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Abstract

We consider the problem of searching on m current rays for a target of
unknown location. If no upper bound on the distance to the target is known
in advance, then the optimal competitive ratio is 1 + 2m™/(m — 1)™ 1. We
show that if an upper bound of D on the distance to the target is known
in advance, then the competitive ratio of any search strategy is at least 1 +
2m™/(m — 1)™ ' — O(1/log® D) which is again optimal—but in a stricter
sense.

To show the optimality of our lower bound we construct a search strategy
that achieves this ratio. Surprisingly, our strategy does not need to know an
upper bound on the distance to the target in advance; it achieves a competitive
ratio of 14+ 2m™/(m —1)™~1 — O(1/log? D) if the target is found at distance
D.

Finally, we also present an algorithm to compute the strategy that allows
the robot to search the farthest for a given competitive ratio C.

1 Introduction

Searching for a target is an important and well studied problem in robotics. In
many realistic situations the robot does not possess complete knowledge about its
environment, for instance, the robot may not have a map of its surroundings, or the
location of the target may be unknown [DI94, IK95, Kle92, LOS95, PY89].

Since the robot has to make decisions about the search based only on the part of
its environment that it has explored before, the search of the robot can be viewed as
an on-line problem. One way to judge the performance of an on-line search strategy
is to compare the distance traveled by the robot to the length of the shortest path
from its starting point s to the target ¢. The ratio of the distance traveled by the
robot to the optimal distance from s to t over all possible locations of the target is
called the competitive ratio of the search strategy [ST85].
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We are interested in obtaining upper and lower bounds on the competitive ratio
of searching on m concurrent rays. Here, a point robot is imagined to stand at the
origin of m rays and one of the rays contains the target ¢ whose distance to the origin
is unknown. The robot can only detect ¢ if it stands on top of it. It can be shown
that an optimal strategy visits the rays in cyclic order and increases the step length
each time by a factor of m/(m—1) starting with a step length of 1 [BYCR93, Gal80].
The competitive ratio C,, achieved by this strategy is given by 1+ 2m™/(m—1)™"",
If randomization is used, the optimal competitive ratio is given by the minimum of
the function 1+ 2a™/((a — 1) Ina), for a > 1 [Gal80, KRT97, KMSY94].

Searching on m rays has proven to be a very useful tool for searching in a number
of classes of simple polygons, such as star-shaped polygons [LOS97|, generalized
streets [DI94, LOS96], HV-streets [DHS95], and #-streets [DHS95, Hip94].

However, the proof of optimality for the above m-way ray searching strategy
relies on the unboundedness of the rays, that is, on the fact that the target can be
placed arbitrarily far away from the starting point of the rays [BYCR93, Gal80].
But, if we consider polygons and the robot is equipped with a range finder, then it
is possible to obtain an upper bound D on the distance to the target. In this case
it is implicitly assumed that the strategy for searching on m-rays remains optimal
though no proof of this assumption has been presented yet [DHS95, D194, LOS96].

In this paper we provide the first lower bound proof for searching on m bounded
rays; more precisely, we investigate the question if the knowledge of an upper bound
on the distance to the target provides an advantage to the robot.

Let CP be the optimal competitive ratio to search on m rays where the distance
to the target is at most D. As mentioned above it is assumed in the literature that
CL approaches C,, as D goes to infinity; yet, there is only a proof for the case m = 2
by Lépez-Ortiz who shows that 9 — O(1/log D) is a lower bound for the competitive
ratio of searching on two rays [LO96|. Hipke et al. investigate the inverse problem,
again for the case m = 2 [IKL97]. They consider the maximal reach of a strategy
to search on the line if the competitive ratio of the strategy is given. The reach of a
strategy X is the maximum distance D such that a target placed at a distance D to
the origin is still detected by a robot using X if the competitive ratio of X equals C'.
Since C' is given, a recurrence equation for the optimal reach can be derived. Using
this recurrence equation Hipke et al. show that the maximal reach is continuous and
strictly monotone in C' [IKL97]. This in turn implies that CP is strictly monotone
in D and assumes all values in the interval [3,9].

In this paper we prove that

1+2m™/(m —1)""' -0 (1/log” D) (1)

is a lower bound on CP for general m; this also improves Lopez-Ortiz’ bound for
m = 2. Moreover, we present a strategy that achieves a competitive ratio of the same
form as Equation 1, albeit with a different constant factor in the “big-Oh” term.
Here, D is the distance at which the target is discovered. Astonishingly, our strategy
achieves this competitive ratio without knowing an upper bound on D in advance.
These two results imply that the lower bound we present is asymptotically optimal.



Note that all previously proposed strategies have a competitive ratio of 1+2m™ /(m—
)™~ — O(1/D) if the target is detected at distance D [BYCR93, Gal80]. Finally,
we also present an algorithm to compute the maximal reach for a given competitive
ratio C' and arbitrary m—thus, generalizing the results by Hipke et al. [IKLI7].

The paper is organized as follows. In the next section we give the basic definitions
concerning searching on m rays. In Section 2 we show that an optimal strategy to
search on m bounded rays visits the rays in a fixed cyclic order. We also derive
a recurrence equation that is satisfied by an optimal strategy. In Section 3 we
first consider searching on two rays to introduce our approach to analysing the
competitive ratio of an optimal strategy. In Section 4 we generalize our ideas to
the case of searching on m rays. Section 5 describes and analyses a strategy whose
competitive ratio converges asymptotically as fast to 14+2m™/(m—1)""" as the lower
bound which we have shown before. Finally, in Section 6 we present an algorithm
to compute the strategy with maximal reach for a given competitive ratio C.

2 Searching on m Bounded Rays

We are interested in the case that an upper bound D on the maximum distance of
the target to the origin is known. Let X be a strategy to search on m bounded rays.
Strategy X proceeds in steps. In each step the robot travels on one ray to a certain
distance and, if it does not find the target, then it returns to the origin. Let z; be
the maximal distance to the origin and r; the ray visited in Step 1.

We define J; as the index of the step in which ray r; is visited the next time after
Step 4, that is, J; = min {j > i | r; = r;}. If there is no j > i with r; = r;, then we
define J; = i. We represent X by the sequence of pairs (z;, J;).

Assume that the target is discovered in Step Ji in ray r. By the definition of
J ray r was visited the last time before Step J; in Step k£ and the distance d to
the target is greater than x;. The distance traveled by the robot to discover t is
d+2 Z.Jial x;. Since the target can be placed arbitrarily close to ) by an adversary,

)

the competitive ratio of Step k is given by

Jr—1 J—1 Je—1

sup (d + 2 Z x;)/d = ;;lp 1+2 Z xif/d=1+2 Z x;/x.
=0 Ty i=0 =0

d>xy

The competitive ratio C'x of X is now given as the supremum of the competitive
ratios over all steps.

The first step is a special case that we have not considered yet. If no information
about the target is available, then one false move in the beginning may lead to an
arbitrarily large competitive ratio. In order to avoid this problem we assume that a
lower bound of one for the distance to the target ¢ is known in advance that is, the
target may be placed on any of the m rays somewhere in the interval [1, D].

We denote the optimal competitive ratio of searching on m rays for a target that
is placed at a distance of at most D from the origin by CP. In the following we



show that

m 1
co>142—"— —0(——).
m = <10g2D>

2.1 Periodicity

In order to prove a lower bound on the competitive ratio, we first show that an
optimal strategy—that is, a strategy with minimal competitive ratio—is periodic
and monotone. In the following let X = (x¢,...,x,) be a strategy to search on
m bounded rays. Let r; be the ray that the robot visits in Step k. Strategy X is
periodic if rgy ., =g, for all 0 < k < n — m. Strategy X is monotone if xy < xp4q,
forall0 <k <n-—1.

Lemma 2.1 If X s a strategy to search on m rays for a target that is placed at a
distance of at most D from the origin, then there is a monotone strateqgy X* with

Proof: The proof is similar to the proof to the proof by Gal for the unbounded
case [Gal80]. Let X = (z;) be a strategy to search m bounded rays and r; the ray
that is explored by X in the ith step. We define J; as above.

Let Fj(X) = Zj;ol zj/x;, for 0 < ¢ < n. If J; does not equal ¢, then the
competitive ratio in Step 7 of strategy X is given by 1+ 2F;(X). If J; equals 7, that
is, x; = D and Step ¢ is the last step on ray r;, then the competitive ratio in Step
of strategy X is bounded by

2 x Tl
ZDJO—] < 1_’_2@ = 1+42F, 1 (X)
d .Z'J.fl %
where J ! is the index of the last visit of ray r; before i and d > Ty is the
distance from the origin to the target. Let I be the set of indices 7 with J; 7é . The

competitive ratio C'x of X is now given by

Cyx = max 1 + QE(X)
el

If X is monotone, then there is nothing to show. So assume that there is a
Step k, 0 < k < n — 1 such that ;1 < x;. Let X* be the search strategy which
is equal to X except that for all steps ¢ > k the role of r, and r,; is exchanged
as are ry and xy4;. This can be achieved by setting (x}, J;) = (Tg+1, Jrs1) and
(@441 i) = (T, Ji). For all other Steps i, (27, J;') = (4, J;) unless x5, = D, in
which case we set J;,; = k+ 1 (and not equal to £ as implied by the rule above).
Note that x; = 441 = D is not possible since z;1; < xp < D. Let I* be the
set of indices ¢ with J' # i. We want to show that Cx« = max;ep- 1 + 2F;(X*) <
max;er 1 + 2F;(X) = Cx. Obviously, F;(X) and F;(X*) differ only for the indices

Ji ! Jk+11, k, k 4+ 1 which we are going to consider more closely in the following.



First we assume that Step £ is not the last step on ray 7. (As mentioned before,
Step k + 1 is never the last step on ray riq as xp1 < 2 < D.)

Jp—1 Ji1—1
j— X i= aji *
Fk(X) — 2270 — Z 0 — Fk+1(.X )

" and
Lk Lht1
Jp+1—1 Jp=1 4
Fk I(X) — 1=0 vt 1=0 7 :Fk(X*)
+ *
Th41 L

Here the equalities follow from the fact that J;, , = Jp > k+ 2 and J; = Jpyy >
k + 2, that is, the exchange of z; and x,,; does not play a role in the summation.
Next we consider Steps J;.; and J,'. Note that J,'* = J. ' and J " = J ).
Moreover,J,-1 —1 = ;;1* —1 = k—1; therefore, Fng(X) = FJ;“(X*), This leaves

us with Step J, ;. We have

k k k—1
Foi(X) = > io Ti > D ico i — Tk + Tt _ > i T+ — F, 1 (X)
Tet1 T -1 T -1 x* Tt
1 et T

Now assume that Step k£ is the last step on ray r, and D = x, > 1. Then,
Fri1(X7) < FJEL*(X*)' As above we obtain Fi(X*) = Fi1(X), Flel(X*) =
Fjy-1(X) and FJ{L*(X*) < FJ{ﬁl(X)' Hence, the competitive ratio of Strategy X*
is no more than the competitive ratio of strategy X.

By performing bubble-sort on strategy X we see that there is a monotone strategy
that has a competitive ratio no more than X which proves the claim. O

By Lemma 2.1 it suffices to consider monotone strategies in the following. Note
that if X is monotone, then the last m steps of X all have length D, that is, there
is an optimal strategy with x,, ,,.1 = ---x, = D and the set of indices ¢ with J; # ¢
equals {0,... ,n—m}.

Lemma 2.2 If X is a strategy to search on m rays for a target that is placed at

a distance of at most D from the origin, then there is a periodic strateqy X* with

Proof: Let X be strategy to search on m bounded rays. By Lemma 2.1 we
can assume that X is monotone. We follow the proof idea of Yin [Yin94]. Let X*
consist of the same sequence of numbers except that X™* is now considered a periodic
strategy. We consider the competitive ratios Cj of X and C} of X* in Step k. It
suffices to show that, for every 0 < k < n—m, thereisa 0 < j <n—m with C}, < Cj.
As mentioned above we do not need to consider the indices n —m +1 <k <n. So
consider
k+m—1
Cp=1+ pluizo i =
Tk

for some 0 < k& < n —m. For each ray r;, 1 < j < m, let k; be the first time X
explores ray r; after Step k. Since z; < D, for all 0 < j < n —m, k; exists, for all
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1 < j <n—m. Note that there is one ray r; such that k; > k +m. If r; is explored
before Step k, then let j; < k£ be the index of the last exploration; otherwise let
Ji = —land z;, = 1. In both cases x;, < x;, since X is monotone and

k+m—1 . ].lel .
Cr =1+ guizo T <1+ o2z L _ Cj,
X Xj
k Ji

which implies that the competitive ratio of X is at least as large as the competitive
ratio of X*. O

2.2 A Recurrence Equation

In the following we assume that X is an optimal periodic, monotone strategy. As

mentioned before Fj simplifies in this case to Fy(X) = 70" g, /ay, for k =
0,...,n—m and Cx = maxo<j<p—m 1 + 2F;(X). We now show that the values z;

satisfy a recurrence equation. The following lemma was proven by Katsoupias and
Papadimitriou for the special case m = 2 with unbounded rays [KPY96].

Lemma 2.3 If X* is an optimal strategy, then 1 + 2F,(X*) = CE_ for all0 < k <
n—m.

Proof: The proofis by contradiction. It is based on the observation that Fj is the
only function which is decreasing in z; and all other functions F; with i > k—m+1
are increasing in z [KPY96]. So if there is an index k with 1+ 2F,(X) < C2, then
there is an £ > 0 and a § > 0 such that if 2 is decreased by ¢, then 1+ 2F(X') <
CP — § if X' is the sequence where zj is replaced by z, — ¢ and, in addition,
1+2F(X)<CP —§ forallk —m+1<i#k<n—m.

Let X be a sequence with competitive ratio C2 and [y the minimal index for X
with 14 2F,(X) < CP. Let X* be a sequence with competitive ratio C such that
[* = lx+ is minimal among all such sequences. If [* > m — 1, then we can apply the
above argument and obtain a sequence X' from X* with 1+ 2F(X') < CE — ¢, for
all [* —m+1 < k < n—m—in contradiction to the minimality of [*. If [* < m — 1,
then we can apply the above argument and obtain a sequence X’ from X* with
1+2F,(X') < CP -4, for all 0 < k < n —m—in contradiction to the minimality of
CP. Hence, there is no sequence X with competitive ratio C2 and an index k with
In the following let ¢? = (CP —1)/2. Lemma 2.3 implies that the step lengths z;
of an optimal strategy X satisfy the following recurrence equation.

Zk+m_1 . k+m—1

i=0 i _ D _ D

== = ¢ or E T; = Cpp Ty (2)
Tk 1=0

for 0 < k < n—m. An additional constraint is given by the first time the m-th ray
is visited; here, the competitive ratio is given by
m—2
1+2) z < 142 (3)
i=0



as in steps 0,... ,m — 2 the first m — 1 rays are explored. If we multiply ¢? by a
factor of x_; where 0 < x_; < 1, then we achieve equality in (3) and we can view
(3) as a special case of (2) for K = —1. Hence, we assume in the following that
Equation 2 holds for all —1 < k£ <n —m.

The linear equation system (2) consists of n — m + 2 linearly independent
equations for the n + 1 step lengths (x_q,z0,21,...,2, 1) of X (z, is irrele-
vant since z, does not appear in Equation 2). Since we are given the values of
Tpms1 =+ = &p_q = D, the n + 1 solutions (z_1,zg,x1,... ,2,_1) are uniquely
defined once we are given ¢2 D, and n. We are interested in the question how
large c2 has to be for a given D such that there is an n and a positive solution
(x_1,20,21,...,T, 1) with z_; < 1. As this question seems to be rather difficult to
answer, we transform Equation 2 into a simpler form.

Lemma 2.4 The values x; satisfy the following recurrence equation
Tpimo1 — Coap +cBap_y =0, (4)
for0 <k <n—m.

Proof: By Equation 2 we have

k4+m—1

E _ D
Xy = Cp, Lk,
1=0

for 0 < k < n —m. The same equation also holds for £ — 1. Hence,

k+m—1 k+m—2

E T; = cfl:ck and E T; = cﬁxk_l.
=0 =0

By subtracting the second equation from the first we obtain Equation 4, for 0 <
k <n —m as claimed. O

Unfortunately, we obtain only n —m + 1 equations in this way—one too few—
and the sequence X is not completely determined anymore by Equation 4 and the
m — 1 initial values =, ,,41 = --- = 2,1 = D. One option to get around this
problem is to add the first or last equation of (2) as an additional constraint to
recurrence equation (4). However, as this destroys the uniformity of the recurrence
equation (4), we take a different approach and introduce one more initial value.

We reduce the m values T, ., Tn_mits--- > Tn1 to the value D* = 2 /(ch —
1)y 1. The new sequence X' we obtain in this way—that is, x} = z;, for 0 <
1<n—-m-—1,and z,,_,, = -+ = x,_1 = D*—does not fulfill Equation 4 anymore
but only

:LJ
Tyt — Coxl +chal . < 0, that is, — —L < (P
L — Tpq



for all 0 < k < n — m, and, in addition, by our choice of D*
‘T;zfl - c??’nxgbfm + c??’nx;zfmfl = 0. (5)

It is easy to see that @, ., 1 > (1 — )T, m where oy, = (¢h —1)/(cB(m—1)) and
Tn-m > D/(2¢2/m) > D/(2¢e); here, we make use of the fact that ¢? < m™/(m —
1)™=! < me. Hence, D* > (m—2)/(2¢(m—1))D. Of course, S > o} < cPa’ | < cP
still holds for X".

Similar to the proof of Lemma 2.3 we can now show that there is a minimal
*

value ¢* < ¢ and a sequence X* that satisfies z7_, = --- = 2% _, = D* as initial

conditions, Z;’:OQ i <c*r* ) <c*and, forall 0 <k <n—m,

‘/L‘;kl*l - c??’nx:fm + c??’nx:;fmfl =0. (6)
If we were given the m values z* |, zj,... ,x* , (which we do not know), then
the sequence (z* |, xf, 27, ... 2% ;) would be completely determined by Equation 6,

D*, and c*; however, we do know the m values of z; __....,z)_;. In order to make

use of this information we consider the sequence Y of the values of X* in reverse
order, that is, y; = x;,_,_;, for i = 0,... ,n. The sequence Y satisfies the recurrence
equation

1
Yk+m — Yk+m—1 T Eyk =0, (7)

forall 0 < k <n—m.

In the following let Y. p be the infinite sequence that is given by Equation 7
(with ¢* = ¢) and the initial values yo = y13 = -+ = ym—1 = D. Y, p is completely
determined by Equation 7 and vyg,...,¥n_1. The sequence Y is a positive prefix
of Y- p-. Note that Y, p may contain negative elements for some &k > n if ¢ <
m™/(m — 1)™~!. We will show the following lemma.

Lemma 2.5 If ¢ < m™/(m —1)™ ' — O(1/log® D), then there is an index k > m
for the sequence Yo p = (Yo, Y1, - .. ) With Yyx_pm > ¢ and yj, < 0.

Note that constant in the “big-Oh” term above depends on m. In the proof of
Lemma 2.5 we will present an upper bound on the constant.

Assuming we have shown Lemma 2.5, we can easily prove that the competitive
ratio of any strategy to search on m rays in the interval [1, D] is bounded from below
by 14 2m™/(m — 1)™' — O(1/log? D).

Theorem 2.6 If ¢ < m™/(m — 1) ' — O(1/log’ D), then there is no strategy X
with a competitive ratio of 1+ 2c¢ that searches on m rays for a target of distance at
most D to the origin.

Proof: The proof is by contradiction. Assume there is a strategy X with a com-
petitive ratio of 1 + 2¢ that searches on m rays for a target of distance at most D
to the origin. This implies that ¢ > ¢2.



Let X be an optimal strategy to search on m rays. By Lemma 2.2 and the above
considerations we can assume that X is periodic and satisfies Equation 2.
As above we construct a sequence X * that satisfies Equation 6, for some ¢* < ¢P
f o= =af_ = D* with D > D* > (m —2)D/((m —1)2¢) and Y./ >zt <
c*z*; < c*. As can be easily seen, the values z also satisfy Z;':Ol x; <ty
We define the sequence Y = (yo,... ,yn) by y; = af_,_,, for 0 < i < n, where
n is the length of X*. The sequence (yo, ... ,y,) is a positive prefix of the infinite
sequence Y- p-. Since ¢ < ¢ <m™/(m—1)""t—~0(1/log? D) = m™/(m—1)""! —
O(1/log? D*), Lemma 2.5 implies that there is an index k for Yo p With g, > ¢*2
and y, < 0. Since y, < 0, n is at most k. Since y,_1 < Z;:nl_mﬂ y; < ¢* and
Yn—m > Yk—m > c*2, we have Z?:_nlfm Yi > Ynom > €2 > c*y,_1—a contradiction.O

T

2.3 The Characteristic Equation
In the following we are only concerned with proving Lemma 2.5. The recurrence
equation for Y, p has the characteristic equation
1 1
D N = —. 8
+ . or c C=TIeY (8)

We first note that since A 1(1 — \) < 0, for A > 1, there is no positive real root
larger than one. On the other hand, if there is a positive real root A of Equation 8
with A < 1, then ¢ > infjsys0 1/ (A1 — X)) = m™/(m — 1)™ ! and we are
done. Hence, we can assume in the following that there is no positive real root
of Equation 8 and we only need to investigate the complex and negative roots of
Equation 8 in more detail.

3 Solving the Recurrence Equation for m = 2

In order to illustrate our approach we present the case m = 2 in greater detail. We
can assume that c is less than m™/(m — 1)™"! = 4 in the following.

3.1 An Explicit Solution
For m = 2 Equation 8 reduces to
M —A+1/c=0 (9)

with the solutions

A = 1<1+¢ 4_6) and X:1<1—¢ 4_6).
2 c 2 c

Here, A\ denotes the conjugate of A. Hence, the solution of Equation 7 in the case
m = 2 is given by

Ye = a\" + ar = 2Re(a)\") (10)

9
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Re(2a\*) < 0 0 1 Re

Figure 1: The sequence 2a)\* turns by an angle of ¢ towards the second quadrant
with each iteration. (For simplicity, we assume |\| = 1.)

where Re denotes the real part of a complex number. The coefficients a and @ are
the solutions of the equation system

which solves to

_Dl . c q __ D L4i c
¢ = 3 Y an a= Wai—z):

3.2 Polar Coordinates

If we consider the polar-coordinates of A and A, that is, we set A = pe’¥ and \ =
pe'=®) then p = \/1/c and ¢ = arctan(y/(4 — ¢)/c). Similarly, if a = o€ and
a=0e' " then 0 = D/\/4—cand § = —arctan(y/c/(4 — c)). The step length y,
is now given by

2D

_~k
yk _= a/)\k +a)\ — mcos (k90+9) (]_1)

If we visualize the above equation in the complex plane, then y; is the projection
of the vector of 2a\* onto the z-axis by Equation 10. Since by multiplying two
complex numbers their polar angles are added, the sequence 2a\* turns by an angle
of ¢ towards the second quadrant with each iteration. Once 2a\* is in the second
quadrant, 2Re(a)\*) is negative. This is illustrated in Figure 1 (see also [Hip94,
IKL97, Kl1e97)).

We show that D can be chosen large enough such that there is an index ny with
Yno < 0 and y,, » > ¢ which proves Lemma 2.5. Of course, we are interested in
the smallest D for which the above inequalities holds. Let ng be the first index such

10



that y,, < 0, that is,

7T/2—0" _ 7/2 + arctan (\/g)

¥ arctan (, / %)
Since ng is the smallest k& such that y, < 0,

(no—2)p+0< 3¢ (12)

cos (npp+0) <0  or my= [

W.lo.g. we assume that y,, belongs to ray 7. Since the search alternates between
the two rays, the last point visited on ray r; has a distance of

a2 9p (2 - D 13)
Yno—2 = Cn0—2(4_c) cos 2 14 - W

to the origin.
We first consider the case that ¢ € [1,3). In this case ny < 7/arctan(1/3) = 6
and

2D 4—c D D
yn072 Z 5

> >
24 —¢) 2 T AT

If D > 81, then y,,_2 > 9 > ¢* and y,,, < 0 which proves Lemma 2.5 for m = 2 and
c<3.
Now assume that ¢ € [3,4]. Then, we have

C

arctan( 4_—c)+g < T/2+7/2 47r
arctan(\/‘l—;c) 3/44/(4 _C/C Vi—c¢

The first inequality stems from the fact that

1. ¢ >3, that is, \/(4 —¢)/c < 1/v/3 and
2. arctan(z) = 1/(1 + x?), that is, arctan(x) > z/(1 + z?) since arcus tangens is

concave on the positive axis. Hence, arctan(y/(4 —c)/c) > /(4 —¢)/c/(1 +

2

1/3).
(14)
We obtain y,, » > D/Vcw2 > D/Vo/Vize,

Lemma 3.1 If3 < ¢ < 4 —81/log*(D/16), then D/V®/Vi=e > ¢2,
Proof: We have

Ng =

(14)

81 (log c<2) ( 4.5 )
c < 4———7— = logD > +2)loge =
log®(D/16) & Vi —c &
D? > /it = D > 2.
cd/Vi—c

O

Let 3 < ¢ < 4 —81/log?(D/16). Lemma 3.1 implies that y,,_» > ¢® and y,, < 0
which proves Lemma 2.5 for m = 2 and ¢ > 3.
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4 Solving the Recurrence Equation for the
General Case

We now return to the general case. As for the case m = 2 we want to show that if
there are only complex or negative solutions to Equation 8, then the contribution
of a solution becomes negative after a sufficiently large number of steps. However,
the details are much more complicated than in the case m = 2 since we have many
roots of Equation 8 and the solutions cannot be computed explicitly. In order to get
around this problem we use estimates on the angles and radii of the polar coordinates
of the roots.

In the following we show that there is one root A\ which has the largest radius
among all roots of Equation 8. After a sufficiently large number of steps the contri-
bution of A dominates the contribution of all other roots. Once the contribution of
A becomes negative in Step k so does the step length y,. This limits the number of
steps Y. Since D can grow at most exponentially in the number of steps of Y, we
also obtain a bound on D in this way.

Let Ao, ..., An_1 be the roots of Equation 8. The solution of the recurrence is
given by

Yp = aoAp + o M+ a, A

We first investigate the structure of the roots A\;, 0 <7 < m—1. Let A be a complex
root of Equation 8. We consider the polar coordinates of A, that is, we set A = pe'®.
We start off with a simple observation about the relationship between the radius
and the polar angle of a root.

Lemma 4.1 If A\ = pe® is a complex root of Equation 8, then p = sin(m —
1)p/sinmp and 1/c = p™ (sin p/sinmep).

Proof: Let A = pe'? be a complex root of Equation 8. We have X" ! =
pm—lei(m—l)g) and

ANEA=1) = p™ (cos(m — 1)@ +isin(m — 1)p) (pcosp — 1+ ipsin )

p" ! (peosmp — cos(m — 1) + i(psinme — sin(m — 1)p)) .
Since A™ (XA — 1) = —1/c € IR, we obtain
i -1
psinmep —sin(m —1)p =0 or p= w (15)
sin mgp
The second claim follows from the equalities
/e = =AY A=1) = p™ cos(m — 1)p — pcos my)
) 1 :
— <cos(m —1)p— M COS m@) _ pmfl‘&&‘
sin mep sin mgp
(]

Lemma 4.1 has the following consequence.

Corollary 4.2 If A\ = pe'? is a complex root of Equation 8, then \ is solely deter-
mined by ¢.
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4.1 The Polar Angle of a Root

We first concentrate on the polar angle of a root A of Equation 8.

Lemma 4.3 If A = pe® is a complex root of Equation 8 and 0 < ¢ < 7, then
¢ € [2kn/(m — 1), (2k + 1)7/m], for some 0 < k < |m/2] — 1.

Proof: Let A\ = pe” be a complex root of Equation 8. Equation 15 implies that
since p > 0 both sinmep and sin(m — 1)@ have the same sign, that is, my and
(m — 1)¢ either both belong to [2km, (2k + 1)7] or to [(2k + 1)7, (2k + 2)7]. Since
1/c = p™tsing/sinme > 0 and p > 0 as well as singp > 0 (since 0 < ¢ < 7), a
second condition is sinmy > 0 which implies ¢ € [2kn/(m — 1), (2k + 1)7/m)], for
some 0 < k < [m/2] —1 as claimed. O

In fact, each interval [2kn/(m — 1), (2k + 1) /m] contains one root of Equation 8.

Lemma 4.4 For 0 < k < |m/2] — 1, there is exactly one root Ny = ppe* of
Equation 8 with ¢y, € [2kw/(m — 1), (2k + 1)7/m].

Proof: Since A is a continuous function of ¢ by Lemma 4.1, it suffices to show
that 1/(A™1(1 — \)) is monotone in ¢ and that 1/(A™ (1 — )\)) assumes a value
less than and greater than ¢, for each interval [2k7/(m — 1), (2k + 1)7/m] with
0<k<|m/2]—1.

Monotonicity follows immediately from considering the derivative of 1/(A\™~(1—
A)) with respect to ¢.

Hence, there is at most one root of Equation 8 for every interval [2k7/(m —
1), (2k + 1)m/m], for 0 < k < |m/2] — 1. Since sin ¢/ sinme is continuous over
[2k7/(m — 1), (2k + 1)7/m] and its values range from oo to 0, there is also at least
one root of of Equation 8 with a polar angle in [2kn/(m — 1), (2k + 1)7/m], for
0<k<|m/2]—1. 0

The above roots account for [m/2] roots of Equation 8. If m is odd, then there
is one 100t A|py2) With @©|;0) =2 |m/2] 7/(m —1) = (2 |m/2] + 1)7/m = 7, that
is, A\lm/2) is a negative real root. It is easy to see that the remaining |m/2] roots
are given by the conjugates A\, = pre~"* of \; as in the case m = 2.

Let ¢ be the angle of the root in [2k7/(m — 1), (2k + 1)7/m]. In the following
we calculate a lower bound on the size of ¢q if ¢ < m™/(m —1)™ 1.

Lemma 4.5

> mi 1 mm 1
min —c )
w0 = m3/2\ (m —1)m-1 "V3m
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Proof: We assume that o, € [0,7/v/3m] since if @y > 7/v/3m, then the claim
trivially holds.

sin mgpy sin mgpy ™ sin mepg
C=—7—"— = S
Pt sin g sin(m — 1)¢g sin gpo
> (1 L (m = mPe3/6) ) Mo — (msoo)3/6
(m — 1)¢o

(po < 7/V3m) > <1+ m—m 7r2/ 18m > meo — m@o) /6

) o) » )

Here we use that by the Taylor-expansion of sin z — 2*/6 < sin(z) < z if x > 0.
Since m™/(m — 1)™~! < em, we have

6(m™/(m —1)m"1 —¢) 1 mm
> > —
70 = \/ em? —m32\ (m—1)m! ¢

as claimed. O

v

4.2 The Radius of a Root

We now consider the radius of a root of Equation 8. Let p; be the radius of A\z. In
the following we show that pg > p1 > -+ > prp/o1-1-

Lemma 4.6 For all0 <k < [m/2] =2, pp > pri1-
Proof: For 0 <k < [m/2] —1, let f, be the function

folp) = X" M1 = M) = p" '/ p? = 2pcos o+ 1.

We show that f,, (p) is monotonely increasing in p, for 1 < k < [m/2] — 1. If we
consider the derivative of f,, with respect to p, then it is easy to see that f,, can
only have an extremum if

1 1 2 1
i < < 1 <
smgpk_Qm_l = gok_arcsm<2m_1>_Qm_1<m_1,

since m > 3 and arcsin(z) < 2z, for 0 <z < /3. Since ¢ > 1/(m — 1), for k > 1,
fo, is monotonely increasing in p, for all 1 < k < [m/2] — 1, but not necessarily
for k¥ = 0. We now show that this implies that pg > p1 > -+ > prp/21-1. Let
0 <k < [m/2] —2. Since m > g1 > @ > 0, we have, for 0 < k < [m/2] — 2,
— COS (g1 > — cos ¢y and, hence

1/C = f<Pk+1(pk+1) = f%(pk) < fwk+1(pk)

and as f,, , is monotonely increasing in p, we obtain py1 < pg. a
In the following we investigate the ratio py/py.

14



Lemma 4.7 py/pr > 1+ 1/(4m3), for all 1 < k < [m/2] — 1.

Proof: Since by Lemma 4.6 p; > py, for all for all 2 < k < [m/2], it suffices to
show that py/p1 > 1+ 1/(4m?). Let f be the function

Flo,p) = X" 1= N)|* = p2m D (0 — 2pcos o + 1).

Note that f(po,p0) = f(p1,p1) = 1/¢* and, therefore, f(p1,p0) — f(po,p0) =
Fle1, p0) = f 1, p1). Now f(p1, po) — f (0, po) = 205" (cos gy — cos 1) and
PO

B 0
) - ) - a ) d S - a ) .
f(e1,p0) — flo1, 1) : apf(sol p)dp < (po m)pen[’;?};d apf (¢1,p)

If we consider the derivative of f with respect to p, then

0 _ 2m — 2(m —1
5./ prp) = 2mp <p2 —2 pcos o1 + )>
P 2m
Hence,
F(o1,p0) = f(@o,p0) = 2p5™ cospo —cospr) = f(e1,p0) = fsp1, p1)
2m — 1 2(m — 1
< (po—p) max 2mp*™? <p2 - pcospr + L)
PE[p1,po] m 2m
< (po = p1)2mpg"™ " (po +1)°
and, thus,
PopolCosipo —cospr)  _po
pi m(py+1)° T om
or
P 1 S po(cos pg — cos p1)
PU— 2y = 2
pi 1 — po(cos o — cos 1)/ (m(po + 1)) m(po + 1)

In order to bound py(cos gy — cos ¢1)/(m(py + 1)?) from below, we need upper
and lower bounds for py. We first give an upper bound. Observe that

1 AL - ) = <sin(m — 1)g00>M1 singg <sin(m — 1)g00>m sin @

c sin mg sin my sin my sin(m — 1)¢g

Lo sin(m — 1)gp\ " _ sin(m — 1)y s M= 1
Po sin myq sinpge — ¢

Hence, py < 7/(m —1)/c < 1 since ¢ > 3.

Now we bound py from below. Note that |1 — )¢| is the distance between the
point (1,0) and the point g in the complex plane. Since g belongs to the wedge Sy
of numbers whose polar angle is in [0, 7/3] and whose radius is less than one, it is easy
to see that the origin is the furthest point in Sy from (1,0) and |1 — \g| < 1. Hence,
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po > "Y1/(]1 = Nole) > ™/1/ec. Since we assume that ¢ < m™/(m—1)""1 < em,
we obtain, py > ™/1/(em) > 1/3.

Next we give a lower bound for cos gy — cos ;. Since ¢y € [0,7/m] and p; €
[27/(m — 1),37/m] both of which are contained in [0,7], for m > 3, cosyy —
cos py > cosm/m — cos2m/(m — 1). Moreover, since cosine is concave over [0, 7/2]
and 27 /(m — 1) < 7/2, for m > 5,

s 2T T 2T s T T w2
COS g — COS Y1 = COS — — COS > sin — > >
m m—1 m

m—1 m/) = 2mm — 2m?’

for m > 5. On the other hand, if m = 3, then cos(7/3) — cos(27/2) > 1 > 72/18
and if m = 4, then cos(m/4) — cos(27/3) > 1/v/2 > 72/32, so that the inequality
cos pg — cos p1 > 2 /(2m?) holds for all m > 3.

Hence, for 1 < k < [m/2],

2

Po _ Po @ 1
—_—>= > 14— >14 —.
Pe P - 6m3(1+1)2 — - 4m?

4.3 The Coefficients

We finally give an upper bound on the radius of the coefficients. Recall that the
solution of Recurrence Equation 8 is given by

Y = ag)\g + al)\’f +---+ am,l)\ﬁkl

Let A = ()\ Jo<ij<m—1, @ = (Go, ... ,Qm_1), and D = (D,...,D). The coefficients
a; are the solution of the linear equation system A@ = D. Let A;(x) the matrix A

where the ith column is replaced by the vector (z,...,z)". By Cramer’s rule q; is
given as
m—1
det(A;(D det(A;(1 oL = A
4 = e( ( )):De( ()):DH;ZL__%#( J) (16)
det(A) det(A) [ = )

since both A and A4;(1) are Vandermonde matrices.
In order to bound the size of the ratio of |a;/ay| we have the following lemma.

Lemma 4.8 |a;/ag| < 4*™m™.
Proof: We have

1+ [\ T o z0(1 2] + [A])
|1_)\0| H] 0]7£z|)\ )\]|

‘ai

‘1—)\ |l 0]7&0()‘0 Aj)
1= H?:Otj;éi()‘i =)
2 gm-—1
< .

(L= Aol T} 21 1A = A
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Figure 2: The sectors that A, and A; belong to.

In order to obtain an upper bound for 1/|1 — A\g| we observe that
/1=X| = c|]\7Y < e < em (17)

Finally, we give a lower bound for |A\; — \;|. We first observe that since |\;|™ 1 >
1/(c]l = X)) > 1/(2¢) > 1/(2em), |Ni| = ™/1/(2em) > 1/5.

If we view A\, and A; as two points in the complex plane, then \; is contained
in the angular sector of Sy = [2kn/(m — 1), (2k + 1)7/m] and ), is contained in the
angular sector of S; = [2j7/(m — 1), (25 + 1)7/m] (see Figure 2). Since |\;| > 1/5
and |\;| > 1/5, the distance between A\, and ), is at least the distance between the
points of S, and S; outside the circle through the origin with radius 1/5. W.lLo.g.
assume that k > j. Let [; be the line with angle 2k7/(m — 1) through the origin
and [y be the line with angle (2j + 1)7/m through the origin. If p is the point on [,
with distance 1/5 to the origin, then the distance of Sy, to S; outside the circle with
radius 1/5 is at most the distance of p to ;. By elementary geometry we obtain
that

sin (2km/(m — 1) — (25 + 1)7/m) T 1
A — Aj| > d(p,ls) = > > —. (1
Combining the estimates for |1 — Ag| and |A\; — A;| we obtain
i 2"
4 — < 2Mem(4m)™t < 47 Mm™
o 1= Aol TIiZ0, 5 [N — A
as claimed. O

The following lemma gives a lower bound of the absolute value of ag.
Lemma 4.9 |ag| > D/(2em)™ .
Proof: The proof follows easily from Equations 16 and 17.

m—1

‘7 11—\ m—1
[ A1y
[I50 (Ao = Ayl 2m

lag| = D

Note that the lower bound for |1 — A\g| of Equation 17 is also a lower bound for
|1—)\i|and that |)\0—)\j|§p0+pj<2. O
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4.4 Putting it all Together

We now put the estimates we obtained for the radii and the angles of the roots of
Equation 8 as well as the coefficients into use. W.l.o.g. we assume that m is even.
If m is odd, then an analogous proof works. We start off by proving a lower and an

upper bound on the size of 1.

Lemma 4.10
42mmm+1

(14 1/(4m?))*

Proof: Recall that

Yk

cos(fy + ko) —

Lm/2]

Y =
j=0

If Ay = ppe’¥° and ag = 0pe’®, then

2|a0|ﬂlg

42mmm+1
(1+1/(4m?)*

< cos(Oy + kyo) +

Lm/2]

_ ~k _ ~k
Z aj)\f + aj)\j S CLO)\IS + ao)\o + Z QRB(GJ)\;C)

j=0

ap A + onlg = gophelllother) o pke=i00tkeo) — 950 ok cos(By + k).
and
Lm/2] k 2m, m+1
Yk il Pj 4°Mm
< cos(By + ko) + —L1 = < cos(by + ko) +
ool 2 [ f [+ 1/
by Lemmas 4.7 and 4.8. Similarly,
\_m/?] k 2m,,,m—+1
Yk a; | Pj 4“mm
> cos(by + kyg) — —| = > cos(y + kgy) — :
2aolpf ; ao | pf (14 1/(4m?))*

In the following we show that if

mm

O

222m8log® m

< —
S m—1mT

log?D '

then there is a step ko such that y, 1 > ¢ and yg, 42 < 0, which proves Lemma 2.5,

for m > 3.

In the following let £ = /m™/(m — 1)m~

L — ¢. We assume that € < 1. The case

¢ > 1 can be treated as the case ¢ < 3 in the case m = 2. Let ng be the first index
greater than 4m?(3mlogm — loge) + 1 such that

cos(By + ngpo) > 0 and

18
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Since the distance between two consecutive transitions from positive to negative
values of cosine is at most 27 and ny > 4m3(3mlogm — loge) + 1, we have that
no — 4m*(3mlogm —loge) — 1 < 27 /pp and

2rm3/?

2
ng < 4m*(3mlogm —loge) + 1 + il < 4m*(3mlogm —loge) + 1+
%o

. (19)

Note that since ¢ < 1, ¢/m3? < 1/y/3m and ¢y > £/m?/? by Lemma 4.5. Once we
have chosen ng, the values of y,,_1 and ¥,,12 are bounded as follows.
Lemma 4.11

no-1 0

Yng—1 > 2|a0|p0 4 n0+2@

and Yno+2 S _2|a0|p0 4 .

Proof: We first observe that if ny > 4m3(3mlogm — loge) + 1, then

3mlogm —loge _ (m+1)logm +log(4m + 2) + log(m®/?/e)

1> 20
1012 g+ 1/ (Am) log(1 + 1/ (4m?) (20)
where we use log(1l + z) < z. Inequality 20 now implies that
1 no—1 A2m+1y,m+1 42mym+l
14— > =™ and o <2
4m? ©o (14 1/4m3)mo—1 = 4
By Lemma 4.10
Yno 1 42mmm+1
—22 - > cos(fy+ (ng—1 —
T A eV T
%0 %0
> 2 ) — 0 > PO
> cos(m/2 — ) T 2
Similarly,
Ynot2 42mmm+1
———— < cos(by+ (ng+2 +
Saolpe? = U DR
< cos(7r/2+g00)+@ < -2
4 4
as claimed. a

With the above preparations we now can prove the main lemma.
Lemma 4.12 If

mm 222m8log® m
c < — - ; ,
(m—1)m log” D

then Yn,—1 > ¢ and Y,yro < 0.

Proof: Inequality y,,+2 < 0 follows directly from Lemma 4.11. Hence, we only
have to show that y,, | > %
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Step 1 We first show that a lower bound on D. If

mm 222m8log® m
c < — - ; :
(m—1)m log” D
then
log D > 22m*logm _ 22m*logm
Vmm/(m —1)m=1 — ¢ £
4]
> (12m*logm — 4m®loge) log 3 + m ogm
3/2

2
> <4m3(3m logm — loge) + o ) log 3 + log(2em)™ ! + log((em)?m?/?)

and, therefore,

D - 3n01(€m)2(36m)m1m3/2 N 3nolc2(2e::n)m1m3/2 (21)

since by Equation 19

) 3/2
ng — 1 < 4m?*(3mlogm — loge) + e
Step 2 We now show that y,, 1 > ¢®>. We have by
(Lemma 4.11) _1%0 (Lemma 4.9) D _1%0
e > 2 ) 1_ > 27 70 1_
Yno—1 fl |a0|p0 4 = (2€m)m_1p0 4
(po>1/3) 2D ©o (Lemma 4.5) De (Equation 21)
> —_(1/3)m > 2
- (Qem)mfl( /3) 4 - 3no—1(2em)™m—1m3/2 ¢
as claimed. O

Now that we have shown Lemma 2.5 we can reformulate Theorem 2.6 in the
following way.

Theorem 4.13 There is no search strateqy for a target on m rays which is contained
in the interval [1, D(m — 1)2e/(m — 2)| with a competitive ratio of less than

49 mm B 22277’L8210g2 m\
(m —1)m1 log™ D

5 An Asymptotically Optimal Strategy

After having proven a lower bound for searching on m rays with an upper bound on
the target distance, the questions remains whether this is the best bound possible.
In this section we present a strategy to search on m rays that achieves a competitive

20



ratio of 1+ 2m™/(m — 1)™~' — O(1/log® D) even if the maximum distance D of
the target to the starting point is unknown. Hence, the lower bound proven in
the previous section cannot be improved if we consider the convergence rate as D
increases to infinity.

The strategy X = (x1, 3, ...)" that achieves a competitive ratio of 14+2m™/(m—
)™=t — O(1/log® D) is given by

7 m ‘
oot (2,
m\m-—1

The competitive ratio of Strategy X in Step k& 4+ m is bounded by 1 + 2¢ where

ST+ L ()
c > p
\/ ]' + (m 1)

’“Z\/m m-1 H;f\/i- m\
m k+m\m-—1
Jj=1 7=0

for £ > 1. We present an upper bound for the sums on the right hand side. We first

consider the sum
p k+m m—1)

The Taylor-expansion of /1 + x yields /1 +x < 14 x/2, for z < 1, and, therefore,

—1 j m j m—1 1 ] m j
1/ 1 < 14+ =
z% +k+m<m—1> - _0< +2k+m> (m—l)

Now we consider the sum

ST () S (Y e

Similar to above we observe that

1 1
\/1—x§1—§x—§x2,

IFor convenience we start with z; instead of .
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for x < 1, and, therefore,

k—1 m—lj
\/ k+m m

7=1
Nl (N (meY
= 2k+m 8 \k+m m

2
<m—1>’“+m(m—l)—(k—m—l)m(%l)k

IN

= mol-m m k+m *
m(m — 1)(2m — 1) (k* + 2k(m — 2) + 2m* — 3m + L)m (==1)"
(k +m)? (k +m)? '
Hence,
S ) R ()
m™  1m(m 1)2m—1

(m—1)mt 8 (k+m)?
1k—m—1 1k2+2k(m—2)+2m? —3m+1 m—1\"
- +2 —1)m(——
2 k+m 8 (k 4+ m)?
m™ ILm(m—1)(2m —1)

S m—Dm 8 (hrm)p

m

since

1k—m—1+1k2+2k(m—2)+2m2—3m+1 <1
2 k+m 8 (k+m)? -

There are two special cases k£ = 1 and £ < 0 that have to be considered separately.
If k=1, then Sum (23) is 0 and Sum (22) adds up to

mm (m—1)m mm m—1
e G ety wrpens S pemn s e S

If —m+ 1<k <0, then the target is discovered during the first m iterations. The
worst case occurs if the first m — 1 rays are explored and then the target is detected

on the mth ray at a distance of 1 + ¢, for some ¢ > 0. The competitive ratio is
bounded by

1+2Z\/1+7—< _1> < (min;n)ml—mgl.

Finally, we relate the number of steps k + m to the distance D to the target.
If the target is detected in Step k& + m, then the distance D to s is in the interval
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(/14 £(m/(m —1)*, /1 4+ E2(m/(m — 1))**™] and D is bounded from below

by

or

1 1
—log(1 1 1+— ) <logD
2og( +k/m)+k0g< +m_1>_0g

which implies

(m—1)m1  8(logD + m/(m —1))?

SRt 1 () mm om — 1
LB )

m™ 2m —1
(m—1)""1  4log*(3D)

We have shown the following theorem.

Theorem 5.1 There is a strateqy that achieves a competitive ratio of at most

mm 2m —1

1+2 —
(m—1)™=1  4log*(3D)

iof the target is placed at distance D > 1 to s.

By Theorem 4.13 the strategy we have presented above is optimal (up to a
constant) if D goes to infinity.

6 Computing the Optimal Strategy

In this section we present an algorithm to compute the optimal strategy to search
on m bounded rays. As opposed to the previous sections we now assume that we
are given the competitive ratio 1 + 2¢ and we want to compute the maximal reach
for 1+ 2¢ [IKL97]. Recall that the reach of a strategy X is the maximum distance
D such that a target placed at a distance D to the origin is still detected by a robot
using X if the competitive ratio of X equals 1 4+ 2¢. Note that once we are able
to compute the maximum reach, we can easily compute the minimal competitive
ratio for a given D by applying binary search. This only increases the running time
proportional to the number of bits necessary to represent D.
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In the case m = 2 it is not too hard to derive a recurrence equation for the
optimal reach (see [IKLI7]). As in the proof of Lemmas 2.2 and 2.3 we can show
that there exists a strategy with maximal reach that is periodic and satisfies the
equations?

k+m—1 m—2
Z x=cxg, (2) and sz < ¢ (3).
=0 i=0

In fact, if Z?:Oz x; < c, then there is a A > 1 such that the strategy AX satisfies
Equation 2 and Z?:OQ Ax; = c. If D is the reach of X, then A\D > D is the reach of
AX. Hence, we can assume that we have equality in Equation 3 for a strategy with
maximal reach. For m = 2, this implies that xy = ¢ and zj, is given by

k—1
Tp = CTp—1 — E T,
i=0

for £k > 1, which determines the strategy completely. For m > 2, we still have
equality in Equation 3 but now we only obtain the sum of the first m — 1 steps
lengths xy, ..., 2, o instead of their values.

Hence, we take a different approach. Let Y again be the sequence defined by
Yi = Tp_i_1, for 0 < i < n —m. It satisfies recurrence equation (7), namely

1
Yk+m — Yk+m—1 + Eyk = 0,

for all 0 < k < n — m. However, we only have the initial values for yg, ..., ym o
which are equal to D. Since we need one more initial value we set a = y,, 1/D,
where 0 < o < 1. Let Y(¢, D,aD) = (yo, 41, -..) be the infinite sequence that is
given by Equation 7 and the above initial values. If ¢ < c,,, then there is an index
ny such that y,, is negative. By Equation 19

9 3/2
ny < 4m*(3mlogm — loge) +1 + WTS ,

where ¢ = y/m™/(m — 1)™1 —c. We choose n to be the index such that y, is
minimal among ¥, ... ,Yn,—1. Lhe value y, is now the lower bound on the distance
to the target. If we set ), = yn__1/yn, for 0 < k < n, then we obtain a strategy
with a lower bound of y,/y, = 1 to the target and reach D/y,, which is obviously
the largest possible reach for a strategy that satisfies Equations 2 and 3 with the
above initial values. Unfortunately, we know neither D nor a. However, we can set
D =1 since we are going to scale by 1/y, later anyway.

Since we do not know «, we consider the values y, as numbers over the extended
field R[a] = {z + ya | z,y € IR}, that is, « is treated as formal parameter. Hence,

. . .o ~htm—1
2To see this we just note that if Zliom x; < cxy, for some k, then we can decrease xj, by
some amount € > 0 and increase x,_,,1,--- , ), by €/m, thus achieving a greater reach.
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Yk = U+ vy, for some values uy and vg. On the other hand, yx = v 1—(1/¢) Yg—ms,
for m < k < n. This yields two recurrences for u; and wvy.

ur = ug_1 — (1/¢) ug_m, and v = vg—1 — (1/¢) Vg_m.

The initial values for the sequence U = (ug,uq,...) are now given by uy = --- =
Um—o = 1 and u,, 1 = 0. The initial values for the sequence V' = (vg,vy,...) are
given by vg = -+ = v,,_o = 0 and v,,,_; = 1. If we stop after n steps, then Equation 3
should be satisfied, that is, we require

n—1

n—1 Yo U —cuy
l=n— 1

Z w; + v = c(u, + apv,)  or ay = —- "n_"fr . (24)
t=n—m-+1

We obtain the following algorithm.

Algorithm Maximal Reach

Input: The competitive ratio 1 4+ 2¢ and the number of rays m.

Output: An integer n and a strategy X = (zo,...,x,) such that the reach of
X is maximal.

1 ife>m™/(m—1)"" then return oo, z;, = (1 +1/(m — 1))*

fort < O0Otom—2dolet u; <1, v; + 0

let w,, 1 <0, v, 1 <1

W N

let Yumin < 1, Nnin < m, € < (Mm™/(m — 1)™"1 — ¢)1/2
let n. < 4m>*(3mlogm — loge) + 1 + 27m3/? /e
for n < m to n, do
let uy «— up_1 — (1/¢) Up_m, vy < Up_1 — (1/€) Upm
let av, < —(Z?:_nl_mﬂ u; — cu,n)/(z:?:_nl_m+1 u; — CUy)
if (un + apvp < ymm)
then let positive < true
10 for j + m to n do
/* Test if all elements are positive x/
11 if u; + o, v; < 0 then let positive < false
12 if positive then y,in < Yn, Nmin < N
end if

© 00 =1 & Ot =

13 let n < nun
14 for i<~ 0ton—1dolet z; + (un i1+ Vn_i1)/Ymin
15 return n, (o, ..., Tn_1, 1/Ymin)

We show the correctness of Algorithm Mazimal Reach in the following two lem-
mas.

Lemma 6.1 The competitive ratio of X is 1+ 2c.
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Proof: First note that because of the test in Step 11 all the elements of X are
positive. By the choice of «, U, and V', X obviously satisfies

Z T, =cC and Tymo1 = C(Tp — Tp_1)

for 0 <k <n—mif weset x_; = 1.3 Using induction we see that

k+m—1
E Ty = Tk+m—1 +crp1 = C(:L'k — xk,l) +Cxp 1 = Cxg
=0
for 0 < k < n — m as claimed. O

Lemma 6.2 The reach of Strategy X is at least as large as the reach of any other
strategy with competitive ratio 1 + 2c.

Proof: Let X* = (z, 2}, x3,... ,x;) be a strategy with maximal reach for compet-
itive ratio 1 4+ 2¢. By Equation 19 [ < n,. As we observed previously, X* satisfies
the conditions S5 a = ext, for 0 < k <1 —m, and .77 2% = ¢. We define a
sequence Y* = (y5,...,y;) by yf =x; , /z, for 0 <i <[, where we set z*, = 1.
The reach of X* is a]_; = oj_,/a*, = (z]_,/x})/(x*,/2z}) = 1]y}.

The sequence Y™ satisfies recurrence equation 7. By a simple induction it can
be easily seen that y; = ux + y;,_,vx. Because of Equations 3 and 24 we obtain
that vy’ ; = ;. Hence, Y* is computed in Step 10 if £ =[. Let Y be the sequence
computed by Algorithm Mazimal Reach. Since y,, is chosen to be minimal, y, < y;.
Hence, the reach 1/y, of X is at least as large as the reach of X*. O

If ¢ consists of b bits, then the time complexity of Algorithm Mazimal Reach is
quadratic in n. = v/2%, that is, ©(2°). On the other hand, since log D = Q(n.),* the
time complexity is quadratic in the size of the output.

We have implemented Algorithm Mazimal Reach in Maple. In Figure 3a the
maximal reach of the optimal strategies for different values of m is shown. The
figure illustrates nicely that the logarithm of the maximal reach depends linearly
on 1/e. In Figure 3b we compare the maximal reach of the optimal strategy to
the maximal reach of the strategy presented in Section 5 and the strategy given by
7 = (3/2)% for m = 3. It can be seen that the maximal reach of the optimal strategy
increases much faster than that of the other two strategies. The figure also shows
that the maximal reach of the strategy presented in Section 5 is a linear function
of 1/e whereas the maximal reach of the other strategy is a logarithmic function of
1/&2. It should be noted that the lower bound we have presented—which is now
an upper bound on the maximal reach—does not fit into the figure as it starts at a
value of > 2000 and has a much steeper slope.

3Note that y,, is chosen to satisfy y, = y,_1 — 1/cyn_m. Since we divide by y,,, this implies
that Yp—m/Yn = c(Yn-1/yn — 1) or Tpm_1 = c(xo — 2-1).

4This follows from the fact that there is a strategy with such that log D is in Q(1/¢)—as, for
instance, the strategy presented in Section 5.
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Optimal ,’/
1 Strategy -7

Figure 3: (a) The reach of the optimal strategy for different values of m. (b) The
reach of the optimal strategy for m = 3 compared to the reach of the strategy
proposed in Section 5 and the strategy given by xz, = (3/2)F.

7 Conclusions

We present a lower bound for the problem of searching on m concurrent rays if an
upper bound D on the maximal distance to the target is given. We show that in
this case the competitive ratio of a search strategy is at least 1+ 2m™/(m —1)""1 —
O(1/log? D). Our approach is based on deriving a recursive equation for the step
length in each iteration of an optimal strategy. The recursive equation gives rise to
a characteristic equation whose roots determine the properties of the strategy. By
computing upper and lower bounds on the radii and polar angles of the roots in
polar coordinates we can show that the competitive ratio has to be sufficiently large
if the target is far away.

We also present a strategy which achieves a competitive ratio of 1+ 2m™/(m —
)™=t — O(1/log? D) if the target is detected at distance D. The strategy does
not need to know an upper bound on D in advance and still achieves the same
convergence rate as the lower bound that we have shown. This implies that the
convergence rate of our lower bound is tight (up to a constant that depends on m).

Finally, we present an algorithm to compute the strategy with maximal reach
for a given competitive ratio and general m. Our algorithm needs time proportional
to the size of the output and exponential in the size of the input.

An interesting open problem is to prove similar results for randomized strategies.
One of the problems with randomized strategies is that there is no published proof
that there is an optimal periodic strategy. This seems to be a necessary step before
the bounded distance problem can be attacked.
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