan Gisborne N Zealand 38
1990 Mori, Shigefumi Nagoya Japan 39
1990 Witten, Edward Baltimore USA 38
1994 Pierre-Louis Lions ???? France 38
1994 Jean-Chrisophe Yoccoz ???? France 37
1994 Jean Bourgain Oostende Belge 40
1994 Efim Zelmanov Novosibirsk Russia 39
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Year Name Institution Country
1936 Ahlfors, Lars Harvard University USA
1936 Douglas, Jesse MIT USA
1950 Schwartz, Laurent Universite de Nancy France
1950 Selberg, Atle Institute for Advanced Study, Princeton USA
1954 Kodaira, Kunihiko Princeton University USA
1954 Serre, Jean-Pierre College de France France
1958 Roth, Klaus University of London UK
1958 Thom, Rene University of Strasbourg France
1962 Hormander, Lars University of Stockholm Sweden
1962 Milnor, John Princeton University USA
1954 Serre, Jean-Pierre College de France France
1958 Roth, Klaus University of London UK
1958 Thom, Rene University of Strasbourg France
1962 Hormander, Lars University of Stockholm Sweden
1962 Milnor, John Princeton University USA
1966 Atiyah, Michael Oxford University UK
1966 Cohen, Paul Stanford University USA
1966 Grothendieck, Alex University of Paris France
1966 Smale, Stephen University of California at Berkeley USA
1970 Baker, Alan Cambridge University UK
1970 Hironaka, Heisuke Harvard University USA
1970 Novikov, Serge Moscow University USSR
1970 Thompson, John University of Chicago USA
1974 Bombieri, Enrico Univeristy of Pisa Italy
1974 Mumford, David Harvard University USA
1978 Deligne, Pierre IHES France
1978 Fefferman, Charles Princeton University USA
1978 Margulis, Gregori InstPrblmInfTrans USSR
1978 Quillen, Daniel MIT USA
1982 Connes, Alain IHES France
1982 Thurston, William Princeton University USA
1982 Yau, Shing-Tung Institute for Advanced Study, Princeton USA
1986 Donaldson, Simon Oxford University UK
1986 Faltings, Gerd Princeton University USA
1986 Freedman, Michael University of California at San Diego USA
Year Name Institution Country
1990 Drinfeld, Vladimir Phys.Inst.Kharkov USSR
1990 Jones, Vaughan University of California at Berkeley USA
1990 Mori, Shigefumi University of Kyoto? Japan
1990 Witten, Edward Princeton/Institute for Advanced Study USA
1994 Pierre-Louis Lions Universite de Paris-Dauphine France
1994 Jean-Chrisophe Yoccoz Universite de Paris-Sud France
1994 Jean Bourgain Institute for Advanced Study USA
1994 Efim Zelmanov University of Wisconsin USA
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5.3 Erdos Number

Form an undirected graph where the vertices are academics, and an edge connects academic X
to academic Y if X has written a paper with Y . The Erdos number of X is the length of the
shortest path in this graph connecting X with Erdos.

Erdos has Erdos number 0. Co-authors of Erdos have Erdos number 1. Einstein has Erdos
number 2, since he wrote a paper with Ernst Straus, and Straus wrote many papers with Erdos.

The Extended Erdos Number applies to co-authors of Erdos. For People who have authored
more than one paper with Erdos, their Erdos number is defined to be 1/# papers-co-authored.

Why people care about it?
Nobody seems to have a reasonable answer...
Who is Paul Erdos?
Paul Erdos was an Hungarian mathematician. He obtained his PhD from the University of

Manchester and spent most of his efforts tackling ”small” problems and conjectures related to
graph theory, combinatorics, geometry and number theory.

He was one of the most prolific publishers of papers; and was also and indefatigable traveller.
Paul Erdös died on September 20, 1996.
At this time the number of people with Erdos number 2 or less is estimated to be over

4750, according to Professor Jerrold W. Grossman archives. These archives can be consulted
via anonymous ftp at vela.acs.oakland.edu under the directory pub/math/erdos or on the Web
at http://www.acs.oakland.edu/ grossman/erdoshp.html. At this time it contains a list of all
co-authors of Erdos and their co-authors.

On this topic, he writes

Let E1 be the subgraph of the collaboration graph induced by people with Erdős
number 1. We found that E1 has 451 vertices and 1145 edges. Furthermore, these
collaborators tended to collaborate a lot, especially among themselves. They have
an average of 19 other collaborators (standard deviation 21), and only seven of them
collaborated with no one except Erdős. Four of them have over 100 co-authors. If
we restrict our attention just to E1, we still find a lot of joint work. Only 41 of these
451 people have collaborated with no other persons with Erdős number 1 (i.e., there
are 41 isolated vertices in E1), and E1 has four components with two vertices each.
The remaining 402 vertices in E1 induce a connected subgraph. The average vertex
degree in E1 is 5, with a standard deviation of 6; and there are four vertices with
degrees of 30 or higher. The largest clique in E1 has seven vertices, but it should
be noted that six of these people and Erdős have a joint seven-author paper. In
addition, there are seven maximal 6-cliques, and 61 maximal 5-cliques. In all, 29
vertices in E1 are involved in cliques of order 5 or larger. Finally, we computed that
the diameter of E1 is 11 and its radius is 6.
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Three quarters of the people with Erdős number 2 have only one co-author with
Erdős number 1 (i.e., each such person has a unique path of length 2 to p). However,
their mean number of Erdős number 1 co-authors is 1.5, with a standard deviation
of 1.1, and the count ranges as high as 13.

Folklore has it that most active researchers have a finite, and fairly small, Erdős
number. For supporting evidence, we verified that all the Fields and Nevanlinna prize
winners during the past three cycles (1986–1994) are indeed in the Erdős component,
with Erdős number at most 9. Since this group includes people working in theoretical
physics, one can conjecture that most physicists are also in the Erdős component, as
are, therefore, most scientists in general. The large number of applications of graph
theory to the social sciences might also lead one to suspect that many researchers
in other academic areas are included as well. We close with two open questions
about C, restricted to mathematicians, that such musings suggest, with no hope
that either will ever be answered satisfactorily: What is the diameter of the Erdős
component, and what is the order of the second largest component?
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5.4 Why is there no Nobel in mathematics?

Nobel prizes were created by the will of Alfred Nobel, a notable Swedish chemist.
One of the most common –and unfounded– reasons as to why Nobel decided against a Nobel

prize in math is that [a woman he proposed to/his wife/his mistress] [rejected him because
of/cheated him with] a famous mathematician. Gosta Mittag-Leffler is often claimed to be the
guilty party.

There is no historical evidence to support the story.
For one, Mr. Nobel was never married.
There are more credible reasons as to why there is no Nobel prize in math. Chiefly among

them is simply the fact he didn’t care much for mathematics, and that it was not considered
a practical science from which humanity could benefit (a chief purpose for creating the Nobel
Foundation).

Further, at the time there existed already a well known Scandinavian prize for mathemati-
cians. If Nobel knew about this prize he may have felt less compelled to add a competing prize
for mathematicians in his will.

[...] As professor ordinarius in Stockholm, Mittag-Leffler began a 30-year career of
vigorous mathematical activity. In 1882 he founded the Acta Mathematica, which a
century later is still one of the world’s leading mathematical journals. Through his
influence in Stockholm he persuaded King Oscar II to endow prize competitions and
honor various distinguished mathematicians all over Europe. Hermite, Bertrand,
Weierstrass, and Poincare were among those honored by the King. [...]
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Source: ”The Mathematics of Sonya Kovalevskaya” by Roger Cooke (Springer-Verlag, New York
etc., 1984, II.5.2, p. 90-91:

Here are some relevant facts:

• Nobel never married, hence no “wife”. (He did have a mistress, a Viennese woman named
Sophie Hess.)

• Gosta Mittag-Leffler was an important mathematician in Sweden in the late 19th-early
20th century. He was the founder of the journal Acta Mathematica, played an important
role in helping the career of Sonya Kovalevskaya, and was eventually head of the Stockholm
Hogskola, the precursor to Stockholms Universitet. However, it seems highly unlikely that
he would have been a leading candidate for an early Nobel Prize in mathematics, had there
been one – there were guys like Poincare and Hilbert around, after all.

• There is no evidence that Mittag-Leffler had much contact with Alfred Nobel (who resided
in Paris during the latter part of his life), still less that there was animosity between them
for whatever reason. To the contrary, towards the end of Nobel’s life Mittag-Leffler was
engaged in “diplomatic” negotiations to try to persuade Nobel to designate a substantial
part of his fortune to the Hogskola. It seems hardly likely that he would have undertaken
this if there was prior bad blood between them. Although initially Nobel seems to have
intended to do this, eventually he came up with the Nobel Prize idea – much to the
disappointment of the Hogskola, not to mention Nobel’s relatives and Fraulein Hess.

• According to the very interesting study by Elisabeth Crawford, “The Beginnings of the
Nobel Institution”, Cambridge Univ. Press, 1984, pages 52-53:

Although it is not known how those in responsible positions at the Hogskola came
to believe that a large bequest was forthcoming, this indeed was the expectation,
and the disappointment was keen when it was announced early in 1897 that
the Hogskola had been left out of Nobel’s final will in 1895. Recriminations
followed, with both Pettersson and Arrhenius [academic rivals of Mittag-Leffler
in the administration of the Hogskola] letting it be known that Nobel’s dislike
for Mittag-Leffler had brought about what Pettersson termed the ‘Nobel Flop’.
This is only of interest because it may have contributed to the myth that Nobel
had planned to institute a prize in mathematics but had refrained because of his
antipathy to Mittag-Leffler or –in another version of the same story– because of
their rivalry for the affections of a woman....

However, Sister Mary Thomas a Kempis discovered a letter by R. C. Archibald in the
archives of Brown University and discussed its contents in ”The Mathematics Teacher”
(1966, pp.667-668). Archibald had visited Mittag-Leffler and, on his report, it would seem
that M-L *believed* that the absence of a Nobel Prize in mathematics was due to an
estrangement between the two men. (This at least is the natural reading, but not the only
possible one.)

• A final speculation concerning the psychological element. Would Nobel, sitting down to
draw up his testament, presumably in a mood of great benevolence to mankind, have
allowed a mere personal grudge to distort his idealistic plans for the monument he would
leave behind?
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Nobel, an inventor and industrialist, did not create a prize in mathematics simply because he
was not particularly interested in mathematics or theoretical science. His will speaks of prizes
for those “inventions or discoveries” of greatest practical benefit to mankind. (Probably as a
result of this language, the physics prize has been awarded for experimental work much more
often than for advances in theory.)

However, the story of some rivalry over a woman is obviously much more amusing, and that’s
why it will probably continue to be repeated.
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5.5 International Mathematics Olympiad and Other Competi-
tions

From the IMO home page:
The International Mathematics Olympiad (IMO) is an annual mathematics competition for

highschool students. It is one of the International Science Olympiads. The first IMO was held
in Romania in 1959. The usual size of an official delegation to an IMO is (a maximum of) six
student competitors and (a maximum of) two leaders. There is no official “team”. The student
competitors write two papers, on consecutive days, each paper consisting of three questions.
Each question is worth seven marks.

You can check results and other info at

http://www.win.tue.nl/win/ioi/imo/

5.6 Who is N. Bourbaki?

A group of mostly French mathematicians which began meeting in the 1930s, aiming to write a
thorough unified account of all mathematics. They had tremendous influence on the way math
is done since. For a very accessible sampler see Dieudonne Mathematics: The Music Of Reason
(Orig. Pour L’honneur De L’esprit Humain).

The founding is described in Andre Weil’s autobiography, titled something like “memoir of
an apprenticeship” (orig. Souvenirs D’apprentissage). There is a usable book Bourbaki by J.
Fang. Liliane Beaulieu has a book forthcoming, which you can sample in “A Parisian Cafe
and Ten Proto-Bourbaki Meetings 1934-1935” in the Mathematical Intelligencer 15 no.1 (1993)
27-35.

The history behind Bourbaki is also described in Scientific American, May 1957.
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Chapter 6

Mathematical Trivia

6.1 Names of Large Numbers

Naming for 10k.

k American European SI--Prefix

-33 revo
-30 tredo
-27 syto
-24 fito
-21 ento
-18 quintillionth atto
-15 Quadrillionth femto
-12 trillionth pico
-9 Billionth nano
-6 Millionth micro
-3 Thousandth milli
-2 Hundredth centi
-1 Tenth deci
1 Ten deca
2 Hundred hecto
3 Thousand kilo
4 Myriad
6 Million Million mega
9 Billion Milliard giga
12 Trillion Billion tera
15 Quadrillion Billiard peta
18 Quintillion Trillion exa
21 Sextillion Trilliard hepa
24 Septillion Quadrillion otta
27 Octillion Quadrilliard nea
30 Nonillion Quintillion dea
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(Noventillion)
33 Decillion Quintilliard una
36 Undecillion Sextillion
39 Duodecillion Sextilliard
42 tredecillion Septillion
45 quattuordecillion Septilliard
48 quindecillion Octillion
51 sexdecillion Octilliard
54 septendecillion Nonillion

(Noventillion)
57 octodecillion Nonilliard

(Noventilliard)
60 novemdecillion Decillion
63 VIGINTILLION Decilliard

6*n (2n-1)-illion n-illion
6*n+3 (2n)-illion n-illiard

100 Googol Googol
303 CENTILLION
600 CENTILLION

10^100 Googolplex Googolplex

%From: balden@wimsey.com (Bruce Balden)
%Date: Fri, 11 Oct 1996 12:46:39 GMT

Chinese System

1 yi4
10 shi2
100 bai3
1000 qian2
10000 wan4
10^6 yi bai3 wan (i.e. 100 times wan)
10^8 yi1
10^12 ???

The American system is used in:
US,
...

The European system is used in:
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Austria,
Belgium,
Chile,
Germany,
the Netherlands,
Italy (see exception)
Scandinavia

%Date: Mon, 25 Aug 1997 22:47:48 -0700
%From: Torbjorn Larsson <ekatla@eka.ericsson.se>
%Subject: Sci.math FAQ

Note that all prefixes are to be spelled with a leading small letter. (As are
all SI units, even those that honors persons by using their names.)

- All prefixes with n < 0 should have a small letter abbreviation.
Eg. 1 picoampere = 1 pA. (SI unit rule explanation: person name unit
is abreviated using a capital letter)

- All prefixes with n > 0 should have a large letter abbreviation.
Eg. 1 gigameter = 1 Gm. (SI unit rule explanation: non-person name unit
is abreviated in lower case). _Except_ the mass unit: 1 kilogram is
abreviated as kg (compare to Km. for kilometer).

hv@cix.compulink.co.uk (Hugo van der Sanden):
To the best of my knowledge, the House of Commons decided to adopt the
US definition of billion quite a while ago - around 1970? - since which
it has been official government policy.

dik@cwi.nl (Dik T. Winter):
The interesting thing about all this is that originally the French used
billion to indicate 10^9, while much of the remainder of Europe used
billion to indicate 10^12. I think the Americans have their usage from
the French. And the French switched to common European usage in 1948.

gonzo@ing.puc.cl (Gonzalo Diethelm):
Other countries (such as Chile, my own, and I think
most of Latin America) use billion to mean 10^12, trillion to mean
10^18, etc. What is the usage distribution over the world population,
anyway?
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Chapter 7

Famous Problems in Mathematics

7.1 The Four Colour Theorem

Theorem 2 (Four Colour Theorem) Every planar map with regions of simple borders can
be coloured with 4 colours in such a way that no two regions sharing a non-zero length border
have the same colour.

An equivalent combinatorial interpretation is

Theorem 3 (Four Colour Theorem) Every loopless planar graph admits a vertex-colouring
with at most four different colours.

This theorem was proved with the aid of a computer in 1976. The proof shows that if aprox.
1,936 basic forms of maps can be coloured with four colours, then any given map can be coloured
with four colours. A computer program coloured these basic forms. So far nobody has been
able to prove it without using a computer. In principle it is possible to emulate the computer
proof by hand computations.

The known proofs work by way of contradiction. The basic thrust of the proof is to assume
that there are counterexamples, thus there must be minimal counterexamples in the sense that
any subset of the graphic is four colourable. Then it is shown that all such minimal counterex-
amples must contain a subgraph from a set basic configurations.

But it turns out that any one of those basic counterexamples can be replaced by something
smaller, while preserving the need for five colours, thus contradicting minimality.

The number of basic forms, or configurations has been reduced to 633.
A recent simplification of the Four Colour Theorem proof, by Robertson, Sanders, Seymour

and Thomas, has removed the cloud of doubt hanging over the complex original proof of Appel
and Haken.

The programs can now be obtained by ftp and easily checked over for correctness. Also the
paper part of the proof is easier to verify. This new proof, if correct, should dispel all reasonable
criticisms of the validity of the proof of this theorem.
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Figure 7.1: Trisection of the Angle with a marked ruler

K. Appel and W. Haken. Every planar map is four colorable. Illinois Journal of Mathematics,
vol. 21, 1977, pp. 429-567.

N. Robertson, D. Sanders, P. Seymour, R. Thomas The Four Colour Theorem Preprint,
February 1994. Available by anonymous ftp from ftp.math.gatech.edu, in directory /pub/users/thomas/fcdir/npfc.ps.

The Four Color Theorem: Assault and Conquest T. Saaty and Paul Kainen. McGraw-Hill, 1977.
Reprinted by Dover Publications 1986.

7.2 The Trisection of an Angle

Theorem 4 The trisection of the angle by an unmarked ruler and compass alone is in general
not possible.

This problem, together with Doubling the Cube, Constructing the regular Heptagon and
Squaring the Circle were posed by the Greeks in antiquity, and remained open until modern
times.

The solution to all of them is rather inelegant from a geometric perspective. No geometric
proof has been offered [check?], however, a very clever solution was found using fairly basic
results from extension fields and modern algebra.

It turns out that trisecting the angle is equivalent to solving a cubic equation. Constructions
with ruler and compass may only compute the solution of a limited set of such equations, even
when restricted to integer coefficients. In particular, the equation for θ = 60 degrees cannot be
solved by ruler and compass and thus the trisection of the angle is not possible.

It is possible to trisect an angle using a compass and a ruler marked in 2 places.
Suppose X is a point on the unit circle such that 6 XOE is the angle we would like to

“trisect”. Draw a line AX through a point A on the x-axis such that |AB| = 1 (which is the
same as the radius of the circle), where B is the intersection-point of the line AX with the circle.

Let θ be 6 BAO. Then 6 BOA = θ, and 6 XBO = 6 BXO = 2θ
Since the sum of the internal angles of a triangle equals π radians (180 degrees) we have

6 XBO+ 6 BXO+ 6 BOX = π, implying 4θ+ 6 BOX = π. Also, we have that 6 AOB+ 6 BOX+
6 XOE = π, implying θ+ 6 BOX + 6 XOE = π. Since both quantities are equal to π we obtain
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4θ + 6 BOX = θ + 6 BOX + 6 XOE

From which

3θ = 6 XOE

follows. QED.

7.3 Which are the 23 Hilbert Problems?

The original was published in German in a couple of places. A translation was published by the
AMS in 1902. This article has been reprinted in 1976 by the American Mathematical Society
(see references).

The AMS Symposium mentioned at the end contains a series of papers on the then-current
state of most of the Problems, as well as the problems.

The URL contains the list of problems, and their current status:
http://www.astro.virginia.edu/ eww6n/math/Hilbert’sProblems.html

Mathematical Developments Arising from Hilbert Problems, volume 28 of Proceedings of Symposia
in Pure Mathematics, pages 1–34, Providence, Rhode Island. American Mathematical Society,
1976.

D. Hilbert. Mathematical problems. Lecture delivered before the International
Congress of Mathematicians at Paris in 1900. Bulletin of the American Mathematical
Society, 8:437–479, 1902.

7.4 Unsolved Problems

7.4.1 Does there exist a number that is perfect and odd?

A given number is perfect if it is equal to the sum of all its proper divisors. This question was
first posed by Euclid in ancient Greece. This question is still open. Euler proved that if N is
an odd perfect number, then in the prime power decomposition of N , exactly one exponent is
congruent to 1 mod 4 and all the other exponents are even. Furthermore, the prime occurring
to an odd power must itself be congruent to 1 mod 4. A sketch of the proof appears in Exercise
87, page 203 of Underwood Dudley’s Elementary Number Theory. It has been shown that there
are no odd perfect numbers < 10300.

7.4.2 Collatz Problem

Take any natural number m > 0.
n := m;
repeat
if (n is odd) then n := 3 ∗ n+ 1; else n := n/2;
until (n == 1)
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Conjecture 1 For all positive integers m, the program above terminates.

The conjecture has been verified for all numbers up to 5.6 ∗ 1013.
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7.4.3 Goldbach’s conjecture

This conjecture claims that every even integer bigger equal to 4 is expressible as the sum of two
prime numbers. It has been tested for all values up to 4.1010 by Sinisalo.

7.4.4 Twin primes conjecture

There exist an infinite number of positive integers p with p and p+2 both prime. See the largest
known twin prime section. There are some results on the estimated density of twin primes.
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Chapter 8

Mathematical Games

8.1 The Monty Hall problem

This problem has rapidly become part of the mathematical folklore.
The American Mathematical Monthly, in its issue of January 1992, explains this problem

carefully. The following are excerpted from that article.
Problem:
A TV host shows you three numbered doors (all three equally likely), one hiding a car and

the other two hiding goats. You get to pick a door, winning whatever is behind it. Regardless
of the door you choose, the host, who knows where the car is, then opens one of the other two
doors to reveal a goat, and invites you to switch your choice if you so wish. Does switching
increases your chances of winning the car?

If the host always opens one of the two other doors, you should switch. Notice that 1/3 of
the time you choose the right door (i.e. the one with the car) and switching is wrong, while 2/3
of the time you choose the wrong door and switching gets you the car.

Thus the expected return of switching is 2/3 which improves over your original expected
gain of 1/3.

Even if the hosts offers you to switch only part of the time, it pays to switch. Only in the case
where we assume a malicious host (i.e. a host who entices you to switch based in the knowledge
that you have the right door) would it pay not to switch.

There are several ways to convince yourself about why it pays to switch. Here’s one. You
select a door. At this time assume the host asks you if you want to switch before he opens any
doors. Even though the odds that the door you selected is empty are high (2/3), there is no
advantage on switching as there are two doors, and you don’t know thich one to switch to. This
means the 2/3 are evenly distributed, which as good as you are doing already. However, once
Monty opens one of the two doors you selected, the chances that you selected the right door are
still 1/3 and now you only have one door to choose from if you switch. So it pays to switch.
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8.2 Master Mind

For the game of Master Mind it has been proven that no more than five moves are required in
the worst case.

One such algorithm was published in the Journal of Recreational Mathematics; in ’70 or
’71 (I think), which always solved the 4 peg problem in 5 moves. Knuth later published an
algorithm which solves the problem in a shorter number of moves - on average - but can take
six guesses on certain combinations.

In 1994, Kenji Koyama and Tony W. Lai found, by exhaustive search that 5625/1296 = 4.340
is the optimal strategy in the expected case. This strategy may take six guesses in the worst
case. A strategy that uses at most five guesses in the worst case is also shown. This strategy
requires 5626/1296 = 4.341 guesses.
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Chapter 9

Axiom of Choice and Continuum
Hypothesis

9.1 The Axiom of Choice

There are several equivalent formulations:

• The Cartesian product of nonempty sets is nonempty, even if the product is of an infinite
family of sets.

• Given any set S of mutually disjoint nonempty sets, there is a set C containing a single
member from each element of S. C can thus be thought of as the result of “choosing” a
representative from each set in S. Hence the name.

9.1.1 Relevance of the Axiom of Choice

THE AXIOM OF CHOICE
There are many equivalent statements of the Axiom of Choice. The following version gave

rise to its name:

For any set X there is a function f , with domain X\0, so that f(x) is a member of
x for every nonempty x in X.

Such an f is called a “choice function” on X. [Note that X\0 means X with the empty set
removed. Also note that in Zermelo-Fraenkel set theory all mathematical objects are sets so
each member of X is itself a set.]

The Axiom of Choice (AC) is one of the most discussed axioms of mathematics, perhaps
second only to Euclid’s parallel postulate. The axioms of set theory provide a foundation for
modern mathematics in the same way that Euclid’s five postulates provided a foundation for
Euclidean geometry, and the questions surrounding AC are the same as the questions that
surrounded Euclid’s Parallel Postulate:

1. Can it be derived from the other axioms?

2. Is it consistent with the other axioms?

3. Should we accept it as an axiom?
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For many sets, including any finite set, the first six axioms of set theory (abbreviated ZF) are
enough to guarantee the existence of a choice function but there do exist sets for which AC is
required to show the existence of a choice function. The existence of such sets was proved in
1963 by Paul Cohen. This means that AC cannot be derived from the other six axioms; in other
words “AC is independent of ZF.” This answers question [1] posed above.

The question of whether AC is consistent with the other axioms (question [2] above) was
answered by Goedel in 1938. Goedel showed that if the other axioms are consistent then AC is
consistent with them. This is a “relative consistency” proof which is the best we can hope for
because of Goedel’s Second Incompleteness Theorem.

The third question, “Should we accept it as an axiom?”, moves us into the realm of philos-
ophy. Today there are three major schools of thought concerning the use of AC:

1. Accept it as an axiom and use it without hesitation.

2. Accept it as an axiom but use it only when you cannot find a proof without it.

3. AC is unacceptable.

Most mathematicians today belong to school A. Mathematicians who are in school B are usually
there because of a belief in Occam’s Razor (use as few assumptions as possible when explaining
something) or an interest in metamathematics. There are a growing number of people moving
to school C, especially computer scientists who work on automated reasoning using constructive
type theories.

Underlying the schools of thought about the use of AC are views about truth and the nature
of mathematical objects. Three major views are platonism, constructivism, and formalism.

Platonism

A platonist believes that mathematical objects exist independent of the human mind, and
a mathematical statement, such as AC, is objectively either true or false. A platonist accepts
AC only if it is objectively true, and probably falls into school A or C depending on her belief.
If she isn’t sure about AC’s truth then she may be in school B so that once she finds out the
truth about AC she will know which theorems are true.

Constructivism

A constructivist believes that the only acceptable mathematical objects are ones that can be
constructed by the human mind, and the only acceptable proofs are constructive proofs. Since
AC gives no method for constructing a choice set constructivists belong to school C.

Formalism

A formalist believes that mathematics is strictly symbol manipulation and any consistent
theory is reasonable to study. For a formalist the notion of truth is confined to the context of
mathematical models, e.g., a formalist would say ”The parallel postulate is false in Riemannian
geometry.” but she wouldn’t say ”The parallel postulate is false.” A formalist will probably not
allign herself with any school. She will comfortably switch between A, B, and C depending on
her current interests.

So: Should you accept the Axiom of Choice? Here are some arguments for and against it.

Against

• It’s not as simple, aesthetically pleasing, and intuitive as the other axioms.
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• It is equivalent to many statements which are not intuitive such as ”Every set can be well
ordered.” How, for example, would you well order the reals?

• With it you can derive non-intuitive results, such as the existence of a discontinuous
additive function, the existence of a non-measurable set of reals, and the Banach-Tarski
Paradox (see the next section of the sci.math FAQ).

• It is nonconstructive - it conjures up a set without providing any sort of procedure for its
construction.

For

The acceptance of AC is based on the belief that our intuition about finite sets can be
extended to infinite sets. The main argument for accepting it is that it is useful. Many important,
intuitively plausible theorems are equivalent to it or depend on it. For example these statements
are equivalent to AC:

• Every vector space has a basis.

• Trichotomy of Cardinals: For any cardinals k and l, either k < l or k = l or k > l.

• Tychonoff’s Theorem: The product of compact spaces is compact in the product topology.

• Zorn’s Lemma: Every nonempty partially ordered set P in which each chain has an upper
bound in P has a maximal element.

And these statements depend on AC (i.e., they cannot be proved in ZF without AC):

• The union of countably many countable sets is countable.

• Every infinite set has a denumerable subset.

• The Loewenheim-Skolem Theorem: Any first-order theory which has a model has a denu-
merable model.

• The Baire Category Theorem: The reals are not the union of countably many nowhere
dense sets (i.e., the reals are not meager).

• The Ultrafilter Theorem: Every Boolean algebra has an ultrafilter on it.

Alternatives to AC

• Accept only a weak form of AC such as the Denumerable Axiom of Choice (every denu-
merable set has a choice function) or the Axiom of Dependent Choice.

• Accept an axiom that implies AC such as the Axiom of Constructibility (V = L) or the
Generalized Continuum Hypothesis (GCH).

• Adopt AC as a logical axiom (Hilbert suggested this with his epsilon axiom). If set theory
is done in such a logical formal system the Axiom of Choice will be a theorem.

• Accept a contradictory axiom such as the Axiom of Determinacy.
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• Use a completely different framework for mathematics such as Category Theory. Note that
within the framework of Category Theory Tychonoff’s Theorem can be proved without
AC (Johnstone, 1981).

Test Yourself: When is AC necessary?

If you are working in Zermelo-Fraenkel set theory without the Axiom of Choice, can you
choose an element from...

1. a finite set?

2. an infinite set?

3. each member of an infinite set of singletons (i.e., one-element sets)?

4. each member of an infinite set of pairs of shoes?

5. each member of inifinite set of pairs of socks?

6. each member of a finite set of sets if each of the members is infinite?

7. each member of an infinite set of sets if each of the members is infinite?

8. each member of a denumerable set of sets if each of the members is infinite?

9. each member of an infinite set of sets of rationals?

10. each member of a denumerable set of sets if each of the members is denumberable?

11. each member of an infinite set of sets if each of the members is finite?

12. each member of an infinite set of finite sets of reals?

13. each member of an infinite set of sets of reals?

14. each member of an infinite set of two-element sets whose members are sets of reals?

The answers to these questions with explanations are accessible through http://www.jazzie.com/ii/math/index.html
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9.2 Cutting a sphere into pieces of larger volume

Is it possible to cut a sphere into a finite number of pieces and reassemble into a solid of twice
the volume?

This question has many variants and it is best answered explicitly.
Given two polygons of the same area, is it always possible to dissect one into a finite number

of pieces which can be reassembled into a replica of the other?
Dissection theory is extensive. In such questions one needs to specify

• What is a “piece”? (polygon? Topological disk? Borel-set? Lebesgue-measurable set?
Arbitrary?)

• How many pieces are permitted (finitely many? countably? uncountably?)

• What motions are allowed in “reassembling” (translations? rotations? orientation-reversing
maps? isometries? affine maps? homotheties? arbitrary continuous images? etc.)

• How the pieces are permitted to be glued together. The simplest notion is that they must
be disjoint. If the pieces are polygons [or any piece with a nice boundary] you can permit
them to be glued along their boundaries, ie the interiors of the pieces disjoint, and their
union is the desired figure.

Some dissection results

• We are permitted to cut into finitely many polygons, to translate and rotate the pieces, and
to glue along boundaries; then yes, any two equal-area polygons are equi-decomposable.

This theorem was proven by Bolyai and Gerwien independently, and has undoubtedly been
independently rediscovered many times. I would not be surprised if the Greeks knew this.

The Hadwiger-Glur theorem implies that any two equal-area polygons are equi-decomposable
using only translations and rotations by 180 degrees.

• Theorem 5 (Hadwiger-Glur, 1951) Two equal-area polygons P ,Q are equi-decomposable
by translations only, iff we have equality of these two functions: φP () = φQ()

Here, for each direction v (ie, each vector on the unit circle in the plane), let φP (v) be the
sum of the lengths of the edges of P which are perpendicular to v, where for such an edge,
its length is positive if v is an outward normal to the edge and is negative if v is an inward
normal to the edge.

• In dimension 3, the famous “Hilbert’s third problem” is:
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If P and Q are two polyhedra of equal volume, are they equi-decomposable by
means of translations and rotations, by cutting into finitely many sub-polyhedra,
and gluing along boundaries?

The answer is no and was proven by Dehn in 1900, just a few months after the problem
was posed. (Ueber raumgleiche polyeder, Goettinger Nachrichten 1900, 345-354). It was
the first of Hilbert’s problems to be solved. The proof is nontrivial but does not use the
axiom of choice.
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• Using the axiom of choice on non-countable sets, you can prove that a solid sphere can be
dissected into a finite number of pieces that can be reassembled to two solid spheres, each
of same volume of the original. No more than nine pieces are needed.

The minimum possible number of pieces is five. (It’s quite easy to show that four will not
suffice). There is a particular dissection in which one of the five pieces is the single center
point of the original sphere, and the other four pieces A, A′, B, B′ are such that A is
congruent to A′ and B is congruent to B′. [See Wagon’s book].

This construction is known as the Banach-Tarski paradox or the Banach-Tarski-Hausdorff
paradox (Hausdorff did an early version of it). The “pieces” here are non-measurable sets,
and they are assembled disjointly (they are not glued together along a boundary, unlike
the situation in Bolyai’s thm.) An excellent book on Banach-Tarski is:

The Banach-Tarski Paradox. Stan Wagon. Cambridge University Press, 985

Robert M. French. The Banach-Tarski theorem. The Mathematical Intelligencer, 10
(1988) 21-28.

The pieces are not (Lebesgue) measurable, since measure is preserved by rigid motion.
Since the pieces are non-measurable, they do not have reasonable boundaries. For example,
it is likely that each piece’s topological-boundary is the entire ball.

The full Banach-Tarski paradox is stronger than just doubling the ball. It states:

• Any two bounded subsets (of 3-space) with non-empty interior, are equi-decomposable by
translations and rotations.

This is usually illustrated by observing that a pea can be cut up into finitely pieces and
reassembled into the Earth.

The easiest decomposition “paradox” was observed first by Hausdorff:

• The unit interval can be cut up into countably many pieces which, by translation only,
can be reassembled into the interval of length 2.

This result is, nowadays, trivial, and is the standard example of a non-measurable set,
taught in a beginning graduate class on measure theory.
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• Theorem 6 There is a finite collection of disjoint open sets in the unit cube in R3 which
can be moved by isometries to a finite collection of disjoint open sets whose union is dense
in the cube of size 2 in R3.

This result is by Foreman and Dougherty.

• A square cannot be rearranged into a disk, if one is allowed finitely many pieces with
analytic boundaries, glued at edges.

• A square can be rearranged into a disk, with translations only, if one is allowed to use
finitely many pieces with unconstrained shape (not necessarily connected), and disjoint
assembly.
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“Banach and Tarski had hoped that the physical absurdity of this theorem would encourage
mathematicians to discard AC. They were dismayed when the response of the math community
was ‘Isn’t AC great? How else could we get such counterintuitive results?’ ”

9.3 The Continuum Hypothesis

A basic reference is Godel’s “What is Cantor’s Continuum Problem?”, from 1947 with a 1963
supplement, reprinted in Benacerraf and Putnam’s collection Philosophy of Mathematics. This
outlines Godel’s generally anti-CH views, giving some “implausible” consequences of CH.

”I believe that adding up all that has been said one has good reason to suspect that the role
of the continuum problem in set theory will be to lead to the discovery of new axioms which
will make it possible to disprove Cantor’s conjecture.”

At one stage he believed he had a proof that C = ℵ2 from some new axioms, but this turned
out to be fallacious. (See Ellentuck, “Godel’s Square Axioms for the Continuum”, Mathematis-
che Annalen 1975.)

Maddy’s “Believing the Axioms”, Journal of Symbolic Logic 1988 (in 2 parts) is an extremely
interesting paper and a lot of fun to read. A bonus is that it gives a non-set-theorist who knows
the basics a good feeling for a lot of issues in contemporary set theory.

Most of the first part is devoted to “plausible arguments” for or against CH: how it stands
relative to both other possible axioms and to various set-theoretic “rules of thumb”. One gets
the feeling that the weight of the arguments is against CH, although Maddy says that many
“younger members” of the set-theoretic community are becoming more sympathetic to CH than
their elders. There’s far too much here for me to be able to go into it in much detail.

Some highlights from Maddy’s discussion, also incorporating a few things that other people
sent me:

1. Cantor’s reasons for believing CH aren’t all that persuasive today.
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2. Godel’s proof of the consistency of CH shows that CH follows from ZFC plus the Axiom
of Constructibility (V = L, roughly that the set-theoretic universe = the constructible
universe). However, most set-theorists seem to find Constructiblity implausible and much
too restrictive. It’s an example of a “minimizing” principle, which tends to cut down on
the number of sets admitted to one’s universe. Apparently “maximizing” principles meet
with much more sympathy from set theorists. Such principles are more compatible with
¬CH than with CH.

3. If GCH is true, this implies that ℵ0 has certain unique properties: e.g. that it’s that
cardinal before which GCH is false and after which it is true. Some would like to believe
that the set-theoretic universe is more “uniform” (homogeneous) than that, without this
kind of singular occurrence. Such a “uniformity” principle tends to imply ¬GCH.

4. Most of those who disbelieve CH think that the continuum is likely to have very large
cardinality, rather than ℵ2 (as Godel seems to have suggested). Even Cohen, a professed
formalist, argues that the power set operation is a strong operation that should yield sets
much larger than those reached quickly by stepping forward through the ordinals:

”This point of view regards C as an incredibly rich set given to us by a bold new
axiom, which can never be approached by any piecemeal process of construc-
tion.”

5. There are also a few arguments in favour of CH, e.g. there’s an argument that ¬CH is
restrictive (in the sense of (2) above). Also, CH is much easier to force (Cohen’s method)
than ¬CH. And CH is much more likely to settle various outstanding results than is ¬CH,
which tends to be neutral on these results.

6. Most large cardinal axioms (asserting the existence of cardinals with various properties of
hugeness: these are usually derived either from considering the hugeness of ℵ0 compared
to the finite cardinals and applying uniformity, or from considering the hugeness of V (the
set-theoretic universe) relative to all sets and applying “reflection”) don’t seem to settle
CH one way or the other.

7. Various other axioms have some bearing. Axioms of determinacy restrict the class of sets of
reals that might be counterexamples to CH. Various forcing axioms (e.g. Martin’s axiom),
which are “maximality” principles (in the sense of (2) above), imply ¬CH. The strongest
(Martin’s maximum) implies that C = ℵ2. Of course the “truth” or otherwise of all these
axioms is controversial.

8. Freiling’s principle about “throwing darts at the real line” is a seemingly very plausi-
ble principle, not involving large cardinals at all, from which ¬CH immediately follows.
Freiling’s paper (JSL 1986) is a good read. More on this at the end of this message.

Of course we have conspicuously avoided saying anything about whether it’s even reasonable
to suppose that CH has a determinate truth-value. Formalists will argue that we may choose
to make it come out whichever way we want, depending on the system we work in. On the
other hand, the mere fact of its independence from ZFC shouldn’t immediately lead us to this
conclusion – this would be assigning ZFC a privileged status which it hasn’t necessarily earned.
Indeed, Maddy points out that various axioms within ZFC (notably the Axiom of Choice, and
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also Replacement) were adopted for extrinsic reasons (e.g. “usefulness”) as well as for “intrinsic”
reasons (e.g. “intuitiveness”). Further axioms, from which CH might be settled, might well be
adopted for such reasons.

One set-theorist correspondent said that set-theorists themselves are very loathe to talk
about “truth” or “falsity” of such claims. (They’re prepared to concede that 2 + 2 = 4 is
true, but as soon as you move beyond the integers trouble starts. e.g. most were wary even
of suggesting that the Riemann Hypothesis necessarily has a determinate truth-value.) On the
other hand, Maddy’s contemporaries discussed in her paper seemed quite happy to speculate
about the “truth” or “falsity” of CH.

The integers are not only a bedrock, but also any finite number of power sets seem to be quite
natural Intuitively are also natural which would point towards the fact that CH may be determi-
nate one way or the other. As one correspondent suggested, the question of the determinateness
of CH is perhaps the single best way to separate the Platonists from the formalists.

And is it true or false? Well, CH is somewhat intuitively plausible. But after reading all
this, it does seem that the weight of evidence tend to point the other way.

The following is from Bill Allen on Freiling’s Axiom of Symmetry. This is a good one to run
your intuitions by.

Let A be the set of functions mapping Real Numbers into countable sets of Real
Numbers. Given a function f in A, and some arbitrary real numbers x and y, we see
that x is in f(y) with probability 0, i.e. x is not in f(y) with probability 1. Similarly,
y is not in f(x) with probability 1. Let AX be the axiom which states

“for every f in A, there exist x and y such that x is not in f(y) and y is not in f(x)”

The intuitive justification for AX is that we can find the x and y by choosing them
at random.

In ZFC, AX = not CH. proof: If CH holds, then well-order R as r0, r1, ...., rx, ... with
x < ℵ1. Define f(rx) as {ry : y ≥ x}. Then f is a function which witnesses the
falsity of AX.

If CH fails, then let f be some member of A. Let Y be a subset of R of cardinality
ℵ1. Then Y is a proper subset. Let X be the union of all the sets f(y) with y in Y ,
together with Y . Then, as X is an ℵ1 union of countable sets, together with a single
ℵ1 size set Y , the cardinality of X is also ℵ1, so X is not all of R. Let a be in R X,
so that a is not in f(y) for any y in Y . Since f(a) is countable, there has to be some
b in Y such that b is not in f(a). Thus we have shown that there must exist a and
b such that a is not in f(b) and b is not in f(a). So AX holds.

Freiling’s proof, does not invoke large cardinals or intense infinitary combinatorics to make
the point that CH implies counter-intuitive propositions. Freiling has also pointed out that
the natural extension of AX is AXL (notation mine), where AXL is AX with the notion of
countable replaced by Lebesgue Measure zero. Freiling has established some interesting Fubini-
type theorems using AXL.

See “Axioms of Symmetry: Throwing Darts at the Real Line”, by Freiling, Journal of Sym-
bolic Logic, 51, pages 190-200. An extension of this work appears in ”Some properties of large
filters”, by Freiling and Payne, in the JSL, LIII, pages 1027-1035.

The section above was excerpted from a posting from David Chalmers, of Indiana University.
See also
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Chapter 10

Formulas of General Interest

10.1 How to determine the day of the week, given the month,
day and year

First a brief explanation: In the Gregorian Calendar, over a period of four hundred years, there
are 97 leap years and 303 normal years. Each normal year, the day of January 1 advances by
one; for each leap year it advances by two.

303 + 97 + 97 = 497 = 7 ∗ 71

As a result, January 1 year N occurs on the same day of the week as January 1 year
N + 400. Because the leap year pattern also recurs with a four hundred year cycle, a simple
table of four hundred elements, and single modulus, suffices to determine the day of the week
(in the Gregorian Calendar), and does it much faster than all the other algorithms proposed.
Also, each element takes (in principle) only three bits; the entire table thus takes only 1200 bits;
on many computers this will be less than the instructions to do all the complicated calculations
proposed for the other algorithms.

Incidental note: Because 7 does not divide 400, January 1 occurs more frequently on some
days than others! Trick your friends! In a cycle of 400 years, January 1 and March 1 occur on
the following days with the following frequencies:

Sun Mon Tue Wed Thu Fri Sat
Jan 1: 58 56 58 57 57 58 56
Mar 1: 58 56 58 56 58 57 57

Of interest is that (contrary to most initial guesses) the occurrence is not maximally flat.
In the Mathematical Gazette, vol. 53,, pp.127-129, it is shown that the 13th of the month

is more likely to be a Friday than any other day.The author is a 13 year old S.R.Baxter.
The Gregorian calendar was introduced in 1582 in parts of Europe; it was adopted in 1752

in Great Britain and its colonies, and on various dates in other countries. It replaced the Julian
Calendar which has a four-year cycle of leap years; after four years January 1 has advanced by
five days. Since 5 is relatively prime to 7, a table of 4 ∗ 7 = 28 elements is necessary for the
Julian Calendar.

There is still a 3 day over 10,000 years error which the Gregorian calendar does not take into
account. At some time such a correction will have to be done but your software will probably
not last that long!
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Here is a standard method suitable for mental computation:

1. Take the last two digits of the year.

2. Divide by 4, discarding any fraction.

3. Add the day of the month.

4. Add the month’s key value: JFM AMJ JAS OND 144 025 036 146

5. Subtract 1 for January or February of a leap year.

6. For a Gregorian date, add 0 for 1900’s, 6 for 2000’s, 4 for 1700’s, 2 for 1800’s; for other
years, add or subtract multiples of 400.

7. For a Julian date, add 1 for 1700’s, and 1 for every additional century you go back.

8. Add the last two digits of the year.

9. Divide by 7 and take the remainder.

Now 1 is Sunday, the first day of the week, 2 is Monday, and so on.
The following formula, which is for the Gregorian calendar only, may be more convenient for

computer programming. Note that in some programming languages the remainder operation
can yield a negative result if given a negative operand, so mod 7 may not translate to a simple
remainder.

W = (k + b2.6m− 0.2c − 2C + Y + bY/4c+ bC/4c)mod7

where b c denotes the integer floor function,
k is day (1 to 31)
m is month (1 = March, ..., 10 = December, 11 = Jan, 12 = Feb) Treat Jan & Feb as months
of the preceding year
C is century (1987 has C = 19)
Y is year (1987 has Y = 87 except Y = 86 for Jan & Feb)
W is week day (0 = Sunday, ..., 6 = Saturday)

Here the century and 400 year corrections are built into the formula. The b2.6m− 0.2c term
relates to the repetitive pattern that the 30-day months show when March is taken as the first
month.

The following short C program works for a restricted range, it returns 0 for Monday, 1 for
Tuesday, etc.

dow(m,d,y){y-=m<3;return(y+y/4-y/100+y/400+"-bed=pen+mad."[m]+d)%7;}

The program appeared was posted by sakamoto@sm.sony.co.jp (Tomohiko Sakamoto) on
comp.lang.c on March 10th, 1993.

A good mnemonic rule to help on the computation of the day of the week is as follows. In
any given year the following days come on the same day of the week:
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4/4
6/6
8/8
10/10
12/12

to remember the next four, remember that I work from 9-5 at a 7-11 so

9/5
5/9
7/11
11/7

and the last day of Feb.
”In 1995 they come on Tuesday. Every year this advances one other than leap-years which

advance 2. Therefore for 1996 the day will be Thursday, and for 1997 it will be Friday. Therefore
ordinarily every 4 years it advances 5 days. There is a minor correction for the century since the
century is a leap year iff the century is divisible by 4. Therefore 2000 is a leap year, but 1900,
1800, and 1700 were not.”

Even ignoring the pattern over for a period of years this is still useful since you can generally
figure out what day of the week a given date is on faster than someone else can look it up with
a calender if the calender is not right there. (A useful skill that.)
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10.2 Symbolic Computation Packages

This is not a comprehensive list. There are other Computer Algebra packages available that
may better suit your needs. There is an Available Packages listing maintained at UC Berkeley.
(The list can be obtained from math.berkeley.edu via anonymous ftp).

The ¡A HREF=”http://symbolicnet.mcs.kent.edu/”¿ Symbolic Computation Network¡/a¿
contains lots of useful information.

A: Maple
Purpose: Symbolic and numeric computation, mathematical
programming, and mathematical visualization.
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Contact: Waterloo Maple Software,
450 Phillip Street
Waterloo, Ontario
N2L 5J2
Phone (519)747-2373
FAX (519)747-5284
email: info@maplesoft.on.ca

A: DOE-Macsyma
Purpose: Symbolic and mathematical manipulations.
Contact: National Energy Software Center
Argonne National Laboratory 9700 South Cass Avenue
Argonne, Illinois 60439
Phone: (708) 972-7250

A: Pari
Purpose: Number-theoretic computations and simple numerical
analysis.
Available for most 32-bit machines, including 386+387 and 486.
This is a copyrighted but free package, available by ftp from
math.ucla.edu (128.97.4.254) and ftp.inria.fr (128.93.1.26).
Contact: questions about pari can be sent to pari@math.u-bordeaux.fr
and for the Macintosh versions to bernardi@mathp7.jussieu.fr

A: Mathematica
Purpose: Mathematical computation and visualization,
symbolic programming.
Contact: Wolfram Research, Inc.
100 Trade Center Drive Champaign,
IL 61820-7237
Phone: 1-800-441-MATH

A: Macsyma
Purpose: Symbolic numerical and graphical mathematics.
Contact: Macsyma Inc.
20 Academy Street
Arlington, MA 02174
tel: 617-646-4550
fax: 617-646-3161
email: info-macsyma@macsyma.com

A: Matlab
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Purpose: ‘matrix laboratory’ for tasks involving
matrices, graphics and general numerical computation.
Contact: The MathWorks, Inc.
21 Prime Park Way
Natick, MA 01760
508-653-1415
info@mathworks.com

A: Cayley/Magma
A: Cayley/Magma
Cayley is no longer being licenced or supported.
It has been superseded by a new and more powerful system
called Magma.
Purpose: Computation in algebraic, geometric and
combinatorial structures such as groups, rings, fields,
algebras, modules, graphs and codes.
Available for: SUN 3, SUN 4, SUN 10 (SUNOS 4.x and Solaris 2)
DECstation (Ultrix), DEC Alpha (OSF/1), IBM RS6000 (AIX),
HP9000/700 (HP-UX), Apollo M680x0, SGI, 486/Pentium (MS-DOS).
Contact: Computational Algebra Group
School of Mathematics and Statistics
University of Sydney
NSW 2006
Australia
Phone: +61 2 351 3338
Fax: +61 2 351 4534
URL: http://www.maths.usyd.edu.au:8000/comp/magma/Overview.html
magma@maths.su.oz.au

A: Axiom
Purpose: Symbolic programming, symbolic and numeric computation,

mathematical visualisation.
Contact: The Numerical Algorithms Group Ltd
Wilkinson House
Jordan Hill Road
Oxford
OX2 8DR
UK
email: infodesk@nag.co.uk
Phone: +44 1865 311744
Fax: +44 1865 311755
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10.3 Formula for the Surface Area of a sphere in Euclidean N-
Space

This is equivalent to the volume of the N -1 solid which comprises the boundary of an N -Sphere.
The volume of a ball is the easiest formula to remember: It’s rN πN/2

(N/2)! . The only hard part
is taking the factorial of a half-integer. The real definition is that x! = Γ(x+ 1), but if you want
a formula, it’s:

(1/2 + n)! =
√
π

(2n+ 2)!
(n+ 1)!4n+1

To get the surface area, you just differentiate to get N πN/2

(N/2)!r
N−1.

There is a clever way to obtain this formula using Gaussian integrals. First, we note that
the integral over the line of e−x

2
is
√
π. Therefore the integral over N -space of e−x

2
1−x

2
2−...−x

2
N

is
√
π
n. Now we change to spherical coordinates. We get the integral from 0 to infinity of

V rN−1e−r
2
, where V is the surface volume of a sphere. Integrate by parts repeatedly to get the

desired formula.
It is possible to derive the volume of the sphere from “first principles”.

10.4 Formula to compute compound interest.

Here’s a formula which can be used in 123, Excel, Wings and Dynaplan:

------- Input this data -------------------------------
principal amount = E9 ( in dollars )
Amortization Period = d10 ( in years ie 6 mon = .5 )
Payments / year = D11 ( 12 = monthly, 52 = weekly )
Published Interest rate = D12 ( ie 9 % = 0.09 )
Times per year Int calculated = d13 ( CDN mortgage use 2

US mortgage use 12
all other loans use 12 )

----- Calculate the proper rate of interest -----------

e14 = Effective annual rate = EXP(D13*LN(1+(D12/D13)))-1
e15 = Interest rate per payment = (EXP(LN(E14+1)/(D10*D11))-1)*D10*D11

e17 = Payments = APMT(E9,E15/D11,D10*D11) ( both these functions are
= PMT (E9,E15/D11,D10*D11) ( identical,diff spreadsheet)

APMT( principal amount,interest rate per period,# periods )
( this is a standard function on any true commercial spreadsheet)

OR use the following if done using a calculator
= Payments = P*I/[1-(I+1)^-T]

= E9*(E15/D11)/(1-((E15/D11) +1)**(-1*D10*D11))

Total interest cost = E17*D10*D11-E9
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-- Use these formulas if you wish to generate an amortization table --
always add up to ’Payments (e17)’
Interest per payment = current balance * ( E15 / D11 )
Principal per payment = current balance - Interest per payment
new current balance = current balance - Principal per payment -

(extra payment)

keep repeating until ’new current balance’ = 0

Derivation of Compound Interest Rate Formula
Suppose you deposited a fixed payment into an interest bearing account at regular intervals,

say monthly, at the end of each month. How much money would there be in the account at the
end of the nth month (at which point you’ve made n payments)?
Let i be the monthly interest rate as a fraction of principle.
Let x be the amount deposited each month.
Let n be the total number of months.
Let p[k] be the principle after k months.

So the recursive formula is:

p[n] = x+ ((1 + i)p[n− 1])eq1

This yields the summation:

p[n] =
n−1∑
k=0

x(1 + i)k

The way to solve this is to multiply through by (1 + i) and subtract the original equation
from the resulting equation. Observe that all terms in the summation cancel except the last
term of the multiplied equation and the first term of the original equation:

πp[n] = x((1 + i)n − 1)

or

p[n] = x((1 + i)n − 1)/i

Now suppose you borrow p at constant interest rate i. You make monthly payments of x.
It turns out that this problem is identical to taking out a balloon loan of p (that is it’s all due
at the end of some term) and putting payments of x into a savings account. At the end of the
term you use the principle in the savings account to pay off the balance of the loan. The loan
and the savings account, of course, must be at the same interest rate. So what we want to know
is: what monthly payment is needed so that the balance of the savings account will be identical
to the balance of the balloon loan after n payments?

The formula for the principal of the balloon loan at the end of the nth month is:

p[n] = p[0](1 + i)n
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So we set this expression equal to the expression for the the savings account, and we get:

p[0](1 + i)n = x((1 + i)n − 1)/i

or solving for x:

x = p[0](1 + i)ni/((1 + i)n − 1)

If (1 + i)n is large enough (say greater than 5), here is an approximation for determining n
from x, p, and i:

n ≈ −ln(ln(x/(ip)))/ln(1 + i)

The above approximation is based upon the following approximation:

ln(y − 1) ≈ lny − 1/y

Which is within 2
For example, a $100000 loan at 1% monthly, paying $1028.61 per month should be paid in

360 months. The approximation yields 358.9 payments.
If this were your 30 year mortgage and you were paying $1028.61 per month and you wanted

to see the effect of paying $1050 per month, the approximation tells you that it would be paid
off in 303.5 months (25 years and 3.5 months). If you stick 304 months into the equation for
x, you get $1051.04, so it is fairly close. This approximation does not work, though, for very
small interest rates or for a small number of payments. The rule is to get a rough idea first of
what (1 + i)n is. If that is greater than 5, the approximation works pretty well. In the examples
given, (1 + i)n is about 36.

Finding i given n, x, and p is not as easy. If i is less than 5% per payment period, the
following equation approximately holds for i:

i = −(1/n)ln(1− ip/x)

There is no direct solution to this, but you can do it by Newton-Raphson approximation.
Begin with a guess, i[0]. Then apply:

i[k + 1] = i[k]− x(1− i[k]p/x)(ni[k] + ln(1− i[k]p/x))
xn(1− i[k]p/x)− p

You must start with i too big, because the equation for i has a solution at i = 0, and that’s
not the one you want to end up with.

Example: Let the loan be for p = $10000, x = $50 per week for 5 years (n = 260). Let
i[0] = 20% per annum or 0.3846% per week. Since i must be a fraction rather than a percent,
i[0] = 0.003846. Then, applying eq 11:

i[1] = 0.003077
i[2] = 0.002479
i[3] = 0.002185
i[4] = 0.002118
i[5] = 0.002115
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The series is clearly beginning to converge here.
To get i[5] as an annual percentage rate, multiply by 52 weeks in a year and then by 100%,

so i[5] = 10.997% per annum. Substituting i[5] back into eq 7, we get x = $50.04, so it works
pretty well.
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Chapter 12

The Sci.Math FAQ Team

The sci.math FAQ, which was initally edited and compiled by Alex Lopez-Ortiz is now a
distributed effort of scientists in over five countries. At this time, the FAQ contains sec-
tions maintained by Alex Lopez-Ortiz (alopez-o@barrow.uwaterloo.ca), Nancy McGough (nan-
cym@ii.com), and Hans de Vreught (J.P.M.deVreught@cs.tudelft.nl). Several others sections are
in the works, on the hands of other volunteers.

If you wish to collaborate, send mail to alopez-o@barrow.uwaterloo.ca.

12.1 Copyright Notice

Copyright (c) 1993, 1994, 1995 A. Lopez-Ortiz
This FAQ is Copyright (C) 1994, 1995 by Alex Lopez-Ortiz. This text, in whole or in part,

may not be sold in any medium, including, but not limited to electronic, CD-ROM, or published
in print, without the explicit, written permission of Alex Lopez-Ortiz.

Individual sections are Copyright (C) 1994, 1995 of their individual maintainers.
———————————
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