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Abstract

A fundamental problem in robotics is to compute a
path for a robot from its current location to a given
goal. In this paper we consider the problem of a robot
equipped with an on-board vision system searching
for a goal ¢ in an unknown environment.

We assume that the robot is located at a point s in
a polygon that belongs to the well investigated class
of polygons called streets. A street is a simple polygon
where s and g are located on the polygon boundary
and the part of the polygon boundary from s to g is
weakly visible to the part from g to s and vice versa.

Our aim is to minimize the ratio of the length of
the path traveled by the robot to the length of the
shortest path from s to ¢g. In analogy to on-line al-
gorithms this value is called the competitive ratio.
We present two strategies. Our first strategy, contin-
uwous lad, extends the strategy lad which minimizes
the Local Absolute Detour. We show that this ex-
tension results in a 2.03-competitive strategy, which
significantly improves the best known bound of 4.44
for this class of strategies. Secondly, and most im-
portantly, we present a hybrid strategy consisting of
continuous lad and the strategy Mowve-in-Quadrant.
We show that this combination of strategies achieves
a competitive ratio of 1.73 which about halves the gap
between the known /2 lower bound for this problem
and the previously best known competitive ratio of
2.05.

1 Introduction

Finding a path from a starting location to a goal
within a given scene is an important problem in
robotics. A natural and realistic setting is to as-
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sume that the robot has only a partial knowledge of
its surroundings and that the amount of information
available to the robot increases as it discovers its sur-
roundings on its travels. For this purpose, the robot
is equipped with an on-board vision system that pro-
vides the visibility map of its local environment. The
robot uses this information to devise a search path
for a visually identifiable goal located outside the cur-
rent visibility region. The quality of a search strategy
is then evaluated under the framework of competi-
tive analysis for on-line searches, as introduced by
Sleator and Tarjan [13]. A search strategy is called
c-competitive if the path traveled by the robot to find
the goal is at most ¢ times longer than a shortest
path. The parameter c is called the competitive ratio
of the strategy.

As can easily be seen, there is no strategy with
a competitive ratio of o(n) for scenes with arbitrary
obstacles having a total of n vertices [2] even if we
restrict ourselves to searching in a simple polygon.
Therefore, the on-line search problem has been stud-
ied previously in various contexts where the geometry
of the obstacles is restricted [1, 2, 3, 9, 7, 10, 12].

Klein introduced the notion of a street as the first
class of polygons which allow search strategies with a
constant competitive ratio even when the location of
the goal is unknown [6]. In a street, the starting point
s and the goal g are located on the boundary of the
polygon and the two polygonal chains from s to g are
mutually weakly visible. Klein presents the strategy
lad for searching in streets which is based on the idea
of minimizing the Local Absolute Detour. He shows
an upper bound on its competitive ratio of 1+3/27 (~
5.71), later improved to 1+m/24++/1 + n2/4 (~ 4.44)
by Icking [5].

A strategy based on a different approach was pre-
sented by Kleinberg [7]. His strategy for searching
in streets can be shown to have a competitive ratio
of 2¢/2 with a very simple analysis. A further im-
provement using ideas similar to Kleinberg’s achieves
a competitive ratio of \/1+ (1 +7/4)? (~ 2.05) [8],
however the analysis is significantly more complex.

As Figure 1 shows, all strategies must have at least
a V2 competitive ratio. Here, if a strategy moves
to the left or right before seeing g, then g can be
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Figure 1: A lower bound for searching in rectilinear
streets.

placed on the opposite side, thus forcing the robot to
travel more than v/2 times the diagonal. This is the
only known lower bound even for arbitrarily oriented
streets.

In this paper we present two strategies to traverse
a street, one of which is an extension of the original
approach presented by Klein. The first strategy pre-
sented, continuous lad, is shown to have a ~ 2.03 com-
petitive ratio, which significantly improves the best
known bound of 4.44 for this class of strategies. We
then combine continuous lad with the strategy Mowve-
in-Quadrant presented in [8], resulting in a hybrid
strategy with a competitive ratio of 1.73. This new
strategy reduces in more than half the gap between
the known v/2 lower bound for this problem and the
previously best known strategy of ~ 2.05.

The paper is organized as follows. In Section 2
we introduce the basic geometric concepts necessary
for the rest of the paper. We also introduce a “High
Level Strategy” as proposed by Klein [6]. We state
some results about search strategies that follow this
High Level Strategy in Section 3 and present the new
strategy, continuous lad, and its analysis. In Section 4
we provide an new analysis of the strategy Move-in-
Quadrant [8] and show how to combine continuous lad
with Mowve-in-Quadrant optimally to obtain a strat-
egy with a performance guarantee of 1.73.

2 Preliminaries

Since we deal with point sets in the plane IE?, we need
the standard definitions of distance, norm, angle etc.
for points. If p, ¢, and r are three points in the plane,
then we denote

(i) the Lo-distance between p and ¢ by d(p, q),
(ii) the line segment between p and ¢ by pg, and

(iii) the counterclockwise angle between the line seg-
ment gp and the line segment gr at g by /pqr.

If P is a path in IE?, we denote its length by A\(P).
Furthermore, if p and ¢ are two points on P, then we
denote the part of P from p to ¢ by P(p,q).

A simple polygon is a simple, closed curve that
consists of the concatenation of line segments, called
the edges of the polygon, such that no two consecutive
edges are collinear. The end points of the edges are
called the vertices of the polygon.

We consider a simple polygon P in the plane with
n vertices and a robot inside P which is located at a
start point s on the boundary of P. The robot has
to find a path from s to the goal g. We denote the
shortest path from s to g by sp(s, g).

The search of the robot is aided by simple vision
(i.e. we assume that the robot knows the visibility
polygon of its current location). Furthermore, the
robot retains all the information seen so far (in mem-
ory) and knows its starting and current position. We
are, in particular, concerned with a special class of
polygons called streets first introduced by Klein [6].

Definition 2.1 [6] Let P be a simple polygon with
two distinguished vertices, s and g, and let L and
R denote the clockwise and counterclockwise, resp.,
oriented boundary chains leading from s to g. If L
and R are mutually weakly visible, i.e. if each point
of L sees at least one point of R and vice versa, then
(P, s,q) is called a street.

The only available information to the robot is its
visiblity polygon.

Definition 2.2 Let P be a street with start point s
and goal g. If p is a point of P, then the visibility
polygon of p is the set of all points in P that are seen
by p. It is denoted by V(p).

A window of V(p) is an edge of V(p) that does
not belong to the boundary of P (see Figure 2a,).

A window w splits P into a number of subpoly-
gons P, ..., Py one of which contains V(p). We de-
note the union of the subpolygons that do not contain
V(p) by Py.

The end point of a window w that is closer to p
is called the entrance point of w. We assume that
a window w has the orientation of the ray from p
to entrance point of w. We say a window w is a left
window if P, is locally to the left of w w.r.t. the given
orientation of w. A right window is defined similarly.

Let p be the current location of the robot and
Psp the path the robot followed from s to p. We as-
sume that the robot knows the part of P that can
be seen from Ps,, i.e. the robot maintains the poly-
gon V(Psp) = Ugep,, V(g). We say a window w of
V(p) is a true window w.r.t. Py, if P, is not con-
tained in V' (Psp). We say two (true) windows w; and



Figure 2: (a): The visibility polygon V (p) of p with
left window w; and right windows w9 and ws. (b): As
the robot moves to ¢ the left extreme entrance point
“jumps” from 1)]+ to 1);' and the robot moves directly
to vy .

wy are clockwise consecutive if the clockwise oriented
polygonal chain of V(p) between w; and wy does not
contain a (true) window different from w; and w,.
Counterclockwise consecutive is defined analogously.

If wg is the window of V(p) that is intersected
the first time by Py,, then it can be shown that all
left true windows are clockwise consecutive and all
right true windows are counterclockwise consecutive
from wg [6, 7, 8]. Hence, if left true windows exist,
then there is a clockwise-most left true window in
V(p) which we call the left extreme true window and
denote by w™. The right extreme true window w~ is
defined similarly. The entrance point v+ (v~) of w™
(w™) is called the left (right) extreme entrance point
of V(p). It can be easily shown that g is contained in
either P+ or P, and that either v or v~ belongs
to sp(s,g) 6, 7, 8.

The algorithms we propose all follow the same
high level strategy as described by Klein [6]. The
general idea is that the robot moves from one point
that is known to lie on sp(s, g) to a point on sp(s, g)
that is closer to g by a sequence of moves as described
below.

Algorithm High Level Strategy
Input: a street (P, s,g) and a path Py, from s to the
current position of the robot r;

while v and v~ are defined and ¢ is not reached
do
Compute a path P,; from r to some point ¢ on

vToT;

Figure 3: An example of the execution of the High
Lewel Strategy.

Follow the path P,; until one of the following
events occurs:
a) g becomes visible:
the robot moves directly to g;
b) P,+ or P, - becomes visible:
if P,+ is visible
then the robot moves to v~ ;
else the robot moves to v™;
¢) v*, v, and the current robot position r be-
come collinear (see Figure 2b):
the robot moves to the closer of v+ and v~
d) v* or v~ changes;
Let r be the current robot position;
Compute V(r) and v* and v~ anew;
end while;

An example of how the robot moves is given in Fig-
ure 3. The only detail left open by the above descrip-
tion is what path P,; to choose which is called a “low-
level strategy” [6]. In the following we investigate two
low-level strategies and analyse their performance.

3 lad and Beyond

In this section we consider a new strategy which is
similar in spirit to the first strategy that was pro-
posed to traverse streets [6]. In [6] the strategy lad
is presented which is based on the idea of minimizing
the local absolute detour. The importance of lad

apart from being the first strategy proposed lies in
the fact that it is the only strategy that uses a heuris-
tic optimality criterion to guide the robot. All other
strategies that have been presented have no compa-
rable feature. The well-chosen heuristic and its ex-



cellent performance in practice make lad a very at-
tractive strategy. Unfortunately, it seems that it is
exactly this property that makes lad also extremely
difficult to analyse. As mentioned before the best per-
formance guarantee is 1+ 7/2 + /1 + n2/4 (~ 4.44)
which seems to be a very loose bound considering
that the competitive ratio of the strategy observed in
practice is less than 1.8 [6].

In the following we present a slight variant of
lad which we call continuous lad that also follows
the paradigm of minimizing the local absolute detour
but whose analysis turns out to be much simpler and
tighter. It can be shown to achieve a competive ratio
of ~ 2.03 which is slighly better than the best per-
formance guarantee of ~ 2.05 known so far [8]. We
start out with some additional definitions and obser-
vations.

3.1 Preliminary Results for Low-Level
Strategies

A first observation we can make about the high level
strategy is that if one of the Cases a) ¢) occurs, then
we know which of v+ or v~ belongs to sp(s,g) and,
hence, the competitive ratio of the strategy is given by
ratio of the length of the path that the robot travels
between two points p and ¢ which are on sp(s, g) and
the shortest path sp(p, q) from p to q.

So in the following we assume that the robot starts
out at a point 1 € sp(s,g) and encounters a number
of events of Category d). Each of these events corre-
spond to one point r;, ¢« > 2, at which new left and

right extreme entrance points 1)Z~+ and v; appear and

a new path P; from r; to a point #; on vj'v; is com-

puted. Let d;“ be the distance of r; to vi+ and d; be
the distance from r; to v, .

Given r;, the point r; 1 is defined as the first point
on P; such that either the left or the right extreme
entrance point of V (r;41) is different from v;" or v;",
respectively (see Figure 4). At the point r;4q the
robot computes a new target point and a new path
Piy1.

We denote the angle er?’riﬂ by o/7+ and the
angle /r; v, r; by o, . The angle of Zv,ﬂ'r,;v; is de-
noted by ;. We can make the following elementary
observation about the angles ;11 and ;.

Observation 3.1 ;11 = + a* +ao; .

Let af =d —(df,, —d(v]',v},,)) and a; =d; —
(diiqy — d(v; ,v;14)). Note that either d(v;", ;1) =
0 or d(v; ,v;,) = 0 Furthermore, note that the
is d — a and the distance of

Let V+ be the shortest path

distance of ;11 to 1)
riq1 to v, is d; — az .

Figure 4: r;,1 is the first point on P; where the left
or right extreme entrance point changes.

from rg to v;“ the the shortest path from rg
to v; .

If the distance to vi+ and v; decreases monoton-
ously as the robot travels on P;, for all 0 < 1 < k,
then the length of V' or V" can be expressed by as
dJr plus the sum of the a;“ or d; plus the sum of the

a; , respectively.

s and sz

7 )
Lemma 3.2 If, for all 1 < i <k, d(riz1,v;) < d;f
and d(riy1,v; ) < d; , then we obfmn with the abm)e
definitions,
i-1
= Z aj+ + d;“
=0

and AV

Za +d; .

3.2 The Strategy lad

We give a short description of the rationale behind
lad as well as its definition, so as to stress both the
differences and similarities between it and continuous
lad.

If the robot has not been able to decide whether

+ belongs to the shortest path from s to g after

v;" orv;
1 steps, it chooses a new target point ¢; on v;“v; and
the line segment P; = r;t; to travel from its current
position r; to ;. Let Q; be the path of the robot from
r1 to r, and recall that V;' is the shortest path from rq
to 1) and V;" the shortest path from rg to v; . If “1:+
lies on the qhortest path from s to g, then the local
absolute detour is given by the distance the robot
travels from 71 to ;" which is A\(Q;)+A(P;) +d(t;, v;")
minus the length of the shortest path )\(V;') from 7y
to v;". A similar statement holds if v; belongs to
sp(s,g). Hence, the maximum local absolute detour
is minimized if

MQi) + A(Pi) +d(ti,vf) — AV =

AQi) + A(P;) +d(ti, v, ) — AV, ) (1)
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and the point #; on v, v, is given by

d(vi,t;) = AV = A, 2)+d( i oY ) (2)

27 L d(vﬁ_l, ; ) and A(V;) =
) where we define v = v, =1r.

Note that A(V;") =
im0 v, vj

3.3 The Strategy continuous lad

In the strategy continuous lad the robot also follows
a path from r; to ¢; where t; is determined by Equa-
tion 2; however, the robot does not move on a straight
line segment. Instead, it moves on a path P; such
that for each point r on P; the local absolute detour
is minimized. Instead of being a line segment, P; is
now part of a hyperbola. Although this slight modi-
fication may seem to complicate the analysis further,
it, in fact, allows to prove a much tighter upper bound
on the competitive ratio for continuous lad than for
lad. Note also that although the strategies seem al-
most identical, the points r; at which the left or right
extreme entrance points change for lad and continu-
ous lad can be quite far apart.

We assume that the robot travels along a path P;
from r; to r;41 such that every point r on P; satisfies
Equation 1 if we replace ¢; by r and P; by P;(ri,r).
If the robot follows the strategy continuous lad, then
a;“ = a,; and the location of ¢; is only determined by
d and d; .

Lemma 3.3 If the robot travels on a path P; such
that for all v € P;,

MQi) + A(Pi(ri, 1)) +d(r,vf") —
AQi) + X(Pi(ri,r)) + d(r,v; ) —
then a;“ =a; >0.
Proof: The proofis by induction on 7. For i = 1, we
have A(V;") = d(ry,v)") and A(V;) = d(r1,v; ) and if
we set 7 = ro, then the above equation immediately
yields

AV =
A(Vii)a

(l; = d(’l"],’l);)—d(’l”g,’l);) = d(’l”],’l)i)—d(’l”g,’l)i) - aiF'

Since the robot moves into the interior of the triangle

(r1,vy,v;) it is easy to see that a > 0. So now

assume the claim is true, for all 1 <4 < k — 1. Since

d(riz1,v;) = df —af <df, foralll <i<k-1,

Lemma 3.2 holds and A(V;) = h-( al +d}}. Simi-

larly, we have A\(V, ) = f é(f +d, . By the induc-
k 1

=0 j and the above

tion hypothesis ZJ 0 ]
equation again yields

+

a, = dy —d(rigi,vp) = df —d(repn,of) = af

(1,2' > 0 can be seen as in the case 7 = 1. |

Figure 5: Illustrating the proof of Lemma 3.4.

3.4 Analysis of the Strategy
continuous lad

In the following we assume that the robot travels on
a path P; such that, for all points ;11 on P; the
distances (1 and a; are the same, i.e. (1Jr a; = a;.
We analyqe a step of the High- Level Algoritm which
consists of k consecutive events of Category d) and
one event in the Categories a) ¢). As a first step
we compute an upper bound on the length of the
path that is given by the line segments connecting
the points r; to r;11. In a second step we then show
how to extend this analysis to Q.

We present two bounds for the length of the path
connecting the points r;, 1 < j < k. The first bound
gives a good approximation if the angle 7; is small
and the second bound approximates large angles.

Lemma 3.4 If af = a;,
a; [ cos(Yi+1/2)-

Proof: Let ;11 be chosen such that (ﬁ' =a, . Con-
sider the quadrilateral formed by 7, u?’, Uu; and Titr1
as shown in Figure 5.

The location of ;11 is completely determined by
the angles ozj' o, and v;. The angle of the quadri-
lateral formed at u; is (7 + a;)/2 and at wu; it is
(7 + o )/2 Since a?’ + o, +’yz = Yit1, we can
choose a and «; in order to maximize the dis-
tance of r;41 to r;. Let 6; = Zu*rl+1u+. Note
that 0, = 27r—'yz~—(7r+a )/2 —(m 4+« )/2 =
T—vi—af /2 —a; /2.

Let 61 = Zu; u+rz+1 and 0y = /riqiu; u . Hence,
01 +09 =7 — 91, where 6; is fixed. Furthermore, we
introduce a coordinate system such that the origin is
located at u;, u; = (1,0), and r; is located on the
line L = {(z,y) | z = 1/2}. Let C be the circle that

passes through wu,; , r; 1, and 11,;' with center c. The

then d(ri,riv1) <

7



Ti+41

Figure 6: Choosing ;.

path of all points with &y + 09 = m — 6; is the arc A of
C from u; to u; that contains 7,41 (see [11, Sec. 16,
Th. 4]).

We claim that d(r;,r;11) is maximal for §; = ds.
Let p be the topmost point of the arc A, i.e., §1 = d
if ;11 = p. We note that ¢ is located on the line
L. If ¢ is above r;, then the circle with center r; and
radius d(r;,p) contains C' and, hence, p is the point
with maximal distance to r;.

Let g be the point (1/2,0). We claim that ¢ is
above r;. In order to show this we compute d(r;, q)
and d(c,q). The angle /qryuj is obviously 7;/2.
Hence, d(r,q) = 1/2cot(v;/2). By [11, Sec. 16, Th. 2]
the angle Zu;cu;“ equals 2w — 20, = 2v; + a;“ + oy
and d(c,q) = 1/2cot(m — ;) = 1/2cot(v; + ;i /2 +
a; [2) < 1/2cot(v;/2) = d(r;,q) as claimed.

Therefore, we can assume a;“ = «; and we have
the configuration displayed in Figure 6. Since

5 ; i+ z
cos [ 2] = 14_ and cos (LX) T ;
2 a; 2 d(ri, rit1)

we obtain

cos(a; /2)a;
cos((y; + 0/14_)/2) .

d(ri,rig1) =

With (o +7;)/2 < 7i+1/2 < /2 and cos(o /2) < 1
the claim follows. O

For large angles we make use of the following ob-
servation.

Lemma 3.5 If a,i+ = a; and the angle at the robot
position is vy;, then

d(riyriz1) < min{a?’df,a;d;} + a;.

We now can analyse the competitive ratio of con-
tinuous lad. To do so, we first consider the path
P! that consists of the line segments connecting the
points ;. For the analysis we split the execution of
the strategy into two parts. In the first part we con-
sider the length of the path of the robot until the
angle between v and v; is equal to some angle v
and in the second part we consider the length of the
remaining path of the robot. In order to see that it
is possible to chose v to be any value that is greater
than or equal to 7y, we argue that Zv;r;(t)v; is a
continuous and monotonously increasing function as
the robot travels on P;.

We assume that the robot has reached the point
r; and the angle Zv,ﬂ'r,;v; is ;. At r; the robot

chooses a point t; on the line segment v v; and

moves on the path P; from r; to ¢; until a new
left or right extreme entrance point becomes visible.
Let r;(t) denote the position of the robot at time ¢
while traveling on P;. We assume that r;(0) = r;
and r;(1) = t;. We denote the angle /v; r;(t)v; by
7i(t). Since d(r;(t),v;") and d(r;(t),v; ) both decrease
monotonically and continuously with #, the angles
o (t) = /riviri(t) and «; (1) = /rv; ri(t) are con-
tinuous and monotonously increasing functions of ¢
and, therefore, v;(t) = v + o (t) + a; (t) is also a
continuous and monotonously increasing function of
t. Hence, if 79 < v < 4, there is one 0 < 4y < k and
one 0 < ¢y < 1 with ~;,(t9) = 7. We can assume in
the following that the robot executes Strategy contin-
uwous lad until either of the extreme entrance points
is undefined or ~;,(tg) = =y, for some iy and t;. We
insert the point 14,11 = 74,(to) into the sequence of
points (r1,...,7) so that now there are k + 1 points
r;. If v9 > 7y, then we define r;;1 = r¢. In both cases
we have 7,41 > 7.

In order to analyse the competitive ratio of con-
tinuous lad we need to estimate the length of the
path P; that is the concatenation of parts of hyper-
bolas. Recall that if A(P;) is the set of all finite
sequences of points on P; that occur in order, i.e.
APi) = {(q1,---sqm) | m>1, gj € P, forall 1 <
j < m, and g1 occurs after ¢; on P;}, then A(P;) =
sup{>75" d(aj, qj+1) | (a1.--- qm) € A(P)}. We
will make use of this definition, to estimate the length
of P;.

So consider a sequence (qi,...,qn) € A(P;).
Since we are interested in obtaining a supremum
and adding points only increases ZTQ] d(q;, qj41)s

we can assume that (rq,...,r;) is a subsequence

of (¢1,-.-,q9m). We define as before v_;-“ to be the
left entrance point of V(g;), d;' = d(qj,v;-'), and



(1,3" = d;' (d;_lfd(v? , 1+1)) v;,d;,a;,;, ete. are
defined analogously. Note that with the above defi-
nitions Lemmas 3.2 and 3.3 still hold which implies
that Lemmas 3.4 and 3.5 hold as well.

So let R,, be the path connecting the points
qi,---,qm by line segments. We now observe that
if the angle v; at g; is less than or equal to 7, then
Lemma 3.4 yields that d(g;—1,q;) < aj_1/cos(v/2).
Otherw1se Lemma 3.5 yields that d(¢;,gqj+1) <

;“dJ“ + a7 and d(qj,qj+1) < ajd; +a;. If jo is
the index, such that v;, = 7, then we obtain the fol-
lowing analysis of the length of R,, where we assume
w.lo.g. that v,f | € sp(s,g).

m—1

> d(gj, qj41) + dify
Jj=1

Jo m—1
= > dgj,qj41)+ Y dlgj,qj+1) +d
j=1 j=jo+1
Sy
< __ 4 (o df +a]) +d,
1o/ A
< : + (A =Y af ol +
— J J
=1 cos(/2) i=1 ") =i+
m—1
Z a;“ + dj,',
j=jo+1
1 jO jO

< TH(mr—v+1)

con172) 25
< max{1/cos(y/2), 7 — v+ 1}A(V,))

AV —Z a;“

J=1

So let the angle v be chosen such that the maxi-
mum of {1/cos(v/2),m7 —~+ 1} is minimized, i.e.,
that 1/cos(y/2) = m — vy + 1. By numerical eval-
uation we obtain that v ~ 2.111. Hence, (7w —
2.111) + 1 (~ 2.03) is an upper bound on the
length of the path R, that connects the points
g; by straight line segments. Since (qi,...,qm)
is chosen arbitrarily from A(P;), the supremum

of {X75"d(gj.q5+1) | (a1, --am) € A(Pi)} is also
bounded by 2.03.

4 Changing the Strategy

If we take a closer look at the analysis of Strategy con-
tinuous lad, then we notice that the ratio obtained
for small angles is much tighter than the bound on
large angles. Unfortunately, it is not obvious how to
improve the analysis. However, there is another op-
tion. Since the robot can measure the angle between

v and v,

; at its position, it is possible to change
the qtrategy once a certain threshold is reached. We
assume that the robot has encountered k events of
category d) in continuous lad and switches to a new
strategy at point ry.

In the following we consider the Strategy Move-
in-Quadrant which was already presented in [8] but
we provide a tighter analysis if the angle v is larger
than /2.

In order to present the strategy we need the notion
of a projection of a point. The orthogonal projection
p’ of a point p onto a line segment | is defined as the
point of [ that is closest to p.

Strategy Move-in-Quadrant
Input: A point r; in P such that the angle
Vi = /r5r[klry is > w/2;
1:=k;
while v;" of V(r;) are defined do
(1) Move to the orthogonal projection r; 1 of 7y
onto the line segment [; from v;" to v; ;
Compute the points 1)1:4;_1 and v;_; of the vis-
ibility polygon V' (7i41) of 7i41;
=141
end while;

and v;

The correctness of the strategy has been proven in
[8]. Note that the Strategy Move-in-Quadrant also
follows the schema of the High-Level-Strategy except
that events of Category d) are replaced by events of
Category d'): t; = r;11 is reached.

4.1 Analysis of the Strategy
Move-in-Quadrant

In the following we assume that the Strategy Mowve-
in-Quadrant has stopped after m — k iterations. As
before the shortest path goes either through v;" or v;”
[8].

Recall that v is defined to be the angle Zv,jrkv,;
which we assume to be greater than or equal to m/2.
We introduce a coordinate system where r; is the
origin and the angle §, between the z-axis and the

line segment ryv, equals the angle 5;“ between the

y-axis and the line segment rkv,:“. We define 6, =
5 =4, .

Now suppose that we have arrived at point r; and
move to point ;41 in the next iteration. To simplify
the analysis, we consider the line segment /! from the

intersection point of v+v* with the line through 7y
and v} to the intersection point of v/, jv;,, with the

line through ry and v, as shown Figure 7.



Vit
Figure 7: Introducing a new segment between /; and

liy1. A

Op d;
Figure 8: The location of r; with respect to 7.

The line segment [} is located between I; and l;41.
If we consider the path P} from 7, to r; that visits the
orthogonal projections of r; onto the line segments [;
and l"i in order, for £ < j < 4, then the length of
P! is obviously greater than or equal to the length of
P;. Furthermore, P; and P, share the same start and
end point. Hence, for the simplicity of exposition we
assume in the following that vi+ and v; are located
on the line from r; to v,j and v, , respectively, and
that either “1:+ = 1);_1 or v; =v;,q.

Let L; be the length of the path P; traveled by
the robot from 7, to reach r;; let a; be the an-
gle /ryv; r;, and d; the distance d(ry,v;, ) (see Fig-
ure 8). Similarly, let o be the angle /r;v; ) and
di the distance d(rg,v;"). We define the angle o
as min{r/2 — o ,7/2 — o; } and the distance d; as
min{d;",d; }. Note that 7/2—a; +7/2—a; = and,
therefore, ot +a; +26, = m/2 or 1/2—a = a; +20
and m/2—a; = af +20;. Inparticular, o = 7/2—a;
if and only if d; = d;.

Our approach to analyze our strategy is based on
the idea of a potential function Q; [8]. It is our aim to
show that L; +Q; < (% +cot 2)d;, for all k <i <,
where we define ; = «;d;. So suppose the robot has
reached the point r; and L; < (v, /24 cot v, /2 — a;)d;
and d; is equal to the distance between rq and v, . For
simplicity of description we assume that the distance

from 7, to vz~+ is 1.

Vi1
Figure 9: Case 2 if the robot moves from r; to ;1.

For the distance d; we obtain

s+

sin a;
d, = ———. 3
! cos(a; + 26) (3)

The robot moves now from r; to r;;1. We distin-
guish two cases.

Case 1 o) > O‘;—H or O‘;—H > -
These two Cases can be analysed exactly as the
Cases 1 and 3 the analysis of Move-in-Quadrant of

[8].

Case 2 o <o <o, (see Figure 9).

Hence, dj11 = sina,,/ cos(aj, | + 26;). Note that
Note that ;41 is on the circle C;f with center at ¢;” =
1/2(— sin 0y, cos §) and radius 1/2. The arc a; of

i
C from r; to 7,41 has length 2(7/2 — of — (/2 —
@,1))1/2. Clearly, the line segment 75711 is shorter

than the arc a?’. Hence,

Li +d(ri,rit1)

Yk Yk
< <? + cot 7) d; — a;d; + oz;;_l — o/7+

Liyn =

We want to show that

(L—k—l-cot%ai) di+(047:_1*0‘?—) <
Yk Yk
<? + cot 5 (Jz,;+1> dit1 (4)
or
Yk + ot Vi S Oéi+1di+1 — oud; + Q41 — O
2 o = dit1 —d;



with v — /2 < o; < aj41 < 7/4 — 0. If define
bi = qjy1 — oy = 0‘7:-1 — o/7+ and
f i, Biy 0k) =
5; (aj+,[3i+2(5k)sin(ai++ﬂi) . (oz;r—l—Q(ik)sinai+
t cos(a?‘+ﬂi+26k) cos(a;"+26k)
sin(a;h +6;) . sina} ’
cos(a;r+ﬁi+26k) cos(a?+26k)

then we want to prove that f (a, 8,9) < y/24cot /2,
where v = 7/2 + 26, for all (o,0,0) € A =
{(z,y,2) | >0,y >0,2 >0,z +y+ 2z < m/4} since
we assume that o < a4, ie of | <m/2—0af, —
20y, or a;“+ﬁi+5k < m/4.

By considering the partial derivatives of f w.r.t. a it
can be easily shown that f is monotone w.r.t. « and,
therefore,

max f (o, B,6) — mafo—g—a,ﬁ,a)

If we define g (ﬁ, 6) =f(§ —B—4,3,0), then

0 1
op < op (8. ) 2 cos 26(cos 23 — 1))

1 1
3 sin(44) cos(2(3) — cos 24 cos 23 — 3 sin46 + cos 26

which is equal to 0 if and only if cos(28) = 1 or
sin(46)/2 = cos 26, the latter of which only holds
for § = m/4. Furthermore, since 0 < [ < 7w/4,
the former holds only if # = (0. Therefore, we can
see easﬂy that 57 ( =2 (,0) 200526(“])78%)) < 0 and,

thus, ﬁ (8,0) /2(cos 26(cos 23 — 1)) is monotonously
decreasing in S.

It can be easily checked that

7(8.6) =

hm

B—0 85

and, therefore, % (8,0) <0, forall 0 < B < m/4— 0.
This in turn implies that ¢ is monotonously decreas-
ing in § and

(a%{?))éAf (ct, B, 0)

= peax 9(B,0)

B G Bcos(B + 20) BeosB

- 11_r>n4+5+2+ 2sin d sin (3 cos 28
303 sin(B + 20) N Bsin(B —20)  Bcos(B + 40)
4 8in B cos 26 4 8in B cos 26 4 8in B cos 26

= 2145+ cot <7T + 5)

! o\

= %+cot <%>

Figure 10: Bounding the final competitive ratio.

where v = 7/2 + 2§ as claimed.

In fact we have shown the following lemma.

Lemma 4.1 For all k < i <m,

’)’k) > max L; + d(r;, “i+) Li + d(r, v;)
2 d(rk,vz*) d(ry, ;)

Ve
2

—+cot <

4.2 The Final Ratio

In order to obtain the final competitive ratio for one
step we have to take into account that the robot has
to move to either v | or v . If v, is undefined,
then v | belongs to the shortest path from s to g.
Lemma 4.1 gives an upper bound on the maximum
distance the robot travels in order to reach f);f] in
Figure 10 which is located on the line through r; and
1),;".

Let I, 1 be the line segment between v | and
f):%] and 0 the angle between I,A:F] and l,,_1. The
length of I | grows monotonously with 6 if the
lengths of ZA:,LI of I, 1 are fixed. the

maximum ratio of (eA(l ) + A(lm_1))/AEE ) is
achieved for the minimum aAngle 0 which is 6 = v, =
7/2+26),. Let the length of [.7 | be d; and the length
of I,,_1 be dy. Hence, the maximum distance traveled
by the robot from 7y, to v | is bounded by

Hence,

C(ék)d] + dg
V& + dB — 2dydy cos(5 + 20)

F () = max

where ¢(0) = 7/4+ § + cot(m/4 + 0). This maximum
is achieved at

1 — ¢(dy) sin 26,

dy = i c(0%) — sin 26,




and yields a value of

F(or) =
1—c(dy) sin 24y,
c(0g ) —sin 20,

\/1 + (lfc(Jk)siHQ(sk)Q + 2(170((5k)sin25k)sin2(5k .

c(0g) +

c(dy ) —sin 20y, c(dy ) —sin 20y,

The same analysis applies if v} is undefined.

If we combine this with Lemma 3.4, we obtain the
following upper bound on the distance traveled by the
robot if the shortest path from s to g goes through
1);7]. Recall that P; is the path the robot follows

from point r; to r;11, where we set r, 11 = 1):%1.

m k—1 m
YAMP) = = D AP+ > dlrjrin)
j=0 J=0 J=k
k
< mz:a;“—i—F(ék))\(V;;l)
J=0
< maX{m:F(ék)}A(V;;l)

with v, = 7/2420;. Again the minimum competitive
ratio is achieved if both the terms in the maximum
are equal. This yields a value of 1.91 for v; and a
competitive ratio of ~ 1.73.

5 Conclusions

We have presented two strategies for a robot to search
in streets if it is given the visibility map of its local
surroundings. The strategies proposed use the same
“high level strategy” as outlined by Klein [6]. In the
strategy continuous lad the resulting path followed by
the robot is a concatenation of parts of hyperbolas.
Though the path generated by the strategy is fairly
complicated its analysis turns out to be much simpler
than the analysis of the similar strategy lad.

The strategy proposed has a relatively good
competitive ratio of 2.03. Surprisingly, this strat-
egy, combined with the previously best known 2.05-
competitive strategy results in a hybrid strategy with
a competitive ratio of 1.73.

Often the idealistic assumption that a robot can
follow a precomputed path without deviation is vio-
lated by real life robots. An interesting open problem
is, therefore, if it is possible for a robot to traverse a
scene with a predetermined maximal navigational er-
ror per unit traversed at a predetermined competitive
ratio. Also the gap between the lower bound of /2
and the upper bound of 1.73 for search strategies in
streets is still significant and needs to be improved.
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