
The Ultimate Strategy to Search on m Rays?�Alejandro L�opez-Ortizy Sven SchuiererzAbstractWe consider the problem of searching on m current rays for a target ofunknown location. If no upper bound on the distance to the target is knownin advance, then the optimal competitive ratio is 1 + 2mm=(m � 1)m�1. Weshow that if an upper bound of D on the distance to the target is knownin advance, then the competitive ratio of any search strategy is at least 1 +2mm=(m � 1)m�1 � O(1= log2D) which is again optimal|but in a strictersense.To show the optimality of our lower bound we construct a search strategythat achieves this ratio. Surprisingly, our strategy does not need to know anupper bound on the distance to the target in advance; it achieves a competitiveratio of 1+2mm=(m� 1)m�1�O(1= log2D) if the target is found at distanceD. Finally, we also present an algorithm to compute the strategy that allowsthe robot to search the farthest for a given competitive ratio C.1 IntroductionSearching for a target is an important and well studied problem in robotics. Inmany realistic situations the robot does not possess complete knowledge about itsenvironment, for instance, the robot may not have a map of its surroundings, or thelocation of the target may be unknown [DI94, IK95, Kle92, LOS95, PY89].Since the robot has to make decisions about the search based only on the part ofits environment that it has explored before, the search of the robot can be viewed asan on-line problem. One way to judge the performance of an on-line search strategyis to compare the distance traveled by the robot to the length of the shortest pathfrom its starting point s to the target t. The ratio of the distance traveled by therobot to the optimal distance from s to t over all possible locations of the target iscalled the competitive ratio of the search strategy [ST85].�This research is supported by the DFG-Project \Diskrete Probleme", No. Ot 64/8-2.yFaculty of Computer Science, University of New Brunswick, Fredericton, New BrunswickCanada, E3B 4A1, email: alopez-o@unb.cazInstitut f�ur Informatik, Am Flughafen 17, Geb. 051, D-79110 Freiburg, Germanyemail: schuiere@informatik.uni-freiburg.de1



We are interested in obtaining upper and lower bounds on the competitive ratioof searching on m concurrent rays. Here, a point robot is imagined to stand at theorigin ofm rays and one of the rays contains the target t whose distance to the originis unknown. The robot can only detect t if it stands on top of it. It can be shownthat an optimal strategy visits the rays in cyclic order and increases the step lengtheach time by a factor ofm=(m�1) starting with a step length of 1 [BYCR93, Gal80].The competitive ratio Cm achieved by this strategy is given by 1+2mm=(m�1)m�1.If randomization is used, the optimal competitive ratio is given by the minimum ofthe function 1 + 2am=((a� 1) lna), for a > 1 [Gal80, KRT97, KMSY94].Searching onm rays has proven to be a very useful tool for searching in a numberof classes of simple polygons, such as star-shaped polygons [LOS97], generalizedstreets [DI94, LOS96], HV-streets [DHS95], and �-streets [DHS95, Hip94].However, the proof of optimality for the above m-way ray searching strategyrelies on the unboundedness of the rays, that is, on the fact that the target can beplaced arbitrarily far away from the starting point of the rays [BYCR93, Gal80].But, if we consider polygons and the robot is equipped with a range �nder, then itis possible to obtain an upper bound D on the distance to the target. In this caseit is implicitly assumed that the strategy for searching on m-rays remains optimalthough no proof of this assumption has been presented yet [DHS95, DI94, LOS96].In this paper we provide the �rst lower bound proof for searching on m boundedrays; more precisely, we investigate the question if the knowledge of an upper boundon the distance to the target provides an advantage to the robot.Let CDm be the optimal competitive ratio to search on m rays where the distanceto the target is at most D. As mentioned above it is assumed in the literature thatCDm approaches Cm as D goes to in�nity; yet, there is only a proof for the case m = 2by L�opez-Ortiz who shows that 9�O(1= logD) is a lower bound for the competitiveratio of searching on two rays [LO96]. Hipke et al. investigate the inverse problem,again for the case m = 2 [IKL97]. They consider the maximal reach of a strategyto search on the line if the competitive ratio of the strategy is given. The reach of astrategy X is the maximum distance D such that a target placed at a distance D tothe origin is still detected by a robot using X if the competitive ratio of X equals C.Since C is given, a recurrence equation for the optimal reach can be derived. Usingthis recurrence equation Hipke et al. show that the maximal reach is continuous andstrictly monotone in C [IKL97]. This in turn implies that CD2 is strictly monotonein D and assumes all values in the interval [3; 9].In this paper we prove that1 + 2mm=(m� 1)m�1 �O �1= log2D� (1)is a lower bound on CDm , for general m; this also improves L�opez-Ortiz' bound form = 2. Moreover, we present a strategy that achieves a competitive ratio of the sameform as Equation 1, albeit with a di�erent constant factor in the \big-Oh" term.Here, D is the distance at which the target is discovered. Astonishingly, our strategyachieves this competitive ratio without knowing an upper bound on D in advance.These two results imply that the lower bound we present is asymptotically optimal.2



Note that all previously proposed strategies have a competitive ratio of 1+2mm=(m�1)m�1 � O(1=D) if the target is detected at distance D [BYCR93, Gal80]. Finally,we also present an algorithm to compute the maximal reach for a given competitiveratio C and arbitrary m|thus, generalizing the results by Hipke et al. [IKL97].The paper is organized as follows. In the next section we give the basic de�nitionsconcerning searching on m rays. In Section 2 we show that an optimal strategy tosearch on m bounded rays visits the rays in a �xed cyclic order. We also derivea recurrence equation that is satis�ed by an optimal strategy. In Section 3 we�rst consider searching on two rays to introduce our approach to analysing thecompetitive ratio of an optimal strategy. In Section 4 we generalize our ideas tothe case of searching on m rays. Section 5 describes and analyses a strategy whosecompetitive ratio converges asymptotically as fast to 1+2mm=(m�1)m�1 as the lowerbound which we have shown before. Finally, in Section 6 we present an algorithmto compute the strategy with maximal reach for a given competitive ratio C.2 Searching on m Bounded RaysWe are interested in the case that an upper bound D on the maximum distance ofthe target to the origin is known. Let X be a strategy to search on m bounded rays.Strategy X proceeds in steps. In each step the robot travels on one ray to a certaindistance and, if it does not �nd the target, then it returns to the origin. Let xi bethe maximal distance to the origin and ri the ray visited in Step i.We de�ne Ji as the index of the step in which ray ri is visited the next time afterStep i, that is, Ji = min fj > i j rj = rig. If there is no j > i with rj = ri, then wede�ne Ji = i. We represent X by the sequence of pairs (xi; Ji).Assume that the target is discovered in Step Jk in ray r. By the de�nition ofJk ray r was visited the last time before Step Jk in Step k and the distance d tothe target is greater than xk. The distance traveled by the robot to discover t isd+2PJk�1i=0 xi. Since the target can be placed arbitrarily close to xk by an adversary,the competitive ratio of Step k is given bysupd>xk(d+ 2 Jk�1Xi=0 xi)=d = supd>xk 1 + 2 Jk�1Xi=0 xi=d = 1 + 2 Jk�1Xi=0 xi=xk:The competitive ratio CX of X is now given as the supremum of the competitiveratios over all steps.The �rst step is a special case that we have not considered yet. If no informationabout the target is available, then one false move in the beginning may lead to anarbitrarily large competitive ratio. In order to avoid this problem we assume that alower bound of one for the distance to the target t is known in advance that is, thetarget may be placed on any of the m rays somewhere in the interval [1; D].We denote the optimal competitive ratio of searching on m rays for a target thatis placed at a distance of at most D from the origin by CDm . In the following we3



show that CDm � 1 + 2 mm(m� 1)m�1 � O� 1log2D� :2.1 PeriodicityIn order to prove a lower bound on the competitive ratio, we �rst show that anoptimal strategy|that is, a strategy with minimal competitive ratio|is periodicand monotone. In the following let X = (x0; : : : ; xn) be a strategy to search onm bounded rays. Let rk be the ray that the robot visits in Step k. Strategy X isperiodic if rk+m = rk, for all 0 � k � n�m. Strategy X is monotone if xk � xk+1,for all 0 � k � n� 1.Lemma 2.1 If X is a strategy to search on m rays for a target that is placed at adistance of at most D from the origin, then there is a monotone strategy X� withCX� � CX .Proof: The proof is similar to the proof to the proof by Gal for the unboundedcase [Gal80]. Let X = (xi) be a strategy to search m bounded rays and ri the raythat is explored by X in the ith step. We de�ne Ji as above.Let Fi(X) = PJi�1j=0 xj=xi, for 0 � i � n. If Ji does not equal i, then thecompetitive ratio in Step i of strategy X is given by 1+ 2Fi(X). If Ji equals i, thatis, xi = D and Step i is the last step on ray ri, then the competitive ratio in Step iof strategy X is bounded by2Pi�1j=0 xj + dd � 1 + 2Pi�1j=0 xjxJ�1i = 1 + 2FJ�1i (X)where J�1i is the index of the last visit of ray ri before i and d > xJ�1i is thedistance from the origin to the target. Let I be the set of indices i with Ji 6= i. Thecompetitive ratio CX of X is now given byCX = maxi2I 1 + 2Fi(X):If X is monotone, then there is nothing to show. So assume that there is aStep k, 0 � k � n � 1 such that xk+1 < xk. Let X� be the search strategy whichis equal to X except that for all steps i � k the role of rk and rk+1 is exchangedas are xk and xk+1. This can be achieved by setting (x�k; J�k ) = (xk+1; Jk+1) and(x�k+1; J�k+1) = (xk; Jk). For all other Steps i, (x�i ; J�i ) = (xi; Ji) unless x�k+1 = D, inwhich case we set J�k+1 = k + 1 (and not equal to k as implied by the rule above).Note that x�k = xk+1 = D is not possible since xk+1 < xk � D. Let I� be theset of indices i with J�i 6= i. We want to show that CX� = maxi2I� 1 + 2Fi(X�) �maxi2I 1 + 2Fi(X) = CX . Obviously, Fi(X) and Fi(X�) di�er only for the indicesJ�1k , J�1k+1, k, k + 1 which we are going to consider more closely in the following.4



First we assume that Step k is not the last step on ray rk. (As mentioned before,Step k + 1 is never the last step on ray rk+1 as xk+1 < xk � D.)Fk(X) = PJk�1i=0 xixk = PJ�k+1�1i=0 x�ix�k+1 = Fk+1(X�) andFk+1(X) = PJk+1�1i=0 xixk+1 = PJ�k�1i=0 x�ix�k = Fk(X�):Here the equalities follow from the fact that J�k+1 = Jk � k + 2 and J�k = Jk+1 �k + 2, that is, the exchange of xk and xk+1 does not play a role in the summation.Next we consider Steps J�1k+1 and J�1k . Note that J�1k � = J�1k and J�1k+1� = J�1k+1.Moreover,JJ�1k �1 = J�J�1k ��1 = k�1; therefore, FJ�1k (X) = FJ�1k �(X�). This leavesus with Step J�1k+1. We haveFJ�1k+1(X) = Pki=0 xixJ�1k+1 � Pki=0 xi � xk + xk+1xJ�1k+1 = Pk�1i=0 x�i + x�kx�J�1k+1� = FJ�1k+1�(X�):Now assume that Step k is the last step on ray rk and D = xk > xk+1. Then,Fk+1(X�) � FJ�1k+1�(X�). As above we obtain Fk(X�) = Fk+1(X), FJ�1k (X�) =FJ�1k (X) and FJ�1k+1�(X�) � FJ�1k+1(X). Hence, the competitive ratio of Strategy X�is no more than the competitive ratio of strategy X.By performing bubble-sort on strategyX we see that there is a monotone strategythat has a competitive ratio no more than X which proves the claim. 2By Lemma 2.1 it suÆces to consider monotone strategies in the following. Notethat if X is monotone, then the last m steps of X all have length D, that is, thereis an optimal strategy with xn�m+1 = � � �xn = D and the set of indices i with Ji 6= iequals f0; : : : ; n�mg.Lemma 2.2 If X is a strategy to search on m rays for a target that is placed ata distance of at most D from the origin, then there is a periodic strategy X� withCX� � CX .Proof: Let X be strategy to search on m bounded rays. By Lemma 2.1 wecan assume that X is monotone. We follow the proof idea of Yin [Yin94]. Let X�consist of the same sequence of numbers except that X� is now considered a periodicstrategy. We consider the competitive ratios Ck of X and C�k of X� in Step k. ItsuÆces to show that, for every 0 � k � n�m, there is a 0 � j � n�m with C�k � Cj.As mentioned above we do not need to consider the indices n�m+ 1 � k � n. Soconsider C�k = 1 + 2Pk+m�1i=0 xixk ;for some 0 � k � n � m. For each ray rj, 1 � j � m, let kj be the �rst time Xexplores ray rj after Step k. Since xj < D, for all 0 � j � n �m, kj exists, for all5



1 � j � n�m. Note that there is one ray rl such that kl � k +m. If rl is exploredbefore Step k, then let jl � k be the index of the last exploration; otherwise letjl = �1 and xjl = 1. In both cases xjl � xk since X is monotone andC�k = 1 + 2Pk+m�1i=0 xixk � 1 + 2Pkl�1i=0 xixjl = Cjl;which implies that the competitive ratio of X is at least as large as the competitiveratio of X�. 22.2 A Recurrence EquationIn the following we assume that X is an optimal periodic, monotone strategy. Asmentioned before Fk simpli�es in this case to Fk(X) = Pk+m�1i=0 xi=xk; for k =0; : : : ; n �m and CX = max0�i�n�m 1 + 2Fi(X). We now show that the values xisatisfy a recurrence equation. The following lemma was proven by Katsoupias andPapadimitriou for the special case m = 2 with unbounded rays [KPY96].Lemma 2.3 If X� is an optimal strategy, then 1 + 2Fk(X�) = CDm, for all 0 � k �n�m.Proof: The proof is by contradiction. It is based on the observation that Fk is theonly function which is decreasing in xk and all other functions Fi with i � k�m+1are increasing in xk [KPY96]. So if there is an index k with 1+ 2Fk(X) < CDm , thenthere is an " > 0 and a Æ > 0 such that if xk is decreased by ", then 1 + 2Fk(X 0) �CDm � Æ if X 0 is the sequence where xk is replaced by xk � " and, in addition,1 + 2Fi(X 0) � CDm � Æ, for all k �m + 1 � i 6= k � n�m.Let X be a sequence with competitive ratio CDm and lX the minimal index for Xwith 1 + 2Fk(X) < CDm . Let X� be a sequence with competitive ratio CDm such thatl� = lX� is minimal among all such sequences. If l� � m� 1, then we can apply theabove argument and obtain a sequence X 0 from X� with 1+ 2Fk(X 0) < CDm � Æ, forall l��m+1 � k � n�m|in contradiction to the minimality of l�. If l� < m� 1,then we can apply the above argument and obtain a sequence X 0 from X� with1+ 2Fk(X 0) < CDm � Æ, for all 0 � k � n�m|in contradiction to the minimality ofCDm . Hence, there is no sequence X with competitive ratio CDm and an index k with1 + 2Fk(X) < CDm . 2In the following let cDm = (CDm � 1)=2. Lemma 2.3 implies that the step lengths xiof an optimal strategy X satisfy the following recurrence equation.Pk+m�1i=0 xixk = cDm or k+m�1Xi=0 xi = cDmxk; (2)for 0 � k � n�m. An additional constraint is given by the �rst time the m-th rayis visited; here, the competitive ratio is given by1 + 2m�2Xi=0 xi � 1 + 2cDm (3)6



as in steps 0; : : : ; m � 2 the �rst m � 1 rays are explored. If we multiply cDm by afactor of x�1 where 0 < x�1 � 1, then we achieve equality in (3) and we can view(3) as a special case of (2) for k = �1. Hence, we assume in the following thatEquation 2 holds for all �1 � k � n�m.The linear equation system (2) consists of n � m + 2 linearly independentequations for the n + 1 step lengths (x�1; x0; x1; : : : ; xn�1) of X (xn is irrele-vant since xn does not appear in Equation 2). Since we are given the values ofxn�m+1 = � � � = xn�1 = D, the n + 1 solutions (x�1; x0; x1; : : : ; xn�1) are uniquelyde�ned once we are given cDm, D, and n. We are interested in the question howlarge cDm has to be for a given D such that there is an n and a positive solution(x�1; x0; x1; : : : ; xn�1) with x�1 � 1. As this question seems to be rather diÆcult toanswer, we transform Equation 2 into a simpler form.Lemma 2.4 The values xi satisfy the following recurrence equationxk+m�1 � cDmxk + cDmxk�1 = 0; (4)for 0 � k � n�m.Proof: By Equation 2 we havek+m�1Xi=0 xi = cDmxk;for 0 � k � n�m. The same equation also holds for k � 1. Hence,k+m�1Xi=0 xi = cDmxk and k+m�2Xi=0 xi = cDmxk�1:By subtracting the second equation from the �rst we obtain Equation 4, for 0 �k � n�m as claimed. 2Unfortunately, we obtain only n�m + 1 equations in this way|one too few|and the sequence X is not completely determined anymore by Equation 4 and them � 1 initial values xn�m+1 = � � � = xn�1 = D. One option to get around thisproblem is to add the �rst or last equation of (2) as an additional constraint torecurrence equation (4). However, as this destroys the uniformity of the recurrenceequation (4), we take a di�erent approach and introduce one more initial value.We reduce the m values xn�m; xn�m+1; : : : ; xn�1 to the value D� = cDm=(cDm �1)xn�m�1. The new sequence X 0 we obtain in this way|that is, x0i = xi, for 0 �i � n�m� 1, and xn�m = � � � = xn�1 = D�|does not ful�ll Equation 4 anymorebut onlyx0k+m�1 � cDmx0k + cDmx0k�1 � 0; that is, x0k+m�1x0k � x0k�1 � cDm7



for all 0 � k � n�m, and, in addition, by our choice of D�x0n�1 � cDmx0n�m + cDmx0n�m�1 = 0: (5)It is easy to see that xn�m�1 � (1��m)xn�m where �m = (cDm�1)=(cDm(m�1)) andxn�m � D=(2cDm=m) � D=(2e); here, we make use of the fact that cDm � mm=(m �1)m�1 � me. Hence, D� � (m�2)=(2e(m�1))D. Of course,Pm�2i=0 x0i � cDmx0�1 � cDmstill holds for X 0.Similar to the proof of Lemma 2.3 we can now show that there is a minimalvalue c� � cDm and a sequence X� that satis�es x�n�m = � � � = x�n�1 = D� as initialconditions, Pm�2i=0 x�i � c�x��1 � c� and, for all 0 � k � n�m,x�n�1 � cDmx�n�m + cDmx�n�m�1 = 0: (6)If we were given the m values x��1; x�0; : : : ; x�m�2 (which we do not know), thenthe sequence (x��1; x�0; x�1; : : : ; x�n�1) would be completely determined by Equation 6,D�, and c�; however, we do know the m values of x�n�m; : : : ; x�n�1. In order to makeuse of this information we consider the sequence Y of the values of X� in reverseorder, that is, yi = x�n�i�1, for i = 0; : : : ; n. The sequence Y satis�es the recurrenceequation yk+m � yk+m�1 + 1c�yk = 0; (7)for all 0 � k � n�m.In the following let Yc;D be the in�nite sequence that is given by Equation 7(with c� = c) and the initial values y0 = y1 = � � � = ym�1 = D. Yc;D is completelydetermined by Equation 7 and y0; : : : ; ym�1. The sequence Y is a positive pre�xof Yc�;D�. Note that Yc;D may contain negative elements for some k > n if c <mm=(m� 1)m�1. We will show the following lemma.Lemma 2.5 If c < mm=(m � 1)m�1 � O(1= log2D), then there is an index k � mfor the sequence Yc;D = (y0; y1; : : : ) with yk�m > c2 and yk < 0.Note that constant in the \big-Oh" term above depends on m. In the proof ofLemma 2.5 we will present an upper bound on the constant.Assuming we have shown Lemma 2.5, we can easily prove that the competitiveratio of any strategy to search on m rays in the interval [1; D] is bounded from belowby 1 + 2mm=(m� 1)m�1 � O(1= log2D).Theorem 2.6 If c < mm=(m � 1)m�1 � O(1= log2D), then there is no strategy Xwith a competitive ratio of 1+ 2c that searches on m rays for a target of distance atmost D to the origin.Proof: The proof is by contradiction. Assume there is a strategy X with a com-petitive ratio of 1 + 2c that searches on m rays for a target of distance at most Dto the origin. This implies that c � cDm. 8



Let X be an optimal strategy to search on m rays. By Lemma 2.2 and the aboveconsiderations we can assume that X is periodic and satis�es Equation 2.As above we construct a sequence X� that satis�es Equation 6, for some c� � cDm,x�n�m = � � � = x�n�1 = D�, with D � D� � (m � 2)D=((m� 1)2e) and Pm�2i=0 x�i �c�x��1 � c�. As can be easily seen, the values x�i also satisfy Pm�1i=0 x�i � c�x�0.We de�ne the sequence Y = (y0; : : : ; yn) by yi = x�n�i�1, for 0 � i � n, wheren is the length of X�. The sequence (y0; : : : ; yn) is a positive pre�x of the in�nitesequence Yc�;D�. Since c� � c < mm=(m�1)m�1�O(1= log2D) = mm=(m�1)m�1�O(1= log2D�), Lemma 2.5 implies that there is an index k for Yc�;D� with yk�m � c�2and yk < 0. Since yk < 0, n is at most k. Since yn�1 � Pn�1i=n�m+1 yi � c� andyn�m � yk�m � c�2, we have Pn�1i=n�m yi > yn�m � c�2 � c�yn�1|a contradiction.22.3 The Characteristic EquationIn the following we are only concerned with proving Lemma 2.5. The recurrenceequation for Yc;D has the characteristic equation�m � �m�1 + 1c = 0 or c = 1�m�1(1� �) : (8)We �rst note that since �m�1(1 � �) < 0, for � > 1, there is no positive real rootlarger than one. On the other hand, if there is a positive real root � of Equation 8with � < 1, then c � inf1>�>0 1=(�m�1(1 � �)) = mm=(m � 1)m�1 and we aredone. Hence, we can assume in the following that there is no positive real rootof Equation 8 and we only need to investigate the complex and negative roots ofEquation 8 in more detail.3 Solving the Recurrence Equation for m = 2In order to illustrate our approach we present the case m = 2 in greater detail. Wecan assume that c is less than mm=(m� 1)m�1 = 4 in the following.3.1 An Explicit SolutionFor m = 2 Equation 8 reduces to�2 � �+ 1=c = 0 (9)with the solutions� = 12  1 + ir4� cc ! and � = 12  1� ir4� cc ! :Here, � denotes the conjugate of �. Hence, the solution of Equation 7 in the casem = 2 is given by yk = a�k + a�k = 2Re(a�k) (10)9
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Figure 1: The sequence 2a�k turns by an angle of ' towards the second quadrantwith each iteration. (For simplicity, we assume j�j = 1.)where Re denotes the real part of a complex number. The coeÆcients a and a arethe solutions of the equation systema + a = y0 = Da� + a� = y1 = Dwhich solves toa = D2 �1� ir c4� c� and a = D2 �1 + ir c4� c� :3.2 Polar CoordinatesIf we consider the polar-coordinates of � and �, that is, we set � = �ei' and � =�ei(�'), then � = p1=c and ' = arctan(p(4� c)=c). Similarly, if a = �ei� anda = �ei(��), then � = D=p4� c and � = � arctan(pc=(4� c)). The step length ykis now given by yk = a�k + a�k = 2Dpck(4� c) cos (k' + �) : (11)If we visualize the above equation in the complex plane, then yk is the projectionof the vector of 2a�k onto the x-axis by Equation 10. Since by multiplying twocomplex numbers their polar angles are added, the sequence 2a�k turns by an angleof ' towards the second quadrant with each iteration. Once 2a�k is in the secondquadrant, 2Re(a�k) is negative. This is illustrated in Figure 1 (see also [Hip94,IKL97, Kle97]).We show that D can be chosen large enough such that there is an index n0 withyn0 < 0 and yn0�2 > c2 which proves Lemma 2.5. Of course, we are interested inthe smallest D for which the above inequalities holds. Let n0 be the �rst index such10



that yn0 < 0, that is,cos (n0'+ �) < 0 or n0 = ��=2� �' � = 26666�=2 + arctan�p c4�c�arctan�q4�cc � 37777 :Since n0 is the smallest k such that yk < 0,(n0 � 2)'+ � � �2 � ': (12)W.l.o.g. we assume that yn0 belongs to ray r1. Since the search alternates betweenthe two rays, the last point visited on ray r1 has a distance ofyn0�2 (11;12)� 2Dpcn0�2(4� c) cos ��2 � '� = Dpcn0�2 (13)to the origin.We �rst consider the case that c 2 [1; 3). In this case n0 � �= arctan(1=3) = 6and yn0�2 � 2Dpcn0�2(4� c)p4� c2 � Dpc4 � D9 :If D > 81, then yn0�2 > 9 > c2 and yn0 < 0 which proves Lemma 2.5 for m = 2 andc < 3.Now assume that c 2 [3; 4]. Then, we haven0 = 26666arctan�p c4�c� + �2arctan�q4�cc � 37777 � �=2 + �=23=4p(4� c)=c � 4�3 r c4� c � 9p4� c: (14)The �rst inequality stems from the fact that1. c � 3, that is, p(4� c)=c � 1=p3 and2. arctan(x)0 = 1=(1 + x2), that is, arctan(x) � x=(1 + x2) since arcus tangens isconcave on the positive axis. Hence, arctan(p(4� c)=c) � p(4� c)=c=(1 +p1=32).We obtain yn0�2 � D=pcn0�2 (14)� D=pc9=p4�c.Lemma 3.1 If 3 � c < 4� 81= log2(D=16), then D=pc9=p4�c > c2.Proof: We havec < 4� 81log2(D=16) (log c<2)) logD > � 4:5p4� c + 2� log c )D2 > c9=p4�c+4 ) Dpc9=p4�c > c2: 2Let 3 � c < 4 � 81= log2(D=16). Lemma 3.1 implies that yn0�2 > c2 and yn0 < 0which proves Lemma 2.5 for m = 2 and c � 3.11



4 Solving the Recurrence Equation for theGeneral CaseWe now return to the general case. As for the case m = 2 we want to show that ifthere are only complex or negative solutions to Equation 8, then the contributionof a solution becomes negative after a suÆciently large number of steps. However,the details are much more complicated than in the case m = 2 since we have manyroots of Equation 8 and the solutions cannot be computed explicitly. In order to getaround this problem we use estimates on the angles and radii of the polar coordinatesof the roots.In the following we show that there is one root � which has the largest radiusamong all roots of Equation 8. After a suÆciently large number of steps the contri-bution of � dominates the contribution of all other roots. Once the contribution of� becomes negative in Step k so does the step length yk. This limits the number ofsteps Y . Since D can grow at most exponentially in the number of steps of Y , wealso obtain a bound on D in this way.Let �0; : : : ; �m�1 be the roots of Equation 8. The solution of the recurrence isgiven by yk = a0�k0 + a1�k1 + � � �+ am�1�km�1:We �rst investigate the structure of the roots �i, 0 � i � m�1. Let � be a complexroot of Equation 8. We consider the polar coordinates of �, that is, we set � = �ei'.We start o� with a simple observation about the relationship between the radiusand the polar angle of a root.Lemma 4.1 If � = �ei' is a complex root of Equation 8, then � = sin(m �1)'= sinm' and 1=c = �m�1(sin'= sinm').Proof: Let � = �ei' be a complex root of Equation 8. We have �m�1 =�m�1ei(m�1)' and�m�1(�� 1) = �m�1 (cos(m� 1)'+ i sin(m� 1)') (� cos'� 1 + i� sin')= �m�1 (� cosm'� cos(m� 1)'+ i(� sinm'� sin(m� 1)')) :Since �m�1(�� 1) = �1=c 2 IR, we obtain� sinm'� sin(m� 1)' = 0 or � = sin(m� 1)'sinm' : (15)The second claim follows from the equalities1=c = ��m�1(�� 1) = �m�1(cos(m� 1)'� � cosm')= �m�1 �cos(m� 1)'� sin(m� 1)'sinm' cosm'� = �m�1 sin'sinm': 2Lemma 4.1 has the following consequence.Corollary 4.2 If � = �ei' is a complex root of Equation 8, then � is solely deter-mined by '. 12



4.1 The Polar Angle of a RootWe �rst concentrate on the polar angle of a root � of Equation 8.Lemma 4.3 If � = �ei' is a complex root of Equation 8 and 0 � ' � �, then' 2 [2k�=(m� 1); (2k + 1)�=m], for some 0 � k � bm=2c � 1.Proof: Let � = �ei' be a complex root of Equation 8. Equation 15 implies thatsince � > 0 both sinm' and sin(m � 1)' have the same sign, that is, m' and(m � 1)' either both belong to [2k�; (2k + 1)�] or to [(2k + 1)�; (2k + 2)�]. Since1=c = �m�1 sin'= sinm' > 0 and � > 0 as well as sin' � 0 (since 0 � ' � �), asecond condition is sinm' > 0 which implies ' 2 [2k�=(m � 1); (2k + 1)�=m], forsome 0 � k � bm=2c � 1 as claimed. 2In fact, each interval [2k�=(m� 1); (2k + 1)�=m] contains one root of Equation 8.Lemma 4.4 For 0 � k � bm=2c � 1, there is exactly one root �k = �kei'k ofEquation 8 with 'k 2 [2k�=(m� 1); (2k + 1)�=m].Proof: Since � is a continuous function of ' by Lemma 4.1, it suÆces to showthat 1=(�m�1(1 � �)) is monotone in ' and that 1=(�m�1(1 � �)) assumes a valueless than and greater than c, for each interval [2k�=(m � 1); (2k + 1)�=m] with0 � k � bm=2c � 1.Monotonicity follows immediately from considering the derivative of 1=(�m�1(1��)) with respect to '.Hence, there is at most one root of Equation 8 for every interval [2k�=(m �1); (2k + 1)�=m], for 0 � k � bm=2c � 1. Since sin'= sinm' is continuous over[2k�=(m� 1); (2k + 1)�=m] and its values range from 1 to 0, there is also at leastone root of of Equation 8 with a polar angle in [2k�=(m � 1); (2k + 1)�=m], for0 � k � bm=2c � 1. 2The above roots account for bm=2c roots of Equation 8. If m is odd, then thereis one root �bm=2c with 'bm=2c = 2 bm=2c �=(m� 1) = (2 bm=2c + 1)�=m = �, thatis, �bm=2c is a negative real root. It is easy to see that the remaining bm=2c rootsare given by the conjugates �k = �ke�i'k of �k as in the case m = 2.Let 'k be the angle of the root in [2k�=(m� 1); (2k + 1)�=m]. In the followingwe calculate a lower bound on the size of '0 if c < mm=(m� 1)m�1.Lemma 4.5 '0 � min� 1m3=2r mm(m� 1)m�1 � c; 1p3m� :
13



Proof: We assume that '0 2 [0; �=p3m] since if '0 � �=p3m, then the claimtrivially holds.c = sinm'0�m�10 sin'0 = � sinm'0sin(m� 1)'0�m�1 sinm'0sin'0� �1 + (m�m3'20=6)'0(m� 1)'0 �m�1 m'0 � (m'0)3=6'0('0 � �=p3m) � �1 + m�m3�2=(18m2)(m� 1) �m�1 m'0 � (m'0)3=6'0� � mm� 1�m�1�m� m3'206 � � �1� m2'206 � mm(m� 1)m�1 :Here we use that by the Taylor-expansion of sin x � x3=6 � sin(x) � x if x � 0.Since mm=(m� 1)m�1 < em, we have'0 �r6(mm=(m� 1)m�1 � c)em3 � 1m3=2r mm(m� 1)m�1 � cas claimed. 24.2 The Radius of a RootWe now consider the radius of a root of Equation 8. Let �k be the radius of �k. Inthe following we show that �0 � �1 � � � � � �dm=2e�1.Lemma 4.6 For all 0 � k � dm=2e � 2, �k � �k+1.Proof: For 0 � k � dm=2e � 1, let f' be the functionf'(�) = j�m�1(1� �)j = �m�1p�2 � 2� cos'+ 1:We show that f'k(�) is monotonely increasing in �, for 1 � k � dm=2e � 1. If weconsider the derivative of f'k with respect to �, then it is easy to see that f'k canonly have an extremum ifsin'k � 12m� 1 ) 'k � arcsin� 12m� 1� � 22m� 1 < 1m� 1 ;since m � 3 and arcsin(x) � 2x, for 0 � x � �=3. Since 'k > 1=(m� 1), for k � 1,f'k is monotonely increasing in �, for all 1 � k � dm=2e � 1, but not necessarilyfor k = 0. We now show that this implies that �0 � �1 � � � � � �dm=2e�1. Let0 � k � dm=2e � 2. Since � > 'k+1 > 'k > 0, we have, for 0 � k � dm=2e � 2,� cos'k+1 > � cos'k and, hence1=c = f'k+1(�k+1) = f'k(�k) < f'k+1(�k)and as f'k+1 is monotonely increasing in �, we obtain �k+1 < �k. 2In the following we investigate the ratio �0=�k.14



Lemma 4.7 �0=�k � 1 + 1=(4m3), for all 1 � k � dm=2e � 1.Proof: Since by Lemma 4.6 �1 � �k, for all for all 2 � k � dm=2e, it suÆces toshow that �0=�1 � 1 + 1=(4m3). Let f be the functionf('; �) = ���m�1(1� �)��2 = �2(m�1)(�2 � 2� cos'+ 1):Note that f('0; �0) = f('1; �1) = 1=c2 and, therefore, f('1; �0) � f('0; �0) =f('1; �0)� f('1; �1): Now f('1; �0)� f('0; �0) = 2�2m�10 (cos'0 � cos'1) andf('1; �0)� f('1; �1) = Z �0�1 @@�f('1; �)d� � (�0 � �1) max�2[�1;�0] @@�f('1; �):If we consider the derivative of f with respect to �, then@@�f('1; �) = 2m�2m�3 ��2 � 22m� 12m � cos'1 + 2(m� 1)2m � :Hence, f('1; �0)� f('0; �0) = 2�2m�10 (cos'0 � cos'1) = f('1; �0)� f('1; �1)� (�0 � �1) max�2[�1;�0] 2m�2m�3 ��2 � 2m� 1m � cos'1 + 2(m� 1)2m �� (�0 � �1)2m�2m�30 (�0 + 1)2and, thus, �0�1 �0(cos'0 � cos'1)m(�0 + 1)2 � �0�1 � 1or �0�1 � 11� �0(cos'0 � cos'1)=(m(�0 + 1)2) � 1 + �0(cos'0 � cos'1)m(�0 + 1)2 :In order to bound �0(cos'0 � cos'1)=(m(�0 + 1)2) from below, we need upperand lower bounds for �0. We �rst give an upper bound. Observe that1c = �m�1(1� �) = �sin(m� 1)'0sinm'0 �m�1 sin'0sinm'0 = �sin(m� 1)'0sinm'0 �m sin'0sin(m� 1)'0) �m0 = �sin(m� 1)'0sinm'0 �m = sin(m� 1)'0sin'0c � m� 1c :Hence, �0 � mp(m� 1)=c � 1 since c � 3.Now we bound �0 from below. Note that j1� �0j is the distance between thepoint (1; 0) and the point �0 in the complex plane. Since �0 belongs to the wedge S0of numbers whose polar angle is in [0; �=3] and whose radius is less than one, it is easyto see that the origin is the furthest point in S0 from (1; 0) and j1� �0j � 1. Hence,15



�0 � m�1p1=(j1� �0jc) � m�1p1=c. Since we assume that c < mm=(m�1)m�1 < em,we obtain, �0 � m�1p1=(em) � 1=3.Next we give a lower bound for cos'0 � cos'1. Since '0 2 [0; �=m] and '1 2[2�=(m � 1); 3�=m] both of which are contained in [0; �], for m � 3, cos'0 �cos'1 � cos �=m � cos 2�=(m � 1). Moreover, since cosine is concave over [0; �=2]and 2�=(m� 1) � �=2, for m � 5,cos'0 � cos'1 � cos �m � cos 2�m� 1 � sin �m � 2�m� 1 � �m� � �2m �m � �22m2 ;for m � 5. On the other hand, if m = 3, then cos(�=3) � cos(2�=2) > 1 > �2=18and if m = 4, then cos(�=4) � cos(2�=3) > 1=p2 > �2=32, so that the inequalitycos'0 � cos'1 � �2=(2m2) holds for all m � 3.Hence, for 1 � k � dm=2e,�0�k � �0�1 � 1 + �26m3(1 + 1)2 � 1 + 14m3 : 24.3 The CoeÆcientsWe �nally give an upper bound on the radius of the coeÆcients. Recall that thesolution of Recurrence Equation 8 is given byyk = a0�k0 + a1�k1 + � � �+ am�1�km�1:Let A = (�ij)0�i;j�m�1, a = (a0; : : : ; am�1), and D = (D; : : : ; D). The coeÆcientsai are the solution of the linear equation system Aa = D. Let Ai(x) the matrix Awhere the ith column is replaced by the vector (x; : : : ; x)T . By Cramer's rule ai isgiven as ai = det(Ai(D))det(A) = Ddet(Ai(1))det(A) = D Qm�1j=0;j 6=i(1� �j)Qm�1j=0;j 6=i(�i � �j) (16)since both A and Ai(1) are Vandermonde matrices.In order to bound the size of the ratio of jai=a0j we have the following lemma.Lemma 4.8 jai=a0j � 42mmm:Proof: We have���� aia0 ���� = ���� 1� �i1� �0 ���� �����Qm�1j=0;j 6=0(�0 � �j)Qm�1j=0;j 6=i(�i � �j) ����� � 1 + j�ijj1� �0jQm�1j=0;j 6=0(j�0j+ j�jj)Qm�1j=0;j 6=i j�i � �jj� 2j1� �0j 2m�1Qm�1j=0;j 6=i j�i � �jj :16



Sk Sjl1l2�k �jFigure 2: The sectors that �k and �j belong to.In order to obtain an upper bound for 1=j1� �0j we observe that1=j1� �0j = c j�m�10 j � c � em (17)Finally, we give a lower bound for j�k��jj. We �rst observe that since j�ijm�1 �1=(cj1� �ij) � 1=(2c) � 1=(2em), j�ij � m�1p1=(2em) � 1=5.If we view �k and �j as two points in the complex plane, then �k is containedin the angular sector of Sk = [2k�=(m� 1); (2k+ 1)�=m] and �j is contained in theangular sector of Sj = [2j�=(m� 1); (2j + 1)�=m] (see Figure 2). Since j�kj � 1=5and j�jj � 1=5, the distance between �k and �j is at least the distance between thepoints of Sk and Sj outside the circle through the origin with radius 1=5. W.l.o.g.assume that k > j. Let l1 be the line with angle 2k�=(m � 1) through the originand l2 be the line with angle (2j + 1)�=m through the origin. If p is the point on l1with distance 1=5 to the origin, then the distance of Sk to Sj outside the circle withradius 1=5 is at most the distance of p to l2. By elementary geometry we obtainthat j�k � �jj � d(p; l2) = sin (2k�=(m� 1)� (2j + 1)�=m)5 � �10m � 14m: (18)Combining the estimates for j1� �0j and j�k � �jj we obtain����aia0 ���� � 2mj1� �0jQm�1j=0;j 6=i j�i � �jj � 2mem(4m)m�1 � 42mmmas claimed. 2The following lemma gives a lower bound of the absolute value of a0.Lemma 4.9 ja0j > D=(2em)m�1:Proof: The proof follows easily from Equations 16 and 17.ja0j = D Qm�1j=1 j1� �jjQm�1j=1 j�0 � �jj � D (1=em)m�12m�1 :Note that the lower bound for j1 � �0j of Equation 17 is also a lower bound forj1� �ij and that j�0 � �jj � �0 + �j < 2. 217



4.4 Putting it all TogetherWe now put the estimates we obtained for the radii and the angles of the roots ofEquation 8 as well as the coeÆcients into use. W.l.o.g. we assume that m is even.If m is odd, then an analogous proof works. We start o� by proving a lower and anupper bound on the size of yk.Lemma 4.10cos(�0 + k'0)� 42mmm+1(1 + 1=(4m3))k � yk2ja0j�k0 � cos(�0 + k'0) + 42mmm+1(1 + 1=(4m3))k :Proof: Recall thatyk = bm=2cXj=0 aj�kj + aj�kj � a0�k0 + a0�k0 + bm=2cXj=0 2Re(aj�kj ):If �0 = �0ei'0 and a0 = �0ei�0 , thena0�k0 + a0�k0 = �0�k0ei(�0+k'0) + �0�k0e�i(�0+k'0) = 2�0�k0 cos(�0 + k'0):and yk2ja0j�k0 � cos(�0 + k'0) + bm=2cXj=0 ����aja0 ���� �kj�k0 � cos(�0 + k'0) + 42mmm+1(1 + 1=(4m3))kby Lemmas 4.7 and 4.8. Similarly,yk2ja0j�k0 � cos(�0 + k'0)� bm=2cXj=0 ����aja0 ���� �kj�k0 � cos(�0 + k'0)� 42mmm+1(1 + 1=(4m3))k :2In the following we show that ifc < mm(m� 1)m�1 � 222m8 log2mlog2D ;then there is a step k0 such that yk0�1 > c2 and yk0+2 < 0, which proves Lemma 2.5,for m � 3.In the following let " =pmm=(m� 1)m�1 � c. We assume that " < 1. The case" � 1 can be treated as the case c � 3 in the case m = 2. Let n0 be the �rst indexgreater than 4m3(3m logm� log ") + 1 such thatcos(�0 + n0'0) > 0 and cos(�0 + (n0 + 1)'0) � 0:18



Since the distance between two consecutive transitions from positive to negativevalues of cosine is at most 2� and n0 � 4m3(3m logm � log ") + 1, we have thatn0 � 4m3(3m logm� log ")� 1 � 2�='0 andn0 � 4m3(3m logm� log ") + 1 + 2�'0 � 4m3(3m logm� log ") + 1 + 2�m3=2" : (19)Note that since " � 1, "=m3=2 < 1=p3m and '0 � "=m3=2 by Lemma 4.5. Once wehave chosen n0, the values of yn0�1 and yn0+2 are bounded as follows.Lemma 4.11yn0�1 � 2ja0j�n0�10 '04 and yn0+2 � �2ja0j�n0+20 '04 :Proof: We �rst observe that if n0 > 4m3(3m logm� log ") + 1, thenn0 � 1 � 3m logm� log "log(1 + 1=(4m3)) � (m+ 1) logm+ log(4m + 2) + log(m3=2=")log(1 + 1=(4m3)) (20)where we use log(1 + x) � x. Inequality 20 now implies that�1 + 14m3�n0�1 � 42m+1mm+1'0 and 42mmm+1(1 + 1=4m3)n0�1 � '04 :By Lemma 4.10yn0�12ja0j�n0�10 � cos(�0 + (n0 � 1)'0)� 42mmm+1(1 + 1=(4m3))n0�1� cos(�=2� '0)� '04 � '04 :Similarly, yn0+22ja0j�n0+20 � cos(�0 + (n0 + 2)'0) + 42mmm+1(1 + 1=(4m3))n0� cos(�=2 + '0) + '04 � �'04as claimed. 2With the above preparations we now can prove the main lemma.Lemma 4.12 If c < mm(m� 1)m�1 � 222m8 log2mlog2D ;then yn0�1 > c2 and yn0+2 < 0.Proof: Inequality yn0+2 < 0 follows directly from Lemma 4.11. Hence, we onlyhave to show that yn0�1 > c2. 19



Step 1 We �rst show that a lower bound on D. Ifc < mm(m� 1)m�1 � 222m8 log2mlog2D ;thenlogD > 22m4 logmpmm=(m� 1)m�1 � c = 22m4 logm"� (12m4 logm� 4m3 log ") log 3 + m4 logm"� �4m3(3m logm� log ") + 2�m3=2" � log 3 + log(2em)m�1 + log((em)2m3=2)and, therefore,D > 3n0�1(em)2(2em)m�1m3=2" > 3n0�1c2(2em)m�1m3=2" (21)since by Equation 19n0 � 1 � 4m3(3m logm� log ") + 2�m3=2" :Step 2 We now show that yn0�1 > c2. We have byyn0�1 (Lemma 4:11)� 2ja0j�n0�10 '04 (Lemma 4:9)� 2 D(2em)m�1�n0�10 '04(�0�1=3)� 2D(2em)m�1 (1=3)n0�1'04 (Lemma 4:5)� D"3n0�1(2em)m�1m3=2 (Equation 21)> c2as claimed. 2Now that we have shown Lemma 2.5 we can reformulate Theorem 2.6 in thefollowing way.Theorem 4.13 There is no search strategy for a target onm rays which is containedin the interval [1; D(m� 1)2e=(m� 2)] with a competitive ratio of less than1 + 2� mm(m� 1)m�1 � 222m8 log2mlog2D � :5 An Asymptotically Optimal StrategyAfter having proven a lower bound for searching on m rays with an upper bound onthe target distance, the questions remains whether this is the best bound possible.In this section we present a strategy to search on m rays that achieves a competitive20



ratio of 1 + 2mm=(m � 1)m�1 � O(1= log2D) even if the maximum distance D ofthe target to the starting point is unknown. Hence, the lower bound proven inthe previous section cannot be improved if we consider the convergence rate as Dincreases to in�nity.The strategyX = (x1; x2; : : : )1 that achieves a competitive ratio of 1+2mm=(m�1)m�1 �O(1= log2D) is given byxi =r1 + im � mm� 1�i :The competitive ratio of Strategy X in Step k +m is bounded by 1 + 2c wherec � Pk+m�1j=1 q1 + jm � mm�1�jq1 + km � mm�1�k= k�1Xj=1r j +mk +m �m� 1m �k�j + m�1Xj=0 r1 + jk +m � mm� 1�j ;for k � 1. We present an upper bound for the sums on the right hand side. We �rstconsider the sum m�1Xj=0 r1 + jk +m � mm� 1�j :The Taylor-expansion of p1 + x yields p1 + x � 1+ x=2, for x � 1, and, therefore,m�1Xj=0 r1 + jk +m � mm� 1�j � m�1Xj=0 �1 + 12 jk +m�� mm� 1�j= mm(m� 1)m�1 � (m� 1) + (m� 1)mk +m : (22)Now we consider the sumk�1Xj=1r j +mk +m �m� 1m �k�j = k�1Xj=1r1� jk +m �m� 1m �j : (23)Similar to above we observe thatp1� x � 1� 12x� 18x2;1For convenience we start with x1 instead of x0.
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for x � 1, and, therefore,k�1Xj=1r1� jk +m �m� 1m �j� k�1Xj=1  1� 12 jk +m � 18 � jk +m�2!�m� 1m �j= m� 1�m�m� 1m �k + m(m� 1)� (k �m� 1)m �m�1m �kk +m +m(m� 1)(2m� 1)(k +m)2 � (k2 + 2k(m� 2) + 2m2 � 3m+ 1)m �m�1m �k(k +m)2 :Hence,m�1Xj=0 r1 + jk +m � mm� 1�j + k�1Xj=1r j +mk +m �m� 1m �k�j� mm(m� 1)m�1 � 18m(m� 1)(2m� 1)(k +m)2+�12 k �m� 1k +m + 18 k2 + 2k(m� 2) + 2m2 � 3m+ 1(k +m)2 � 1�m�m� 1m �k� mm(m� 1)m�1 � 18m(m� 1)(2m� 1)(k +m)2since 12 k �m� 1k +m + 18 k2 + 2k(m� 2) + 2m2 � 3m+ 1(k +m)2 � 1:There are two special cases k = 1 and k � 0 that have to be considered separately.If k = 1, then Sum (23) is 0 and Sum (22) adds up tomm(m� 1)m�1 � (m� 1) + (m� 1)m2(1 +m) � mm(m� 1)m�1 � m� 12 :If �m + 1 � k � 0, then the target is discovered during the �rst m iterations. Theworst case occurs if the �rst m� 1 rays are explored and then the target is detectedon the mth ray at a distance of 1 + ", for some " > 0. The competitive ratio isbounded by 1 + 2m�1Xj=1 r1 + jm � mm� 1�j � mm(m� 1)m�1 � m + 12 :Finally, we relate the number of steps k + m to the distance D to the target.If the target is detected in Step k +m, then the distance D to s is in the interval22



[q1 + km(m=(m � 1))k;q1 + k+mm (m=(m � 1))k+m] and D is bounded from belowby r1 + km � mm� 1�k � Dor 12 log(1 + k=m) + k log�1 + 1m� 1� � logDwhich implies k � logDlog �1 + 1m�1� � (m� 1) logD:Hence,1 + 2Pk+m�1j=1 q1 + jm � mm�1�jq1 + km � mm�1�k � 1 + 2� mm(m� 1)m�1 � 2m� 18(logD +m=(m� 1))2�� 1 + 2 mm(m� 1)m�1 � 2m� 14 log2(3D) :We have shown the following theorem.Theorem 5.1 There is a strategy that achieves a competitive ratio of at most1 + 2 mm(m� 1)m�1 � 2m� 14 log2(3D)if the target is placed at distance D > 1 to s.By Theorem 4.13 the strategy we have presented above is optimal (up to aconstant) if D goes to in�nity.6 Computing the Optimal StrategyIn this section we present an algorithm to compute the optimal strategy to searchon m bounded rays. As opposed to the previous sections we now assume that weare given the competitive ratio 1 + 2c and we want to compute the maximal reachfor 1 + 2c [IKL97]. Recall that the reach of a strategy X is the maximum distanceD such that a target placed at a distance D to the origin is still detected by a robotusing X if the competitive ratio of X equals 1 + 2c. Note that once we are ableto compute the maximum reach, we can easily compute the minimal competitiveratio for a given D by applying binary search. This only increases the running timeproportional to the number of bits necessary to represent D.23



In the case m = 2 it is not too hard to derive a recurrence equation for theoptimal reach (see [IKL97]). As in the proof of Lemmas 2.2 and 2.3 we can showthat there exists a strategy with maximal reach that is periodic and satis�es theequations2 k+m�1Xi=0 xi = c xk; (2) and m�2Xi=0 xi � c (3):In fact, if Pm�2i=0 xi < c, then there is a � > 1 such that the strategy �X satis�esEquation 2 andPm�2i=0 �xi = c. If D is the reach of X, then �D > D is the reach of�X. Hence, we can assume that we have equality in Equation 3 for a strategy withmaximal reach. For m = 2, this implies that x0 = c and xk is given byxk = c xk�1 � k�1Xi=0 xi;for k � 1, which determines the strategy completely. For m > 2, we still haveequality in Equation 3 but now we only obtain the sum of the �rst m � 1 stepslengths x0; : : : ; xm�2 instead of their values.Hence, we take a di�erent approach. Let Y again be the sequence de�ned byyi = xn�i�1, for 0 � i � n�m. It satis�es recurrence equation (7), namelyyk+m � yk+m�1 + 1c yk = 0;for all 0 � k � n � m. However, we only have the initial values for y0; : : : ; ym�2which are equal to D. Since we need one more initial value we set � = ym�1=D,where 0 < � < 1. Let Y (c;D; �D) = (y0; y1; : : : ) be the in�nite sequence that isgiven by Equation 7 and the above initial values. If c < cm, then there is an indexn0 such that yn0 is negative. By Equation 19n0 � 4m3(3m logm� log ") + 1 + 2�m3=2" ;where " = pmm=(m� 1)m�1 � c. We choose n to be the index such that yn isminimal among y0; : : : ; yn0�1. The value yn is now the lower bound on the distanceto the target. If we set x0k = yn�k�1=yn, for 0 � k � n, then we obtain a strategywith a lower bound of yn=yn = 1 to the target and reach D=yn, which is obviouslythe largest possible reach for a strategy that satis�es Equations 2 and 3 with theabove initial values. Unfortunately, we know neither D nor �. However, we can setD = 1 since we are going to scale by 1=yn later anyway.Since we do not know �, we consider the values yk as numbers over the extended�eld IR[�] = fx+ y� j x; y 2 IRg, that is, � is treated as formal parameter. Hence,2To see this we just note that if Pk+m�1i=0 x�i < cx�k, for some k, then we can decrease x�k bysome amount " > 0 and increase x�n�m+1; : : : ; x�n by "=m, thus achieving a greater reach.24



yk = uk+� vk, for some values uk and vk. On the other hand, yk = yk�1�(1=c) yk�m,for m � k � n. This yields two recurrences for uk and vk.uk = uk�1 � (1=c) uk�m; and vk = vk�1 � (1=c) vk�m:The initial values for the sequence U = (u0; u1; : : : ) are now given by u0 = � � � =um�2 = 1 and um�1 = 0. The initial values for the sequence V = (v0; v1; : : : ) aregiven by v0 = � � � = vm�2 = 0 and vm�1 = 1. If we stop after n steps, then Equation 3should be satis�ed, that is, we requiren�1Xi=n�m+1 ui + �nvi = c(un + �nvn) or �n = � n�1Pi=n�m+1 ui � c unn�1Pi=n�m+1 vi � c vn : (24)We obtain the following algorithm.Algorithm Maximal ReachInput: The competitive ratio 1 + 2c and the number of rays m.Output: An integer n and a strategy X = (x0; : : : ; xn) such that the reach ofX is maximal.1 if c � mm=(m� 1)m�1 then return 1, xk = (1 + 1=(m� 1))k2 for i 0 to m� 2 do let ui  1, vi  03 let um�1  0, vm�1  14 let ymin  1, nmin  m, " (mm=(m� 1)m�1 � c)1=25 let n"  4m3(3m logm� log ") + 1 + 2�m3=2="6 for n m to n" do7 let un  un�1 � (1=c) un�m, vn  vn�1 � (1=c) vn�m8 let �n  �(Pn�1i=n�m+1 ui � c un)=(Pn�1i=n�m+1 ui � c vn)9 if (un + �nvn < ymin)then let positive true10 for j  m to n do=� Test if all elements are positive �=11 if uj + �nvj � 0 then let positive false12 if positive then ymin  yn, nmin  nend if13 let n nmin14 for i 0 to n� 1 do let xi  (un�i�1 + �nvn�i�1)=ymin15 return n, (x0; : : : ; xn�1; 1=ymin)We show the correctness of Algorithm Maximal Reach in the following two lem-mas.Lemma 6.1 The competitive ratio of X is 1 + 2c.25



Proof: First note that because of the test in Step 11 all the elements of X arepositive. By the choice of �, U , and V , X obviously satis�esm�2Xi=0 xi = c and xk+m�1 = c(xk � xk�1)for 0 � k � n�m if we set x�1 = 1.3 Using induction we see thatk+m�1Xi=0 xi = xk+m�1 + cxk�1 = c(xk � xk�1) + cxk�1 = cxkfor 0 � k � n�m as claimed. 2Lemma 6.2 The reach of Strategy X is at least as large as the reach of any otherstrategy with competitive ratio 1 + 2c.Proof: Let X� = (x�0; x�1; x�2; : : : ; xl) be a strategy with maximal reach for compet-itive ratio 1 + 2c. By Equation 19 l � n". As we observed previously, X� satis�esthe conditionsPk+m�1i=0 x�i = cx�k, for 0 � k � l�m, and Pm�2i=0 x�i = c. We de�ne asequence Y � = (y�0; : : : ; y�l ) by y�i = x�l�i�1=x�l , for 0 � i � l, where we set x��1 = 1.The reach of X� is x�l�1 = x�l�1=x��1 = (x�l�1=x�l )=(x��1=x�l ) = 1=y�l .The sequence Y � satis�es recurrence equation 7. By a simple induction it canbe easily seen that y�k = uk + y�m�1vk. Because of Equations 3 and 24 we obtainthat y�m�1 = �l. Hence, Y � is computed in Step 10 if k = l. Let Y be the sequencecomputed by Algorithm Maximal Reach. Since yn is chosen to be minimal, yn � y�l .Hence, the reach 1=yn of X is at least as large as the reach of X�. 2If c consists of b bits, then the time complexity of Algorithm Maximal Reach isquadratic in n" = p2b, that is, �(2b). On the other hand, since logD = 
(n"),4 thetime complexity is quadratic in the size of the output.We have implemented Algorithm Maximal Reach in Maple. In Figure 3a themaximal reach of the optimal strategies for di�erent values of m is shown. The�gure illustrates nicely that the logarithm of the maximal reach depends linearlyon 1=". In Figure 3b we compare the maximal reach of the optimal strategy tothe maximal reach of the strategy presented in Section 5 and the strategy given byxk = (3=2)k form = 3. It can be seen that the maximal reach of the optimal strategyincreases much faster than that of the other two strategies. The �gure also showsthat the maximal reach of the strategy presented in Section 5 is a linear functionof 1=" whereas the maximal reach of the other strategy is a logarithmic function of1="2. It should be noted that the lower bound we have presented|which is nowan upper bound on the maximal reach|does not �t into the �gure as it starts at avalue of > 2000 and has a much steeper slope.3Note that yn is chosen to satisfy yn = yn�1 � 1=cyn�m. Since we divide by yn, this impliesthat yn�m=yn = c(yn�1=yn � 1) or xm�1 = c(x0 � x�1).4This follows from the fact that there is a strategy with such that logD is in 
(1=")|as, forinstance, the strategy presented in Section 5. 26
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(b) 1="Figure 3: (a) The reach of the optimal strategy for di�erent values of m. (b) Thereach of the optimal strategy for m = 3 compared to the reach of the strategyproposed in Section 5 and the strategy given by xk = (3=2)k.7 ConclusionsWe present a lower bound for the problem of searching on m concurrent rays if anupper bound D on the maximal distance to the target is given. We show that inthis case the competitive ratio of a search strategy is at least 1+2mm=(m�1)m�1�O(1= log2D). Our approach is based on deriving a recursive equation for the steplength in each iteration of an optimal strategy. The recursive equation gives rise toa characteristic equation whose roots determine the properties of the strategy. Bycomputing upper and lower bounds on the radii and polar angles of the roots inpolar coordinates we can show that the competitive ratio has to be suÆciently largeif the target is far away.We also present a strategy which achieves a competitive ratio of 1 + 2mm=(m�1)m�1 � O(1= log2D) if the target is detected at distance D. The strategy doesnot need to know an upper bound on D in advance and still achieves the sameconvergence rate as the lower bound that we have shown. This implies that theconvergence rate of our lower bound is tight (up to a constant that depends on m).Finally, we present an algorithm to compute the strategy with maximal reachfor a given competitive ratio and general m. Our algorithm needs time proportionalto the size of the output and exponential in the size of the input.An interesting open problem is to prove similar results for randomized strategies.One of the problems with randomized strategies is that there is no published proofthat there is an optimal periodic strategy. This seems to be a necessary step beforethe bounded distance problem can be attacked.27
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