
Walking Streets Faster�Alejandro L�opez-Ortizy Sven S
huiererzAbstra
tA fundamental problem in roboti
s is to 
ompute apath for a robot from its 
urrent lo
ation to a givengoal. In this paper we 
onsider the problem of a robotequipped with an on-board vision system sear
hingfor a goal g in an unknown environment.We assume that the robot is lo
ated at a point s ina polygon that belongs to the well investigated 
lassof polygons 
alled streets. A street is a simple polygonwhere s and g are lo
ated on the polygon boundaryand the part of the polygon boundary from s to g isweakly visible to the part from g to s and vi
e versa.Our aim is to minimize the ratio of the length ofthe path traveled by the robot to the length of theshortest path from s to g. In analogy to on-line al-gorithms this value is 
alled the 
ompetitive ratio.We present two strategies. Our �rst strategy, 
ontin-uous lad, extends the strategy lad whi
h minimizesthe Lo
al Absolute Detour. We show that this ex-tension results in a 2:03-
ompetitive strategy, whi
hsigni�
antly improves the best known bound of 4:44for this 
lass of strategies. Se
ondly, and most im-portantly, we present a hybrid strategy 
onsisting of
ontinuous lad and the strategy Move-in-Quadrant.We show that this 
ombination of strategies a
hievesa 
ompetitive ratio of 1.73 whi
h about halves the gapbetween the known p2 lower bound for this problemand the previously best known 
ompetitive ratio of2:05.1 Introdu
tionFinding a path from a starting lo
ation to a goalwithin a given s
ene is an important problem inroboti
s. A natural and realisti
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sume that the robot has only a partial knowledge ofits surroundings and that the amount of informationavailable to the robot in
reases as it dis
overs its sur-roundings on its travels. For this purpose, the robotis equipped with an on-board vision system that pro-vides the visibility map of its lo
al environment. Therobot uses this information to devise a sear
h pathfor a visually identi�able goal lo
ated outside the 
ur-rent visibility region. The quality of a sear
h strategyis then evaluated under the framework of 
ompeti-tive analysis for on-line sear
hes, as introdu
ed bySleator and Tarjan [13℄. A sear
h strategy is 
alled
-
ompetitive if the path traveled by the robot to �ndthe goal is at most 
 times longer than a shortestpath. The parameter 
 is 
alled the 
ompetitive ratioof the strategy.As 
an easily be seen, there is no strategy witha 
ompetitive ratio of o(n) for s
enes with arbitraryobsta
les having a total of n verti
es [2℄ even if werestri
t ourselves to sear
hing in a simple polygon.Therefore, the on-line sear
h problem has been stud-ied previously in various 
ontexts where the geometryof the obsta
les is restri
ted [1, 2, 3, 9, 7, 10, 12℄.Klein introdu
ed the notion of a street as the �rst
lass of polygons whi
h allow sear
h strategies with a
onstant 
ompetitive ratio even when the lo
ation ofthe goal is unknown [6℄. In a street, the starting points and the goal g are lo
ated on the boundary of thepolygon and the two polygonal 
hains from s to g aremutually weakly visible. Klein presents the strategylad for sear
hing in streets whi
h is based on the ideaof minimizing the Lo
al Absolute Detour. He showsan upper bound on its 
ompetitive ratio of 1+3=2�(�5:71), later improved to 1+�=2+p1 + �2=4 (� 4:44)by I
king [5℄.A strategy based on a di�erent approa
h was pre-sented by Kleinberg [7℄. His strategy for sear
hingin streets 
an be shown to have a 
ompetitive ratioof 2p2 with a very simple analysis. A further im-provement using ideas similar to Kleinberg's a
hievesa 
ompetitive ratio of p1 + (1 + �=4)2 (� 2:05) [8℄,however the analysis is signi�
antly more 
omplex.As Figure 1 shows, all strategies must have at leasta p2 
ompetitive ratio. Here, if a strategy movesto the left or right before seeing g, then g 
an be1
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possible lo
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Figure 1: A lower bound for sear
hing in re
tilinearstreets.pla
ed on the opposite side, thus for
ing the robot totravel more than p2 times the diagonal. This is theonly known lower bound even for arbitrarily orientedstreets.In this paper we present two strategies to traversea street, one of whi
h is an extension of the originalapproa
h presented by Klein. The �rst strategy pre-sented, 
ontinuous lad, is shown to have a� 2:03 
om-petitive ratio, whi
h signi�
antly improves the bestknown bound of 4:44 for this 
lass of strategies. Wethen 
ombine 
ontinuous lad with the strategy Move-in-Quadrant presented in [8℄, resulting in a hybridstrategy with a 
ompetitive ratio of 1.73. This newstrategy redu
es in more than half the gap betweenthe known p2 lower bound for this problem and thepreviously best known strategy of � 2:05.The paper is organized as follows. In Se
tion 2we introdu
e the basi
 geometri
 
on
epts ne
essaryfor the rest of the paper. We also introdu
e a \HighLevel Strategy" as proposed by Klein [6℄. We statesome results about sear
h strategies that follow thisHigh Level Strategy in Se
tion 3 and present the newstrategy, 
ontinuous lad, and its analysis. In Se
tion 4we provide an new analysis of the strategy Move-in-Quadrant [8℄ and show how to 
ombine 
ontinuous ladwith Move-in-Quadrant optimally to obtain a strat-egy with a performan
e guarantee of 1.73.2 PreliminariesSin
e we deal with point sets in the plane IE2, we needthe standard de�nitions of distan
e, norm, angle et
.for points. If p, q, and r are three points in the plane,then we denote(i) the L2-distan
e between p and q by d(p; q),(ii) the line segment between p and q by pq, and(iii) the 
ounter
lo
kwise angle between the line seg-ment qp and the line segment qr at q by 6 pqr.

If P is a path in IE2, we denote its length by �(P).Furthermore, if p and q are two points on P, then wedenote the part of P from p to q by P(p; q).A simple polygon is a simple, 
losed 
urve that
onsists of the 
on
atenation of line segments, 
alledthe edges of the polygon, su
h that no two 
onse
utiveedges are 
ollinear. The end points of the edges are
alled the verti
es of the polygon.We 
onsider a simple polygon P in the plane withn verti
es and a robot inside P whi
h is lo
ated at astart point s on the boundary of P . The robot hasto �nd a path from s to the goal g. We denote theshortest path from s to g by sp(s; g).The sear
h of the robot is aided by simple vision(i.e. we assume that the robot knows the visibilitypolygon of its 
urrent lo
ation). Furthermore, therobot retains all the information seen so far (in mem-ory) and knows its starting and 
urrent position. Weare, in parti
ular, 
on
erned with a spe
ial 
lass ofpolygons 
alled streets �rst introdu
ed by Klein [6℄.De�nition 2.1 [6℄ Let P be a simple polygon withtwo distinguished verti
es, s and g, and let L andR denote the 
lo
kwise and 
ounter
lo
kwise, resp.,oriented boundary 
hains leading from s to g. If Land R are mutually weakly visible, i.e. if ea
h pointof L sees at least one point of R and vi
e versa, then(P; s; g) is 
alled a street.The only available information to the robot is itsvisiblity polygon.De�nition 2.2 Let P be a street with start point sand goal g. If p is a point of P , then the visibilitypolygon of p is the set of all points in P that are seenby p. It is denoted by V (p).A window of V (p) is an edge of V (p) that doesnot belong to the boundary of P (see Figure 2a).A window w splits P into a number of subpoly-gons P1; : : : ; Pk one of whi
h 
ontains V (p). We de-note the union of the subpolygons that do not 
ontainV (p) by Pw.The end point of a window w that is 
loser to pis 
alled the entran
e point of w. We assume thata window w has the orientation of the ray from pto entran
e point of w. We say a window w is a leftwindow if Pw is lo
ally to the left of w w.r.t. the givenorientation of w. A right window is de�ned similarly.Let p be the 
urrent lo
ation of the robot andPsp the path the robot followed from s to p. We as-sume that the robot knows the part of P that 
anbe seen from Psp, i.e. the robot maintains the poly-gon V (Psp) = Sq2Psp V (q). We say a window w ofV (p) is a true window w.r.t. Psp if Pw is not 
on-tained in V (Psp). We say two (true) windows w1 and2
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Figure 2: (a): The visibility polygon V (p) of p withleft window w1 and right windows w2 and w3. (b): Asthe robot moves to t the left extreme entran
e point\jumps" from v+1 to v+2 and the robot moves dire
tlyto v�1 .w2 are 
lo
kwise 
onse
utive if the 
lo
kwise orientedpolygonal 
hain of V (p) between w1 and w2 does not
ontain a (true) window di�erent from w1 and w2.Counter
lo
kwise 
onse
utive is de�ned analogously.If w0 is the window of V (p) that is interse
tedthe �rst time by Psp, then it 
an be shown that allleft true windows are 
lo
kwise 
onse
utive and allright true windows are 
ounter
lo
kwise 
onse
utivefrom w0 [6, 7, 8℄. Hen
e, if left true windows exist,then there is a 
lo
kwise-most left true window inV (p) whi
h we 
all the left extreme true window anddenote by w+. The right extreme true window w� isde�ned similarly. The entran
e point v+ (v�) of w+(w�) is 
alled the left (right) extreme entran
e pointof V (p). It 
an be easily shown that g is 
ontained ineither Pw+ or Pw� and that either v+ or v� belongsto sp(s; g) [6, 7, 8℄.The algorithms we propose all follow the samehigh level strategy as des
ribed by Klein [6℄. Thegeneral idea is that the robot moves from one pointthat is known to lie on sp(s; g) to a point on sp(s; g)that is 
loser to g by a sequen
e of moves as des
ribedbelow.Algorithm High Level StrategyInput: a street (P; s; g) and a path Psr from s to the
urrent position of the robot r;while v+ and v� are de�ned and g is not rea
heddoCompute a path Prt from r to some point t onv+v�;

r1 r2 r3
r7 = t7

r4 r6v+2 = v+3 v+1 v�3 = v�4 = v�5r5v+5 = v+6v+4 v�1 = v�2
v�6

Figure 3: An example of the exe
ution of the HighLevel Strategy.Follow the path Prt until one of the followingevents o

urs:a) g be
omes visible:the robot moves dire
tly to g;b) Pw+ or Pw� be
omes visible:if Pw+ is visiblethen the robot moves to v�;else the robot moves to v+;
) v+, v�, and the 
urrent robot position r be-
ome 
ollinear (see Figure 2b):the robot moves to the 
loser of v+ and v�;d) v+ or v� 
hanges;Let r be the 
urrent robot position;Compute V (r) and v+ and v� anew;end while;An example of how the robot moves is given in Fig-ure 3. The only detail left open by the above des
rip-tion is what path Prt to 
hoose whi
h is 
alled a \low-level strategy" [6℄. In the following we investigate twolow-level strategies and analyse their performan
e.3 lad and BeyondIn this se
tion we 
onsider a new strategy whi
h issimilar in spirit to the �rst strategy that was pro-posed to traverse streets [6℄. In [6℄ the strategy ladis presented whi
h is based on the idea of minimizingthe lo
al absolute detour. The importan
e of lad|apart from being the �rst strategy proposed|lies inthe fa
t that it is the only strategy that uses a heuris-ti
 optimality 
riterion to guide the robot. All otherstrategies that have been presented have no 
ompa-rable feature. The well-
hosen heuristi
 and its ex-3




ellent performan
e in pra
ti
e make lad a very at-tra
tive strategy. Unfortunately, it seems that it isexa
tly this property that makes lad also extremelydiÆ
ult to analyse. As mentioned before the best per-forman
e guarantee is 1 + �=2 +p1 + �2=4 (� 4:44)whi
h seems to be a very loose bound 
onsideringthat the 
ompetitive ratio of the strategy observed inpra
ti
e is less than 1.8 [6℄.In the following we present a slight variant oflad whi
h we 
all 
ontinuous lad that also followsthe paradigm of minimizing the lo
al absolute detourbut whose analysis turns out to be mu
h simpler andtighter. It 
an be shown to a
hieve a 
ompetive ratioof � 2:03 whi
h is slighly better than the best per-forman
e guarantee of � 2:05 known so far [8℄. Westart out with some additional de�nitions and obser-vations.3.1 Preliminary Results for Low-LevelStrategiesA �rst observation we 
an make about the high levelstrategy is that if one of the Cases a){
) o

urs, thenwe know whi
h of v+ or v� belongs to sp(s; g) and,hen
e, the 
ompetitive ratio of the strategy is given byratio of the length of the path that the robot travelsbetween two points p and q whi
h are on sp(s; g) andthe shortest path sp(p; q) from p to q.So in the following we assume that the robot startsout at a point r1 2 sp(s; g) and en
ounters a numberof events of Category d). Ea
h of these events 
orre-spond to one point ri, i � 2, at whi
h new left andright extreme entran
e points v+i and v�i appear anda new path Pi from ri to a point ti on v+i v�i is 
om-puted. Let d+i be the distan
e of ri to v+i and d�i bethe distan
e from ri to v�i .Given ri, the point ri+1 is de�ned as the �rst pointon Pi su
h that either the left or the right extremeentran
e point of V (ri+1) is di�erent from v+i or v�i ,respe
tively (see Figure 4). At the point ri+1 therobot 
omputes a new target point and a new pathPi+1.We denote the angle 6 riv+i ri+1 by �+i and theangle 6 ri+1v�i ri by ��i . The angle of 6 v+i riv�i is de-noted by 
i. We 
an make the following elementaryobservation about the angles 
i+1 and 
i.Observation 3.1 
i+1 = 
i + �+i + ��i .Let a+i = d+i � (d+i+1�d(v+i ; v+i+1)) and a�i = d�i �(d�i+1 � d(v�i ; v�i+1)). Note that either d(v+i ; v+i+1) =0 or d(v�i ; v�i+1) = 0. Furthermore, note that thedistan
e of ri+1 to v+i is d+i � a+i and the distan
e ofri+1 to v�i is d�i � a�i . Let V+i be the shortest path

Pi+1ti ti+1Pid+i d�iri+1 d+i+1 v�i
i 
i+1ri v�i+1
v+i

d�i+1�+i ��iFigure 4: ri+1 is the �rst point on Pi where the leftor right extreme entran
e point 
hanges.from r0 to v+i , and V�i the the shortest path from r0to v�i .If the distan
e to v+i and v�i de
reases monoton-ously as the robot travels on Pi, for all 0 � i � k,then the length of V+i or V�i 
an be expressed by asd+i plus the sum of the a+i or d�i plus the sum of thea�i , respe
tively.Lemma 3.2 If, for all 1 � i � k, d(ri+1; v+i ) � d+iand d(ri+1; v�i ) � d�i , then we obtain, with the abovede�nitions,�(V+i ) = i�1Xj=0 a+j + d+i and �(V�i ) = i�1Xj=0a�j + d�i :3.2 The Strategy ladWe give a short des
ription of the rationale behindlad as well as its de�nition, so as to stress both thedi�eren
es and similarities between it and 
ontinuouslad.If the robot has not been able to de
ide whetherv+i or v�i belongs to the shortest path from s to g afteri steps, it 
hooses a new target point ti on v+i v�i andthe line segment Pi = riti to travel from its 
urrentposition ri to ti. Let Qi be the path of the robot fromr1 to ri and re
all that V+i is the shortest path from r0to v+i and V�i the shortest path from r0 to v�i . If v+ilies on the shortest path from s to g, then the lo
alabsolute detour is given by the distan
e the robottravels from r1 to v+i whi
h is �(Qi)+�(Pi)+d(ti; v+i )minus the length of the shortest path �(V+i ) from r1to v+i . A similar statement holds if v�i belongs tosp(s; g). Hen
e, the maximum lo
al absolute detouris minimized if�(Qi) + �(Pi) + d(ti; v+i )� �(V+i ) =�(Qi) + �(Pi) + d(ti; v�i )� �(V�i ) (1)4



and the point ti on v+i v�i is given byd(v+i ; ti) = �(V+i )� �(V�i ) + d(v+i ; v�i )2 : (2)Note that �(V+i ) = Pi�1j=0 d(v+j+1; v+j ) and �(V�i ) =Pi�1j=0 d(v�j+1; v�j ) where we de�ne v+0 = v�0 = r1.3.3 The Strategy 
ontinuous ladIn the strategy 
ontinuous lad the robot also followsa path from ri to ti where ti is determined by Equa-tion 2; however, the robot does not move on a straightline segment. Instead, it moves on a path Pi su
hthat for ea
h point r on Pi the lo
al absolute detouris minimized. Instead of being a line segment, Pi isnow part of a hyperbola. Although this slight modi-�
ation may seem to 
ompli
ate the analysis further,it, in fa
t, allows to prove a mu
h tighter upper boundon the 
ompetitive ratio for 
ontinuous lad than forlad. Note also that although the strategies seem al-most identi
al, the points ri at whi
h the left or rightextreme entran
e points 
hange for lad and 
ontinu-ous lad 
an be quite far apart.We assume that the robot travels along a path Pifrom ri to ri+1 su
h that every point r on Pi satis�esEquation 1 if we repla
e ti by r and Pi by Pi(ri; r).If the robot follows the strategy 
ontinuous lad, thena+i = a�i and the lo
ation of ti is only determined byd+i and d�i .Lemma 3.3 If the robot travels on a path Pi su
hthat for all r 2 Pi,�(Qi) + �(Pi(ri; r)) + d(r; v+i )� �(V+i ) =�(Qi) + �(Pi(ri; r)) + d(r; v�i )� �(V�i );then a+i = a�i > 0.Proof: The proof is by indu
tion on i. For i = 1, wehave �(V+1 ) = d(r1; v+1 ) and �(V�1 ) = d(r1; v�1 ) and ifwe set r = r2, then the above equation immediatelyyieldsa�1 = d(r1; v�1 )�d(r2; v�1 ) = d(r1; v+1 )�d(r2; v+1 ) = a+1 :Sin
e the robot moves into the interior of the triangle(r1; v+1 ; v�1 ) it is easy to see that a+1 > 0. So nowassume the 
laim is true, for all 1 � i � k � 1. Sin
ed(ri+1; v+i ) = d+i � a+i < d+i , for all 1 � i � k � 1,Lemma 3.2 holds and �(V+k ) =Pk�1j=0 a+j + d+k . Simi-larly, we have �(V�k ) =Pk�1j=0 a�j + d�k . By the indu
-tion hypothesis Pk�1j=0 a+j = Pk�1j=0 a�j and the aboveequation again yieldsa�k = d�k � d(rk+1; v�k ) = d+k � d(rk+1; v+k ) = a+k :a+k > 0 
an be seen as in the 
ase i = 1. 2

ri
v�iri+1a+iu+i

v+i
a�i u�i
i ��i�i�+i

�2 + ��i2�2 + �+i2
Figure 5: Illustrating the proof of Lemma 3.4.3.4 Analysis of the Strategy
ontinuous ladIn the following we assume that the robot travels ona path Pi su
h that, for all points ri+1 on Pi thedistan
es a+i and a�i are the same, i.e. a+i = a�i = ai.We analyse a step of the High-Level-Algoritm whi
h
onsists of k 
onse
utive events of Category d) andone event in the Categories a){
). As a �rst stepwe 
ompute an upper bound on the length of thepath that is given by the line segments 
onne
tingthe points ri to ri+1. In a se
ond step we then showhow to extend this analysis to Qk.We present two bounds for the length of the path
onne
ting the points rj , 1 � j � k. The �rst boundgives a good approximation if the angle 
i is smalland the se
ond bound approximates large angles.Lemma 3.4 If a+i = a�i , then d(ri; ri+1) �a+i = 
os(
i+1=2).Proof: Let ri+1 be 
hosen su
h that a+i = a�i . Con-sider the quadrilateral formed by ri, u+i , u�i , and ri+1as shown in Figure 5.The lo
ation of ri+1 is 
ompletely determined bythe angles �+i , ��i , and 
i. The angle of the quadri-lateral formed at u+i is (� + �+i )=2 and at u�i it is(� + ��i )=2. Sin
e �+i + ��i + 
i = 
i+1, we 
an
hoose �+i and ��i in order to maximize the dis-tan
e of ri+1 to ri. Let �i = 6 u�i ri+1u+i : Notethat �i = 2� � 
i � (� + �+i )=2 � (� + ��i )=2 =� � 
i � �+i =2 � ��i =2.Let Æ1 = 6 u�i u+i ri+1 and Æ2 = 6 ri+1u�i u+i . Hen
e,Æ1 + Æ2 = � � �i, where �i is �xed. Furthermore, weintrodu
e a 
oordinate system su
h that the origin islo
ated at u+i , u�i = (1; 0), and ri is lo
ated on theline L = f(x; y) j x = 1=2g. Let C be the 
ir
le thatpasses through u�i , ri+1, and u+i with 
enter 
. The5
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Figure 6: Choosing 
i.path of all points with Æ1+ Æ2 = �� �i is the ar
 A ofC from u�i to u+i that 
ontains ri+1 (see [11, Se
. 16,Th. 4℄).We 
laim that d(ri; ri+1) is maximal for Æ1 = Æ2.Let p be the topmost point of the ar
 A, i.e., Æ1 = Æ2if ri+1 = p. We note that 
 is lo
ated on the lineL. If 
 is above ri, then the 
ir
le with 
enter ri andradius d(ri; p) 
ontains C and, hen
e, p is the pointwith maximal distan
e to ri.Let q be the point (1=2; 0). We 
laim that 
 isabove ri. In order to show this we 
ompute d(ri; q)and d(
; q). The angle 6 qriu+i is obviously 
i=2.Hen
e, d(ri; q) = 1=2 
ot(
i=2). By [11, Se
. 16, Th. 2℄the angle 6 u�i 
u+i equals 2� � 2�i = 2
i + �+i + ��iand d(
; q) = 1=2 
ot(� � �i) = 1=2 
ot(
i + �+i =2 +��i =2) < 1=2 
ot(
i=2) = d(ri; q) as 
laimed.Therefore, we 
an assume �+i = ��i and we havethe 
on�guration displayed in Figure 6. Sin
e
os �+i2 ! = xa+i and 
os �+i + 
i2 ! = xd(ri; ri+1) ;we obtain d(ri; ri+1) = 
os(�+i =2)a+i
os((
i + �+i )=2) :With (�+i +
i)=2 � 
i+1=2 < �=2 and 
os(�+i =2) � 1the 
laim follows. 2For large angles we make use of the following ob-servation.Lemma 3.5 If a+i = a�i and the angle at the robotposition is 
i, thend(ri; ri+1) � minf�+i d+i ; ��i d�i g+ ai:

We now 
an analyse the 
ompetitive ratio of 
on-tinuous lad. To do so, we �rst 
onsider the pathP 0i that 
onsists of the line segments 
onne
ting thepoints ri. For the analysis we split the exe
ution ofthe strategy into two parts. In the �rst part we 
on-sider the length of the path of the robot until theangle between v+i and v�i is equal to some angle 
and in the se
ond part we 
onsider the length of theremaining path of the robot. In order to see that itis possible to 
hose 
 to be any value that is greaterthan or equal to 
0, we argue that 6 v+i ri(t)v�i is a
ontinuous and monotonously in
reasing fun
tion asthe robot travels on Pi.We assume that the robot has rea
hed the pointri and the angle 6 v+i riv�i is 
i. At ri the robot
hooses a point ti on the line segment v+i v�i andmoves on the path Pi from ri to ti until a newleft or right extreme entran
e point be
omes visible.Let ri(t) denote the position of the robot at time twhile traveling on Pi. We assume that ri(0) = riand ri(1) = ti. We denote the angle 6 v+i ri(t)v�i by
i(t). Sin
e d(ri(t); v+i ) and d(ri(t); v�i ) both de
reasemonotoni
ally and 
ontinuously with t, the angles�+i (t) = 6 riv+i ri(t) and ��i (t) = 6 riv�i ri(t) are 
on-tinuous and monotonously in
reasing fun
tions of tand, therefore, 
i(t) = 
i + �+i (t) + ��i (t) is also a
ontinuous and monotonously in
reasing fun
tion oft. Hen
e, if 
0 � 
 � 
k, there is one 0 � i0 � k andone 0 � t0 � 1 with 
i0(t0) = 
. We 
an assume inthe following that the robot exe
utes Strategy 
ontin-uous lad until either of the extreme entran
e pointsis unde�ned or 
i0(t0) = 
, for some i0 and t0. Weinsert the point ri0+1 = ri0(t0) into the sequen
e ofpoints (r1; : : : ; rk) so that now there are k + 1 pointsri. If 
0 � 
, then we de�ne ri0+1 = r0. In both 
aseswe have 
i0+1 � 
.In order to analyse the 
ompetitive ratio of 
on-tinuous lad we need to estimate the length of thepath Pi that is the 
on
atenation of parts of hyper-bolas. Re
all that if �(Pi) is the set of all �nitesequen
es of points on Pi that o

ur in order, i.e.�(Pi) = f(q1; : : : ; qm) j m � 1, qj 2 Pi, for all 1 �j � m, and qj+1 o

urs after qj on Pig, then �(Pi) =supfPm�1j=1 d(qj ; qj+1) j (q1; : : : ; qm) 2 �(Pi)g. Wewill make use of this de�nition, to estimate the lengthof Pi.So 
onsider a sequen
e (q1; : : : ; qm) 2 �(Pi).Sin
e we are interested in obtaining a supremumand adding points only in
reases Pm�1j=1 d(qj ; qj+1),we 
an assume that (r1; : : : ; rk) is a subsequen
eof (q1; : : : ; qm). We de�ne as before v+j to be theleft entran
e point of V (qj), d+j = d(qj ; v+j ), and6



a+j = d+j �(d+j+1�d(v+i ; v+i+1)). v�j , d�j , a�j , 
j, et
. arede�ned analogously. Note that with the above de�-nitions Lemmas 3.2 and 3.3 still hold whi
h impliesthat Lemmas 3.4 and 3.5 hold as well.So let Rm be the path 
onne
ting the pointsq1; : : : ; qm by line segments. We now observe thatif the angle 
j at qj is less than or equal to 
, thenLemma 3.4 yields that d(qj�1; qj) � aj�1= 
os(
=2).Otherwise, Lemma 3.5 yields that d(qj; qj+1) ��+j d+j + a+j and d(qj ; qj+1) � ��j d�j + a�j . If j0 isthe index, su
h that 
j0 = 
, then we obtain the fol-lowing analysis of the length of Rm where we assumew.l.o.g. that v+m�1 2 sp(s; g).m�1Xj=1 d(qj; qj+1) + d+m= j0Xj=1d(qj ; qj+1) + m�1Xj=j0+1 d(qj ; qj+1) + d+m� j0Xj=1 a+j
os(
=2) + m�1Xj=j0+1(�+j d+j + a+j ) + d+m� j0Xj=1 a+j
os(
=2) +0��(V+m)� j0Xj=1 a+j 1A m�1Xj=j0+1�+j +m�1Xj=j0+1 a+j + d+m� 1
os(
=2) j0Xj=1 a+j + (� � 
 + 1)0��(V+m)� j0Xj=1 a+j 1A� maxf1= 
os(
=2); � � 
 + 1g�(V+m)So let the angle 
 be 
hosen su
h that the maxi-mum of f1= 
os(
=2); � � 
 + 1g is minimized, i.e.,that 1= 
os(
=2) = � � 
 + 1. By numeri
al eval-uation we obtain that 
 � 2:111. Hen
e, (� �2:111) + 1 (� 2:03) is an upper bound on thelength of the path Rm that 
onne
ts the pointsqj by straight line segments. Sin
e (q1; : : : ; qm)is 
hosen arbitrarily from �(Pi), the supremumof fPm�1j=1 d(qj ; qj+1) j (q1; : : : ; qm) 2 �(Pi)g is alsobounded by 2.03.4 Changing the StrategyIf we take a 
loser look at the analysis of Strategy 
on-tinuous lad, then we noti
e that the ratio obtainedfor small angles is mu
h tighter than the bound onlarge angles. Unfortunately, it is not obvious how toimprove the analysis. However, there is another op-tion. Sin
e the robot 
an measure the angle between

v+i and v�i at its position, it is possible to 
hangethe strategy on
e a 
ertain threshold is rea
hed. Weassume that the robot has en
ountered k events of
ategory d) in 
ontinuous lad and swit
hes to a newstrategy at point rk.In the following we 
onsider the Strategy Move-in-Quadrant whi
h was already presented in [8℄ butwe provide a tighter analysis if the angle 
k is largerthan �=2.In order to present the strategy we need the notionof a proje
tion of a point. The orthogonal proje
tionp0 of a point p onto a line segment l is de�ned as thepoint of l that is 
losest to p.Strategy Move-in-QuadrantInput: A point rk in P su
h that the angle
k = 6 r5r[k℄rkv+k is � �=2;i := k;while v+i and v�i of V (ri) are de�ned do(1) Move to the orthogonal proje
tion ri+1 of rkonto the line segment li from v+i to v�i ;Compute the points v+i+1 and v�i+1 of the vis-ibility polygon V (ri+1) of ri+1;i := i+ 1;end while;The 
orre
tness of the strategy has been proven in[8℄. Note that the Strategy Move-in-Quadrant alsofollows the s
hema of the High-Level-Strategy ex
eptthat events of Category d) are repla
ed by events ofCategory d0): ti = ri+1 is rea
hed.4.1 Analysis of the StrategyMove-in-QuadrantIn the following we assume that the Strategy Move-in-Quadrant has stopped after m � k iterations. Asbefore the shortest path goes either through v+i or v�i[8℄. Re
all that 
k is de�ned to be the angle 6 v+k rkv�kwhi
h we assume to be greater than or equal to �=2.We introdu
e a 
oordinate system where rk is theorigin and the angle Æ�k between the x-axis and theline segment rkv�k equals the angle Æ+k between they-axis and the line segment rkv+k . We de�ne Æk =Æ+k = Æ�k .Now suppose that we have arrived at point ri andmove to point ri+1 in the next iteration. To simplifythe analysis, we 
onsider the line segment l0i from theinterse
tion point of v+i v�i with the line through rkand v+k to the interse
tion point of v+i+1v�i+1 with theline through rk and v�k as shown Figure 7.7



v+i+1
rk ri+1 li+1riv+i P 0i+1

v�i+1v�iPi+1li l0i
Figure 7: Introdu
ing a new segment between li andli+1. v+i ri v�id�id+i �+i ��i
krk Æ�kÆ+kFigure 8: The lo
ation of ri with respe
t to rk.The line segment l0i is lo
ated between li and li+1.If we 
onsider the path P 0i from rk to ri that visits theorthogonal proje
tions of rk onto the line segments ljand l0j in order, for k � j � i, then the length ofP 0i is obviously greater than or equal to the length ofPi. Furthermore, Pi and P 0i share the same start andend point. Hen
e, for the simpli
ity of exposition weassume in the following that v+i and v�i are lo
atedon the line from rk to v+k and v�k , respe
tively, andthat either v+i = v+i+1 or v�i = v�i+1.Let Li be the length of the path Pi traveled bythe robot from rk to rea
h ri; let ��i be the an-gle 6 rkv�i ri, and d�i the distan
e d(rk,v�i ) (see Fig-ure 8). Similarly, let �+i be the angle 6 riv+i rk andd+i the distan
e d(rk,v+i ). We de�ne the angle �ias minf�=2 � �+i ; �=2 � ��i g and the distan
e di asminfd+i ; d�i g. Note that �=2��+i +�=2���i = 
k and,therefore, �+i +��i +2Æk = �=2 or �=2��+i = ��i +2Ækand �=2���i = �+i +2Æk. In parti
ular, �i = �=2��+iif and only if di = d+i .Our approa
h to analyze our strategy is based onthe idea of a potential fun
tion Qi [8℄. It is our aim toshow that Li+Qi � (
k2 +
ot 
k2 )di, for all k � i � k,where we de�ne Qi = �idi. So suppose the robot hasrea
hed the point ri and Li � (
k=2+
ot 
k=2��i)diand di is equal to the distan
e between r0 and v�i . Forsimpli
ity of des
ription we assume that the distan
efrom rk to v+i is 1.

v+i
v�i+1

C+i C�i+1
v�i(b)Æk C�irk riÆk�+i+1 �+i ri+1

Figure 9: Case 2 if the robot moves from ri to ri+1.For the distan
e d�i we obtaind�i = sin�+i
os(�+i + 2Æk) : (3)The robot moves now from ri to ri+1. We distin-guish two 
ases.Case 1 �+i > �+i+1 or �+i+1 > ��i+1.These two Cases 
an be analysed exa
tly as theCases 1 and 3 the analysis of Move-in-Quadrant of[8℄.Case 2 �+i � �+i+1 � ��i+1 (see Figure 9).Hen
e, di+1 = sin�+i+1= 
os(�+i+1 + 2Æk). Note thatNote that ri+1 is on the 
ir
le C+i with 
enter at 
+i =1=2(� sin Æk; 
os Æk) and radius 1=2. The ar
 a+i ofC+i from ri to ri+1 has length 2(�=2 � �+i � (�=2 ��+i+1))1=2. Clearly, the line segment riri+1 is shorterthan the ar
 a+i . Hen
e,Li+1 = Li + d(ri; ri+1)� �
k2 + 
ot 
k2 � di � �idi + �+i+1 � �+iWe want to show that�
k2 + 
ot 
k2 � �i� di + (�+i+1 � �+i ) ��
k2 + 
ot 
k2 � �i+1� di+1 (4)or 
k2 + 
ot 
k2 � �i+1di+1 � �idi + �i+1 � �idi+1 � di8



with 
k � �=2 � �i � �i+1 � �=4 � Æk. If de�ne�i = �i+1 � �i = �+i+1 � �+i andf (�i; �i; Æk) =�i + (�+i +�i+2Æk) sin(�+i +�i)
os(�+i +�i+2Æk) � (�+i +2Æk) sin�+i
os(�+i +2Æk)sin(�+i +�i)
os(�+i +�i+2Æk) � sin�+i
os(�+i +2Æk) ;then we want to prove that f (�; �; Æ) � 
=2+
ot 
=2,where 
 = �=2 + 2Æ, for all (�; �; Æ) 2 � =f(x; y; z) j x � 0; y � 0; z � 0; x+ y + z � �=4g sin
ewe assume that �+i+1 � ��i+1, i.e. �+i+1 � �=2��+i+1�2Æk or �+i + �i + Æk � �=4.By 
onsidering the partial derivatives of f w.r.t. � it
an be easily shown that f is monotone w.r.t. � and,therefore,max f (�; �; Æ) = max f ��4 � � � Æ; �; Æ�If we de�ne g (�; Æ) = f ��4 � � � Æ; �; Æ�, then��� � �g�� (�; Æ) 12 1
os 2Æ(
os 2� � 1)� =12 sin(4Æ) 
os(2�)� 
os 2Æ 
os 2� � 12 sin 4Æ + 
os 2Æwhi
h is equal to 0 if and only if 
os(2�) = 1 orsin(4Æ)=2 = 
os 2Æ, the latter of whi
h only holdsfor Æ = �=4. Furthermore, sin
e 0 � � � �=4,the former holds only if � = 0. Therefore, we 
ansee easily that ��� � �g�� (�; Æ) 12 1
os 2Æ(
os 2��1)� � 0 and,thus, �g�� (�; Æ) =2(
os 2Æ(
os 2� � 1)) is monotonouslyde
reasing in �.It 
an be easily 
he
ked thatlim�!0 �g�� (�; Æ) = 0and, therefore, �g�� (�; Æ) � 0, for all 0 � � � �=4� Æ.This in turn implies that g is monotonously de
reas-ing in � andmax(�;�;Æ)2� f (�; �; Æ)= max�2[0;�=4�Æ℄ g (�; Æ)= lim�!0 �4 + Æ + �2 + � 
os(� + 2Æ)2 sin Æ + � 
os�sin� 
os 2Æ �3� sin(� + 2Æ)4 sin� 
os 2Æ + � sin(� � 2Æ)4 sin� 
os 2Æ � � 
os(� + 4Æ)4 sin� 
os 2Æ= �4 + Æ + 
ot��4 + Æ�= 
2 + 
ot�
2�

� rkl+m�1v+m�1lm�1
rm

Ækv̂+m�1 l̂+m�1
Figure 10: Bounding the �nal 
ompetitive ratio.where 
 = �=2 + 2Æ as 
laimed.In fa
t we have shown the following lemma.Lemma 4.1 For all k � i � m,
k2 +
ot�
k2 � � max(Li + d(ri; v+i )d(rk; v+i ) ; Li + d(ri; v�i )d(rk; v�i ) )4.2 The Final RatioIn order to obtain the �nal 
ompetitive ratio for onestep we have to take into a

ount that the robot hasto move to either v+m�1 or v�m�1. If v�m is unde�ned,then v+m�1 belongs to the shortest path from s to g.Lemma 4.1 gives an upper bound on the maximumdistan
e the robot travels in order to rea
h v̂+m�1 inFigure 10 whi
h is lo
ated on the line through rk andv+k .Let lm�1 be the line segment between v+m�1 andv̂+m�1 and � the angle between l̂+m�1 and lm�1. Thelength of l+m�1 grows monotonously with � if thelengths of l̂+m�1 of lm�1 are �xed. Hen
e, themaximum ratio of (
�(l̂+m�1) + �(lm�1))=�(l+m�1) isa
hieved for the minimum angle � whi
h is � = 
k =�=2+2Æk . Let the length of l̂+m�1 be d1 and the lengthof lm�1 be d2. Hen
e, the maximum distan
e traveledby the robot from rk to v+m�1 is bounded byF (Æk) = max 
(Æk)d1 + d2qd21 + d22 � 2d1d2 
os(�2 + 2Æk) :where 
(Æ) = �=4 + Æ + 
ot(�=4 + Æ). This maximumis a
hieved at d2 = d1 1� 
(Æk) sin 2Æk
(Æk)� sin 2Æk9



and yields a value ofF (Æk) = 
(Æk) + 1�
(Æk) sin 2Æk
(Æk)�sin 2Ækr1 + �1�
(Æk) sin 2Æk
(Æk)�sin 2Æk �2 + 2 (1�
(Æk) sin 2Æk) sin 2Æk
(Æk)�sin 2Æk :The same analysis applies if v+m is unde�ned.If we 
ombine this with Lemma 3.4, we obtain thefollowing upper bound on the distan
e traveled by therobot if the shortest path from s to g goes throughv+m�1. Re
all that Pi is the path the robot followsfrom point ri to ri+1, where we set rm+1 = v+m�1.mXj=0�(Pi) = = k�1Xj=0 �(Pi) + mXj=k d(rj ; rj+1)� 1
os(
k=2) kXj=0 a+j + F (Æk)�(V+m�1)� max� 1
os(
k=2) ; F (Æk)� �(V+m�1)with 
k = �=2+2Æk. Again the minimum 
ompetitiveratio is a
hieved if both the terms in the maximumare equal. This yields a value of 1:91 for 
k and a
ompetitive ratio of � 1:73.5 Con
lusionsWe have presented two strategies for a robot to sear
hin streets if it is given the visibility map of its lo
alsurroundings. The strategies proposed use the same\high level strategy" as outlined by Klein [6℄. In thestrategy 
ontinuous lad the resulting path followed bythe robot is a 
on
atenation of parts of hyperbolas.Though the path generated by the strategy is fairly
ompli
ated its analysis turns out to be mu
h simplerthan the analysis of the similar strategy lad.The strategy proposed has a relatively good
ompetitive ratio of 2:03. Surprisingly, this strat-egy, 
ombined with the previously best known 2:05-
ompetitive strategy results in a hybrid strategy witha 
ompetitive ratio of 1.73.Often the idealisti
 assumption that a robot 
anfollow a pre
omputed path without deviation is vio-lated by real life robots. An interesting open problemis, therefore, if it is possible for a robot to traverse as
ene with a predetermined maximal navigational er-ror per unit traversed at a predetermined 
ompetitiveratio. Also the gap between the lower bound of p2and the upper bound of 1:73 for sear
h strategies instreets is still signi�
ant and needs to be improved.
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